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Recent advances in graphene research have enabled the utilization of its

nanocomposites for numerous energy-based and environmental

applications. Recently, the advancement in graphene-based polymer

nanocomposites has received much attention with special emphasis on

synthesis and application. Graphene-based nanocomposites show

astonishing electrical, mechanical, chemical, and thermal characteristics.

Graphene nanocomposites (GNCs) are synthesized using a variety of

methods, including covalent and non-covalent methods, a chemical-based

deposition approach, hydrothermal growth, electrophoresis deposition, and

physical deposition. Chemical methods are the most viable route for producing

graphene in small quantities at low temperatures. The technique can also

produce graphene films on a variety of substrate materials. The use of

artificial intelligence (AI) for the synthesis of AI-created nanoparticles has

recently received a lot of attention. These nanocomposite materials have

excellent applications in the environmental, energy, and agricultural sectors.

Due to high carrier mobility, graphene-based materials enhance the

photocatalytic performance of semiconductor materials. Similarly, these

materials have high potential for pollutant removal, especially heavy metals,

due to their high surface area. This article highlights the synthesis of graphene-

based nanocomposites with special reference to harnessing the power of

modern AI tools to better understand GNC material properties and the way
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this knowledge can be used for its better applications in the development of a

sustainable future.

KEYWORDS

graphene, nanocomposites, AI modeling, environmental remediation, energy,
agricultural applications

1 Introduction

Carbon is abundantly present on Earth’s surface and is a

major component of human life. Elements of biological life and

fossil fuels all contain carbon as a major proportion. This shows

the overall versatility of this element and its broad range of

applications in daily life (Lam and Luong, 2014; Zeng et al.,

2020). Carbon’s unique ability to create multiple bonds with each

other allows it to create various forms of arrangements, ranging

from linear sheet-like layers to tetrahedral structure formations

(Serp and Figueiredo, 2009). This unique arrangement of carbon

atoms allows the formation of various iso-forms, each possessing

its own unique electrical, physical, thermal, and chemical

properties. As a result, this carbon-based material can be

utilized to make various kinds of products, ranging from

nanofibers to carbon material sheets to more advanced stage

carbon nanotube materials. In recent years, graphene has

emerged as a nascent isoform of carbon and is getting heavily

integrated into everyday life. This is attributed to the unique

physio-chemical properties of graphene, which include a

relatively higher surface area, thermal stability, mechanical

strength, and high electric mobility (Gopiraman et al., 2013a).

Graphene is the basic building block for all available graphitic

allotropes of carbon. It has several unique properties that make it

stand out from all other allotropic forms of carbon. Ever since the

groundbreaking research at the University of Manchester in

2007, it has gained great attention for application in multiple

fields (Kravets et al., 2010). It has a two-dimensional structure

and is often observed to be the thinnest existing material with

only a single atom thickness. Inside the single layer, these atoms

are interconnected in a honey comb like structure via sp2 atomic

hybridization. Its unique properties include a theoretical surface

area of 2,630 m2/g, a young modulus of around 1 TPa with high

breaking strength, and a thermal conductivity of 5,000 W per

meter per kelvin, making it a hot material for various novel

applications in various fields of life (Zhu et al., 2010; Yang et al.,

2013). Although it is composed of a single 2-D layer of carbon

atoms, which are closely packed in a hexagonal structure,

graphene is a highly flexible material and can stretch to a

great extent from its original shape. Graphene is lighter than

any form of existing steel, yet it is stronger than the strongest

known form of steel. Although graphene materials mostly

possess unique and favorable properties, allowing their wide-

scale applications, a few of their attributes have some negative

impacts as well. For instance, graphene layers have a lower light

absorption rate and, due to their transparent nature, are utilized

for the synthesis of various optoelectronic devices. However, this

weak light absorption makes them less popular for the synthesis

of solar energy absorption panels (Kravets et al., 2010).

Collectively, this rapidly developing field of graphene

applications has envisioned great potential in electronics,

optoelectronics, and electrochemical and biomedical

applications due to its unique structure and properties.

The conductivity of graphene is due to a single free electron

in a covalent sp2 bond between carbon atoms. As a radical

nanomaterial with extraordinary physical features, such as

remarkably high heat conductivity and excellent electrical

conductivity, graphene is gaining a lot of interest from the

physical, chemical, and biomedical areas (Blake et al., 2007;

Potts et al., 2011; Singh et al., 2011; Young et al., 2012) due to

its biocompatibility, surface-to-volume ratio, and excellent

mechanical strength (Yasmin and Daniel, 2004; Novoselov

et al., 2005; Lee et al., 2008; Compton and Nguyen, 2010; Zhu

et al., 2010; Chandrasekaran et al., 2014). Graphene is the most

thermally conductive material known, and it has unusual

electronic properties. At normal temperature, graphene

possesses remarkably high electron mobility, according to

experiments, and has been proposed as a transistor circuitry

option. Graphene has over 200 times the electron mobility of Si

and over 4 times that of III–V semiconductors (Chen et al., 2008;

Pallecchi et al., 2014; Lamichhane and Ravindra, 2020). As a

result, graphene would be a very appealing material for high-

speed transistors.

Graphene layers are more commonly used in various

structures in order to harness the potential properties of the

compound. However, most recently, graphene-based

nanocomposites have found a relatively quick rise in their

application for numerous electrical, environmental, and

biological purposes. In general, nanocomposites are materials

that are made up of multiple (two or more) layers with

engineered high-density interfaces and with hierarchical

geometries. Nanocomposites have such physical and

mechanical properties that they are higher than the

corresponding single-layered structures of the same

compound. Various nanocomposites are also formed by the

combination of alternate layers of two different kinds of

materials, which exhibit ultra–high-level strength (Mara et al.,

2008). All of these characteristics of graphene and its

nanocomposites were reported by different researchers along

with the preparation methods and applications in the fields of the

environment, energy, and agriculture. There is still a

technological gap in the preparation and applications of these
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composites, which provides room for advancements in this

domain. This article mainly highlights the conventional and

AI-based preparation methods for graphene and its

nanocomposites and the advanced applications of these

composites in different fields.

Conclusively, this review makes use of previous research and

presents a comprehensive insight into the manufacturing

methods and applications of graphene-based composites.

Previous review articles lack the combined approach toward

conventional and AI-based synthesis of GNCs. Some articles

discuss only the conventional methods of synthesis (Gorga and

Cohen, 2004; Yuan et al., 2009; Rourke et al., 2011; Goenka et al.,

2014; Jayasena and Melkote, 2015; Jaleh et al., 2017). Moreover,

some articles mentioned the applications of GNCs in the fields of

the environment sector (Hao et al., 2012; Cao and Li, 2014; Latha

et al., 2016; Luo and Yang, 2017), energy sector (Choi et al., 2010;

Kamat, 2010; Dimakis et al., 2015), and agricultural sector

(Gomez De Arco et al., 2010; Nuvoli et al., 2011; Fan et al.,

2018; Mohan and Panicker, 2019) separately. This review article,

however, explored AI-based synthesizing methods and also, a

combined approach toward applications in all three sectors is

evaluated.

2 Structural analysis of graphene
nanocomposites

In general, nano-materials are divided into various categories

based on the dimension of the particles, i.e., zero-dimension, one

dimension, and up to three-dimension graphene materials,

which are used for a number of purposes (Tiwari et al., 2012).

These materials are prepared by inter-mixing several layers of

graphene and other compounds (i.e., ZnO, TiO2, etc.) (Chang

et al., 2016). The chemical structure of GO is redrawn as shown in

Figure 1 (Xiang et al., 2021).

Graphene comes in three different forms: graphene powder,

graphene film, and graphene liquid. Mechanical stripping and SiC

epitaxial growth are themost common graphene powder fabrication

methods; chemical vapor deposition (CVD), electrochemical, and

rapid heating methods are the most common graphene film

fabrication methods; and graphene liquids are mostly graphene

derivatives (Yap and Liu, 2020). Excellent mechanical strength, high

electrical conductivity, strong flexibility, more surface area, and

having light weight are among the features which provide it with the

ability to store electric charge, ions, or hydrogen (Mahmood et al.,

2014; Hu et al., 2018;Wang et al., 2019a). Despite this, the area is still

in its infancy, and many experimental findings defy the theoretical

explanation. For example, graphene, which is originally extremely

conductive, can become a heat-proofing material when the

environment is neutral (Cao et al., 2018). The oxidation of

graphite in fuming nitric acid using potassium chlorate is the

basis to produce GO (Green and Hersam, 2010; Jankovský et al.,

2017; Khan et al., 2018; Yap and Liu, 2020).

