
 

 

DEVELOP THE DISEASE SPECIFIC BIOINFORMATICS PLATFORMS WITH 

INTEGRATED BIOINFORMATICS DATA 

 

 

 

 

 

 

Jiannan Liu 

 

 

 

 

 

 

 

Submitted to the faculty of the University Graduate School 

in partial fulfillment of the requirements  

for the degree 

 Doctor of Philosophy    

in the School of Informatics and Computing,  

Indiana University 

 

  

November 2022 

  



   

ii 

Accepted by the Graduate Faculty of Indiana University, in partial 

fulfillment of the requirements for the degree of Doctor of Philosophy. 

 

 

Doctoral Committee 

 

 

 

______________________________________ 

Jingwen Yan, PhD, Chair 

 

 

 

______________________________________ 

Jie Zhang, PhD 

 

 

August 11, 2022 

______________________________________ 

Kun Huang, PhD 

 

 

 

______________________________________ 

Chi Zhang, PhD 

     

 

 

   ______________________________________ 

Timothy I. Richardson, PhD 

     

 

 

   ______________________________________ 

Huanmei Wu, PhD 

        

 

 

  



   

iii 

  

 

 

 

 

 

 

 

 

© 2022  

Jiannan Liu 

 

  



   

iv 

ACKNOWLEDGEMENT 

I would like to express my deepest appreciation to my academic advisors, Dr. Jie 

Zhang and Dr. Huanmei Wu, without your support and guidance on the projects I have 

been working on, I would never have theses chievements. Your way of approaching 

challenges has set up a golden standard for me to follow, not only in work, but also in 

daily life. 

I would also like to express my deepest love and appreciation for my wife, 

Tianhan Dong, who have helped and supported me during the past five years, without 

your support and unconditional love, I would never have the power to conquer the 

challenges I have been through in the last five years. 

Finally, I want to thank my family, friends and collaborators for providing me the 

support during this journey, I will keep on working hard to be better and better. 

 

 

 

  



   

v 

Jiannan Liu 

DEVELOP THE DISEASE SPECIFIC BIOINFORMATICS PLATFORMS WITH 

INTEGRATED BIOINFORMATICS DATA 

 

With the advance of multiple types of omics technology and corresponding 

analytical methods, various type of bioinformatic data have become available. Mining 

and integrating these data for analysis will provide valuable insights for disease 

mechanism investigation, drug target identification and new drug development. However, 

most of the omics data are large size, heterogeneous, and complex, it is challenging for 

biomedical researchers to mine the data for relevant evidence, especially for those with 

limited computational skills. In this thesis, I aimed to develop disease specific platforms 

integrated with multimodal bioinformatic data types to provide researchers with strong 

bioinformatics support. To achieve this goal, I explored advanced transcriptomic data 

analytical methods and proposed a novel biomarker for the prediction of overall survival 

of colon cancer patients, then prototyped a user-friendly patient oriented clinical decision 

support system to provide accurate and intuitive colorectal cancer risk factor assessment. 

With the experience of the transcriptomic data analytical methods and the web-based 

application development, I further designed and implemented Cancer Gene and Pathway 

Explorer which is an integrative bioinformatics webserver that can be used for cancer 

publication trends investigation, gene set enrichment analysis with integrated data, and 

optimal cancer cell line identification. Based on the framework of CGPE, I developed 

another bioinformatics platform focusing on Alzheimer’s disease, called Alzheimer’s 

Disease Explorer, which is a first-of-its-kind bioinformatics server, providing rich 
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bioinformatic support from literature, omics and chemical data to facilitate researchers in 

ND drug development field. By accomplishing a series of work in my thesis, I have 

shown that integrated disease specific bioinformatics platforms can provide great value to 

the research community by allowing 1.) fast and accurate investigation of currently 

available literature, 2.) quick hypothesis generation and validation using transcriptomic 

datasets, 3.) multi-dimension drug target evaluation and 4) fast querying of published 

bioinformatics outcomes. 
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Chapter 1. Introduction 

1.1 Background 

The dramatic advance of sequencing technology in recent years takes the big data 

in biomedical field into a new level. Various types of omics data provides researchers 

with rich information on solving challenging biology problems. In fact, significant 

amount of bioinformatics discoveries have been made based on the analysis of omics 

data. However, the data size and heterogeneity of omics data make it difficult for 

biological researchers to utilize the available data without extensive training in 

programming and other data mining skills, thus the use of omics data is largely in the 

hands of bioinformatic researchers [1]. The collaboration of bioinformatic researchers 

and experimental researchers is still the predominant way of transferring data-inferred 

knowledge to experiment based studies  [2]. The status of omics data utilization created 

two major issues. One is the process may result in repeatitive analysis that is already 

performed by other researchers. This issue is especially common when bioinformatic 

researchers perform analysis using public domain data. Another issue is for some general 

and easy-to-replicate data analysis, the turnaround time during collaboration usually 

cannot satisfy the experimental researchers’ urgent needs. With these two major issues, it 

will be of great help if an integrated bioinformatics platform can be developed, which not 

only integrates the analysis results from general bioinformatics analysis (such as 

differentially expressed gene analysis), but also can be used to preform customizable 

analysis using integrated datasets. Thus, the objective of my dissertation focuses on 

developing an integrated bioinformatics platform that can significantly eliminate the 
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resource waste and improve the efficiency of knowledge transfer between computational 

and experimental researchers [3]. 

To develop the proposed disease specific bioinformatics platform, four 

progressive steps are involved in this dissertation: 1) apply advanced analytical methods 

to transcriptomic data to address challenges in colon cancer research;  2) develop web-

based applications to assist with patient-oriented colorectal cancer risk assessment; 3) 

prototype a bioinformatic data portal integrating cancer-related key bioinformatics 

resources and knowledge to provide bioinformatics support in cancer research; 4) reuse 

3)’s disease-specific bioinformatics framework to develop a new web data portal for 

Alzheimer’s disease and other neurodegenerative disease research. 

1.2 Objectives  

1.2.1. Apply advanced analytical methods to transcriptomic data to address 

challenges in colon cancer research 

Transcriptomic data have been a valuable resource to advance biomedical 

research in various disease due to the fast development of sequencing technology in the 

past decades. With large amount of available transcriptomic data, mathematical 

algorithms have been utilized for uncovering insights of disease development and 

treatment using transcriptomic datasets. With the advance of analytical methods applied 

to transcriptomic data, a few mathematical analyses have gain tremendous popularity 

across most fields of biomedical research. Such as the differentially expressed gene 

analysis and gene set enrichment analysis. In the first objective of my thesis, I explored 

several popular mathematical methods in bioinformatics area and proposed a novel 



   

3 

transcriptomic biomarker to address challenges of colon cancer patient overall survival 

prediction [4]. 

1.2.2 Develop web-based applications to assist with patient-oriented 

colorectal cancer risk assessment 

With the advance of web-based application technology in recent years, 

biomedical researchers started to implement system that incorporate advanced algorithms 

to directly benefit general populations health status, the clinical decision support system 

(CDSS) is one many examples. In the second aim of my thesis, I have investigated, 

designed, and implemented a CDSS prototype which is patient-oriented and can provide 

risk factor assessment of colorectal cancer with patient’s inputs [5]. This study 

incorporated many advanced web application development technologies to enhance the 

user experience and improve the interpretability of the risk factor assessment results. It 

provided valuable insights on integrating advanced prediction model with intuitive user 

interface to make cutting edge research outcomes more accessible and beneficial to 

patients. 

1.2.3 Prototype a system integrating key bioinformatics resources and 

knowledge to provide bioinformatics support in cancer research 

Cancer prognosis and treatment is still one of the most challenging problems in 

biomedical research [6, 7]. Plenty of databases, tools and algorithms are developed to 

address various challenges related to cancer research. Because of the well-established 

databases and data resources, cancer research is the best focus for me to prototype the 

disease specific bioinformatics platform. Within this objective, following steps have been 

implemented: Firstly, I collected and integrated heterogenous biomedical datasets, these 



   

4 

datasets include but not limited to bulk RNA sequencing data, single cell RNA 

sequencing data, biomedical publication data, etc. Secondly, I connected the data sets 

with existing bioinformatics tools and algorithms and pipelines, such as Gene Set 

Enrichment Analysis (GSEA) [8], natural language processing pipelines, etc. Thirdly, I 

captured downloaded and processed bioinformatics information such as cell line 

information, DepMap data, etc. Finally, I have designed and implemented visualizations 

for various results integrated or generated from the platform [9]. 

1.2.4 Reuse disease specific bioinformatics framework to provide 

bioinformatics support for Alzheimer’s Disease research 

To fulfill this objective, I used the framework generated from aim 3 to develop a 

bioinformatics platform to help with the Alzheimer’s disease (AD) research. Since cure 

or even interrupt the progression of AD remains to be a unresolved problem [10], 

providing an AD specific and integrated bioinformatics platform to serve the AD research 

community will benefit the knowledge integration and potentially promote the discovery 

of new AD drug targets. This new AD bioinformatics platform incorporates the 

generalized information from mining PubMed database using NLP pipeline, it also 

integrates several key multi-omics datasets and process data to help with broadcasting 

processed bioinformatics outcomes. 

1.3 Significance 

With the diverse and ever-expanding data in biomedical research, it becomes 

more and more challenging to grasp the useful information from multiple resources to 

support ongoing biomedical research. An integrated disease specific platform will help 

the targeted research community to easily access various data resources in bioinformatics 
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field, these resources include but not limited to natural language processing (NLP) based 

text mining results, transcriptomic data analysis with various tools and algorithms, 

analytical results from published studies and drug target profiling information.  

As new algorithms and analysis pipelines are published every day to uncover 

insights from omics data. With the ever-expanding bioinformatics data and algorithms, 

the work of applying algorithms to data are generally in the hands of people who have 

computational skill to do programming. The bioinformatics platform implemented in my 

thesis created a framework to integrate data with algorithms, so that the platform is 

expandable, scalable, and flexible. 1.) Expandable: the platform can easily incorporate 

both new omics datasets and new analysis pipelines. 2.) Scalable: depends on the needs 

of users, the platform can be deployed to single server for running simple analysis or it 

can be deployed to cloud based systems, HPC systems to handle computation intense 

analysis. 3.) Flexible: with the framework of the platform as the skeleton, the content of 

the platform can be easily replaced depending on the users’ needs.  

By analyzing the literature data and transcriptomic data, then develop the disease 

specific bioinformatics system, my thesis generated several valuable research outcomes 

and integrated bioinformatics platforms that have been used by thousands of researchers 

to guide their on-going research projects. The outcome of my thesis has a significant 

impact on allowing biomedical researcher with limited data processing ability to easily 

access data sources in biomedical field. 
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1.4 Innovation 

My thesis project generated a set of innovative outcomes that will benefit the 

future development of disease specific bioinformatics platforms, the innovations of my 

thesis project are mainly from these two aspects: 

In my thesis, I have proposed an innovative method for discovery transcriptional 

factor based biomarkers for colon cancer patients, which not only utilized traditional 

mathematical models such as cox regression but incorporated machine learning methods 

to enhance the prediction power of patients overall survival. I have also generated two 

specific bioinformatics platform prototypes that has the capability no other bioinformatic 

tools or platforms can provide. These capabilities include but not limited to incorporate 

processed bioinformatics analysis outcomes, run customizable bioinformatics analysis 

with integrated dataset, provide accurate publication survey guidance according to 

research needs. With all these capabilities, the prototype platforms addressed most of the 

basic needs of biomedical researchers that cannot be fulfilled by current available 

systems. 

A generalized system framework is utilized in aim three and four to guide the 

development of the corresponding disease specific bioinformatics platform. To the best of 

our knowledge, the system framework used by CGPE and ADE is the first one to address 

the development structure of integrated disease specific bioinformatics systems, and it 

will be the first framework that can be used as the guidance of developing future 

bioinformatics platforms.   
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1.5 Organization of the Study 

With the overall goal of my thesis, four progressive objectives are designed to 

investigate the proposed topic. The first chapter of my thesis gives general introduction to 

the background of my thesis including a brief introduction to each objective of the thesis, 

significance and innovation of the thesis work. In the Chapter 2, I studied methods of 

analyzing transcriptomic datasets to address biomarker discovery challenges with colon 

cancer patients. This step helps me to get better knowledge on how bioinformatics studies 

are conducted using omics datasets. The Chapter 3 introduced a patient oriented clinical 

decision support system for colorectal cancer patients, which provided easy-to-use 

colorectal cancer risk factor evaluation for general population. This chapter provides me 

the knowledge on developing advanced web-based application using biomedical 

information. The Chapter 4 described a bioinformatics platform that integrated multiple 

resources to help with cancer research, the platform addressed literature survey, 

transcriptomic dataset analysis and gene-based cell line evaluation using multiple criteria. 

