
Data-driven optimization of search service composition
 for answering multi-domain queries

Davide Barbieri, Alessandro Bozzon, Daniele Braga, Marco Brambilla,
Alessandro Campi, Stefano Ceri, Emanuele Della Valle, Piero Fraternali,

Michael Grossniklaus, Davide Martinenghi, Stefania Ronchi, Marco Tagliasacchi

Dipartimento di Elettronica e Informazione, Politecnico di Milano
P.za L. Da Vinci, 32. I-20133 Milano, Italy

[firstname.lastname]@polimi.it

ABSTRACT
Answering multi-domain queries requires the combination of
knowledge from various domains. Such queries are inadequately
answered by general-purpose search engines, because domain-
specific systems typically exhibit sophisticated knowledge about
their own fields of expertise. Moreover, multi-domain queries
typically require combining in the result domain knowledge
possibly coming from multiple web resources, therefore
conventional crawling and indexing techniques, based on
individual pages, are not adequate. In this paper we present a
conceptual framework for addressing the composition of search
services for solving multi-domain queries. The approach consists
in building an infrastructure for search service composition that
leaves within each search system the responsibility of maintaining
and improving its domain knowledge, and whose main challenge
is to provide the “glue” between them; such glue is expressed in
the format of joins upon search service results, and for this feature
we regard our approach as “data-driven”. We present an overall
architecture, and the work that has been done so far in the
development of some of the main modules.

1. INTRODUCTION
The current evolution of the Web is characterized by an

increasing availability of online services (e.g., book search
services provided by online stores or libraries) and novel search
facilities (e.g., flight search Web sites, provided by most
commercial airlines or travel package integrators). Being specific
to a restricted domain, the quality of their answers goes much
beyond what can be achieved via conventional, general purpose
search engines. The overall amount of data that can contribute to
such queries is continuously growing, mainly within the so-called
deep Web, i.e., in a form not immediately indexable by search
engines.

In light of these considerations, multi-domain queries, i.e.,
queries that can be answered by combining knowledge from two
or more domains (i.e., commercial sectors, cultural fields, and so
on), no longer represent a mere academic exercise; rather, they
demonstrate how intricate real life queries may be, and what a

user would like to find available in order to fulfill real needs.
However, we are still lacking effective query systems on the Web
allowing users even to ask similar queries.

Answering multi-domain queries requires the combination of
knowledge from various domains. These queries are hardly
managed by general-purpose search engines, because domain-
specific systems exhibit more sophisticated knowledge about their
own field of expertise. Examples include expertise about cultural
events, medical specializations, popular rock songs, and so on;
knowledge can be contributed through social processes (e.g.,
rating, tagging, commenting) or through a long and careful
process of knowledge construction by experts.

With the advent of service oriented architectures and the
growing interest for the Web as the predominant interface for any
human activity, we expect such knowledge to become more and
more exposed in the form of search services. But typically a user
is not only concerned with queries about a single domain; while
current technological limitations confine a user to such
interaction, in reality users’ need for information typically spans
over multiple semantically connected domains. At the current
state of the art, the above needs can be answered only by patient
and expert users, whose strategy is to interact with specialized
services one at a time and then feed the result of one search in
input to another one, reconstructing answers in their mind.

In this paper, we present a conceptual framework for
addressing the composition of search services for solving multi-
domain queries. Our approach consists in building an
infrastructure for search service composition that leaves within
each search system the responsibility of maintaining and
improving its domain knowledge, and whose main challenge is to
provide the glue between search service competences; such glue
is expressed in the format of joins upon search service results, and
for this feature we regard our approach as “data-driven”. This
research is carried on within “Search Computing” (SeCo), a five-
year project sponsored by the ERC. We present here a
preliminary vision on the constellation of problems to be solved
and of software components to be developed. We give a high-
level description of the approach in terms of an overall
architecture, and present the work done so far in the development
of some of the core models and software modules of the
architecture.

We are aware that the general formulation of the search
computing problem, going from registration of arbitrary services
and acquisition of arbitrary queries to the production of sensible
results, is very complex; many simplifying assumptions can be
used to reduce the problem complexity, ranging from a pre-

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date
appear, and notice is given that copying is by permission of the Very Large
Database Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permissions from the
publisher, ACM.
VLDB ’09, August 24-28, 2009, Lyon, France.
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/55201992?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

selection of the domains of interest and of the search engines, to a
progressive reduction of the expressive power of the query.
Ultimately, vertical solutions combining a limited number of
domains, could be realized by predetermining the domains of
interest and building suitable query interfaces with search fields
statically associated to search domains. However, at least in this
early phase of the search computing project, we like to explore
the problem in its full complexity, and approach it with an
experimental attitude, knowing that the most difficult tasks can be
addressed in a simplified way, and yet attempting general
solutions.