Graphene has become the focus of numerous scientific

sectors since its discovery in 2004 (Novoselov et al., 2004;

Hernandez et al., 2008; Nagashio et al., 2009; Aristov et al.,

2010; Bonanni and Pumera, 2011; Paredes et al., 2011; Avouris

and Xia, 2012; Brownson et al., 2012; Mattevi et al., 2012; Prasai

et al., 2012; Song et al., 2013; Bolotin, 2014). Because of its 2-D

structure, every atom in this form of carbon is accessible for

chemical reactions. It is the strongest material, with a stiffness

value of 1 TPa (Lee et al., 2008). Other notable properties of

graphene include a hundred times more electron mobility than

silicon and a thousand times higher electrical conductivity than

diamonds. Because of new technologies to make and examine

graphene, research on it has exploded in the last decade. Many

applications, including ultra-thin flexible displays, smart phones,

chemical sensors, super-fast transistors, hydrogen storage, and

biosensors, have successfully exploited and functionalized

graphene (Bonaccorso et al., 2010; Wang et al., 2010; Lerner

et al., 2014; El-Kady et al., 2016).

Ruan et al. (2018) used Hummer’s approach to prepare for

GO. Initially, a beaker containing graphite powder and

NaNO3 was filled with H2SO4 and continuously stirred.

Following that, during stirring, KMnO4 in a measured

quantity was added. After that, H2O2 was mixed with the

reaction solution and washed with distilled water (Shi et al.,

2017; Fan et al., 2018; Hou et al., 2020). According to Chang et al.

(2016), the Staudenmaier method was used to prepare GO.

Graphite was treated with H2SO4 and HNO3. Potassium

chlorate was used to control the temperature, filtered, and

then rinsed with HCL. Tan and Pumera, (2017) proved that

graphite oxide can be made using the Hoffman method. The

mixture of H2SO4 and HNO3 was cooled to 0°C and graphite was

added rapidly. Chlorine gas was released by adding KCLO3. The

FIGURE 1
Chemical structure of graphene oxide with its chemical
analysis redrawn using ChemDraw ultra 12 (Xiang et al., 2021).
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temperature was brought to ambient conditions and 3 L of water

was added. Then, 5% HCL was added in the reaction mixture.

Centrifuge was used to separate the solid from the liquid. A

vacuum oven was used to dry it for 48 h.

Many studies have been published regarding the creation of

graphene-based nanocomposites, for example, to generate

graphene/ZnO nanocomposites films, ZnO nanoparticles can

be distributed in distilled water over graphene (Chang et al.,

2016). Zhang et al. (2016) demonstrated the production of TiO2-

graphene aerogel hybrids. The GO solution was first treated with

anhydrous ethanol. The reactant was then sonicated after adding

tetra-butyl-titanate. The combination was then moved to a

Teflon-lined stainless-steel autoclave, where the TiO2-

graphene hydrogel was hydrothermally treated. Han et al.

(2019) used a simple sono-chemical approach to synthesize

SnO2/rGO nanocomposites from SnCl2 and GO precursors.

Sn2+ was homogeneously disseminated on the GO surface in

the first step, and then GO was reduced by using ultrasound and

adding SnO2.

To prepare graphene using the electrochemical approach, the

choice of suitable electrolyte and electrolysis conditions is an

important factor (Yap and Liu, 2020). The electrochemical

exfoliations of charcoal and graphite were investigated using

various electrolytes. The cathode was copper foil, while the anode

was graphene. Electrolytes were used to soak both electrodes. Ma

et al. (Ma et al., 2018) reported the mechanical exfoliation and

stirring of graphite powder into honey formulating mono-and-

multi–layered structures of graphene. To make graphene

quantum dots, top-down and bottom-up approaches are

typically utilized (Ding et al., 2018). Large-scale resources are

sliced to obtain carbon-based structures and especially graphene,

e.g., G-Quantumdots using the top-down method. The chemical

approach is used to make graphene quantum dots from small

molecular carbon sources in the bottom-up process. Because the

preparation and post-treatment of graphene quantum dots can

be manipulated, it is vital to carefully optimize the preparation

procedure. Graphene quantum dots can be surface-passivated,

functionalized, heteroatom doped, or recombined to fulfill the

needs of various applications (Chen et al., 2019). The growth

mechanism can be classified into two kinds (Han et al., 2017; Jo,

2018):

1) For metal substrates with a large carbon capacity, such as

nickel, the mechanism of carburizing and carbon deposition

is the same. When the temperature is decreased, the carbon

atoms (created by the breaking of the carbon source)

penetrate through the metal substrate at a high

temperature, and nucleation is precipitated from inside.

2) The surface growth method nucleates graphene with high-

temperature growth, in which carbon atoms are adsorbed on

metal surfaces by copper and other low-carbon metal. Rapid

thermal treatment (RTT) is used to make first-class graphene

from silicon carbide in amorphous form (a-SiC). The SiO2/Si

composite is first coated with an a-SiC film, followed by Ni

and Cu films.

Carbon exists in numerous allotropes based on the type of

chemical bonding. The electronic and mechanical properties of

each allotrope differ. Carbon nanotubes (CNTs), graphene, and

fullerenes are emerging new materials with superior properties

(Potts et al., 2011; Singh et al., 2011). Carbon materials’

adaptability stems from the fact that their physical properties

are highly dependent on the ratio of sp2 graphite-like to

sp3 diamond-like links (Hu et al., 2018). From

microcrystalline graphite to glassy carbon, there are

numerous carbon structures with different hybridizations. As

a result of their excellent mechanical and electrical capabilities,

these materials have been extensively studied.

3 Conventional and AI-based
synthesis of graphene

Due to its unique characteristics of high thermal and

electrical strength, graphene has a bright future in

environmental and energy applications (Potts et al., 2011;

Singh et al., 2011). These applications necessitate vast

amounts of graphene in different forms, e.g., low-cost

nanoparticles, nanoplatelets, and nanocomposites.

3.1 Conventional preparation methods

Graphene has been prepared in a variety of ways. The

electrical characteristics of graphene may be harmed by

structural faults, imperfections, and wrinkles inside the

material (Goenka et al., 2014). Different researchers reported

many methods to produce several graphene-based

nanocomposites.

Jaleh et al. (2017) utilized the co-precipitation method at low

temperatures for the formation of graphene oxide/Fe3O4 (GO/

Fe3O4) nanocomposites. Use of energy dispersive X-ray analysis,

XRD and FT-IR, and TEM and SEM were used to determine the

particle size and morphology of the prepared nanocomposites.

Particle size was found to be smaller than 20 nm. GO/Fe3O4

nanocomposites were prepared using different amounts of

FeCl2.4H2O and FeCl3.6H2O.

Qian et al. (2020) prepared lignin-poly (N-methylanine)-

reduced graphene oxide hydrogel using a two-step method.

Characteristically, a modified hummer’s method was utilized

to prepare reduced-GO (Wang et al., 2018). Firstly,

polymerization of NMA in the presence of an aqueous lignin

solution is carried out to produce microspheres of lignin-PNMA.

Secondly, the reduction-induced self-assembly method was

incorporated to encapsulate the already prepared GO hydrogel

nanosheets.
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Nasrollahzadeh et al., (2014) reported the synthesis of GO/

ZnO nanocomposites. Various tetrazoles were reported to be

manufactured using this heterogeneous catalyst.

Characterization was done by XRD, SEM, EDS, TEM, and

UV-Vis spectroscopies. The employed method gave a high

yield and provided simplicity in operation.

Depending on the desired use, graphene can be produced in

following ways:

• Mechanical exfoliation (ME)

• Chemical vapor deposition (CVD)

• Liquid-phase exfoliation (LPE)

Each approach has various advantages and limits. The

following is a quick summary of various strategies.