This chapter serves as the first prototype of the disease specific bioinformatics system 

that tries to address the full research life cycle support of cancer research. The Chapter 5 

introduces an upgraded and more advanced bioinformatics platform that focuses on 

Alzheimer’s Disease by utilizing the framework mentioned in Chapter 4. This chapter 

experimented and incorporated more advanced functions in the disease specific 

bioinformatics platform, it successfully validated that the generalized framework used in 

chapter 4 can be used as a universal guideline for developing disease specific 

bioinformatics platforms. 
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Chapter 2. Apply Advanced Analytical Methods to Transcriptomic Data to Address 

Challenges in Colon Cancer Research 

2.1 Introduction 

Colon cancer is the sixth in men and the fifth in women the most common cause 

of cancer-related death globally. In the United States, colon cancer is estimated to have 

135,430 newly diagnosed cases and result in 50,260 deaths in 2017, accounting for 9% of 

cancer deaths [11]. Colon cancer is a complex disease with many risk factors, such as 

genetics, lifestyles, and dietary habits. Among them, inherited gene mutation, which can 

pass through family members, is one critical factor to increase one’s colon cancer risk. A 

common colon cancer feature is the intra-cancer heterogeneity, which makes patients 

distinctive from each other in clinical presentations and responses to treatment. Colon 

cancer treatments should be tailored based on the individual’s risk factors and genetic 

factors. 

The inherited colon cancers can be broadly classified into two categories: familial 

adenomatous polyposis (FAP) and hereditary nonpolyposis colorectal cancer [12]. 

Molecular features in the genomics level play an essential role in treatment decision 

making and will continue providing more insights for pathological classification and 

tailored treatment for colon cancer. Proper colon cancer classification will significantly 

improve the survival rate, but hinders considerably by limited available prognosis assays.  

Among the genetic factors, transcription factors (TFs) play a vital role in most 

important cellular processes, such as cell development, response to inner and outer 

environment change, cell cycle controls, and carcinogenesis. TFs are proteins that control 

the transcription of fragment DNA to messenger RNA by binding to specific DNA 
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regions [13]. Their functions are to regulate, turn on and off genes to make sure that 

genes expressed in the right cell at the right time and in the right amount throughout the 

life of the cell and the organism [14]. For example, the NF-κB comprises a family of five 

TFs that form distinct protein complexes, which bind to consensus DNA sequences at 

promoter regions of responsive genes regulating cellular processes. NF-κB signaling and 

its mediated transcription play a critical role in inflammation and colorectal cancer 

development [15]. STAT3 is reported constitutively activated in colon-cancer-initiating 

cells and play a significant role in colon cancer progression [16]. FOXM1 was another 

TF that had been reported to be a key regulator of cell cycle progression, inflammation, 

tumor initiation and invasion [17]. 

In the past two decades, many researchers have implemented machine learning 

(ML) methods in the discovery and validation of cancer prognosis, especially after the 

population of High Throughput Technologies (HTTs) [18]. Recently, Long Nguyen 

Phuoc, et al. [19] developed a novel prognosis signature in colorectal cancer (CRC) by 

implementing several ML methods on public available CRC omics data. Their results 

demonstrated that the random forest method outperformed other ML methods they tried. 

Some researchers focused on microRNAs to find cancer prognosis signatures. Fatemeh 

Vafaee, et al. [20] proposed a prognostic signature of colorectal cancer comprising 11 

circulating microRNAs. They also tested several different ML methods including RF and 

AdaBoost in their study. Their performance of the proposed prognostic signature was 

confirmed by an independent public dataset. Similarly, Jian Xu, et al. [21] developed a 4-

microRNA expression signature for colon cancer patients by using the data from The 

Cancer Genome Atlas (TCGA). Their study showed that this 4-microRNA signature 
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might play an important role in cancer cell growth after anti-cancer drug treatment. In 

2016, Guangru Xu, et al. [22] discovered a 15-gene signature that could effectively 

predict the recurrence and prognosis of colon cancer using a Support Vector Machine 

(SVM) algorithm. Their study pointed out that some genes in this signature might be an 

indicator of new therapeutic targets. Although these previous studies implemented 

machine learning methods on the discovery of cancer prognosis signatures, the crucial 

role of TFs has not been sufficiently addressed in cancer prognosis signature 

development.  

The goal of our study is to identify the fundamental transcript factors, which are 

associated with clinical outcomes of colon cancer patients, by implementing an 

innovative cancer prognosis signature discovery process that combines the random forest 

algorithm with classic Cox Proportional Hazard (Cox PH) method. Our study will 

emphasize on only using TFs expression data to conduct prognostic analysis and we will 

provide a new perspective on how we can better use gene expression profiles to conduct 

prognostic research. By using proposed workflow, a TFs based prediction model has been 

successfully developed for colon cancer prognosis. The prediction power of our model is 

validated on hundreds of colon cancer patient samples available in the GEO database 

[23]. Our TF-based colon cancer prognosis prediction model can be used for a better 

classification of colon cancer patients in survival. Successful findings of this study will 

shed lights on understanding the mechanisms of the underlying colon cancer 

development and metastasis.  
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2.2 Methods 

2.2.1 Data sources 

In this study, we are using the expression data of TFs from two public resources. 

One is TCGA colon cancer (COAD) dataset, which can be downloaded from UCSC Xena 

(http://xena.ucsc.edu) [24] for both the expression dataset and the clinical data of 

patients. There are 497 samples in the COAD dataset, including 456 primary cancer 

tissue samples and 41 adjacent normal tissue samples. The downloaded TCGA level 3 

RNAseq data is in the log2(counts + offset) format. The TCGA COAD dataset is used as 

the training set in this study to build the predictive model for the colon cancer prognosis. 

Only patients carrying a primary tumor with the overall survival times and events were 

included in the training dataset. Then we further filtered the dataset by excluding patients 

who have missing information in cancer stage and other clinical information including 

sex and age. Finally, 435 patients with primary cancer tissue information were remaining 

in the training TCGA dataset,  

The second public expression data resource is the microarray data from GEO 

database, which will be used to validate our prediction model. We chose four Affymetrix 

Human Genome U133 Plus 2.0 Array microarray study as validation datasets. The 

accession numbers, sequencing platform information, and sample sizes of each GEO 

dataset used in this study were listed in Table 1. The respective clinical data were 

retrieved from published literature. The GEO dataset also filtered similarly to the TCGA 

COAD dataset with the survival events and times. In the end, the total number of GEO 

samples we used for prediction model validation is 1,584. Before performing further 

http://xena.ucsc.edu/
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analysis, the Affymetrix microarray data were normalized using the Robust Multi-array 

Average (RMA).  

Table 1 Summary of the general clinicopathologic characteristics of patients in 

both training and testing datasets. 

Characteri

stic 

TCGA 

(N=435) 

  

GSE39582 

(N=563) 

  

GSE17536 

(N=177) 

  

GSE37892 

(N=130) 

  

GSE17537 

(N=55) 

N (%)   N (%)   N (%)   N (%)   N (%) 

Age(years)               

Median 66  68  66  68  62 

Range 31-90  22-97  26-92  22-97  23-94 

<65 166 (38.2)  211 (37.5)  78 (44.1)  54 (41.5)  32 (58.2) 

≥65 269 (51.8)  351 (62.3)  99 (55.9)  76 (58.5)  23 (41.8) 

Sex               

Male 202 (46.4)  309 (54.9)  96 (54.2)  69 (53.1)  26 (47.3) 

Female 233 (53.6)  253 (44.9)  81 (45.8)  61 (46.9)  29 (52.7) 

T Status* 
         

T1-2 86 (19.8)  56 (9.9)  NA  NA  NA 

T3-4 345 (79.3)  483 (85.8)  NA  NA  NA 

N Status* 
         

N0 254 (58.4)  299 (53.1)  NA  NA  NA 

N1 100 (23.0)  133 (23.6)  NA  NA  NA 

N2 78 (17.9)  98 (17.4)  NA  NA  NA 

M Status* 
         

M0 318 (73.1)  479 (85.1)  NA  NA  NA 

M1 60 (13.8)  61 (10.8)  NA  NA  NA 

MX 47 (10.8)  2 (0.4)  NA  NA  NA 

Stage               

I 73 (16.8)  32 (5.7)  24 (13.6)     4 (7.3) 

II 167 (38.4)  262 (46.5)  57 (32.2)  73 (56.2)  15 (27.3) 

III 124 (28.5)  204 (36.2)  57 (32.2)  57 (43.8)  19 (34.5) 



   

13 

IV 60 (13.8)   60 (10.7)   39 (22)       17 (30.9) 

*T status: describes the size of primary tissue and whether it has invaded nearby tissue. N 

status: describes nearby lymph nodes that are involved. M status: describes distant 

metastasis. 

As shown in Table 1 for the summary of the training and testing datasets, there 

are substantial similarities upon patient diagnosed age, gender and in the AJCC staging 

level. The consistency in the pathology levels renders convincing for further analysis 

without bias or overfitting.  

2.2.2 Workflow of the study 

The overall workflow of our study is demonstrated in Figure 1, which can be 

classified into three stages: TFs Screening, Predictive Modeling, and Model Validation. 

In Stage 1, we first identified a complete list of human TFs with official annotation from 

previous publications. Since not all the human TFs have the expression data in TCGA 

COAD dataset, the overlapped genes between TCGA COAD dataset and the complete 

list of TFs identified. Among the overlapping TFs, we further narrow down the numbers 

of TFs by the Cox PH Model analysis, which resulted in a limited set of TFs. Cox PH 

model is a widely used and performance proved statistical model in prognostic signature 

construction [18].  

In Stage 2, since there are still too many colon prognosis TFs (more than 20 TFs), 

we need to decrease the final prognosis TFs to build a valid and good performance 

prognosis signature. The ensemble learning method, random forest method, is performed 

to refine further and reduce the TFs. Based on the RF training results, the most significant 

TFs are selected based on the top feature importance of RF. With the final TF list, we 

trained a predictive model for colon cancer prognosis using Cox PH regression.  



   

14 

Stage 3 is the validation of the predictive model. First, the prediction power is 

tested by accuracy analysis. Furthermore, the predictive model is validated on colon 

cancer datasets, collected from GEO database, including 925 samples from 4 studies.  

The Gene Set Enrichment Analysis (GSEA) [25] was also conducted to obtain further 

insights into our prediction model in the pathway level. 

 

Figure 1. Workflow of the study.  

 

2.2.3 Details on the Variable Selection and Survival Analysis Methods 

In Stage 1 of the variable selection, we used the univariate Cox PH model in the 

statistical environment R (v3.4), the association between expression profiles of TFs and 

the overall survival of patients was calculated to identify the prognostic ones. Any TF 

with a p-value less than 0.01 was considered statistically significant and used for further 

investigation. 

In Stage 2 of refining variable selection, we performed RF methods for variable 

selection given that RF can be used for both classification problems and regression 
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problems. RF [26] is an ensemble algorithm that use a bagging method to combine the 

multiple decision trees. It draws a set of samples from the whole dataset with replacement 

to feed the decision tree. After one decision tree has been trained, another sample set will 

be drawn from the whole dataset to train another decision tree. The process is repeated in 

the RF algorithm until the desired number of decision trees are trained. The final output 

of the prediction RF model can be the average of each decision tree’ output. In cancer 

prognosis signature discovery practice, RF is a performance proved method [19, 20, 27]. 

In our study, the randomForestSRC for survival package [28] was used to measure the 

importance of each variable’s contribution to the overall survival of colon cancer 

patients. This package uses minimal depth variable selection. The algorithm is the termed 

RSF-Variable Hunting [29]. It exploits maximal subtrees for effective variable selection 

in survival data scenarios. In our implementation, the parameters used in the feature 

selection RF model were ntree = 1000 and nstep = 5. 