To overcome the difficulties of addressing a full English
vocabulary and natural language understanding we resort to the
use of consolidated resources, such as WordNet [8][22] and the
Stanford Natural Language Parser Error! Reference source not
found.. We attempt a lightweight semantic approach, which does
not rely on the expressive power of domain-specific ontologies
and on reasoning techniques, but instead leverages on WordNet
and its functionalities for the annotation of queries, services, and
domains. Given that semantics provided in this way is too limited,
we add a significant amount of user’s feedback and manual
refinement in the definition of services, domains, and queries.
Indeed, our framework, once developed in all its components, will
be a very interesting testbed for tuning the level of feedback and
refinement, and for measuring, at the same time, the deviation
between automatic processing and processing driven by human
feedback.

To better appreciate the approach, we consider a running
example, consisting of the domain, service, and query analysis
steps required to answer the query: Where can I attend a DB
scientific conference close to a beautiful beach reachable with
cheap flights?

2. OVERALL ARCHITECTURE AND
EXECUTION FLOWS

Within the multi-domain query answering problem we identify
two main activity flows: the registration flow - that deals with the
declaration and description of domains, and the registration of
search services and their association to domains- and the query
execution flow - that deals with the actual processing of the
queries. Figure 1 shows the overall architecture of the system,
together with the two main execution flows.

The objects managed by the activity flows are represented by a
conceptual model that describes: (1) domains and their properties
(classification taxonomies and associated concepts); (2) search
services (request/response interfaces with annotations for in/out
parameters and response description, including functional and non
functional properties); (3) high level multi-domain user queries
(simplified natural language queries, composed by subqueries);
(4) low-level queries (adorned conjunctive datalog queries); (5)
query plans (descriptions of query execution strategies, using
coarse-granularity operations which comply with access
limitations and define ranking-aware strategies for building
results); and (6) query execution schedules (well-defined
schedules of fine-granularity operations, including service
invocations, which embody the execution control flow, possibly
exploiting parallelism).

In the registration flow, we address the following problems: (a)
semantic representation, storage, management, and access to
domains and their descriptions; (b) semantic description, storage,

management, and access to search services; (c) clustering of
services based on similarity; (d) mapping of services to domains;
and (e) definition of admissible join conditions between services.

In the query execution flow we address the following problems:
(f) definition of proper interfaces for submission of multi-domain
user queries; (g) splitting of the query into subqueries; (h)
mapping of subqueries to domains; (i) mapping of subqueries on
given domains to associated search services, for defining low-
level queries; (j) generation of query plans and therr evaluation
against several cost metrics so as to choose the most promising
one for execution; (k) generation and processing of query
execution plans; and (l) transformation and rendering of the
results for user consumption.

The next two sections describe a general architecture for
addressing the multi-domain query problem, define its
decomposition into sub-problems, assign each sub-problem to a
component, and sketch a technical solution for developing each of
them. Registration (addressed in Section 3) is performed by
developers, and the framework helps them in selecting the
domains and services, annotating them, and creating mappings
between them. Queries are performed by users, whose feedback
helps in resolving ambiguities and confirming interpretations.
Query execution is addressed in Section 4.

Domain
Repository

Front End

Query Planner

Query To Domain
Query To Service

Query Analysis

Query Engine

Op1 Op2 Op n

Search Service
Framework

Service
Repository

Result
Transformation

High-Level Query

Sub-queries

Query Plan

Low-level queries
Merged
Results

Domain
Framework

Rendered
Results

Service
request(s)

Service
response(s)

Search
Web

Services

Search
Web

Services

Search
Web

Services

Query
execution flow

Registration
flow

Legend

...

Service
Analyzer

Figure 1. Overall architecture and execution flows.

3. REGISTRATION FLOW
The registration flow comprises all the activities involved in the

registration of (1) domains, (2) domain descriptions, and (3)
search services, addressed by the components described next.

3.1 Domain framework
The domain framework deals with domains and their

definitions (1) and addresses the problems of semantic annotation,

storage, management, and access to domains and their
descriptions (a).

The whole infrastructure of the multi-domain search engine is
based on the concept of domain. Intuitively, we consider a
domain as a self-standing field of interest for the user, such as
music, sport, arts, tourism, computer science, and so on. Every
domain is associated to a distinctive label and associated with a
bag of Wordnet synsets1; each synset can be associated with
multiple domains, and such association is further characterized by
a probability distribution. This allows us to characterize a domain
based on the most frequently used terms for describing concepts
in that domain, and viceversa to identify for each synset the list of
domains it refers to. Moreover, domain definition will take
advantage of Wordnet Domains [23], a definition of about 200
domains which have been produced in order to partition the
Wordnet vocabulary and to associate each part with a specific
domain of interest. One of the most interesting task in search
computing is to investigate if Wordnet Domains have sufficient
discrimination power to help partitioning queries and associating
them to specific search engines and data sources.

The domain repository is a data structure that stores domains as
described above. We assume that domains are organized as a
taxonomy, representing a tree of domain-subdomain relationships.
Information about the domains is made available to the other
components through an API that exposes interfaces for querying
and updating the domain structure (i.e., creation, deletion, and
update of domain information, including associated synsets and
services).

In the proposed example, domains concerning Scientific
Conferences, Beaches, and Flights are required. Beach is included
within a more general domain of Geographic Resource, and both
Geographic Resource and Flight are found as sub-domains of
Travel.