3.1.1 Exfoliation
Most of the graphene used in research during the last

decade was made by mechanical exfoliation (Rourke et al.,

2011; Jayasena and Melkote, 2015; Yi and Shen, 2015). In

this method, adhesive tape is pressed on a specified substrate

surface, and graphite samples are speeded on the tape, then

the tape is peeled of (Figure 2A). Graphene fragments are

spread on the substrate (Novoselov et al., 2005). The scotch

tape approach produces exceptionally high-quality

graphene that allows investigators to study its mechanical

and physical characteristics. However, this approach is not

feasible for large-scale graphene production in industrial

applications.

3.1.2 Liquid-phase exfoliation
This approach is extremely adaptable and can be used in a

large diversity of settings and on numerous substrates. A

combination of sonication and wet chemical dispersion using

an appropriate solvent is the most viable route for LPE (Zhou

et al., 2014). It consists of three steps: (Lam and Luong, 2014):

solvent dispersion, (Zeng et al., 2020), exfoliation, and (Serp and

Figueiredo, 2009) separation of the exfoliated material through

cleansing as mentioned in Figure 2B. Ultrasonic force and solvent

interaction are the key steps for the exfoliation processes. LPE use

makes the separation of graphene layers easier. They are bound

together in graphite through strong attractions, and an enormous

amount of mechanical energy is required to break these bonds

apart. Disrupting the attraction forces that hold the graphene

layers together is one approach to lowering this energy input.

This is accomplished by submerging the bulk material in a

specific solvent and then exfoliating it. Nuvoli et al., (2011)

used LPE of graphite in an ionic liquid to acquire highly

concentrated, layered graphene sheets. This is an excellent

strategy for creating fine graphene particles. High yield with

low cost and scale-up skill are main advantages of the LPE

processes.

3.1.3 Chemical vapor deposition
Carbon-based composites, such as graphene quantum dots

and carbon nanostructures (CNTs), were preferably prepared by

CVD (Eletskii et al., 2011; Zhu et al., 2013). Figure 2C depicts the

thermo-catalytic breakdown of gaseous HC on a metal surface to

produce graphene. It is a relatively new process for generating

films of continuous 2D graphene structures with a huge surface

area. In this process, a metal is placed in a furnace. Gases are

being pumped into the furnace (methane and hydrogen).

Hydrogen (H2) then catalyzes a reaction between methane

and the surface metal, causing the methane’s carbon atoms to

settle on the metal’s outer layer. A layer of graphene is deposited

on the substrate as a result of the process. Different metals can be

used in the CVD method, e.g., Ni, Co. A number of layers

generated can be precisely controlled using the CVD process

(Gopiraman et al., 2013a; Khan et al., 2018).

Seo et al. (2018) used an ambient-air CVD technique to

produce permeable graphene for water desalination. No

nanopores in graphene microstructures were observed, unlike

earlier studies in which post-treatment procedures created

nanopores on the graphene surface. Instead, they found a

multilayer graphene film with multiple grain borders resulting

from tiny domain widths and numerous overlapping regions of

graphene. These results support graphene’s status as a 2-D

nanomaterial with substantial thermal anisotropy, with great

thermal conductivity in the x–y direction due to sp2 bonding

in the graphene lattice, and low thermal conductivity in the z

direction due to weak van der Waals interaction.

3.2 Graphene-based nanocomposites/
nanopolymers

Due to its outstanding material characteristics, such as

toughness, yield strength, and thermal conductivity, polymer

nanocomposite (PNC) manufacturing has increased significantly

over the last decade (Chang et al., 2013; Arash et al., 2014;

Mahmood et al., 2014; Li and Wang, 2016; Wang and Zhi, 2016;

Zope et al., 2016; Wang et al., 2019b; Khatun et al., 2020; Ibrahim

et al., 2021). Traditional composite structures typically have a

high proportion of filler bound (Nguyen and Nguyen, 2016).

However, it has been demonstrated that micron-sized graphene

can be scaled up for mass production. As a result, graphene-based

composite materials are appropriate for a wide variety of

applications (Lerner et al., 2014).

Significant amounts of graphene can be created by oxidizing

graphite precursors. As a result, graphene-based polymer

nanocomposites have piqued researchers’ curiosity all over the

world. Graphene polymer nanocomposites have beenmade using

a variety of polymers as matrices, including epoxy (Gervasoni,

2016; Wu et al., 2020a), PMMA (Ramanathan et al., 2007; Jang

et al., 2009), HDPE (Zheng et al., 2004), polystyrene (Yuan et al.,
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2009), and nylon (Frontini and Pouzada, 2011; Goodfellow et al.,

2016; Moore et al., 2018; Pierson et al., 2019; Qi et al., 2019;

Schwarzer et al., 2019; Lin et al., 2022). The use of graphene-

supported nanocomposites for the development of novel

materials is becoming more common.

Nanocomposites have matrices consisting of polymer,

metal, or ceramic, as well as fillers like nanotubes (CNTs),

clay minerals, and graphene nanodots. These inclusions

improve the material’s properties (Haraguchi, 2011; Mittal

et al., 2015). Polymeric nanocomposites are the most versatile,

with applications in a wide range of industries including

energy, electronics, biomedical, and others. Polymer

composites are separated into three groups based on the

dispersion of nano-scale layers: intercalated

nanocomposites, micro-composites, and exfoliated

nanocomposites (Costantino et al., 2012).

Chemically, the compatible nature of the matrix and filler

material, the concentration of the filler, and the dispersion of the

filler impart different properties to graphene nanocomposites.

Appropriate fabrication procedures must be used to produce the

best outcomes. Furthermore, the degree of dispersion has a

substantial relationship with the performance quality of

nanocomposites (Frontini and Pouzada, 2011; Unalan et al.,

2014; Fu et al., 2019). In situ polymerization, exfoliation

FIGURE 2
The main graphene production strategies are depicted in this diagram. (A) Exfoliation by mechanical means, (B) Liquid-phase chemical
exfoliation (C) Chemical vapour deposition (CVD).
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adsorption, and melt intercalation are the three types of polymer

nanocomposites.

3.2.1 In situ polymerization
In situ polymerization is a very effective approach during the

formation of diversified graphene in a polymer matrix. In this

process, the monomers join through polymerization with the

stacking components. The filler is immersed in a solution of

monomers. The filler expands and monomers pass through the

monomer spaces. A sonicator is used to sonicate and stir the

mixed solution. After an even distribution, polymerization is

carried out by direct heating, a catalyst, or radiation. By

incorporating additional functional groups, in situ

polymerization offers higher compatibility with polymers and

the dispersion of graphene on the polymers. Unlike previous

processes, thermoset polymers are employed. The ability to

generate strong bonds between a nano-filler and matrix is a

fundamental benefit of this approach (Unalan et al., 2014; Fu

et al., 2019).

3.2.2 Melt blending
Inorganic-based hybrid polymers at nano levels are

preferably prepared through melt blending (Avouris and Xia,

2012). It has been determined that it is cheap and

environmentally friendly. In these processes, graphene or

modified graphene can be obtained without the use of any

solvent. This is the traditional approach to graphene. The

fundamental drawback of this approach is the graphene’s poor

dispersion in the polymer matrix, particularly at higher filler

loadings. This is because composites have a higher viscosity.

Melt intercalation or melt blending is the most frequent

method of creating polymer nanocomposites (Gorga and Cohen,

2004; Bao et al., 2012). Thermally stable fillers are required to be

used to avoid filler degradation during the process (Uhl et al.,

2005). (Khvan et al., 2007) synthesized graphene/polylactic acid

(PLA) nanocomposites with exceptional characteristics. PLA

nanocomposites with well-dispersed graphene have

dramatically increased crystallinity, mechanical properties, and

electrical conductivity. The method’s main disadvantages include

greater stickiness at large filler portions and a lower intercalation

degree than other approaches (Jung et al., 2015).

3.2.3 Exfoliation adsorption
The use of exfoliation adsorption to produce highly adhesive

forces between the matrix solution and the filler materials is a

very effective approach (Vazquez et al., 2012; Unalan et al., 2014).

This technique includes solution mixing and demands for the

filler and matrix solvent. The filler swells as it allows the

intercalation of polymer chains and increases the interlayer

space. Uniform distribution is achieved through proper

stirring and sonication. A multilayered structure is then

achieved after removing the solvent. This approach is used to

manufacture nanocomposites using polymers of low polarity.