In Stage 3, for the validation of the predictive model, the Kaplan-Meier (KM) 

curve [30] was used to estimate the difference in the survival between high and low risk 

groups in validation datasets. The log-rank test [31] was conducted to test the 

significance of the difference between subgroups since the log-rank test is a very robust 

statistical method to test important differences between two groups and is widely used in 

clinical trial experiments. 
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2.3 Results 

2.3.1 The results of identifying the potential prognostic transcription factors  

The complete list of 1,987 human TFs was downloaded based on the census of 

human TFs from the Nature Review Genetics paper by Vaquerizas, Juan M., et al. [32]. 

Among the listed human TFs, 1,834 of them have gene symbols annotations. After 

mapping to TCGA COAD dataset, only 1,780 TFs have gene expression data in TCGA 

COAD dataset, which were included in this study. 

The univariate Cox PH regression was applied to the gene expression profiles for 

the overlapping 1,780 TFs and the patient clinical data in TCGA colon cohort, to identify 

the TFs, which are associated with the survival of the patients and have the potential 

using as prognostic markers. Those TFs with p ≤ 0.01 were kept for further analysis (The 

selected 23 TFs are listed in Supplementary Table S1). 

2.3.2 Results on building the multi-TF predictive model 

To identify the minimum subset of TFs that can still achieve a good prediction of 

colon cancer survival, the 23 TFs from the Cox PH regression model were further 

evaluated with a random forest algorithm, randomForestSRC. In the randomForestSRC 

variable hunting mode, top P ranked variables will be selected, P is the average model 

size and variables are ranked by frequency of occurrence. In our study, five TFs (i.e., 

HOXC9, ZNF556, HEYL, HOXC4, and HOXC6) were chosen for the final predictive 

model construction. The results of the algorithm is shown in Figure 2. The parameters for 

random forest are ntree = 1000 and nstep =5. 

To establish a multiple molecular based regression model, the multivariate Cox 

PH regression was trained with gene expression data using the five TFs and clinical 
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variables from TCGA COAD dataset. The coefficients from the Cox model were then 

applied to a multivariate linear regression model. The risk score was calculated with the 

following formula:  

Risk score= 0.139*HOXC6 - 0.046*HOXC4 + 0.165*HEYL + 0.106*ZNF556 - 

0.032*HOXC9 

The final coefficients of the model have been modified automatically to achieve 

better performance and to increase accuracy overall. Thus, the coefficients of HOXC9 

and HOXC3 are adjusted to slightly below zero, which are much smaller than those 

positive coefficients. Then we performed the KM analysis and the log-rank test result 

over these five selected TFs. The results and the p-value from previous Cox PH analysis, 

along with the hazard ratio for each of these genes are summarized in Figure 3. It can be 

seen that all selected 5 TFs has Cox p-value < 0.01, which indicates all these TFs are 

highly related to the overall survival of patients according to Cox PH analysis. For the 

log-rank p, only the ZNF556 has a p-value of 0.107, while all the other four have p-value 

< 0.05. According to the RF results, the importance of ZNF556 is ranked fourth in all 23 

TFs with no significant difference with other TFs in maximum depth (Figure 2), this 

qualifies the ZNF556 as one of the most important prognostic TFs. The Hazard ratios of 

all these five TFs are more than 1.0, indicating higher risks of colon cancer prognosis.  

 



   

18 

 

Figure 2. The RF results of the prognosis TFs for the Depth and relative 

frequency. 

 

 

Figure 3. Information on five prognostic TFs finally selected for building the 

prediction model. 

 

2.3.3 Results on validation of the five-tf based prediction model 

Based on the median value of the predicted risks scores of all the patients in both 

the training and validation set, patients are classified into high-risk and low-risk 

subgroups. KM curve analysis and log-rank test were conducted to evaluate the 

performance of predicting power in colon cancer prognosis on TCGA COAD dataset. 

The results are shown in Figure 4. The scatter plot (Figure 4A(b)) shows the distribution 
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of patients’ overall survival status. The red point indicates the patient belonging to a 

high-risk group while a blue point indicates the patient belonging to a low-risk group. 

From the scatter plot, we can observe that the red points are more concentrated in the 

lower part of the figure. This is an indication that high-risk patients have a shorter 

survival time comparing to low-risk patients. The heatmap (Figure 4A(c)) shows that the 

five selected TFs in our predictive model were highly expressed in TCGA COAD dataset. 

Moreover, the KM curve (Figure 4B) shows a distinctive survival difference between the 

high-risk and low-risk groups in a time span of more than 10 years. All these results 

prove the prediction power of our predictive model on TCGA COAD dataset. 

To test the five-TF based signature as colon cancer survival predictor, we further 

validated the predictive model on another four independent microarray datasets with a 

total of 1,584 samples for GEO with GSE39582 (n=563), GSE17536 (n=177), GSE37892 

(n=130) and GSE17537 (n=55). The risk score of each patient in validation dataset was 

calculated by using the same formula established with TCGA training dataset. The same 

coefficients were utilized to assign weight to each of the selected TF. By using the same 

median cutoff strategy to divide patients to the high-risk and low-risk groups, the KM 

curve analysis shows the consistent patterns with the TCGA COAD dataset. Patients in 

the high-risk group have a significantly shorter survival time than patients in the low-risk 

group (Figure 5A–D), which suggests the clinical robustness among multiple centers. 

Therefore, our five-TF based signature is proved to be a robust predictor for colon cancer 

survival.  
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Figure 4. A multivariate linear regression model based on expression of five TFs.  

 

Figure 5. The KM curves of the overall survival probabilities for four independent 

validation datasets for predicted high-risk subgroups and low-risk subgroups. 

 



   

21 

2.3.4 Results on pathway analysis  

The Gene Set Enrichment Analysis (GSEA) [25] was conducted to investigate the 

biological function of this five-TF based signature, including its molecular function and 

gene-gene network. GSEA is performed on the TCGA COAD dataset with predicted 

high-risk subgroup versus low-risk subgroup. In conducting the GSEA study, the 

reference gene pathway database is the Kyoto Encyclopedia of Genes and Genomes 

(KEGG) pathway database[33]. The GSEA number of permutations is set to be 1000, and 

the phenotype labels are determined according to whether a patient is in the high-risk 

subgroup or the low-risk subgroup. As illustrated in Figure 6, the GSEA results showed 

that several cancer-related pathways were alternated in patients with high-risk scores, 

such as the pathways for the Epithelial-mesenchymal transition, the ECM receptor 

interaction, the cytokine-cytokine receptor interaction, and the cell adhesion molecules 

(Figure 5A-D). Taken together these findings, it’s indicated that the five TFs in our 

model may highly associate with tissue morphogenesis, intercellular regulations and cell 

adhesion. By affecting these cell processes, these TFs may promote the tissue malignant 

then result in a poor overall survival rate of colon cancer patients. 
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Figure 6. Enrichment plots for the top four enriched gene pathways according to 

the GSEA results. 

 

2.4 Discussions  

We implemented an innovative machine learning approach for signature 

variables, which combines the Cox PH method with the random forest algorithm. Our 

signature selection process can find the minimum subset of TFs to build the prognosis 

prediction model with satisfying performance. A five-TF predictive model was developed 

by training the classifiers on TCGA COAD dataset. The trained multivariable linear 

predictive model was validated with multiple datasets from the GEO database.  
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Three out of the five selected genes, i.e., HOXC4, HOXC6, and HOXC9, belong 

to the homeobox family of genes. The homeobox genes are highly conserved TF family 

and play an essential role in morphogenesis in all multicellular organisms. Dysregulation 

of HOX gene expression implicated as a factor in malignancies, and up-regulation has 

been observed in malignant prostate cell lines and lymph node metastases [34]. HOXC6 

was also reported to be overexpressed in colorectal cancer tissue, and highly correlated 

with poor survival outcome and acts as a significant prognostic risk factor [35].  

For the other two genes selected in our predictive model, HEYL belongs to the 

hairy and enhancer of split-related (HESR) family of basic helix-loop-helix (bHLH)-type 

transcription factor. A recent study shows that HEYL may be a tumor suppressor of liver 

carcinogenesis through upregulation of P53 gene expression and activation of P53‐

mediated apoptosis [36]. ZNF556 belongs to zinc finger protein (ZNF) family. Despite 

the large size of ZNF gene family, the number of disease-linked genes in this family is 

very small [37]. To the best of our knowledge, the research on ZNF556 related to cancer 

is very limited. Therefore, our study provided new insight on potential relationships 

between overexpression of ZNF556 and the development of colon cancer.  

Our study also showed that by using TFs to build a predictive signature for colon 

cancer prognosis is practical. The prediction power of the model is promising. Intuitively, 

the TFs have the overall control on the gene expressions in cells so that a TF-based 

predictive model should be able to indicate the different gene expression levels in some 

cancer types with high accuracy.  

Our innovative signature discovery process can potentially be extended on other 

cancer types such as breast cancer or lung cancer. It will be interesting to carry out 
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studies on whether these five TFs used by our model have tissue specific expression 

patterns in colon cancer. Moreover, by conducting downstream analysis such as gene 

regulation network analysis, we can probably identify genes that are regulated by our five 

TFs, these downstream genes can be potentially added to the prediction model to add 

more robustness to our model. Another future study is to examine the performance of 

combining traditional statistical methods, such as Cox PH, with other machine learning 

methods, such as the artificial neural network (ANN) [38], to select potential prognostic 

TFs or other signatures for different types of cancer.  

 

2.5 Conclusion 

We have successfully identified a five-TF signature and built a predictive model 

for colon cancer prognosis signature with the selected five TFs by using a machine 

learning approach. Our five-TFs based linear model was validated on hundreds of 

publicly available patient data from the GEO database. The results showed that our model 

has a good predicting power in predicting colon cancer overall survival. Our predictive 

model and its biological functions would provide more insights in the precision treatment 

of colon cancer, which leads to further investigation on these five TF genes and their 

roles during the development of colon cancer at the molecular level.  
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Chapter 3.  Develop Web-Based Applications to Assist with Patient-Oriented 

Colorectal Cancer Risk Prediction 

3.1 Introduction 

Colorectal Cancer (CRC) affects caecum, colon, and rectum, which is the third 

leading cause of cancer death among men and women in the United States [39]. The 

lifetime risk of developing CRC is about 1 in 21 (4.6%) for men and 1 in 24 (4.2%) for 

women. It is estimated to have 135,430 new diagnosed cases and result in 50,260 deaths 

in 2017, accounting for the 9% of cancer deaths. The mortality rates have been 

decreasing for several decades because of changes in risk factors such as the introduction 

and dissemination of screening tests, and improvements in treatments [40-42]. Statistics 

showed that between 66% and 75% of CRC cases could be avoided with a healthy 

lifestyle [43] and appropriate dietary changes. Regular physical activities and 

maintenance of healthy weight could substantially reduce the morbidity and mortality 

associated with colorectal cancer [44]. There are many researchers worked on CRC risk 

factors and CRC risk scores calculations [45, 46]. One is the absolute risk score 

calculation model by Andrew et al.’s [46] to be discussed further, which is adopted in our 

work.  

However, the public knowledge on the significance of CRC is limited. Many do 

not recognize the significant impact of lifestyle on the development of CRC. It is the 

essential motivation for this project on constructing the patient-oriented CDSS. Currently, 

CDSS is serving an important role in patient visits, it was reported that 30% of annual US 

patient visits will use Electric Health Report (EHR) systems and 57% of EHR involved 

patient visits will use CDSS [47]. Several CDSS features such as automated decision 
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support as part of workflow, provision of recommendations, have been proved to improve 

patient care significantly [48]. Previous study has also shown that 92% of existing CDSS 

enrolled physicians as primary users [49], the number of patient-oriented CDSS is very 

limited and there is no research on patient-oriented CDSS specialized in CRC. Therefore, 

a CDSS for CRC risk assessment, education, and preventative care, that are not only open 

to the public access but also connected to EHR system will play a critical role in the 

preventative care of CRC patients. 