3.2 Search service framework
The search service framework defines a conceptual model of

search service (2) and addresses the semantic annotation, storage,
management, and access to search services (b). The core function
performed by the framework is to enable the annotation of the
request/response interface of the services. Such annotation phase
uses the Wordnet vocabulary and labels each service, its
operations, and the input - output parameters of each operation. In
our framework, we are concerned only with those operations
belonging to a Web service which perform data retrieval, and
particularly in those operations that return itemized and ranked
information.

The service repository exposes services in terms of operations;
each operation is described by means of a set of functional or
non-functional attributes. The qualifying attributes are the id, the
name, the descriptor (Wordnet annotation), the serviceName (the
name of the service exposing the operation), the input and output
descriptors and types, the average response time and cost of
interacting with the operation. In addition, several parameters
describe the qualifying aspects of search services: the ranking
description (a parameter indicating if the result is ranked), the
caching description (an indication whether the service results can
be cached, and of the validity time of cached data), the decay
description (an indication of the decay trend of service results),

1 A Synset, or Synonym ring, is a group of data elements considered

semantically equivalent for the purposes of information retrieval.

the chunking description (an indication whether service results are
returned as a single result set or by chunks, where every chunk
contains a given number of result items that can be requested by
means of an iteration-based interface).

The above parameters are essential to our framework, which
could be augmented with more information as in classical service
repositories. According to [19], the most important QoS
parameters are scalability, capacity (describing the limit of
concurrent requests for guaranteed performance), performance (a
measure of the speed in completing a service request), response
time, latency, throughput, reliability (expressed in terms of mean
time between failure and of mean time to failure), robustness,
accuracy (defines the error rate produced by the service), and
completeness. This information is crucial when it comes to
choosing among different services and optimizing the query
execution based on some cost model.

The registration process is semi-automatic: a user interacts with
the service registration framework for adding a specific service. If
he WSDL description is not available (e.g., because the service
has a REST interface or is a wrapping of a web form), a
description must be explicitly defined. The system analyzes the
name of the service, of the operations and of the parameters, and
tries to assign them to a domain, by associating one possible term
and one possible synset in WordNet. This process is semi-
automatic since it requires different interactions with the user (for
example for each term the system shows to the user different
possible synsets and asks him/her to choose the most appropriate).
Once this phase is ended, the system automatically collects
further implicit or hidden information [21].

It is important to note that, the information in a given domain
could be available on the Web, but not necessarily exposed by
means of a proper web service. Thus, an extension of the
registration process covers the aspect of wrapping existing data
sources so that the wrapper eventually exhibits some of the
mentioned properties of a service – most important, offers a
request-response interface and is capable of some form of
aggregation, chunking, ranking, and caching of results. We aim at
providing developers with tools that will make such wrapping
rather easy in the classical case of web sites which are accessible
through entry forms, thereby assuming that the form can provide
the same information as a service request, and that the results,
extracted from one or more result pages, can be structured as a set
or list of result items, each described by a given number of
attributes.

In the proposed example, registration of services relative to
conferences may lead to integrating several services, e.g. with
different choices of input and output parameters, since
conferences can be searched by topic, name, place, start date, or
some of these inputs in combination. One such service, relevant to
our running example, could be:

 ConfSearch(topic,nameX,placeX,dateY)

where topic is an input parameter, name, place and dates are
output parameters, and the service and parameters are further
annotated through Wordnet descriptors. Results are collections of
triples of names, places, and dates, associated to a given input
topic, results can be either ranked or not ranked; ranking may take
into account the relative importance given by a community of
users to the conference itself; the service may be characterized in
terms of availability and of accuracy.

3.3 Service analyzer
The service analyzer will primarily address the following

problems: the clustering of the available services, based on their
similarity (c); the mapping of services to domains (d); and the
definition of join connections between services (e). This part of
the framework requires the other parts to be prototyped, hence it
is in a very early stage.

Items (c) and (d) above require the use of clustering algorithms,
such as Lingo [14], in order to gather together similar web
services and to map them to domains on the basis of their content
description.

The aim of the clustering process is the grouping of all the
available web services and their probabilistic association with a
set of domains. The clustering process will take advantage of the
availability of synset annotations for services and their
input/output parameters, and will also exploit the presence of a
light weight semantic associated with registered web service in
order to associate them to one of the Wordnet Domains. While the
clustering process will be periodically performed, we also
envision an incremental process of adding a service to an existing
cluster. Developers will be asked to verify the correctness of the
choices made by the system. In addition, they will be offered the
possibility to expand the domain ontology of Wordnet Domains
with other terms and relationships.

While clustering the services and associating them to domains,
we will also build information about the “degree of membership”
of each service to the corresponding cluster, evaluated as the
cosine distance between the vectorial representation of the service
in a term vectorial space, and the centroid of the cluster. This
information can be seen as an expression of how much a specific
service is correlated to the domain/s identified from its cluster/s of
belonging. We will then see if this information can be
pragmatically used in the selection of search services.