However, it is not suited for industrial use because it requires

large amounts of solvents (Khvan et al., 2007; Jayasena and

Melkote, 2015; Yap and Liu, 2020). Polymer nanocomposites can

be made by solution mixing with a variety of polymers, including

polymethylmethacrylate (PMMA) (Zhang et al., 2012a),

polyurethane (PU) (Kim et al., 2010a), and polyvinyl alcohol

(PVA) (Kim et al., 2010b).

Many researchers explored these techniques and similar

approaches for the manufacturing of GNCs depending upon the

diverse nature of graphene-basedmaterials, their structural properties

and their ultimate usage. In order to provide a more accurate and in-

time evaluation of the structural integrity of graphene-based

compounds, researchers are now gradually shifting toward AI-

based modeling for attaining a higher design efficiency.

3.3 AI-based modeling and preparation of
graphene

Recent advanced research in the chemical and material

science field has highlighted the usefulness of applying various

kinds of nano-materials to enhance the structural integrity

and strength of compounds. Among these, graphene-based

nano-materials have received great attention. Research has

shown that an addition of about 0.05% graphene in concrete

TABLE 1 Graphene-based nanocomposites: characterization techniques.

Characteristics of G-based
nanocomposites

Techniques Literature cited

Composition MC-ICPMS, NMR, EELS Zhu et al. (2018)

Pore sizes/volumes NITROGEN ADSORPTION Cheng et al. (2019)

Size distribution SEM, XRD, TEM, STM, AFM, SAXRD Calovi et al. (2019); Wang et al. (2020)

Shape SEM, PXRD, TEM, XRD, FESEM Muthumeenal et al. (2017)

Specific surface area NITROGEN ADSORPTION Cheng et al. (2019)

Structure MC-ICPMS, XRD, NMREELS, XANES Iqbal et al. (2020)

Valence XPS, XANES Wu et al. (2020b)
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materials has a significant impact on the enhancement of their

mechanical properties (Isfahani et al., 2016). For better

understanding, binding and formation analyses of

nanocomposites, image analysis of the compound is an

effective process. The data gathered can then be used to

improve the predictions and designs for new

nanocomposite materials. In this regard, Scrivener (2004)

utilized the back-scattered electron (BSE) method to

visualize the structure of such compounds at the 100 nm

level. It also gave crucial information regarding various size

factors and presented a fractal analysis for such

nanocomposites (Ruan et al., 2018). However, this

approach often faced technical difficulties in observing the

full-scale impact of nano-materials on the structural

enhancement at the micro level. In this regard, modern

artificial intelligence (AI) approaches are now providing a

new view regarding the evaluation of nanocomposites. Lin

et al. (2022) has used convolutional neural networks (CNN),

an advanced AI approach, to evaluate the mechanism of

nanomaterial reinforcements using data image processing.

Conventional approaches involving such studies often

required a higher degree of technicality and sophistication,

making the entire process more time-consuming and

laborious. In comparison to this, using an AI approach

eliminates such complexities as programmed algorithms are

able to analyze and learn from a given dataset and ultimately

perform wide-scale image analyses and extract important

findings from the image study to better understand

nanocomposites (Goodfellow et al., 2016). Furthermore,

these AI methods exhibit their superiority in mining

features regarding spatial correlation and other dominant

factors in material microstructures. Ultimately, this

provides a pathway for the microstructural characterization

of nano-reinforced composite materials.

The use of AI models to assess nanocomposite structures has

resulted in significantly higher levels of accuracy, and the overall

predictive accuracy increases with the size of the dataset provided

to the program. The increase in the image dataset provided more

information for the program to study and enabled it to capture

and analyze information regarding the material. At a micro level,

the AI extracts higher-dimensional information such as porosity,

solid material shape, and the arrangement of numerous phases,

providing a better understanding of its structural dynamics. This

enables a better interpretation of the potential mechanism behind

nano-reinforcement of composite materials, aiding the design of

such nanocomposites (Lin et al., 2022).

The unique features of AI, which tend to reduce the overall

computational time for analysis and preparation of high-

fidelity modeling of materials, make it an effective tool in

material sciences (Qi et al., 2019). Cracking or fracturing is an

important phenomenon occurring in different materials and

is caused by the breakage of bonds at an atomic level.

Understanding the behavior of cracking in materials is

important from a scientific as well as industrial point of

view in order to manipulate the integrity and durability of

materials. In this regard, the development of such AI models

that can predict the cracking phenomenon of materials based

on the atomic level bond breaking data can provide numerous

possibilities during nano-scale material designing. Various AI

models have been developed to detect and study cracks in

materials. Moore et al. (2018) developed a random forest-

based advanced AI model using data from a finite–discrete

element mode in order to predict vibrant fractures in materials

(Moore et al., 2018). Similarly, certain models have been

developed for the detection of microscopic 3D crack

structures in brittle materials and alloys at microscopic

levels (Pierson et al., 2019; Schwarzer et al., 2019).

Furthermore, using the data obtained from molecular

dynamics, a model was constructed to predict brittle

fractures in general, with another related model developed

for fracture mechanism prediction in graphene as a function

of its crystal orientation (Lew et al., 2021).

Elapolu et al. (2022) developed an AI model for the

prediction of brittle fractures occurring in polycrystalline

graphene under certain tensile stress. The model uses

convolution neural networks (CNN) to predict crack growth

in realistic polycrystalline graphene by processing spatial and

sequential datasets. The recorded spatial features included

grain boundaries as well as their orientation, whereas their

sequential features were linked with crack growth. Novel image

processing data were collected and fed in to the model which

carried out the predictive analysis. The final results obtained

via AI model analysis depict a close agreement with the

molecular dynamic simulation, which is used for obtaining

information related to the fracture process in pre-cracked

polycrystalline graphene sheets subjected to tensile load. The

corresponding model gave accurate predictions regarding the

crack path of graphene with high accuracy. It also provides

instantaneous results, providing an option to bypass high-cost

computational dynamic simulations. These AI-based

modelings are now proving to be an effective method for a

quick structural evaluation and can be a vital tool in graphene-

based product developments.

3.4 Characterization of graphene-based
nanocomposites

Various analyses may be used to determine the physicochemical

features of graphene-based nanocomposites, e.g., particle size and

size distribution, shape, valence state, specific surface area, etc. As

shown in Table 1, there are different techniques that can be used. As

shown previously, graphene and its composites have a wide range of

unique properties, making them ideal candidates for use in clean

energy materials to reduce pollution and promote humanity’s long-

term development.
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4 Applications of graphene and its
nanocomposites

Carbon-based agents are extremely adaptable and can be

employed in a variety of applications (Zeng et al., 2019; Zeng

et al., 2020). In the realm of heterogeneous catalysis, graphene

and graphene-based composites have received a lot of attention

in recent years (Gopiraman et al., 2013a; Gopiraman et al., 2013b;

Gopiraman et al., 2014; Vinoth et al., 2015; Carreño et al., 2017;

Wu et al., 2020a). These composites offer a lot of flexibility when

it comes to tailoring the catalytic capabilities to specific needs.

For example, a large surface area aids in the dispersion of

nanoparticles, and so, increases the performance (Gopiraman

et al., 2015a; Vuong Hoan et al., 2016; Yi et al., 2017).

Furthermore, due to its high thermal stability under

decreasing conditions, it is an excellent substrate for metal

nano-particles (Dhand et al., 2013; Gopiraman et al., 2015b).

Similarly, graphene’s high-speed electron mobility boosts the

electrocatalytic activity while also improving the photocatalytic

behavior by reducing the electron–hole pair recombination

(Ramaswamy and Mukerjee, 2012; Ganesh Babu et al., 2015).

Defect sites in graphene-based materials, on the other hand, act

as nucleation locations for nanomaterials, preventing them from

sintering throughout the catalytic process (Babu et al., 2016).

Graphene-based materials are categorically promising as

energy and environmental support materials. This claim is

backed up by the instances provided. Photovoltaics,

wastewater treatment through photocatalysis, and water

splitting could all benefit from graphene’s outstanding

electron mobility (Hassanpour et al., 2017; Monsef et al.,

2018). Graphene’s thermal and chemical resilience also makes

it a good support material for nano-catalysts in a variety of

applications (Blake et al., 2007; Lalwani et al., 2013). It is almost

translucent to visible light, ultraviolet light, and infrared light.