3.2 Methods 

3.2.1 The underlying algorithms of the CDSS 

The group first conducted literature reviews of the potential CRC risk factors, 

CRC risk score calculation, and CRC screening approaches. We adopt the absolute risk 

score calculation model [46] for the CRC risk score calculation in our CDSS. It used 

population-based case-control studies as source data to train a prediction model for 

estimating the risk of developing CRC in a certain period (e.g., 10 or 20 years). In this 

model, the projected probability will be the absolute risk score with a confidence interval 

of 95%. Eq. 1 summarizes the primary components of their model: 

𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑟𝑖𝑠𝑘 = 𝑓1(𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑟𝑖𝑠𝑘 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) + 𝑓2(𝑎𝑔𝑒 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑐𝑎𝑛𝑐𝑒𝑟 ℎ𝑎𝑧𝑎𝑟𝑑𝑠)

+ 𝑓3(𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑎𝑏𝑙𝑒 𝑟𝑖𝑠𝑘𝑠) 

(Eq. 1) 

The detailed mathematic model and risk factor coefficients have been explained 

in Freedman’s  report [46]. The relative risk parameters are estimated from population-

based case-control data. Sample risk factors include the numbers of relatives with CRC, 

the patient physical activity, smoking habit, diet preference, body mass index, and others. 



   

27 

The f1() function will calculate the relative risk based on tumor sites, including the 

proximal (cecum through transverse colon), distal (splenic flexure, descending, and 

sigmoid colon), and rectal (rectosigmoid junction and rectum) tumor sites. The f2() is a 

function to predict the CRC risk based on different ages and risk factor profiles. The f3() 

function will assess the attributable risks from the case-control data., The baseline age-

specific cancer hazards and attributable risks are all estimated from the case-control data. 

The final CRC absolute risk predicted by this model combines the three absolute risks 

(proximal, distal, rectal) and risks of competing causes of death other than CRC. A SAS 

Macro program which implemented the proposed model is publicly available online. This 

program eased our effort on integrating the absolute risk score calculation model into our 

CDSS. 

In our CDSS implementation, we adopted the 20-year absolute risk score as the 

projected risk score. We then rescaled the absolute risk reported by Andrew’s model to a 

range of [0, 10] based on the maximum and minimum risk scores. Based on the risk 

scores, the CRC risks are classified into three levels, according to a previous study [9] by 

Jane et al. The low-risk level, medium risk level, and high-risk level, reported from our 

CDSS system, are corresponding to the scaled risk score ranges of [0, 3], (3, 7], (7, 10], 

respectively.  For example, if the rescaled risk score is higher than 7, our CDSS will 

report high-risk score. 

Our developed CDSS also provides the recommended CRC screening methods. 

Information on multiple screening methods that are suitable to the identified CRC risk 

factors are gathered. The screening method details, such as the performance complexity 

and test time intervals, are stored in the backend database and used for giving screening 
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recommendations to patients based on their risk factors. The recommendation algorithm 

is a simple structured decision tree [50]. For instance, if a patient reports that he/she has 

inflammatory bowel disease, the decision tree will report Fecal Immunochemical Test 

(FIT) as one of the recommended screening methods because of its low complexity, low 

side effect, and low cost.  

3.2.2 The application framework 

Figure 7 illustrates the system infrastructure for the prototype of the patient-

oriented CDSS. It is developed using Django, a Python-based Model-View-Controller 

(MVC) web application development framework. An MVC framework separates 

application functionalities into three domains. The models describe the data structures of 

the backend database. The views display application outputs and collect inputs, which can 

consist of several files, such as HTML, CSS, JavaScript, and others. The controllers 

define the internal logic of the application. It is also responsible for data processing [51]. 

In our CDSS, we use the D3 data visualization package to visualize the risk score data as 

bullet chart and create the interactive dashboard [52].  

 

Figure 7. The Django MVC framework. 
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3.2.3 The backend database 

We use MySQL [53] as the backend database. Figure 8 shows the primary data 

structure. The User table stores the information of the CDSS users. When the CDSS is 

connected to an EHR system, the user information can be transformed to a patient table in 

the EHR system. The asmt_results table is the main component that stores the 

assessments patients have done. Since our CDSS will give recommendations on CRC 

screening methods, the result_scrn_test table serves as a relation table, which represents a 

many-to-many relationship between assessment results and screening methods. All the 

detailed information (e.g., test name, test time interval, test performance, etc.) on 

screening methods will be kept in the scrn_tests table. The asmt_questionnaire table 

defines questionnaire title and theme. In each questionnaire, there will be several 

sections, which contain some similar type of questions. The asmt_sections table describes 

the section title and its preferred style. All the questions will be stored in the 

asmt_questions table. Each question has a status attribute, which has a potential value of 

active or disabled. This attribute will help CDSS administrator add or delete questions for 

each questionnaire easily, making the database design more flexible and extensible. 

Options for each question will be kept in the asmt_options table, with a type attribute to 

indicate the type of input (such as a radio button or a text input) and a value indicating the 

risk score for each risk factor. The full list of attribute descriptions can be found in 

Appendix 1. 
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Figure 8. The entity relationship diagram for the backend database. 

 

The data structure of our database keeps all the relative information used by our 

CDSS. It also keeps the flexibility of changing questions and options in the questionnaire. 

By designing such a database structure, we have also maintained the flexibility for CDSS 

upgrades in the future. 

3.2.4 The website design 

Figure 9 demonstrates the design and workflow of the CRC CDSS website. The 

green-colored textboxes indicate a webpage in the CDSS. Other boxes describe the 

content of the pages. Our CDSS prototype has the following components and primary 

CDSS functions. The first is an interactive website with an anonymous scientific 

questionnaire to obtain the information about essential CRC risk factors. These questions 

are designed according to previous studies on CRC risk factors [46]. The second is a 

user-friendly display module with the risk scores calculated based on the input risk 

information. The third innovative component is an interactive visualization dashboard to 

show how changing lifestyle habits and diet preferences will affect their CRC risk level. 

The visualization is personalized based on the user input to the survey questions. Fourth, 

we incorporate a CDSS module to provide individualized recommendations on screening 

methods based on survey results and risk scores. The fifth is an appointment scheduling 
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system with CRC providers based on user preferences on doctor characteristics and 

geographical locations. Last, the CDSS provide educational information on CRC 

preventative care.  

 

Figure 9. The design and workflow of the CRC CDSS website. 

 

3.3 Results 

We have designed an interactive website to provide an easy-to-use questionnaire 

for potential risk factors of the users, as illustrated in Figure 10. After completing the 

survey, the CDSS will first report the overall risk score with a bullet chart to visually 

display the users their risk levels, as shown in Figure 11. The CRC risk level has different 

highlighted colors according to different risk levels. Several useful links are provided to 

help the users to understand the risk scores and risk levels.  



   

32 

 

Figure 10. The interface for survey CRC risk factors. 

 

Figure 11. CRC risk assessment results. 

 

The salient feature is the interactive stacked bar chart, generated according to user 

inputs. The stacked bar chart shows the total score on the top of each bar, with different 

risk factors. A user would be able to understand the impact of each risk factor 

interactively and visually. As illustrated in Figure 12, the interactive visualization 

interface will allow a user to modify their preferences on the side buttons to observe the 

dynamic changes of risk scores. It helps them to decide what healthy lifestyle (such as 
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smoking vs. non-smoking, drinking milk or not) will reduce their CRC risks. On the other 

hand, risk factors such as family history cannot be modified since a user cannot change 

this kind of risk factors. Thus, these factors are not clickable.   

 

Figure 12. The interactive visualization of risk factors. 

 

On the side of the stacked bar chart, we provide recommendations for CRC 

screening methods, which are ranked using the simple decision tree method based on the 

questionnaire input and total risk score. Every recommendation method is a clickable 

link, which will lead users to an information page with detailed description on 

recommended screening method. 

To schedule an appointment with healthcare provider, the CDSS provides options 

for user inputs, such as location and doctor preferences, as manifested in Figure 13. 

Based on the information, the CDSS offers recommendations on which hospitals or 

community health centers a user can visit. It also lists the providers available for 

appointment. This page is designed to connect to hospitals and community health centers’ 

scheduling systems to get information about available doctors. For the testing purposes, 
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we populated the system with sample hospitals in the Indianapolis area and synthesized 

doctors to simulate and test the system function. The Google map API is applied to 

achieve the hospital search function based on zip code, as illustrated in Figure 14. 

 

Figure 13. The dashboard for making an appointment. 

 

Figure 14. The results of the nearby hospital search and doctor availability. 
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3.4 Discussions 

Currently, there are several available online tools for CRC risk score prediction. 

Colorectal Cancer Risk Assessment Tool (CCRAT), sponsored by the National Cancer 

Institute (NCI), provides an interactive tool to help estimate a person's risk of developing 

CRC. It has a well-designed questionnaire to collect related information. The CRC risk 

calculation also follows the Freedman algorithm [46]. However, the CCRAT only 

displays the risk calculation results in an absolute percentage, which is hard for users to 

understand. Second, the simple bar chart for result presentation is the overall risk, lacking 

the detailed information on various individual risk factors and their impacts on the overall 

CRC risk. Another CRC risk calculation tool is the Colorectal Cancer Predicted Risk 

Online (CRC-PRO) [54], which can be used to calculate 10-year CRC risk score. It has 

an easy-to-use interface. However, the CRC-PRO only presents the calculated probability 

without any interpretation of the result. It is difficult to interpret the risk calculation 

results, especially for those with a low literacy level. 

By using the Django MVC web application framework, together with the backend 

MySQL database, our CDSS has the flexibilities and the extensibilities of updating the 

content and modifying the questionnaire. It also makes the system transformable to other 

applications. For example, by changing the questionnaire contents and the risk score 

calculation, we can modify and reposition our CDSS for different cancer types, such as 

breast cancer and stomach cancer.  

With the easy-to-follow design of the CRC risk assessment steps, our CDSS 

embeds scientific CRC risk score calculations into a user-friendly interface. This feature 

ensures the accessibility of our CDSS to the low literacy population. In our CDSS, a user 
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does not need to have any prior knowledge of CRC risk factors and screening methods 

for CRC. The system provides all the information on CRC risks and screening in an 

intuitive way. The innovative risk factor dashboard with customizable stacked bar chart 

further facilitates the readability and interpretation of the CRC risk level prediction 

results. 

The capability of online appointment scheduling in our CDSS makes it easier to 

create a link between our CDSS and any EHR in hospitals. After the user fills the risk 

factors and receives the CRC risk assessments, they can directly make appointments with 

proper providers with their specific requirements of locations and preferred provider 

characteristics. The recommendations of appropriate screening methods will be available 

to the EHR system with original scientific questionnaire data. This feature could assist 

care providers preparing better before seeing a patient and making more precise care 

decisions based on patient-specific health conditions.  

Given the current system is only a prototype of the CRC CDSS, there are several 

future directions can be carried out based on the current system.  

- For our system, one crucial ongoing task is to perform a systematic evaluation of 

the CDSS [55], before implementing into a production version. We will work 

with a working group of patients, providers, health care organizations, and HIT 

professionals. Multiple-step evaluation processes will be carried out. For instance, 

we will follow the Software Development Life Cycle for the development and 

evaluation of the CDSS [56].  A system-wide review of its performance and 

stabilities will be assessed by IT professionals. On the other hand, the different 

influential factors and risk calculation algorithms will be validated and evaluated 
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by CRC experts. Also, the interactive website design, the dashboard visualization, 

and system usabilities will be evaluated with potential users (including patients 

and providers) for better user experience.  

- For healthcare providers, one potential future improvement of the CDSS is to 

connect the CDSS with different EHR systems. In this way, our CDSS can 

support effective adoption and achieve health IT interoperability goals. It is also 

possible to allow each patient to create the patient account so that the system can 

provide individualized preliminary CRC risk reports based on our interactive 

dashboard.   

- With the development of omics technologies and genomic data analysis, we can 

integrate the genetic factors or biological factors into our CRC CDSS to expand 

the assessment function. For instance, based on the gene expression profile, a 

seven-gene signature has been discovered to predict the overall survival (OS) of 

CRC patients [57]. We can adopt or modify the survival risk score system to CRC 

risk score calculation, which could potentially be integrated into our CDSS to 

improve the accuracy of CRC risk score prediction. 

With all these existing features of our CDSS and potential upgrades, we believe 

our CRC CDSS would be a valuable patient-oriented tool in CRC preventative care field. 