The second major task of the service analyzer is the definition
of admissible join paths between services. The goal of this task is
to identify, for every pair of services that can be invoked for
answering a query, the join attributes that will be used for
composing their results. A possible solution to this problem
requires first the classification of the services within each cluster,
computed on the basis of their operations interfaces (name and
parameters annotations and types). In this way, for each pair of
classes belonging to different domains, we can identify
parameters having the same type and annotations, which are
candidates for being qualified as join attributes. Then, the process
of pairing services is progressively performed, with the help of
developers, who can tell if the join paths identified by the system
can indeed be used for connecting domains, and, if so, how
elements of join paths should be paired and join conditions be
fully qualified.

In the running example, the goal of this step is to identify that
services such as ConfSearch (describing conferences) and Flights
(defining available flights) can be connected by matching place,
start and end dates of the conference and of a roundtrip flight;
furthermore, the conference location is used as destination of a
roundtrip from a user designated location, the starting date is used
to designate the date for the first trip, and the termination date is
used as return date. Finally, the flight service is identified as one
associated with ranking, and specifically with a ranking criterion
based on the total cost of the flight.

4. QUERY EXECUTION FLOW
4.1 Query analysis

In this section we discuss the conceptual model of high level
multi-domain user queries (3) and address the problem of splitting
the high-level query into subqueries (g). A high level query is the
specification of an information need of a user at a high level of
abstraction. We assume high level queries to be quasi-natural
language descriptions of the user’s need, which may require
information from multiple domains. The only restriction we
impose on the queries is that they must consist of a set of noun
phrases, i.e., phrases whose head is a noun or a pronoun,
optionally accompanied by modifiers (e.g., adjectives).

The query analysis component decomposes the high-level
queries into sub-queries, each representing one search objective in
a specific domain. As an example, a query like “Where can I
attend a DB scientific conference close to a beautiful beach
reachable with cheap flights?” would be split into Q1= “DB
scientific conference?”, Q2=“Place close to a beautiful beach?”,
and Q3=“Place reachable with a cheap flight?”.

For processing the natural language query, we exploit an open
source tool developed by the Stanford Natural Language
Processing Group. The tool implements a probabilistic lexical
parser of English natural language sentences [13]. The outcome of
the parser is a tree representation of the sentences that is suitable
for the problem of splitting the queries into subqueries to be
assigned to different domains.

The most promising approach seems to consist in applying a
first splitting of the sentence, and then assessing whether the
generated subqueries map consistently to separate domains, by
invoking the Query-Domain mapper. If the mapping is incoherent
(e.g., several very different domains refer to the same subquery),
we conjecture that the splitting may not be solid enough, and
therefore we: (i) ask for feedback from the user; or (ii) try a
different splitting based on cohesion of words w.r.t. domains. The
final result of the splitting in (high-level) subqueries is therefore
just a first step towards the mapping of subqueries to domains.

4.2 Query to domain and service mapping
This component addresses the problems of mapping subqueries

to domains (h) and of mapping subqueries to associated search
services, for defining low-level queries (i). The operation of
mapping a query to a domain can be successful only if: (i) each
subquery comprises only requests to one domain; and (ii) the
words used in the subquery are unambiguous, thus allowing a
crisp identification of their semantics (and therefore a correct
mapping to the domains).

Several techniques can be applied to optimize the recognition
of query-subquery structures which comply with the separation
into distinct domains of concern so as to achieve the objective (i);
these include:
 iterative invocation of the NLP tool based on defined lexical

interpretation obtained from feedback from user, or feedback
from other components;

 exploitation of annotations of search services or domains for
assessing the correctness of the query splitting;

 syntax/logic analysis results on the sentence.

The second precondition can be satisfied by replacing all the
words in the query with the correct synsets. The latter task is in
general hard. We apply some heuristics for reaching the goal:

 synset domain coherence: as a first step, we try to infer the
correct meaning of the word by (1) extracting all the synsets of
the words used in the queries; (2) calculating the groups of
synsets that better map to one domain (or to nearest domains);
and (3) selecting one synset per word, according to the
grouping defined before.

 user feedback: in case no final decisions can be taken in the
selection of a group of synsets for the words, the user feedback
is requested.

To clarify the approach, consider the following query: “rainy
US states”. The problem of identifying the domain of this query
can be reduced to:
 identifying the synsets of the words: rainy has just one synset

(ADJ: (1) showery, rainy); US has four synsets (NOUN: (2)
uracil, (3) uranium, (4) U, (5) United States); state has several
synsets, we report only a few here (NOUN: (6) state, province;
(7) the way something is; (8) group of people comprising the
government of a sovereign state; (9) state of matter).

 grouping the synsets by domain: for the example, we assume
that: synset (1) is associated to the domain “weather”; synsets
(2), (3), (9) are associated to “chemistry”; synsets (4), (7) are
associated to “grammar”; synsets (5),(6),(8) are associated to
“geography”.

 selecting one synsets for each word: considering the closeness
of the domains, we can infer that probably the significant
synsets involved here are: (1) (5) (6/8) (related to the
geographical domain, which is the correct interpretation of the
sentence), or (1) (2/3) (9) (related to the chemical domain,
which is not correct and indeed has a lower probability because
of the high distance of (1) from (2/3/9)).

 if the probability difference between the two options is not so
high, the user feedback could be requested in terms of a
question like: “are you asking information about geography or
chemistry?”.