Graphene is a truly multidisciplinary substance that is being

studied in a variety of sectors for a variety of extraordinary

applications. The optical properties of graphene are promising

research and application areas (Mohan et al., 2021).

Graphene oxide (GO), due to its exceptional thermal,

electrical, and mechanical characteristics has attracted multiple

disciplinary fields, and it has been applied in the fields of energy

production, environmental rehabilitation, and water treatment/

decontamination (Dreyer et al., 2010; Eda and Chhowalla, 2010;

Zhou and Bongiorno, 2014). GO is being applied in different

forms. Previously, computational simulation approaches were

used to examine Fe adsorption on graphene (Hu et al., 2010;

Nakada and Ishii, 2011; Dimakis et al., 2015; Dimakis et al.,

2017). Furthermore, reduced graphene oxide (rGO) has high

chemical stability, making it a viable support option.

Graphene and its composites are extensively employed in

several catalyst-supported reactions, such as the oxygen

reduction reaction (ORR) (Kamat, 2010; Lei et al., 2014), due

to the aforementioned unique features, Fischer–Tropsch

synthesis (FTS) (Berger et al., 2004; Pereira et al., 2004;

Marforio et al., 2019), oxidative dehydrogenation (ODH) of

ethylbenzene to styrene, oxidation of SO2 gas to SO3 (Long

et al., 2011), oxidative dehydrogenation (ODH), (Lu et al.,

2016), water splitting (Choi et al., 2010; Guo and Dong,

2011), selective hydrogenation (Srivastava et al., 2010),

oxidative dehydrogenation (ODH) of ethylbenzene to styrene

(Mestl et al., 2001; Su et al., 2005; Hass et al., 2008; Wang et al.,

2019a), NOx abatement (Kim et al., 2009), catalytic purification

of VOCs (Peng et al., 2010), hydrogen fuel cells (Seger and

Kamat, 2009), and wastewater treatment (Dadvar et al., 2017) are

only a few examples of graphene applications. There are wide

applications of graphene nanomaterials, which is two-

dimensional lattice structure with a hexagonal comb

composed of carbon atoms and sp2 hybrid orbitals.

4.1 Pollutant degradation through
photocatalysis

Global industrialization has played a critical part in the

modern world’s economic growth and urbanization (Hu and

Teng, 2007; Sur, 2012; Wu and Hung, 2015). The expansion of a

large number of enterprises resulted in pollution, mostly water

contamination, as industrial waste was dumped into the aquatic

environment (Karthik et al., 2015; Kumar et al., 2016; Latha et al.,

2016). As a result of the wastewater generated by industries,

major difficulties have risen in aquatic living areas. Preventing

industrial wastewater from mixing into the aquatic environment

is a difficult undertaking, and it is preferable to minimize the

effluents before they are mixed into an aquatic environment. For

the degradation of pollutants generated by companies, several

technologies are available (Luo and Yang, 2017; Wang et al.,

2019b; Longxing et al., 2019; Zhao et al., 2019). Photocatalysis is

one of them, and it has the ability to degrade/decompose

wastewater–contaminated water, primarily organic

contaminants (Zhang et al., 2012b; Xiang et al., 2012). A

range of metal composites and carbon-based materials have

been used since the introduction of photocatalysis employing

semiconductor nanoparticles (Liu et al., 2017a; Zhang et al.,

2017a; Zheng et al., 2019), extending the applicability of

graphene to the photocatalysis processes by tuning its

electronic characteristics by inserting heteroatoms or

functionality (Liu et al., 2011). As a result, the photocatalytic

behavior of graphene-based nanomaterials is studied in this

section.

Babu et al. (2015) used nanostructured rGO-supported

CuO–TiO2 for the photocatalyzed removal of methyl orange

(MO). Amodified Hummer’s method was used tomake graphitic

oxide from graphite powder. Sono-chemical techniques were

utilized in preparing ex-foliateded graphene and reduced

graphene oxide (rGO). Under ultrasonication, rGO is coated

with a CuO–TiO2 nanocomposite was also loaded onto the
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surface of rGO. The authors went over to determine the

photocatalytic activity of rGO. The authors compare the

photocatalytic performance of several photocatalysts, including

CuO/TiO2, CuO, TiO2, and rGO-loaded CuO/TiO2

nanocomposites. It was assumed that rGO-loaded CuO/TiO2

had a higher photocatalytic proficiency than other

photocatalysts. They also tested the photocatalytic response in

a variety of settings, including darkness, ultrasound, light,

diffused sunlight, and a combination of both visible and

ultrasound. According to the findings, combining ultrasound

with diffused sunlight resulted in better productivity. Monsef

et al. (2021) tested carbon nano-composites in lanthanide oxides

showing a high degree of proficiency for electrochemical

activities and are more super capacitive than either of these

oxides alone.

Liu et al. (2017a) have reported the photocatalytic

degradation of phenol using the composites of TiO2–G and

ZnO–G. It was examined using SEM and TEM that both ZnO

and TiO2 were properly imparted on a graphene surface. TEM

images were also used to assess the size of these nanoparticles.

When compared to pure TiO2 and ZnO nanoparticles, the rate

was raised by up to 30 percent. This showed that graphene

conducts electrons and suppresses recombination, while linking

two composites created a more effective charge separation and

extended charge carrier life, which improved the photocatalytic

efficiency. Experimentation was optimized by controlling pH,

intensity of light, phenol concentration, and catalyst dose. Using

coupled ZnO–G/TiO2–G photocatalysts, the full degradation of a

40-ppm phenol solution took just 60 min at the optimum

conditions. The fact that graphene boosts the photocatalytic

performance of semiconductors is well demonstrated by these

examples in the literature.

Bhunia and Jana, (2014) developed a straightforward method

for synthesizing nanocomposites of rGO with a loading of silver

(rGO–Ag), which showed a high removal of atrazine, phenol, and

A-bisphenol in visible light. The creation of pure rGO–Ag was

firmly shown by XPS and XRD studies, as well as greater

crystallinity. Furthermore, the authors used TEM analysis to

establish the composite nature of rGO–Ag, demonstrating the

homogeneous decorating of Ag nanoparticles over the rGO

surface. Furthermore, Ag nanoparticles were calculated to

have an average particle size of roughly 5 nm. Experimenters

experimented with different catalyst loadings e.g., 1: ½ and 1: ¼.

Furthermore, the authors carried out a reusability test and, using

photoluminescence spectroscopy, proposed a mechanism for

photocatalytic degradation.

4.2 Heavy metal and heavy metal ion
removal

Heavy metal contamination is an intensified environmental

and aquatic system problem in today’s industrial world. The flow

of these pollutants into the soil, water systems, and atmosphere

severely pollutes ecosystems. Heavy metal ions are soluble in

aquatic environments and also tend to bond with important

biological constituents (i.e. proteins and nucleic acids), posing a

danger to human health directly or indirectly (Jin et al., 2014). The

mining sector, sewage irrigation, metal plating, electronic industry,

pesticides, plastics, and fertilizers are all major sources of heavy

metals (Ebrahimi et al., 2013; Maleki et al., 2015; Li et al., 2019;

Saljnikov et al., 2019). Because of the increased use of heavy metals

in businesses, the amount of heavy metals released into the

ecosystem has recently increased (Zhong et al., 2016). Arsenic

(As), cadmium (Cd), copper (Cu), chromium (Cr), lead (Pb),

nickel (Ni), Mercury (Hg), and zinc (Zn) are the most frequent

heavymetals found in the environment. These pollutants can cause

major health problems in humans, including emphysema, kidney

damage, hypertension, and cancer, even at low concentrations

(Jacob et al., 2000; Cao et al., 2012; Gao et al., 2017).

Detection and elimination of these heavy metal ions from

aquatic systems is important as even a trace quantity of these

contaminants can cause major health problems (Motahari et al.,

2015). Heavy metals are removed using a variety of technologies,

including ion exchange, coagulation, reverse osmosis (RO),

solvent extraction, and adsorption (Lesmana et al., 2009;

Bashir et al., 2019). Among these, the adsorption approach is

the most effective for removing heavy metal ions from aquatic

systems.