3.5 Conclusion 

In this study, we have developed a CRC CDSS prototype which gives risk 

assessment and interactive interpretation of the risk outcomes using innovative data 

visualizations for personalized CRC screening. The demonstration project is deployed 

online with Heroku web application deployment platform [58]. The patient-oriented 
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design of our CDSS will help more people to assess their CRC risk and learn more about 

the significant impact of lifestyle on the development of CRC. Moreover, with the easy-

to-follow steps of our CDSS, patients can conveniently build a connection with hospitals 

and physicians and book their screening test appointments. This feature will make a 

significant difference in the preventative care of CRC. 
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Chapter 4. Prototype a System Integrating Key Bioinformatics Resources and 

Knowledge to Provide Bioinformatics Support in Cancer Research 

4.1 Introduction 

High-throughput technologies empower researchers to investigate the 

transcriptional expression data upon hundreds of samples at once. The massive genomic 

data provides advantages for phenotype marker identification [59], gene pattern 

discovery [60] and pathway analysis [61]. Researchers have been tried to use microarray 

and next generation sequencing technology to reveal the alteration of cancer genomics 

since the technologies just been developed [62]. More and more projects aimed to 

uncover the trigger of tumor initiation, development and metastasis have already been 

done or being undergoing, as the Cancer Genome Atlas (TCGA)  include more than 

11,000 multiple omics data for 33 cancer types. Genomics Evidence Neoplasia 

Information Exchange (GENIE) [63] includes data for over 80 major cancer types, 

including data from more than 7,500 patients with lung cancer, nearly 5,500 patients with 

breast cancer, and more than 5,100 patients with colorectal cancer. There are more and 

more cancer genomics data been added to the NCI Genomic Data Commons’ next 

generation cancer knowledge network (GDC) [64]. Meanwhile, there are thousands 

separated cancer study with transcriptional expression data been released through Gene 

Expression Omnibus (GEO). The Cancer Cell Line Encyclopedia (CCLE) [65] gives a 

compilation of gene expression and parallel sequencing data from 1019 human cancer 

cell lines. The accumulation of tens of thousands of cancer and non-cancer samples 

providing an unprecedented opportunity for many biomedical related fields including 

cancer biology. However, this large amount of data cannot be easily used by biomedical 
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researcher to extract useful information for guiding their studies due to the lack of 

professional computer skills, such as large data management, programming skills, 

supercomputer usage, etc. [66]. 

There are numerous databases and webservers already developed for downloading 

and analyzing public gene expression data, such as cBioportal [67], UCSC Xena [68] and 

GEPIA [69]. The cBioportal integrated more than 5000 tumor samples from more than 20 

cancer studies and it provides functions including but not limited to survival analysis, 

network analysis, correlation analysis and source data download. With the help of 

cBioportal, biomedical researchers are able to rapidly and intuitively translate large-scale 

genomics data into biological insights. UCSC Xena is a web-based visual integration and 

exploration tool for multi-omic data and associated clinical and phenotypic annotations. 

UCSC Xena helps users to explore functional genomic data sets for correlations between 

genomic and/or phenotypic variables. GEPIA is another webserver for TCGA data 

analysis, it provides customizable functions such as tumor/normal differential expression 

analysis, profiling according to cancer types or pathological stages, patient survival 

analysis, similar gene detection, correlation analysis and dimensionality reduction 

analysis. However, there are still many unsatisfied needs from experimental biologists 

that cannot be fulfilled easily by theses existing tools, these needs include 1.) gene 

specific research trend inferred from publications, which could help biological 

researchers to quickly build the foundation of their next step of research, 2.) pathway 

alterations caused by certain gene or gene signature, which serves as an important step in 

studying gene functions and mechanism, 3.) choose the optimal cell lines to conduct 

biological experiments, since more than one thousand cancer cell lines are currently 
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available, traditional way of choosing cell lines may cause resource waste and weak 

experiment results due to the inter-cell-line heterogeneity [70]. 

In the present study, we developed a user-friendly cancer gene and pathway 

investigation tool Cancer Gene and Pathway Explorer (CGPE), to provide a highly 

integrated webserver for investigating the TCGA and GEO gene expression data. CGPE 

provides an interactive and customizable analyze portal to address the challenges 

mentioned above. The CGPE mainly includes three functions, they are gene specific 

PubMed research trend analysis, gene (or gene signature) associated pathway alteration 

analysis and cancer cell line selection based on patient genomic data. CGPE aims to 

deliver the most concerned information to biomedical researchers to help unveiling the 

potential association from big data cohort view. 

4.2 Methods 

4.2.1 Data sources 

Cancer gene expression datasets and the corresponding clinical data were 

downloaded from TCGA and the GEO database. Integrated gene expression and clinical 

data of TCGA were downloaded from the GDC data portal ( 

https://portal.gdc.cancer.gov). In our study, more than ten thousand patients (about 10652 

patient) were included. Datasets from the GEO database [71] were another importance 

source of cancer transcriptional data. Clinical information was extracted from the original 

publications as well. We totally collected 48 datasets from different platforms (TCGA 

Hi-seq 2000, Affymetrix HG U133 plus 2, HG U133 A and HG U133B etc.).  

The publication data used in CGPE is extracted from PubMed database using 

Python scripts, the Entrez module of Bio package is used to communicate with PubMed 

https://portal.gdc.cancer.gov/
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database and parse retrieved data. The extracted PubMed data is processed with 6 steps 

using natural language processing (NLP) then stored in structured SQLite database. The 

cell line expression and annotation data are downloaded from CCLE database 

(https://portals.broadinstitute.org/ccle).  

4.2.2 System implementation 

The CGPE is implemented with Django web application development framework. 

Django follows the Model-View-Controller (MVC) model [51], which uses 1) Model that 

defines the database structure and handles the data flow from database backend, 2)View 

as the front end to collect user request and display system outputs, 3) Controller that 

process the user inputs, do analysis and interact with Model. Due to the integration of 

Gene Set Enrichment Analysis (GSEA) [8] into our system, the single GSEA analysis 

may take several minutes to be finished. To address the problem of running time takes 

too long, we implemented an asynchronous task queue by using Celery 

(http://www.celeryproject.org/) to handle the submitted GSEA tasks, the RabbitMQ 

(https://www.rabbitmq.com/) is used as a message broker between our main application 

and Celery task queues. Celery can create as many workers as needed based on CPU 

availability to handle the submitted GSEA tasks. The system infrastructure is shown in 

Figure 15. The database backend is implemented with SQLite database 

(https://www.sqlite.org/index.html), most of the processed data are stored in database 

including PubMed data, general gene information, cell line annotation data, etc. Large 

expression data files are store on server as .txt static files.  

The font-end of the CGPE is implemented with HTML5, the layout and styling of 

the webpage is mainly achieved by Boostrap V4 (https://getbootstrap.com). Several 

https://portals.broadinstitute.org/ccle
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Javascript libraries are used in CGPE project. The jQuery (https://jquery.com) is used to 

create dynamic functions of the webpage, the ajax method is used to create asynchronous 

autocompletion in all search boxes. All interactive visualizations in CGPE project is 

created with D3 library (https://d3js.org). A website structure design is show in Figure 

16. 

 

 

Figure 15. The infrastructure of CGPE project. 

 

 

Figure 16. The website structure of CGPE. 

https://d3js.org/
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4.2.3 CGPE functional modules 

Gene HotIndex. Before conducting any gene related cancer research, a common 

practice for biological researchers would be doing a research survey on related genes of 

their research topic. PubMed serves as a great resource to find literatures for guiding 

future research. However, the literature review process is often time consuming and 

literature search result from PubMed sometimes can be biased and unfocused. Currently 

there is no tool available to help biological researchers get a public literature overview 

related to certain gene. The Gene HotIndex, as first functionality of CGPE, is trying to 

address this issue using natural language processing technology to mine information and 

categorize gene related publications based on PubMed database. The CGPE provides a 

simple search box for users to input gene names they are interested in, the acceptable 

gene names include HUGO gene symbol (e.g. STAT3) and ESEMBL IDs (e.g. 

ENSG00000168610). During the user input, autocomplete can be triggered to give a 

recommendation list of genes based on user input. The recommendation list is generated 

based on pre-processed gene aliases information, all gene’s aliases are linked with their 

HUGO gene symbols and ESEMBL IDs. In the current stage of our application, we 

included 17813 genes occurred in TCGA datasets. 

To prepare the data in Gene HotIndex, we firstly build gene publication profiles 

(GPP) for each gene. The GPP is defines as a set of publications whose title or abstract 

mentioned this gene at least once. During the PubMed data collecting process, all genes’ 

aliases are used for searching PubMed database. The dataset of GPPs serves as the raw 

data in our Gene HotIndex function. After the GPPs are collected and built, we further 

processed the GPPs in 6 steps, including 1.) GPPs filtering, to filter out publications not 
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mentioning the target gene 2.) WordCloud plots for each GPP 3.) identifying cancer types 

mentioned in publications of each GPP 4.) identifying gene-gene co-occurrence in each 

GPP 5.) summarizing year of publications in each GPP. 6.) identifying cancer cell lines 

mentioned in publications of each GPP.  

Based on the processed PubMed data, we created several visualizations using D3 

library to help biological researchers to better interpret the research trend of certain gene. 

The first part of Gene HotIndex search result is the basic information about the searched 

gene, including official HUGO symbol, aliases, description of the gene, genome map 

location, etc (Figure 17A). Then a bar chart is shown on the right to show the publication 

trend by year for the searched gene (Figure 17B). Based on the publication by cancer type 

data we get from data processing, we created a visualization panel with a horizontal bar 

char and an information box on the side (Figure 17C). The horizontal bar chart indicates 

the number of publications related to certain cancer types in this gene’s GPP. The 

horizontal bar chart also has some interactive features. If the mouse is placed on the bar, 

counts of publications and the description of this cancer type will be shown in the Detail 

Information box on right side. The bars of the horizontal bar char are clickable, click on 

the bar will open a new window in browser to show all publications in this category on 

PubMed website. Then we will display the preprocessed WordCloud plot (Figure 17D) 

for the searched gene’s GPP to show users the most frequent words in GPP, the 

WordCloud plot can show a general information that inferred from the GPP. Lastly, we 

include a lollipop plot (Figure 17E) to visualize the gene-gene co-occurrence in GPP, the 

figure shows the occurrence of related genes based the searched gene’s GPP. Generally, 
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this lollipop plot can be used to infer the related genes with searched gene from a 

perspective of public literatures.  

 

Figure 17. Gene information table, publication trend, publications by cancer type 

visualization, Wordcloud plot and gene-gene co-occurrence lollipop plot. 

 

OnlineGSEA. It is a common goal for the biological research to elucidating the 

mechanism of gene(s) may have related to the cancer cell development. Typically, the 

gene sets enrichment analysis will give this kind of clues. In our application we deployed 

a web-based Gene Set Enrichment Analysis (GSEA) tool which integrated with 
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thousands of publicly available patient samples, the algorithm is a classic GSEA 

approach, and it is an over-representation analysis method (fisher’s hypergeometric test) 

based pathway enriched approach. This part of CGPE is to provide more convincing 

evidence to researchers in guiding their gene(s) driven studies. The OnlineGSEA of 

CGPE allow users to investigate gene or gene signature caused pathway alterations based 

on large amount of publicly available genomic data. Our OnlineGSEA eased the effort of 

biological researchers on downloading and processing gene expression data by 

themselves, it will also be able to significantly accelerate the preliminary gene screening 

process when conducting gene related cancer research. 