Once the domain is identified, analogous techniques can be
applied for mapping the query to the services. The ultimate goal
of this task is to match each of the identified subqueries to one or
more services, so that the following processing of the query can
take place according to a well-defined query execution strategy.
Of course, this step is extremely difficult, and therefore users’
feedback may be required at various levels, in particular regarding
the query rewriting, the domain selection, and the mapping to
specific services with well identified join paths connecting them.

By taking again as input the running query about conferences
near to beaches, already broken down into Q1 = “DB scientific
conference?”, Q2 = “Place close to a beautiful beach?”, and Q3 =
“Place reachable with a cheap flight?", the ultimate result of such
processing is the selection of services:

S1 = ConfSearch(“DB”,Title,Place,StartDate, EndDate);
S2 = PhotoSearch(“Beach”,Stars, PhotoID,Place);
S3 = RoundTripFlight(From,To,FromDate,ToDate,TotalTime,

 TotalCost, RounTripID)

With joins pairing S1 to S2 by Place and S1 to S3 by Place=To,
StartDate=FromDate, and EndDate=ToDate. Moreover, the word
“cheap” indicates interest in a ranking of flights, and the word
“beautiful” indicates an interest in an evaluation of the beach’s
beauty, that can be obtained by an indication of the “number of
stars” that the beach has been given, and by linking the result to a
photo of the beach so as to enable an individual evaluation. While

we understand that doing all such steps dynamically, at query
presentation time, and without help from the user goes beyond the
current state-of-art, we envision progressive steps to achieve this
result at least in part through a well-designed user interaction. We
therefore anticipate a huge amount of experimentation in this
component, leading us to draw conclusions concerning the
practicability of the approach; of course, the complexity of this
step can be arbitrarily reduced by constraining the choice of
queries, domains, search systems, and their pairing through join
connections.

We also designed and partially implemented a visual language,
in the form of mash-up, for query plan specification that allows
designers to submit low-level queries [3], thereby substituting in
full steps 4.1 and 4.2.

4.3 Query planner
A low-level query is a conjunctive query over services. A query

plan is a well-defined scheduling of service invocations, possibly
parallelized, that complies with their access modes and exploits
the ranking order in which search services return individual
results to rank the global query results. The Query Planner
addresses the problem (j) of generating query plans and
evaluating them against a cost metric so as to choose the most
promising one for execution. A preliminary version of query
planner was presented in [2], while we are currently engineering
an extended version.

The Query Planner accepts as input low-level queries, i.e.,
conjunctive queries that list the specific services to be invoked,
already chosen at the Query-To-Domain Mapper. It is assumed
that each such service is associated with a description in the
service repository.

The originality of the model resides in introducing a simple
and yet effective classification of services: exact services have a
“relational” behavior and return either a single answer or a set of
unranked answers, search services return a list of answers in
ranking order, according to some measure of relevance.

Query plans schedule the invocations of Web services and the
composition of their inputs and outputs. A plan is defined as the
orchestration of service invocations, possibly in parallel, which
takes into account the most significant features of the service,
including its ability to chunk the results (i.e., to return a given
number of answers with a single request-response). Within plans,
the main operations are joins between Web service results, whose
execution can take place according to several join strategies,
already investigated in [1].

The Query Planner relies on the concept of access pattern,
which is a sequence of access modes to the services, i.e., each
service attribute is marked as either input or output. The planner
progressively refines choices through the following steps:
1. Given that services may be accessed according to different

patterns, the Query Planner chooses specific access patterns
for each of the services involved in the query, provided that
they are compatible with the query.

2. Once the access patterns are fixed, there may still be some
indeterminacy on the order of invocation of the different
services, some of which may be invoked in parallel. The
Query Planner fixes such order.

3. The main operation for combining search services in our
conjunctive setting is the join. The Query Planner selects an
execution strategy for each join.

4. Optimality of execution primarily depends upon the cost and
time of execution of request/responses to services. The Query
Planner determines the expected number of requests
associated with each service in order to obtain the desired
number of results, so as to associate to each plan an execution
cost.

The Query Planner searches for an optimal query plan by
considering all feasible choices in the above context, yet reducing
its search space by a branch-and-bound exploration that associates
expected costs with every choice. A suitable cost metrics is the
total execution time, but others are possible.