There are numerous adsorbents in the market today,

including activated carbon (Moreno-Fernandez et al., 2017),

polymeric adsorbents, clay (Cantuaria et al., 2016), and palm

shell (Ismaiel et al., 2013). However, the task is made more

difficult by the limited performance against metal ion removal.

Due to its excellent properties, e.g. greater surface area, graphene

and its oxide derivatives have been efficaciously employed as

adsorbents (Chowdhury and Balasubramanian, 2014; Cortés-

Arriagada and Toro-Labbé, 2016). Graphene oxide (GO) has

also been reported as a versatile adsorbent for the removal of

heavy metal ions e.g., Au(III) and Pt (IV) (Liu et al., 2012), Pb(II)

(Huang et al., 2011), Cu(II) (Yang et al., 2010), Zn(II) (Niu et al.,

2013), Cd(II) (Bian et al., 2015), and Co(II) (Gao et al., 2011).

Due to aggregation, Pure GO has a huge surface area, making it

ineffective for heavy metal removal. As a result, the chemical

treatment of GO surface was necessary to remove the heavymetal

ion (Cao and Li, 2014).

4.2.1 Chromium (Cr) removal
Cr (III) and Cr (VI) are the two mostly existing oxidation

states of chromium. The trivalent chromium Cr (III) is required

for the insulin hormone to function properly. Cr (VI), on the

other hand, is extremely harmful, being about 500 times deadlier

than Cr (III). Similarly, Cr ions can exist as chromate or

dichromate ions depending on the pH of the medium. These

ions are both extremely soluble in water and extremely poisonous

in nature. Cr (VI) is the most dangerous pollutant to the
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environment, according to the US Environmental Protection

Agency (EPA). As a result, Cr ions must be removed from the

aquatic system (Song et al., 2020). The adsorption behavior of

graphene-based catalysts toward Cr removal is better than that of

conventional adsorbents.

Besharat et al. (2021) used reduction techniques to explore

the effectiveness of graphene catalysts include electroreduction,

photoreduction, adsorption-reduction, chemical reduction and

bio-reduction. Because of chromium’s high carcinogenicity to

humans and marine habitats, hexavalent chromium Cr(VI))

toxicity in water resources is among the most serious

environmental concerns. Because Cr(VI) is discharged into

water from a variety of industrial sources, such as alloy

fabrication, mining, and so on, eliminating it from water-

based solutions is a major focus. Reducing Cr(VI) is said to

be highly effective in removing it from aqueous systems, and has

attracted a lot of attention in recent years because the end

product is Cr(III), which is a non-toxic chemical and nutrient.

Novel catalysts founded on nanostructures of carbon -

containing materials, particularly graphene and its derivatives,

have gained significant interest in heavy metal reduction and

water purification due to their enormous surface area and

excellent conductivity. Reduction techniques used to examine

graphene catalysts include electroreduction, photoreduction,

adsorption-reduction, chemical reduction (formic acid aided

methods), and bio-reduction. Graphene-based catalysts have

been found to have improved the photocatalytic activity and

protracted stability when compared to a variety of other

commercially available catalysts.

Seongpil et al. (An et al., 2017) projected a mechanism for

removing heavy metals from water using graphene and its

composites. Graphite was modified to make it more

hydrophilic, which has a narrow water contact range. Another

researcher discovered that SnS2/rGO composites lowered

K2CrO7 by approximately 90%, but pure SnS2 only reduced

K2CrO7 by 36% under similar conditions. For the large-scale

manufacture of highly mechanically stable graphene, the authors

adopted a roll-to-roll fabrication approach. Furthermore, this

approach led to the creation of nano-porous GO stacking, which

increased filtration. Because of their increased size and

electrostatic interactions, these nanoporous graphene

membranes rejected the salts (Zhou et al., 2013; Perreault

et al., 2015).

4.2.2 Arsenic (As) removal
Arsenic is involved in a variety of critical physiological

processes. It has an easy time attaching to proteins and

enzymes, resulting in delayed metabolic abnormalities.

Arsenite (As3+) and arsenate (As5+) are two oxidation states of

arsenic. However, As3+ ions are shown to be more hazardous

than As5+ ions (Lizama et al., 2011). Pourbeyram et al. (2016)

produced graphene oxide–zirconium nanocomposites (GO–Zr)

for removing both (As3+) and (As5+) from synthetic solutions.

They exposed that As5+ ions are absorbed rapidly in the first

5 min, then gradually increased until equilibrium was reached

after 10 min. When compared to As5+ ions, the elimination of

As3+ ions took longer under similar conditions. However, As5+

has a higher removal capacity than As3+, and they were able to

accomplish a complete removal with the catalyst dose of 2 mg/L

in only 20 min. Zhang et al. (2010) used a series of composites of

GO, iron hydroxide, and arsenic ions. Authors discovered that

as-prepared composites enhanced the effectiveness of arsenic ion

removal. The elimination of arsenate was most effective when the

pH was between 4 and 8. At increasing pH values, however, the

effectiveness of arsenate elimination decreased.

4.2.3 Cadmium (Cd), copper (Cu), and lead (Pb)
removal

Li et al. developed a DTPA/magnetic graphene oxide (MGO)

composite for the removal of copper, lead, and cadmium ions at

low pH. In comparison to MGO, DTPA/MGO presented higher

removal rates of metal ions. It is also slightly affected by pH levels

(Li et al., 2017). Similarly, Hao et al. (2012) developed a metal ion

solution containing copper, lead, and cadmium for competitive

adsorption. It was perceived that the electrostatic interaction

between lead cations and the negative surface charge of the SiO2/

GO composite enhances its removal. The ability to remove other

ions, on the other hand, declines, meaning that this developed

composite behaves selectively. It was discovered that heavy metal

ion reduction is independent of the ionic radii of ions but

dependent on the electronegativity of metal ions (Gu et al.,

2015; Duru et al., 2016).

4.3 Water desalination

Membranes’ inability to withstand a wide range of

contaminants is a significant unsolved problem in water

treatment. Recent improvements have been seen in water

purification through membrane technology by constructing

modified membranes with graphene films (Garaj et al., 2010;

Surwade et al., 2015; Abraham et al., 2017). On the other hand,

these techniques include a succession of highly concentrated and

controlled, resource-conserving, sophisticated operations that

are challenging to perform uniformly at greater densities. As a

result, CVD graphene sheets’ potential to purify and desalinate

water is limited to small-scale experiments (Surwade et al., 2015).

Furthermore, while CVD synthesis allows for the precise control

of graphene sheet formation, in addition, the hydrophobic

characteristics of CVD-G materials typically cause further

barriers to their use in water purification membranes. As a

result, the economic practicability of these sheets for water

filtration is hampered by these technical constraints (Sun

et al., 2016).

MD is a new thermally driven water purification technology

with a lot of promise for treating highly salty water especially
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seawater, such as reverse osmosis (Drioli et al., 2015). In the MD

process, the pressure differential over a porous/hydrophobic

membrane drives water purification. Because of these benefits,

MD is a green technology in purification processes with zero

liquid discharge (Tijing et al., 2015). MD has a few major

limitations: a huge amount of energy requirement,

temperature maintenance, and the MD membrane’s inability

to tolerate a wide range of pollutant combinations (Drioli et al.,

2015; Tijing et al., 2015). Furthermore, conduction in typical MD

membranes results in poor water vapor flow and performance

degradation over time, which remains a serious concern

(Camacho et al., 2013). For antifouling membranes to

properly handle these difficulties, new materials for

antifouling membranes are required. Several approaches, such

as electrospinning and phase, have been used to create improved

MD membranes. However, getting large amounts of filtered

water without fouling the membrane is still a problem (Lin

et al., 2014; Boo et al., 2016). The use of graphene flakes in

membranes has recently been shown to improve the efficacy of

water purification processes (Woo et al., 2016). However, the vast

potential and promises of 2D graphene films for water

purification have yet to be fully employed.

Yuyang et al. (Wang et al., 2021) used an AI approach to

synthesize G-based membranes for water purification. Because of

their exceptional physical properties, 2-D nanomaterials, mainly

graphene, have been intensively explored. The nanopore

morphology and topology of such materials can have a big

impact on how well they work in real-world problems.