The CGPE webserver provides two data source options, one is user self-uploaded 

data, the other one is publicly available genomic data we collected and process from 

TCGA and GEO databases. For self-uploaded data, users need to upload the expression 

data together with the phenotype label file to run the GSEA algorithm, then they can view 

the analysis result online. For the public available datasets, we downloaded the 

expression profiles from TCGA or GEO database. The criteria we used for filtering 

studies in the GEO database is that the number of patient samples in the study should be 

big enough (normally > 200 samples). Moreover, the study needs to provide clinical 

information such as survival time and survival status, this is because we will use the 

survival information to calculate the Hazard Ratio for patient groups to determine the 

control group and test group in GSEA analysis. In the current CGPE, we included three 

cancer types (Breast cancer, colorectal cancer and), datasets for different cancer types are 

displayed on different panels of our public data page, the short descriptions of studies is 

also provided for users 
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For investigating single gene caused pathway alterations with publicly available 

datasets, we divide all patients in a dataset into to two groups by using the median 

expression value of this gene, then we use Cox Proportional Hazards (Cox PH) regression 

[72] to estimate the Hazard Ratio (HR) for these two groups of patients. The group of 

patients with higher HR will be defined as test group when conducting GSEA analysis, 

the other group with lower HR will be served as control group. For investigating gene 

signatures (a set of genes), we implemented two methods for dividing patient sample into 

two groups for GSEA, the first method uses Agglomerative Hierarchical Clustering 

(AHC) algorithm to separate patient samples (Figure 18A), the second method called 

Overlap By Gene Expression (OBGE), which allows users to define the control group 

and test group based on gene expression levels, high and low expression patient sample 

groups of each gene are defined with median expression value as cutoff (Figure 18B). If 

user choose to use AHC method, a gene search box is provided on left side of the panel 

for searching genes in current selected dataset, after clicking the Add button, the gene 

will be added to the gene signature. Once the Signature is defined and the GSEA 

parameters are set by the user, CGPE will extract all expression values of genes in the 

gene signature, then use them as input of AHC algorithm to cluster patients into two 

groups, the Cox PH regression will also be used to determine control group and test 

group. Finally, an automated process will generate cls phenotype file for GSEA analysis 

based on previous steps and run the GSEA on server. If users choose the OBGE method 

to define the gene signature, a search box is also provided to search genes in current 

selected dataset. After clicking the Add button, the gene will be added to the gene 

signature table on right. The first column of gene signature table shows the official 



   

49 

symbol of the gene, the second column shows user-defined expression level (high or low) 

of a gene in control group of GSEA analysis, the third column shows user-defined 

expression level (high or low) of a gene in test group, the last column allows users to 

remove the gene from the gene signature or switch the high/low expression level between 

control group and test group. The last row of the table will always be updated with 

number of samples left in current control group and test group, if the number of samples 

in control group or test group falls below 10, operations such as adding more genes and 

switching high/low will be restricted. After the gene signature is defined and GSEA 

parameters are set, the CGPE will generate phenotype file based on user-defined gene 

signature and run the GSEA on server.  
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Figure 18. (A) User-defined gene signature by using AHC. (B) User-defined gene 

signature by overlapping high/low expression groups (C) Visualization of NES 

and p value (D) PNG download of the NES score bar chart. 

 

After the GSEA analysis is submitted, an email with a unique analysis ID will be 

sent to the user. Once the GSEA is finished, users will be able to use the unique ID to 

extract the analysis result from the server, we created an individual page called 

OnlineGSEA Viewer for viewing the GSEA results. The OnlineGSEA Viewer page 

summarized the most important information provided by GSEA. A horizontal bar chart 
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(Figure 18C) is generated to visualize the Normalized Enrichment Score (ENS) together 

with p-values, the length of bars indicate NES and the color of bars indicate p-values, we 

also provide a PNG figure (Figure 18D) of the horizontal bar chart for users to download. 

On the OnlineGSEA Viewer page, we also included top 8 enriched pathways’ enrichment 

plots to allow users quickly check the GSEA results.  

In the CGPE webserver, the third main function is call CellLine Selector. The 

CellLine Selector requires three inputs 1.) cancer type, in the current stage of CGPE, we 

implemented the algorithm on three cancer types in our system 2.) Gene name, the gene’s 

name you are interested in 3.) pathway database, when conducting the GSVA, we are 

able to use different pathway databases for the analysis, in current stage, we provide two 

of the most popular pathway databases, KEGG and REACTOME [73, 74]. On the result 

page of CellLine Selector, the first part shows the searching criteria, the second part 

shows some basic information about the searched gene, such as gene aliases, map 

location, exon count, etc. The next part is a visualization panel (Figure 19A) that displays 

two bar charts, the first bar chart shows the dependency score of the query gene, the 

second bar chart shows the mRNA expression level of the searched gene across cell lines. 

When mouse is on one of the bars in the dependency bar chart, a dependency score will 

be displayed, current bar is highlighted, the same cell line will also be highlighted on the 

second bar chart which shows the mRNA expression value. The same cell line will be 

highlighted on the first bar chart if the mouse is on bars of second bar chart. By 

implementing this visualization, we try to guide users to select cell lines not only using 

the dependency socre, but also using the mRNA expression level of the target gene. The 

best cell lines we recommended would be the ones which have low dependency score and 
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at the same time have high mRNA expression level. In the next part of the result page, we 

created a PubMed visualization panel (Figure 19B) similar with the one on Gene 

HotIndex result page, but rather than categorize publications in searched gene’s GPP by 

cancer types, the visualization panel on CellLine Selectors result page categorize GPP 

publications by cell lines. Moreover, in the last part of the CellLine Selector page, we 

create a heatmap (Figure 19C) to visualize pathway activities across all selected cell 

lines, each cell of the heatmap corresponds to a pathway’s activity of the certain cell line. 

This heatmap will help researchers, who want to focus on some certain pathways, to 

choose the cell lines according to their requirements (either high or low pathway 

activity). 

Figure 19. (A) Double bar charts. (B) Publications categorized by cell line. (C) 

Heatmap of pathway activities across all cell lines. 
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4.3 Discussion 

By focusing on the preliminary research stage of biomedical field, CGPE 

integrates multiple data sources such as PubMed, GEO, TCGA and CCLE. The CGPE 

web server provides experimental biologists with a user-friendly exploratory tool to help 

their preliminary research. The three-step workflow of CGPE covers the publication 

survey, patient-based gene (or gene set) function inferring and cell line selection with 

patient-based evidence. To the best of our knowledge, there is no such bioinformatic tool 

available to biomedical researchers which mainly focusing on the guidance of 

preliminary research. The development of CGPE could build another bridge between 

bioinformatics field and biological research field to convey insights hidden in large 

amount of public available data to experimental biologists.  

In an overall view of CGPE, three main functions provided by CGPE are logically 

related and cover the three of most important steps before conducting experiments. The 

first part, Gene HotIndex, summarizes the gene specific publication data and use intuitive 

visualization to give user a general view of the current research status of the searched 

gene. Since we used an automated process to mine the information from millions of 

publications in PubMed, minor errors and noise information still exist in the processed 

data, further manual checks are still needed. The integration of curated PubTator [75] 

data into Gene HotIndex might be a future work for the next version of CGPE to provide 

more accurate gene specific publication summary. The processed gene-gene co-

occurrence data could be potentially used with protein-protein interaction (PPI) network 

to assist with PPI inferrming [76]. The second part, OnlineGSEA, integrates the GSEA 

algorithm with large amount of public-available gene expression data. Experimental 
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biologists can use single gene or self-defined gene set to investigate gene or gene set 

functions based on patient data. More cancer types and datasets could be added to CGPE 

continuously, more gene signature defining options could be provided to allow users 

conduct more customizable experiments. The third part, CellLine Selector, implemented 

an innovative algorithm which tries to give gene specific cell line recommendations 

based on gene expression profiles’ similarity between cell lines and TCGA samples. Our 

algorithm is the first of this kind which gives gene specific cell line recommendations 

using gene expression profiles, but other type of genomic data, such as copy number 

variations, mutation, etc. could potentially be added to our algorithm as co-factors of the 

similarity. It is also worth mentioning that our CellLine Selector aims to provide a new 

insightful perspective for biomedical researchers to choose cell lines but should not be 

considered as the only factor when guiding the cell line selection, other factors such as 

mRNA expression level of interested gene, preliminary research results should also be 

considered when selecting cell lines. 

4.4 Conclusion 

The CGPE webserver is a user-friendly, intuitive, and informative bioinformatic 

tool which allows biomedical researchers to explore large amount of public available 

bioinformatics data. The CGEP eases the effort of biomedical researcher’s effort of 

collecting, processing, and analyzing the data during the preliminary research phase, it 

can serve as complements with other powerful bioinformatic tools like cBioPortal and 

GEPIA.  
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Chapter 5. Reuse Disease Specific Bioinformatic Framework to Provide 

Bioinformatics Support for Alzheimer’s Disease Research 

5.1 Introduction 

Neurodegenerative diseases (ND), which include Alzheimer’s Disease (AD), 

Parkinson’s Disease (PD), Huntington’s Disease (HD), and many others, put a major 

health threat to the currently aging society, especially to the life quality of elderlies [77, 

78]. These NDs share some common features such as aggregation and deposition of 

abnormal proteins in the brain, which helped researchers to investigate the pathology of 

ND development and identify potential drug targets[79, 80]. As the advance and 

prevalence of next-generation sequencing (NGS) technology, multiple omic data in ND 

fields are quickly accumulated. The single-cell RNA (scRNA) Sequencing technology 

has further advanced our understanding of NDs development and allowed us to 

investigate disease pathology with cellular level information[81].  

Many ND transcriptomic datasets are available in the GEO database.  In addition, 

a few specially designed databases have been developed to aggregate publicly available 

scRNA data from AD patients [82-84]. However, the disease etiologies of most NDs are 

still unclear. Currently, there are not many effective drugs that can cure or even slow 

down the disease progression in general patients population [85]. To address challenges 

and promote ND research, a few web servers have been developed recently by leveraging 

various bioinformatic resources. The Agora, which aggregated AD-related information 

and experimental resources, provides a platform for the AD research community to 

propose and identify novel AD targets[86]. The AlzCode integrates rich AD functional 

genomic datasets and offers a web server for conducting multiview analysis of genes 
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[87]. The AD Atlas combines over 20 large studies to provide a multi-omics global view 

of user interested AD research results[88].  

These web portals focus on providing a general view of current AD/ND research 

by integrating and leveraging various resources. However, they also lack some important 

features for the ND research and drug development field: 1) most of them are impractical 

to generate an overall picture of a specific gene’s role in the ND research field; 2) they 

did not address a few important aspects in AD/ND research such as literature survey, 

novel drug target profiling, hypothesis generation and validation using publicly available 

large cohort data. For the former, those gene-related results are usually scattered in 

multiple places which makes users difficult to summarize. For the latter, the size and 

complex structure of public available ND omic data also posed a challenge on biomedical 

researchers with limited programming skills to fully utilized the data for their hypothesis 

generation and testing. For example, with thousands of publications in AD/ND research 

published each year, and their highly diversified and specialized research focuses, it 

becomes increasingly difficult for researchers to accurately pinpoint the publications 

related to their research topic without well-annotated publication database. Similar 

situation happens to the utilization of AD/ND transcriptomic data, the transcriptomic data 

related to AD/ND research with decent number of samples usually come from a few large 

studies such as ROSMAP, MSBB, etc., the rest are often deposited in GEO database, 

these datasets have various NGS pipelines so that only researchers with sufficient NGS 

knowledge are able to parse these datasets and build the desirable subcohort for their 

hypothesis generation and testing. 
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To address these limitations and challenges of full research life cycle 

bioinformatic support for AD/ND researchers, in this study, we designed and 

implemented this open web portal Alzheimer’s Disease Explorer (ADE), which aims to 

fulfill the missing links mentioned above to generate a comprehensive picture of a 

specific gene/gene sets in the related ND field (with a focus on AD), while at the same 

time provides comprehensive bioinformatic data and analytical tools and druggability 

information for researchers in the ND research and drug development. 

5.2 Methods 

5.2.1 System architecture 

To accommodate the functional design of the ADE, we firstly designed a 

specialized web application architecture to support all designed functions in ADE (Figure 

1). ADE system mainly consists of three sub-systems, 1) the database system, which 

oversees the management of all data integrated from various resources and the storage of 

user generated data such as analysis jobs, it serves as the cornerstone of the ADE system. 

2) the job handling system, since several tools are offered for conducting customizable 

bioinformatics analysis, some of them will take minutes to finish due to the large file size 

and computational intense steps involved in the analysis, a job handling system is 

necessary to handle the asynchronous jobs submitted by users. 3) the visualization 

system, which generates all illustrations in various functional modules and provides 

streamlined user interface to guide users through diverse functions provided in ADE. 

5.2.2 Functional modules 

In the Alzheimer’s Disease Explorer (ADE) web server, we designed and 

developed five functional modules to address different aspects of AD/ND research, 
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namely PubAD, GeneAD, ToolboxAD, TargetAD, and DataAD. The detailed modular 

functions and resources are illustrated in Figure 20.   