An example of complex query that can be considered by the
optimizer is:

BestMatch(ConfTitle, Place, Stars, DateStart, DateEnd,
 TotalCost, TripId, PhotoID) :-
 ConfSearch(“DB”, ConfTitle ,Place, DateStart, DateEnd),
 PhotoSearch(“Beach”, Stars, PhotoID, Place),
 RoundTripFlight(“[InputCity]”, Place, DateStart, DateEnd,
 TotalTime, TotalCost, TripID),
 DateStart>[InputPeriodStart], DateEnd<[InputPeriodEnd]

This query is presented with parametric user input indicating
the city and period of interest. One can think of addressing
progressively more contexts in which such formalization can be
used, starting from one where the query is installed and made
available to users within a vertical application (e.g., offered to the
university’s travel agent) leaving the initial city of the user and
the period description as the only variable parts of the query, up
to a context where the query is dynamically presented,
understood, mapped, and executed. Of course, in a fully dynamic
setting, there would be no difference between the “input” values
(user’s city of residence and suggested period) and the other
constants in the query (such as “beach” and “DB”), therefore the
complete query to be considered in such case is “Where can I
attend a DB scientific conference close to a beautiful beach
reachable with cheap flights, starting from Milano, in the next 4
months?”; “Milano” and suitable dates would then be included in
the query.

The outcome of the query planner is the selection of the access
plan that minimizes the cost of interaction with the services, while
producing a given expected number of results in output; results
are lists of entries, ranked by the combination of low cost and
high number of beach stars (which are clearly independent
criteria). An example of access plan, taken from [2] for a slightly
different version of this same query, is given in Figure 2. In the
model:
 All service invocations are marked with an expected number of

items provided in input (tin) and in output (tout);

 Exact services (conf and weather) are represented as simple
boxes, chunked services (flight and hotel) are segmented by
vertical lines. The latter are also search services, marked with a
grey triangle recalling the decay of the ranking of their results,
the former are exact services (conf is marked with a * because
it is a proliferative service, i.e. in average it returns several
items in response to every input, whereas weather is a selective
service which selects some of the input items; all search
services are proliferative);

 The number F of subsequent invocations to be performed on
each chunked service is specified;

 Join nodes are marked with a join strategy (MS stands for
Merge-Scan, see [1]) and are also marked with estimations of

the size of their input and their output (derived by applying the
expected reduction due to the selectivity of the join predicate).

The aforementioned annotations result from the static
optimization criteria applied by the query planner, and if the
runtime behavior strictly matches the expected one the query will
return exactly the top K results (in the example, K=15).

Figure 2. A fully specified query plan

While query plan designate the orchestration of several services
and the methods used for their integration, we are studying more
sophisticated methods for their join, including methods which
guarantee the optimality of top-k result extraction. More
specifically, for point 3 we recently described a join strategy
suitable for the case of Web services that output data objects
ranked by score, which adapts to the join of ranked services the
FA method designed by Fagin [9]. The ranked lists may contain a
high number of objects, typically presented in pages, and
accessing such pages is costly. Moreover, objects can be accessed
according to various methods, broadly classified as sorted,
producing a very long ranked list of objects, or attribute-based,
producing a narrower set of objects, normally not ranked, which
satisfy a selection over the attributes. The query planner
formulates the problem of optimal extraction of top-k
combinations, whereby the optimization is performed with respect
to the access costs involved with the different services and the
available access methods. For the specific case of the binary join
between two Web services (e.g. finding the top ranked hotel-
restaurant combinations, i.e. with highest combined score, in the
same city district), we devise an iterative execution strategy that,
at each step, determines the way of accessing services, such that
the probability of obtaining the combinations with the highest
combined scores is maximized, while the overall cost of accessing
the services is minimized. Such optimization strategy can be
practically deployed in a search computing setting, since it
requires a minimal set of parameters that characterizes the joined
services, which can be obtained at the time of service registration
and possibly refined during the execution of queries involving
those services. These parameters include, for example, estimates
of sorted and attributed-based access costs, cardinality of objects
returned by the services (e.g. total number or hotels/restaurants),
average number of distinct join attributes (e.g. average number of
hotels/restaurant per district). We are currently working towards
the extension of the aforementioned optimization strategy to the
case of joins involving more than two services.

4.4 Query engine
The query engine deals with the generation and processing of

query execution schedules (k); these include fine-granularity
operations, like service invocations, and thus facilitate execution

controls, also in the presence of parallelism. The input of this step
is a query plan generated by the planner, like the one in Figure 2.
 The execution schedule is a lower level representation of the

visual language that we use to specify the behavior of joins in
terms of number of iterations and interleaving of fetches from
the different input items. A very simple example is in Figure 3,
where a Nested Loop option for the join between the results of
flight and hotel is expanded into a specification in which:

 Iterators are represented by “circle” units with the specification
of the iteration range (in this case, simply chunks 1-to-4 and 1-
to-3 for hotel and flight respectively);

 Fetching of pages of results is represented by units with the
upgoing arrow as icon;

 Dashed arrows represent the control flow in the execution,
whereas regular lines represent the data flow.

 The join node represents a simple operation that applies the
join predicate to the data items it gets in input in the order in
which they are provided.