However, finding the most efficient nanopores frequently

necessitates expensive and time-consuming experimentations.

A study suggested a data-driven artificial intelligence

framework for determining the most efficient graphene

nanopore for its application in water treatment. When

compared to typical circular nanopores, the MD simulations

of prospective AI-created graphene nanopores show a high ion

rejection rate with higher water flux as compared to other

membranes. The irregular shape of AI-created pores with

rough edges has been found to be a key factor in their high

water desalination performance. Finally, this study shows that

artificial intelligence can be a useful tool for creating and

screening nanomaterials.

According to Dong et al. (Seo et al., 2018), the samples were

then wet transferred to a PTFE/MD membrane. Unlike

traditional CVD procedures, ambient-air graphene

manufacturing does not necessitate the use of costly and

potentially explosive purified compressed gases (Ruan et al.,

2011). Growth source is replaced with soybean oil, which is a

cheap, safe, and sustainable bio-agent. On a polycrystalline-Ni

substrate, ambient-air CVD technique allows the formation of

continuous graphene sheets that are suitable as water vapor-

permeable channels. The PTFE membrane is used as supporting

component. At the same time, the membrane can reject both salt

and hazardous water-borne contaminants including surfactants

and oils. Real seawater is processed through the developed

membrane to demonstrate its practical applicability under real

desalination circumstances. A commercial PTFE-based MD

membrane was fouled during the processing of saltwater,

causing a continuous decline in the water vapor flux and a

small decrease in salt rejection over 72 h. A permeable

graphene-based membrane, on the other hand, demonstrated

100 percent salt rejection while maintaining a high water flow

and long-term stability over 72 h. Long-term resilience of

permeable graphene-based membrane under actual seawater

feed was also established. This study demonstrated water

desalination using a graphene membrane containing

nanochannels of multilayers. Graphene-based membranes had

much greater water vapor flux retention and salt rejection rates

than the standard distillation membranes, as well as a superior

antifouling performance under a mixture of saline water

containing pollutants such as oils and surfactants.

4.4 Energy production in hydrogen fuel
cells

For hydrogen fuel cells, water splitting is one of the basic

units that are used for hydrogen production which takes place

according to the following reactions (Ali et al., 2021):

4H+ + 4e− → 2H 2 E� (0 − 0.059 pH)V (1)
2H2O → O2 + 4H+ + 4e− E� (1.23V − 0.059pH)V (2)

Overall : 2H2O → 2H2 +O2 ΔE � −1.23V (3)

For the production of electricity directly from the chemical

energy of oxygen and hydrogen, HFCs are more efficient power

generation devices from which more than 50% of power can be

generated efficiently (Durbin and Malardier-Jugroot, 2012).

Reverse reaction of electrolyzing water is the working principle

of HFCs. See Equations 1–3. Through the catalyst, hydrogen ions

are generated at the anode by hydrogen when oxygen and

hydrogen are supplied at the cathode and anode, respectively,

from which, lost electrons generate electricity through an external

circuit when they reach the cathode. On the other hand, hydrogen

ions on the anode side through a polymer electrolyte membrane

(PEM) reach the cathode side to generate water after the reaction

with oxygen. High power, long driving distance, no noise, low

emissions of pollutants, and an environmentally friendly behavior

are some of the advantages of the HFCs (Xin et al., 2019). Table 2

summarizes the different catalytic reactions involved in the energy

production through fuel cell.

In a study about the fabrication of GO/Nafion composite

membrane, Choi et al. (Choi and Lee, 2012) explained methanol

permeability, which is greatly reduced by the addition of GO as a

filler. The reason for the modification of the microstructure of

hydrophilic and hydrophobic PEM regions is the interaction of

GO (hydrophilic nature) with non-polar main chain and cluster
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of polar ions. Thus, in the presence of water, phase separation of

the membrane is reduced while it is improved in the case of

permeability of proton exchange membrane.

In a study by Hu et al. (2014), they reported the

characteristics of graphene-based membrane materials for the

transportation of protons and found that good conducting

membranes for protons, graphene, and boron nanocomposites

could be used, which are two-dimensional and consist of a single

layer of atoms.

4.5 Energy production in a polymer solar
cell

Including possible solutions, flexibility, low cost, light weight,

and large area coatings are all the considerable advantages that

have gained interest regarding solar cells which are based on bulk

heterojunction (BHJ) (Günes et al., 2007; Li et al., 2012). BHJ

absorbs solar light efficiently because it consists of a mixture of

polymer materials that are electron donors and acceptors, which

dissociate into free charge carriers while generating excitons (van

Hal et al., 2003; Xiao et al., 2018; Marforio et al., 2019).

In PSCs, photoactive blends are the most widely used

acceptors that are based on poly (3,4-ethylenedioxythiophene)

(P3HT) and fullerene. To increase efficiency, recently, polymers

with low bandgaps have been developed which are able to absorb

a wide range of solar spectra (Peet et al., 2007; Ma et al., 2015).

However, commercialization of PSCs is greatly affected by many

factors, which include chemical instability, low efficiency of

power conversion, fast degradation of photoactive layers, and

an insufficient separation of charges (Lipomi et al., 2012;

Savagatrup et al., 2015).

Because of its unusual physicochemical properties and

numerous applications in fuel cells, solar cells, sensors,

batteries, and photocatalysis, graphene sheets with a two-

dimensional structure have piqued the interest of researchers

(Stoller et al., 2008; Loh et al., 2010; Chen et al., 2013; Mahmood

et al., 2014; Liu et al., 2017b; Abdullah and Hashim, 2019). For

PSC applications, graphene proves to be an inspiring candidate

because of its tunable work function, optical transparency, and

outstanding electrical conductivity (Eletskii et al., 2011; Seo et al.,

2018).

Different components in PSCs have been presented in

recent research studies, which are mainly based on the

utilization of graphene and graphene/nanocomposites

(Liu et al., 2014). Graphene offers a wide range of

opportunities because of its active edges and large surface

area to develop a highly efficient PSC while incorporating

various polymeric, organic, and inorganic materials (Vinoth

et al., 2017).

4.6 Applications in the hole-transporting
layer

A successful implication of graphene oxide (GO) was

carried out by Li et al. (2010) with electron donor polymers

and an anode as a hole-transporting layer (HTL) due to its

proper function with it. Furthermore, researchers motivated

the work based on the GO buffer layers in PSC. The work

function of poly (3-hexylthiophene) [P3HT] closely matches

the calculated work function of GO (−4.7 eV), facilitating the

hole transport from the donor polymer (P3HT) to anode. A

suitable work function and an effective separation of charges

mainly enhance the performance of GO sheets. Likewise, GO

was represented as a HTL in a PSC inverted-type device with

the architecture of ITO/ZnO/C60-SAM/P3HT: PCBM (Gao

et al., 2010).

TABLE 2 Catalytic reactions involved in the energy production through the fuel cell.

Catalyst Electrolyte The reaction of fuel
cells

Advantages References

A and C: rGO-
Au/Pt/C

SPES/GO PEMFC Membrane with high ion-exchange capacity, water
absorption, and proton conductivity

Devrim et al. (2018)

GO/Pt, Pt/GNP
Pt/GNT

A: H2 → 2H+ + 2e− C:1/2O2

+ 2H+ + 2e−→ H2O

Pt/C Pd/C AgPt/
C Ag/C

Alkaline (LiOH, NaOH, KOH, CSOH) AFC Alkaline electrolyte with the lowest cost of production Lafforgue et al.
(2018)A:2H2 + 4OH−→ 4H2O

+ 4e−

C: O2 + 2H2O + 4e−→ 4OH−

Pt/GO Pt/GNP Phosphoric acid PAFC CO2-tolerant fuel flexibility Park et al. (2015)

A: H2 → 2H+ + 2e− C: O2 +
4H+ + 4e−→ 2H2O

SPES/GO proton exchange membranes (PEMs) for
direct methanol fuel cell (DMFC)

- The performance of SPES/GO membranes was three
times better than the original SPES membrane

Muthumeenal et al.
(2017)
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4.7 Applications in electrodes

In PSC, graphene sheets have been widely used, which are

few-layered or single in nature, transparent and flexible (He et al.,

2012). Graphene with the device structure of CVD-grown

graphene/PEDOT: PSS/CuPc/C60/Al was used as an anode in

PSC (Gomez De Arco et al., 2010). Maximum PCE displayed by

the electrode of the resultant CVD-grown graphene was

comparable with devices such as the PCE of ITO-based PSC.