- The PubAD is designed to support literature survey of AD researchers by doing 

text mining on AD related publications in the PubMed database. The information 

extracted from AD related publications will be presented to the users with various 

visualizations. As shown in Figure 20, this module includes the NLP mining of 

the PubMed publications regarding AD/ND research and the visualization of 

AD/ND related information in CTD database.  

- The GeneAD focuses on providing gene based bioinformatic information, such as 

differentially expressed (DE) gene results derived from both bulk RNA 

sequencing data and single cell RNA (scRNA) sequencing data, functional gene 

modules reported from publications, clinical trait-related gene modules, and 

potential cell makers information from published studies. The GeneAD serves as 

an integrated portal for all gene related bioinformatic outcomes in AD/ND field.  

- The TooboxAD integrates transcriptomic data with popular bioinformatic tools to 

provide users with an easy-to-use experience for conducting customizable 

bioinformatic analysis. The ToolboxAD provides users with a list of well-

developed tools that focus on the AD/ND research. Such as the ID Converter 

allows users to convert commonly used gene IDs easily; the OnlineGSEA allows 

users to perform gene set enrichment analysis with integrated transcriptomic data; 

the PCA Plot allows users to perform principle component analysis to investigate 

transcriptomic data variance.  
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- The TargetAD addresses the challenge of AD/ND drug target profiling, it 

incorporates multiple important databases within which the data can be used for 

measurements of drug target potency. Interactive comparison tools enable users to 

efficiently evaluate drug targets using various critical criteria, the multi-gene 

query capability allows users to compare multiple potential drug targets at once.  

- The DataAD provides the transcriptomic data preparation and download 

functions, which allow users to filter out the samples by clinical traits and 

download the mRNA gene expression profiles for downstream analysis. The 

streamlined user interface provides intuitive and efficient transcriptomic data 

manipulation and processing capability. 

 

Figure 20. Systematic function and architecture design of ADE. 

 

5.2.3 Database design 

We carefully designed a modularized database structure to support the special 

needs of different functional modules of ADE (Figure 21). 
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Figure 21. ADE database structure. 

 

The database system is designed around the queried gene information which is 

shared in all function modules of ADE. The gene information includes gene identifiers, 

gene description, gene aliases, etc. To manage the data used in PubAD, we utilized the 

json field in the database to handle the processed data from our in-house NLP pipeline 

(ref). Due to the highly diversified data sources and types in GeneAD, all datasets in 

GeneAD are categorized into three categories: the DE results (both bulk RNASeq and 

scRNASeq), the gene modules and cell markers. The TargetAD has a similar database 

structure as GeneAD but includes different information according to the source of the 

data.  

Other than the ability to integrate diverse data collected from various resources, 

the database structure of ADE also enables the automatic importing of transcriptomic 

datasets, specifically, meta data of mRNA gene expression profiles together with the 



   

61 

accompanied clinical information. Transcriptomic datasets captured by the database can 

be directly utilized by different modules in ADE such as ToolboxAD and DataAD.  

Two features are implemented by the database system while handling AD/ND 

related transcriptomic data. One is the inclusion of brain region information which can 

often be found in the clinical information, inclusion of multiple brain regions for a single 

sample will result in the difference between number of columns in gene expression 

profile and the number of samples in clinical information data. This has been handled by 

recording the mapping between brain region and gene expression file column separately 

from clinical information. Another feature is that the system can accommodate a variety 

length of the clinical attributes that usually differs among. To implement this feature, we 

stratified the sample attributes according to their data types and manage them in different 

database tables according to the data type, four main data types are used for stratification: 

float, integer, categorical and text (Figure 21). While loading new dataset into the 

database, clinical attributes in the meta data file are assigned to different tables according 

to the data type of the attribute. Some other important information regarding the 

transcriptomic dataset is also recorded in the database, including dataset description, link 

to data source, uploaded date, sequencing platform, genes in detected in the datasets, etc.  

5.2.4 Data source 

ADE integrated many different data resources in biomedical research area to 

provided bioinformatics support for AD/ND researchers, these data resources covered a 

wide range of data types, including literature data, multi-omics data such as bulk 

RNASeq data and single cell RNA-Seq data, clinical data and target druggability data.  
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In the PubAD module, we designed and implemented an NLP pipeline to process 

gene specific and AD/ND related publications in PubMed database, significant amount of 

useful information are extracted using the NLP pipeline and extracted data are visualized 

with intuitive demonstrations, the detailed data processing are described in a separated 

publication[89]. In addition to the information extracted from our inhouse NLP pipeline, 

we also collected AD/ND related information from the Comparative Toxicogenomics 

Database (CTD)[90] to provide literature-based and gene-specific information on 

environmental chemicals exposure’s impact on AD/ND. 

In the GeneAD module, we collected and processed gene related information 

from multiple resources. The detailed gene information, including aliases, gene location 

and description etc., are obtained from NCBI Gene database[91]. The differentially 

expressed (DE) genes results are processed by our inhouse pipeline, the source data are 

mainly collected from published studies and were directly downloaded from GEO 

database. The GeneAD also included gene co-expression network modules and clinical 

traits-correlated functional gene modules collected from several recent publications[92-

95]. Due to the diverse of cell types in brain, we collected information about genes that 

can be potential cell markers for various cell types in brain. For the potential cell markers 

inferred from mouse models, we matched the corresponding gene to human genome and 

annotated the origin species in our curated GeneAD database. The DE results generated 

from scRNA sequencing datasets are also included in GeneAD to provide users with cell 

type specific DE information related to AD/ND diseases[95].  
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5.2.5 System implementation 

The ADE is implemented using Django which is a python-based web application 

development framework. Django follows the Model-View-Controller (MVC) 

schema[96]; therefore, the database system as mentioned the database design of ADE is 

the main component of Model in Django framework, visualization system serves as the 

View and job handling system becomes part of Controller in Django (Figure 22).  

 

Figure 22. Details of ADE system architecture. 

 

PostgreSQL [97] is used for the production version of ADE because of several 

key advantages of PostgreSQL system, including the support of complex data type 

storage, high performance of both read and write and its open-source nature. According 

to the database design, the data structure is implemented using APIs provided in Django. 

The job handling system is implemented using RabbitMQ and Celery[98]. 

RabbitMQ serves as the message broker between the Django project and Celery workers, 

once a job is created and submitted in the Django app, the corresponding command and 
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parameters for the job will be passed to Celery scheduler using RabbitMQ’s messaging 

service, then Celery will assign the job to a certain Celery worker according to the 

availability of Celery workers. Number of Celery workers is determined automatically 

according to number of available computational nodes of the server system. Once the job 

is finished, Celery worker will save the outputs in the designated location on the server 

and communicate with the database system to update the job status. 

The visualization system of ADE is implemented with various technologies 

including Bootstrap v5, D3.js, ggpot, Highcharts.js, etc[52, 99]. The web page layout is 

controlled by Bootstrap v5 to utilize its well implemented griding system and other 

interactive features. Jquery is used in different user scenario to enhance the user 

experience. For example, when user tries to set up sample groups using gene’s expression 

level in OnlineGSEA, a few steps are provided for users to follow, various functions in 

these steps are implemented with different APIs of Jquery, such as the autocomplete in 

gene search box, the display of detailed gene information and selection button of brain 

regions of a certain dataset.  

ADE system was developed and tested on local server first, then deployed it to 

Jetstream[100] which is a cloud environment built for computation intense research 

projects. Nginx and uwsgi are used in the Jetstream instance to provide all the server-side 

support for ADE system. 

5.3 Results 

With the architecture design, function design and database design, we 

implemented five functional modules in ADE: PubAD, GeneAD, ToolboxAD, TargetAD 

and DataAD. An overview of each module in ADE is summarized in Table 2. These five 
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modules provide a complete tool set for AD/ND researchers to obtain bioinformatics 

support while conducting AD/ND research activities such as target identification, 

hypothesis generation, hypothesis testing. Main functions of each module are described 

below:  

5.3.1 PubAD 

Based on the extracted information from inhouse NLP pipeline which 

incorporated five common ND disease (Alzheimer's, and Huntington's disease, Parkinson 

Disease, Lewy Body Dementia and Frontotemporal dementia), various visualizations are 

created. Users can use the search box to query the gene they are interested in. The top of 

result page shows the basic gene information and a yearly count of publications related to 

the query gene in AD/ND research field. Then five tabs show different categories of 

information including keywords, dementia types, brain regions, mouse models and co-

occurred genes. Users can check all recorded publications on PubMed website by click 

the bars of bar plots in each tab. 

The gene-disease inference data was downloaded from CTD database, the dataset 

is filtered by MeSH IDs of five common ND diseases as mentioned above. The gene-

chemical pairs and corresponding PMIDs are extracted from the filtered data and 

converted to tabular format. On the lower part of the PubAD result page, bar plots are 

provided for NDs with available information from CTD, the plots give intuitive 

illustration of manually curated literature information on environmental chemicals effects 

on AD/ND. The inference score indicates the degree of similarity between CTD 

chemical–gene–disease networks and a similar scale-free random network. The higher 

the score, the more likely the inference network has atypical connectivity. Users can use 



   

66 

this data to investigate the relationship among the AD/ND, a certain gene and 

environmental chemicals inferred from literature data. 

Table 2 Overview of function modules in ADE. 

ADE module Short Description Functions 
Main Data 

Sources 

PubAD 

PubAD provides 

neurodegenerative 

disease-related 

publication information 

sorted by various 

criteria. 

Single gene 

query 
PubMed, CTD 

GeneAD 

GeneAD offers 

single/multiple gene 

query and provides AD 

related transcriptomics 

analysis results. 

Single or 

multiple genes 

query 

GEO, NCBI Gene 

Database, 

publications 

ToolboxAD 

ToolboxAD provides 

commonly used 

bioinformatic tools 

with integrated 

datasets. 

Customizable 

analysis: ID 

Convert, PCA, 

GSEA 

GEO, Pharos, 

ChEMBL 

TargetAD 

TargetAD offers 

single/multiple gene 

query to provide AD 

target assessment 

information. 

Single or 

multiple genes 

query 

ChEMBL. Pharos, 

OpenTarget 

DataAD 

DataAD generates data 

subsets based on user-

defined clinical traits 

for further analysis on 

public AD datasets. 

mRNA 

expression 

profile filtering 

and exporting 

GEO 

 

5.3.2 GeneAD 

GeneAD provides single gene or gene set query for users to investigate various 

gene related genomic and transcriptomic information, all available information is 

categorized by information type and arranged in different panels of the result page. These 
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categories include basic gene information, differentially expressed (DE) gene results, 

functional network gene module information, cell type marker information and single cell 

data DE results. With the appearance of future publications related to such information, 

we will regularly update the database to incorporate the most up-to-date information. 

Basic gene information panel shows the basic gene information, providing similar 

gene information as in PubAD. The DE Results panel shows the differentially expressed 

gene results collected from published studies[94]. The result table lists all datasets within 

which the query gene is differentially expressed between AD vs normal samples. The P 

value cutoff we used for defining significant DE genes is 0.05. The last column of the 

result table provides a button which allows users to generate two box plots in real time, 

using the query gene’s expression level comparing AD vs normal samples in one dataset.  

Gene module panel shows a variety of published network module study results in 

the AD field, currently it includes: the frequent gene co-expression network modules 

generated from AD bulk tissue transcriptomic data[92-94] and clinical traits-correlated 

functional gene modules[95]. In the near future, metabolic network module will also be 

included[101]. Data sources of gene modules are provided in the result and the button in 

the last column can be used to check all genes in a specific module.  

Cell Marker panel provides information on whether the query gene is a potential 

marker for a certain cell type in brain, we collected the information from several recently 

published studies[102-105] and the data source is provided in the first column of the 

result table. Since some cell markers are inferred from mouse models, the last column of 

the table indicates the origin species together with important notes related to the 

experiment setup.  
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Single Cell panel provides the DE results generated from AD/ND single cell 

datasets. The result table lists all significant DE results across all datasets integrated in 

ADE, the DE results are arranged in different panels according to the cell types. The last 

column of the result table indicates the DE experiment condition. 