Figure 3. Unit-based specification of the Nested Loop join

At this level, the plan could include an explicit allocation of
cache memory to store partial results of sub-queries and portions
of pre-computed joins between the results of frequently invoked
services with the most frequent inputs, as well as the specification
of exploration strategies for the join search space that are not
simply expressed by combination of simple iterations, but follow
sophisticated methods like the FA method extension, discussed in
the previous section. We are currently working on the selection of
a limited number of nodes representing reusable operations and
on efficient schemes for parameter passing between nodes, so as
to give to the language, at the same time, high expressive power
and good ability of being used for join strategy generation and
testing. The results generated by the service nodes and the
combinations returned by join nodes are collected in their “raw”
format of tuples of values, and passed to the Result
Transformation module, to be processed in order to be presented
to the user.

Apart from enacting the execution and orchestrating the
prescribed service invocations, it is the query engine
responsibility, instead, to cope with any unexpected behavior, and
apply correction policies. We are currently investigating:
 Anticipated stopping policies if the query shows to be likely to

generate more than K results. Whenever a service that is
“initial” in the query graph provides more results than

expected, this heuristically allows for limiting the search space
of the subsequent ones;

 Heuristically effective strategies to restart the computation of
“completed” nodes when the query returns fewer results than
expected;

 Dynamic change of the join strategy in the presence of trends
in the scoring functions that clearly contradict the expected
ones.

All these issues also correspond to situations in which the
planning was not accurate enough, and feedback to the planner
has to be provided. The optimal balance between heuristic
deviations from the optimized plan and continuous feedback
(which may even be pushed to halt the execution and request a
new overall optimization with new parameters) is, in turn, a
challenging research problem.

In order to leverage parallel execution as much as possible,
invocations are all performed by different threads (normally one
per node in the query plan) and results are pushed forward in a
continuous way, as soon as they are available. Nodes that accept
input from more than one node (all join nodes, but possibly
service nodes as well) may be blocked waiting for delayed data,
but his doesn’t prevent other branches from proceeding with the
computation. It is worth noting that this “operational semantics”
ideally leads itself to be deployed on highly parallel computing
infrastructures.

We will work on the deployment of execution environments
which will initially support simple schedule executions, and will
then be augmented to deal with exception handling and
dynamicity, and finally support optimal caching, pipelining, and
parallelism.

4.5 Human-computer interface
This component will address the following problems: (f)

definition of proper interfaces for submission of multi-domain
user queries; (k) transformation and rendering of the results for
user consumption; it will deal with:
 building a interface for the user to express multi-domain

queries in a facilitated way, by also providing hints about his
expected semantics (e.g., personal service preferences, a priori
disambiguation of terms, etc.)

 building an interface for presenting results, incorporating an
explanation facility, whereby the user can drill down the result
set and understand where each piece of information comes
from

 enabling query refinement, whereby the user can peruse the
results of past queries to better reformulate his information
need (e.g., using a faceted query modality over the result set to
narrow down the scope of query processing to selected
services/domains, adding terms to the query to make it more
precise, etc..)

5. RELATED WORK
A great deal of interest is being devoted to extending service-

orientation capabilities of software systems, as testified to by
current research trends [17]. Search computing is an approach
meant to mark the transition towards better behaved and more
reliable systems thanks to a better use of search and composition.
Foreseeable extensions include, e.g., achieving better guarantees
that can be given to users in the context of dynamically assembled

systems, where unsatisfactory or failing services can be changed
and when user's requests may vary at each time. We now propose
an overview of the most closely related fields.

Web service composition provides the basis to be used in search
computing to translate a user query into calls to several existing
services. At the current state-of-art, composition is mostly the
result of human selection, but we can envision systems that will
be able to perform composition either partially or fully
automatically. Research on automatic Web service compositions
exploits different notions, such as functional substitutability [4],
semantic annotation based on ontologies [17], and others.

Meta-search consists in a shallow-level integration of search
engines working in restricted domains (e.g. searching the best fare
for books or flights). Meta-search engines are Web applications
that aim at integrating the results of several search engines that
are queried with the same search string. The user typically
submits a search request in the meta-search submission form, and
the meta-search system forwards the search simultaneously to
several individual search engines, whose responses are then
shown together in a single result page. A comprehensive review
of meta-search (discussing its qualities and limitations) can be
found in [14]. Albeit related to search computing, meta-search
profoundly differs from it. The set of search engines used by a
meta-search system is fixed and predefined, while search
computing will foster context-based dynamic selection of search
engines as well as source ranking; each source is queried with the
specific part of the query that is pertinent to its domain. In meta-
search, results are merged with no composition, possibly after
sorting based on single-domain common information (e.g., price,
departure time, etc.). Search computing comprises a rich
compositional framework that allows several strategies to deal
with the results of multiple search engines included in a query,
and supports several operations other than the simple merge.
Moreover, user interaction is articulated through protocols rather
than the simple result presentation.