In PSC-inverted devices, a top electrode was demonstrated by

CVD-grown graphene in earlier research studies (Lee et al.,

2011). Remarkably, as compared to the widely used ITO

anode, CVD-grown graphene exhibited better mechanical

stability and also increased the PCE.

On the other hand, the bottom electrode was constructed

in PSC based on P3HT: PCBM on the basis of chemically

reduced graphene (rGO). The polyethylene terephthalate

(PET) substrate, which is flexible, was spin-coated with

rGO sheets. Under the optimized rGO thick films, almost

0.78% of the highest PCE was achieved. A graphene as the

electrodes for both the anode and cathode for flexible PSC has

been designed by Park et al. (2014). PSC devices significantly

enhanced the PCE from 6.1% to 7.1%, which is based on the

graphene anode and cathode, respectively. Recently, for PSC, a

possible solution was reported by Zhang et al. rGO/silver

nanowires (AgNWs)/rGO, which is based on the transparent

electrode (Zhang et al., 2017b). At 550 nm, a 90%

transparency was shown by the hybrid electrode rGO/

AgNWs/rGO. As compared to control devices that are

fabricated with an ITO electrode, the electrode rGO/

AgNWs/rGO demonstrated excellent mechanical flexibility

and improved photovoltaic performance.

4.8 Applications in the agricultural sector

The agriculture sector is of great importance as it provides a

great deal of the materials necessary to ensure food, feed, and

fiber for human life. Satisfying these basic needs of mankind in

the face of climate change and rising global population is a major

challenge. In order to combat such issues, an integrated

technological approach is necessary to ensure global food

security. Since the last decade, the discovery of graphene

materials has resulted in the advancement in various fields of

life, including the field of agriculture.

4.8.1 Water treatment membranes
Water is a necessary component for life sustenance

throughout the world, as it supports health and hygiene on

one hand and agriculture and food production on the other.

According to an estimate, in order to achieve per capita water

security, an annual demand of 1,200 cubic meters is required, and

owing to shrinking fresh water resources around the world,

questions regarding future water security around the globe are

raised. During the early 1970’s, water was heavily utilized to

ensure optimum soil moisture levels. This approach resulted in

increased food production and, at the same time, caused various

negative effects in the form of ground water depletion, river water

resource depletion, and pollution of water bodies. Managing

water resources is crucial from a consumption point of view, as

well as maintaining the minimum fresh water bodies required for

sustainable aquatic life (Fan et al., 2018).

Despite the early success in the green revolution, many parts

of the world with dry climates and limited water resources

experienced severe malnutrition, exposing the relative

unsustainability of this approach. Water treatment for the

removal of pollutants and desalination of ocean water is

crucial in this perspective as ocean bodies form the largest

proportion of the hydrosphere. Graphene-based layers are an

effective way to reduce water pollution and increase the

availability of water sources for consumption. Thin layers that

are developed are called “Graphair,” and they enable the filtering

of compounds through membrane distillation. Prior to this

development, a wide-scale purification of water bodies by

removing different pollutants was a key challenge in water

treatment efforts. Graphair includes thin, multi-layered

graphene which filters water passing through it by enabling

permeation via nano-channels developed using graphene

grains in a layer form. In contrast to ordinary filters,

graphene-based filters enable the filtration of highly toxic

compounds while allowing pure water with a neutral

pH through them. Narrow channel systems allow smaller

water molecules to pass but hinder the movement of larger

dissolved molecules and ions through its channels, all while

dealing with high concentrations of acid or alkaline that

rapidly destroy other filtering membranes. This can allow the

filtration of water and stable water supplies for drinking and

agricultural purposes at remote and deserted locations (Seo et al.,

2018).

4.8.2 Antimicrobial applications
Graphene has been reported to possess significant anti-

microbial properties, making it a suitable candidate for the

development of new anti-fungal and anti-bacterial chemicals

(Wang et al., 2014; Mohan and Panicker, 2019). These microbes

are responsible for causing some severe disease infections in

plant species resulting in significant yield losses (Mansfield

et al., 2012). Graphene oxide tends to control fungal growth by

inhibiting the growth of mycelium, disrupting cell membranes,

distorting electron and ion transport chains, and introducing

oxidative stress (Sawangphruk et al., 2012). Graphene sheets

have great anti-bacterial activity, with smaller sheets exhibiting

a higher degree of anti-microbial activity. Graphene oxide

nanocomposites have shown a great degree of cytotoxicity

for various bacterial species, including E. coli, R.

solanacearum and P. aeruginosa (Akhavan and Ghaderi,
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2010; Sawangphruk et al., 2012; Mohan and Panicker, 2019).

These compounds tend to rupture the cell membranes at

various growth levels, resulting in the release of cellular

content from the bacteria. This germicidal and preservative

action of the graphene composites makes them suitable for

disease-control applications, plant preservation, and promoting

plant growth.

4.8.3 Smart sensors
Water is a basic necessity of life and is required by every kind

of cellular life form, including plants, as they utilize water for

various processes to maintain their health and vigor. In this

regard, monitoring and assessment of soil moisture levels is of

great significance as the optimum levels of moisture tend to

promote soil health by ensuring a better uptake of nutrients

required for ideal growth (Palaparthy et al., 2013). For this

purpose, moisture estimation sensors are used for large field

applications. However, these sensors are often rendered faulty

due to fluctuating temperatures and changing concentrations of

ions that manipulate soil conductivity, resulting in sensor

degradation (Kabiri et al., 2017). For this reason, the

development of low-cost, effective sensors that can be

deployed on a large scale and are resistant to temperature

drift and salt fluctuations is necessary.

In this regard, graphene oxide-based capacitive sensors have

been developed which are highly sensitive to soil moisture

content. These sensors have the ability to detect moisture

changes in a fast detection method (response time range of

100–120 s) with relative ease. It was also observed that these

graphene-based sensors showed an output change of 6% with

temperature variations from 25°C to 65 °C, which leads to just 3%

discrepancies for soil moisture measurements (Palaparthy et al.,

2013).

4.8.4 Smart Fertilizer release system
Fertilizers are essential in ensuring growth in agriculture, and

there is a need to enhance their uptake efficiency and reduce the

losses to the environment. In this regard, the application of

graphene in the development of new slow-release fertilizers is

viewed as an important alternative to reduce these losses. It is

known that, in covering fertilizer granules, a graphene layer tends

to induce their physical resistance, preventing them from

friction-related damages and degradation during the

manufacture, transport, and application phases (Kabiri et al.,

2017). In this process, the graphene oxide is composed of layers

that are negatively charged. This enables it to retain cationic

micronutrients including zinc (Zn), copper (Cu), and anions

such as negatively charged phosphate groups. In comparison to

commercial fertilizers, these graphene fertilizer mixtures reduce

the possibility of soluble nutrients leaching. The addition of

graphene can provide a great deal of benefits by preventing

wastage and overdose of fertilizer applications and can result in a

great yield of gains for high-value crops such as fruits and

vegetables (Andelkovic et al., 2018).

5 Conclusion

This article begins with a brief discussion of the fundamental

structure and composition of graphene materials, then, it moves

on to its synthesis and application. The role of modern AI

technologies has been discussed for better understanding the

structure and synthesis of graphene materials in the development

of more efficient nanomaterials in the near future. Graphene

materials have come a long way since their discovery and are now

integrated into many walks of life. These materials present a high

potential as support materials in energy, agriculture, and

environmental conservation, and this is evident from many of

the examples discussed. As graphene-based materials provide

exceptional electron mobility, they can be highly useful in

photovoltaic, photocatalytic hydrolysis, and photocatalytic

removal of pollutants from wastewater. A higher degree of

chemical stability makes graphene suitable as a support

material for nano-catalytic applications. The higher surface

area of graphene materials makes them an excellent adsorbent

and enable them to remove heavy metals and other related

pollutants from water. These massive applications indicate the

potential of graphene materials and the possibility of further

integrating them into energy, water, and agriculture applications

in the near future.
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