Other than single gene query, GeneAD also provides the capability of querying a 

list of genes by selecting the Multiple Gene option on top of the search box. The query 

results are similar as the single gene query, but with extra information. In the Gene 

Module tab, GeneAD implemented a similar method as DAVID enrichment 

analysis[106] to perform fisher exact test using the query gene list against all available 

gene modules in the database, only significantly overlapped gene modules are shown in 

the result table.Venn diagrams are provided to visualize the overlap between the query 

gene list and gene modules in the system. A Download button is implemented in each 

panel for users to download the query results into csv files for future reference. Please 

also note that the query results of the same gene are cross-linked on GeneAD and 

PubAD, to allow users quick check PubAD query results from GeneAD and vice versa. 

5.3.3 ToolboxAD 

ToolboxAD provides two set of bioinformatic tools for performing customizable 

bioinformatics analysis, the first set of tools are developed in the ADE system by 

utilizing all functions and sources in ADE, the other set of tools are well-implemented 

external bioinformatic tools that can provide AD/ND bioinformatics analysis. During the 

development of ToolboxAD, many reusable modules and APIs are implemented to 

support various designed functions of our inhouse tools, these modules and APIs eased 

the future development effort of new tools within the ADE system. Currently, there are 
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three inhouse tools available in the ToolboxAD, they are ID Converter, Principal 

Component Analysis (PCA)[107] Plot and OnlineGSEA. Five external tools are list in 

ToolboxAD, they are Agora, Biolearns App[108], scREAD[82], RNA Expression In Cell 

Types and scFLUX[101]. The main functions of inhouse tool are: 

The ID Converter is a gene ID converting engine with a user-friendly user 

interface. With well-designed layout of the page, users can easily convert one gene ID to 

other gene IDs by a few clicks. If the gene in the user input cannot be identified, ID 

Converter can recommend similar genes for users. ID Converter incorporated most of 

commonly used gene IDs, including HUGO gene symbol, CHEMBL, ENSEMBL, 

UniProt, RefSeq, ENTREZ. The successfully converted gene IDs can be downloaded as 

csv file.  

The PCA Plot is an exploratory tool for investigating the variance of AD/ND 

related transcriptomic datasets with available clinical information. By using the 

integrated transcriptomic datasets in the ADE system, users can easily generate 2D and 

3D PCA plots with customizable parameters, such as color-coding schema and number of 

principle components. All resulting plots are interactive and can be downloaded into 

various static image files. 

The OnlineGSEA provides the capability to run GSEA[8] with integrated data in 

ADE system, for investigating the pathway alterations under different conditions. The 

OnlineGSEA in the ToolboxAD offers two methods for designing the GSEA experiment, 

one is using clinical attributes, another one is using a gene’s expression level to divide 

sample into different groups. If clinical attributes are used, users need to add filters of 

clinical features to a dataset to assemble two groups of samples they want to compare. 
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Some restrictions are automatically applied while adding filters to each sample group, 

such as the restriction of non-overlapping samples between two groups. If gene’s 

expression values are used, users can choose to use median, quartile, or a custom range 

cutoff to group samples into different cohorts. Once sample groups are defined using 

either method, the GSEA settings page allows users to adjust GSEA parameters such as 

the pathway database to be used for the analysis. Once the experiment design and GSEA 

parameters are confirmed, the analysis will be submitted to ADE’s job handling system, 

users will be provided with a unique analysis ID for retrieving analysis results. If users 

optioned for reveiving emails, they would receive a notification email with the unique 

analysis ID, experiment design and experiment parameters. The homepage of 

ToolboxAD provides the View Result function which can be used to view analysis 

results, the analysis results can also be download into a zip file. 

5.3.4 TargetAD 

TargetAD integrated several data sources that can be used for evaluating a gene or 

gene set’s drug target feasibility and other characteristics. It provides intuitive 

visualizations for novel drug target profiling with multi-dimensional information. The 

search box on the TargetAD’s homepage can be used for single gene or gene list query. 

The first section of the query result shows gene information. The last column of the gene 

information table provides the direct link to PubAD and GeneAD of the corresponding 

gene. The next section of the query result shows a spider plot displaying ten categories of 

information integrated in the TargetAD database, including Pharos Novelty score, Pharos 

Target Development Level (TDL), CHEMBL assay counts, etc. All categories of 

information of identifiable genes are shown on the spider plot for users to easily compare 
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drug targets. A Target Data table is displayed on the right of the spider plot for users to 

check on the accurate information of each data category. The definition of each data 

category is provided in the table. A download button showing on top of the table allows 

users to download the query result into csv files. It’s worth noting that some interactive 

features are provided, such as when the user’s cursor is placed on the gene name on left 

of the Target Data table, the corresponding gene’s information will be highlighted on the 

spider plot. The last section of the query result shows a Score Indicator Dashboard (SID), 

the SID generates boxplots of several types of scores in the TargetAD using all available 

data, the query gene’s specific score is highlighted with red diamond on the boxplot. The 

SID provides users an interactive tool for visualizing the query gene’s druggability scores 

with the background of all available drug targets, it enables the quick and precise drug 

target profiling. 

5.3.5 DataAD 

DataAD addresses the challenge of parsing transcriptomic data for users to 

perform downstream analysis. It allows users to build sample sub-cohorts by using user-

selected clinical attributes and export the resulting gene expression profiles. In the 

DataAD module, users can browse all available datasets in the system using the left 

panel. Currently there are six datasets from publicly available large cohort studies on 

human brains. More datasets will be added in the future as we continuously processing 

datasets.  The detailed description of the dataset will be shown below the dataset list 

when the cursor is placed on a dataset button. Upon the selection of a dataset, the right 

panel of the page will be enabled to apply filters to the selected dataset. All available 

clinical attributes of the dataset are displayed on top, users can choose one of them and 
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use the pop-up window to input the desired range of clinical attribute’s value or select 

available categories. Once filters are applied, the count of remaining samples will be 

displayed on the. A summary of all filters added to the current dataset is shown below the 

sample count. Brain region selection is also provided right before the data export. The 

Export Data button on the bottom allows users to download the filtered gene expression 

profile into csv file. Then they can be further analyzed outside the web portal for user’s 

own purpose, such as hypothesis generation, testing and validation. 

5.4 Discussion 

In the ADE, the database system, the job handling system and the visualization 

system work together harmoniously to support all functional modules. ADE tries to 

address the full AD/ND research life cycle support by providing the most crucial 

bioinformatic information to AD/ND researchers. During the design and implementation 

process of ADE, we emphasized on three capabilities of the system, namely 

expandability, scalability, and flexibility, to make ADE a sustainable bioinformatic eco-

system.  

The expandability of the system is achieved by specially designed database 

system and modularized functions, so that the system can easily incorporate new data and 

functions. For example, the transcriptomic dataset handling data structure enables ADE 

to incorporate new transcriptomic datasets with minimal preprocessing, the added dataset 

can be used directly by tools in ToolboxAD and functions of DataAD; the function of 

sample cohort construction using clinical attributes is modularized and is used by several 

tools in ADE, it can be reused for other tools in the future development as needed.  
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The scalability of the ADE system comes from the modularized system structure 

and APIs. Depends on the demand of users, functions of ADE can be easily modified to 

fit users’ needs. The system architecture of ADE is simple yet fully supportive of all 

designed functions. The system can be easily deployed to various environments like 

cloud-based systems and high-performance computers (HPCs). When deployed to HPCs, 

with minimal configuration of job handling system, ADE can utilize HPC’s computation 

resources to run computation intense analysis workflows in ToolboxAD.  

The Flexibility of the system describes the reusability of ADE system’s function 

design and system architecture. During the development of ADE, we generalized a high-

level framework for guiding the development of similar bioinformatic platforms. With 

this framework and further effort of collecting and processing domain specific knowledge 

and datasets, new bioinformatic systems can be developed to provide bioinformatics 

support in other research domains.  

By focusing on these capabilities, the longevity of ADE system can be maximized 

and the effort of maintaining and further developing the system remains minimal. 

Moreover, developing ADE with these capabilities makes it possible to perform the fast 

development of similar bioinformatic platforms which can address challenges in different 

research areas than AD/ND.  

Aside from all features provided in ADE, there are a few limitations in the current 

version of ADE. Currently, ADE can only incorporate processed transcriptomic datasets 

with clinical attributes, the capability of handling other types of omics data such as 

genomic data or proteomics data has not been implemented yet. The transcriptomic 

dataset import function is currently limited to administrative users of the system and not 
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available to all users. The current ADE does not provide the mechanism to aggregate user 

interested information to generate a single gene-centric integrated evidence profile. 

However, with all available modules and APIs in ADE, these limitations can be easily 

cleared with future development effort. 

5.5 Conclusion 

In this study, we successfully designed and implemented ADE web server, a first-

in-kind bioinformatics server and a one-stop web portal on AD/ND research, providing 

rich bioinformatics support from literature, omics and chemical data to greatly facilitate 

researchers in ND drug development field. In fact, it starts to be used by NIH funded AD 

Drug Discovery Center for potential drug target screening research. By providing users 

with an easy-to-use experience for conducting customizable bioinformatics analysis and 

drug target identification for AD/ND diseases, ADE is aimed to address the gene-centric 

informatic search needs from comprehensive AD/ND research and will accelerate the 

drug discovery process to finally stop or reverse the AD progression.  
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Chapter 6. Conclusions and Discussions 

6.1 Conclusions 

In my thesis, I firstly explored advanced methods for analyzing transcriptomic 

datasets and applied these methods to address challenges of colon cancer patient 

biomarker discovery using transcriptomic data, which provided insights on the crucial 

role of TFs in the cancer prognosis study. Then, I developed a patient-oriented colorectal 

cancer CDSS prototype by integrating advanced risk factor evaluation algorithms with 

user-friendly interface to help general population gain better understanding of colorectal 

cancer risks, the CDSS focused on lifestyle risk factors and provided actionable items for 

high CRC risk users. With the knowledge of advanced transcriptomic data analysis 

methods and skills of web-based application development, I developed CGPE which is an 

integrative bioinformatic platform that provides support for cancer related literature 

survey, gene set enrichment analysis using integrated transcriptomic datasets and cell line 

evaluation by gene. After the release of CGPE, thousands of users have used tools inside 

CGPE to help with their cancer research, outcomes generated from CGPE have been 

included in a few cancer studies which have been published in high impact biomedical 

joiurnals. Other than the functions provided by CGPE, a generalized framework for 

developing disease specific bioinformatic platforms was also generated. Finally, by using 

the generalized framework, I designed and implemented ADE which is a platform that 

provides bioinformatics support for AD/ND research and drug development. By 

exploring analytical bioinformatics algorithms and developing disease specific 

bioinformatic platforms, I have shown that integrated disease specific bioinformatic 

platforms can provide great value to the research community by allowing 1.) fast and 
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accurate investigation of currently available literature, 2.) quick hypothesis generation 

and validation using transcriptomic datasets, 3.) multi-dimension drug target evaluation 

and 4) fast querying of published bioinformatic outcomes. These disease specific 

platforms significantly eased biomedical researchers’ effort of collecting, processing, and 

analyzing critical bioinformatic datasets. The development of such platforms will 

dramatically accelerate the treatment development process of certain diseases. 

6.2 Future Directions 

With all functions in the current systems, a few improvements can be achieved by 

future development efforts. For example, in the current platforms, the literature data 

analysis pipeline only covers the title and abstract of related publications, further analysis 

of full text of publications may add more insights on certain research topics. With all the 

datasets and resources integrated in the disease specific platforms, users may find it 

difficult to gather all the information related to their research interest in the current 

platforms. Thus, a mechanism of managing available data in the system to generate an 

evidence base for a user interested research topic could further improve the usability of 

current platforms. While conducting customizable analysis, the current systems only 

provide transcriptomic datasets with corresponding algorithms that can be applied to 

them. In the future development, it will be useful to incorporate other type of omics data 

and corresponding algorithms to address a wider field of bioinformatics analytics.  

Based on the current stage of the disease specific bioinformatics platforms, 

develop a user login system to allow users upload their own data to take advantage of all 

the functions in the current system would be an interesting next step. However, 

implementation of the user-controlled platform would add extensive complexity to the 
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system and may bring new concerns to the user of the platform, such as whether the 

server is HIPPA compliance to fulfill data usage restrictions of certain datasets. With 

growing interest in the usage of disease specific platforms, I will explore the potential of 

incorporating user control system based on our currently available platforms.
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