Top-k query answering is a topic that has been addressed by a
large body of recent research (see [10] for a survey). The topic is
very relevant, as it shows how ranking has been managed in the
simpler context of database management. Top-k queries produce
results that are ordered on some computed score. Typically, these
queries involve joins, where users are usually interested only in
the top-k join results. Top-k queries are dominant in many
emerging applications, e.g., multimedia retrieval by content, Web
databases, data mining, middleware, and most information
retrieval applications. The foundations of top-k queries are rooted
in the simpler problem of rank aggregation, i.e., the problem of
combining several ranked lists of objects in a robust way to
produce a single consensus ranking of the objects [6]. Rank
aggregation has resulted in a number of algorithms, such as the
so-called Fagin's algorithm [5], and the threshold [7], which have
been adapted to various extents to the context of top-k queries.
Under suitable assumptions, some of these extensions can be
proved to be instance optimal, in the sense that the cost incurred
by their execution is the smallest possible in every database
(modulo a fixed constant). Among these, we mention [9][12].

A known approach to answering queries that pursue optimality
with respect to more than one criterion is that of skyline queries.
The skyline of a set of d-dimensional points is the locus of the
points that are not dominated by any other point on all
dimensions. A point dominates another point if it is as good or
better in all dimensions and better in at least one dimension.

Skyline computation has recently received considerable attention,
especially for progressive (or online) algorithms that can quickly
return the first skyline points (e.g., Nearest Neighbors [11] and
the IO-optimal Branch-and Bound Skyline [16]).

6. CONCLUSIONS
This paper presented a set of problems that need to be

addressed when addressing multi-domain queries, an architectural
view of the problems, and a sketch of the solution techniques
adopted for each of them. Future works include the
implementation of the different components of the architecture
and their validation within a set of realistic scenarios.

Acknowledgements. This research is funded by the “Search
Computing” (SeCo) project, funded by the European Research
Council (ERC), under the 2008 Call for “IDEAS Advanced
Grants”, dedicated to frontier research.

7. REFERENCES
[1] D. Braga, A. Campi, S. Ceri, A. Raffio. Joining the results of

heterogeneous search engines. Inf. Syst. 33(7-8): 658-680, 2008.
[2] D. Braga, S. Ceri, F. Daniel, D. Martinenghi. Optimization of Muti-

domain queries on the Web. VLDB’08, pp. 562-573, 2008.
[3] D. Braga, S. Ceri, F. Daniel, D. Martinenghi. Mashing Up Search

Services. IEEE Internet Computing 12(5): 16-23, 2008.
[4] I. Elgedawy, Z. Tari, and M. Winiko. Exact functional context

matching for web services. In ICSOC, 2004.
[5] R. Fagin. Combining fuzzy information from multiple systems. J.

Comput. Syst. Sci., 58(1):83-99, 1999.
[6] R. Fagin, R. Kumar, M. Mahdian, D. Sivakumar, and E. Vee.

Comparing partial rankings. SIAM J. D. Math., 20(3):628-648, 2006.
[7] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms

for middleware. J. Comput. Syst. Sci., 66(4):614-656, 2003.
[8] C. Fellbaum, ed. WordNet: An Electronic Lexical Database

(Language, Speech, and Communication). MIT Press, May 1998.
[9] I. F. Ilyas, W. G. Aref, and A. K. Elmagarmid. Supporting top-k join

queries in relational databases. VLDB J., 13(3):207-221, 2004.
[10] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of top- query

processing techniques in relational database systems. ACM Comput.
Surv., 40(4), 2008.

[11] D. Kossmann, F. Ramsak, S. Rost. Shooting stars in the sky: an
online algorithm for skyline queries. In VLDB'02, pp. 275-286.

[12] N. Mamoulis, M. L.Yiu, K. H. Cheng, and D. W. Cheung. Efficient
top-k aggregation of ranked inputs. ACM TODS, 32(3), 2007.

[13] C. D. Manning. Probabilistic Syntax. In Rens Bod, Jennifer Hay, and
Stefanie Jannedy (eds), Probabilistic Linguistics, pp. 289-341.
Cambridge, MA: MIT Press, 2003.

[14] MetaSearch. http://www.lib.berkeley.edu/TeachingLib/Guides/
Internet/MetaSearch.html.

[15] S. Osinski, J. Stefanowski, and D. Weiss. Lingo: Search results
clustering algorithm based on singular value decomposition. In
Intelligent Information Systems, pp. 359-368, 2004.

[16] D. Papadias, Y. Tao, G-Fu, and B. Seeger. Progressive skyline
computation in database systems. ACM TODS, 30(1):41-82, 2005.

[17] M. Papazouglu and K. Pohl eds, Wp 2009-2010 expert group:
Longer term research challenges in software & services. 2008.

[18] A. A. Patil, S. A. Oundhakar, A. P. Sheth, and K. Verma. Meteor-s
web service annotation framework. In WWW 2004, pp. 553-562.

[19] S. Ran. A model for web services discovery with QOS. SIGecom
Exch., 4(1):1-10, 2003.

[20] Stanford Natural Language Proc. Group. http://nlp.stanford.edu/
[21] M. Stollberg, U. Keller, H. Lausen, and S. Heymans. Two-phase web

service discovery based on rich functional descriptions. In ESWC
'07: pp. 99-113. Springer-Verlag, 2007.

[22] Wordnet. http://wordnet.princeton.edu/
[23] Wordnet Domains. http://wndomains.itc.it/wordnetdomains.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

