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SUMMARY. In this work a Lagrangian finite element approachdeveloped for the solution of
fluid-structure interaction problems. The fluid subproblesolved with the Particle Finite Element
Method, while the structural subproblem with a classicaldialement approach. Particular attention
has been paid to the identification of the interaction bourdaand to the remeshing strategy, to
avoid excessive concentration or rarefaction of nodesgiors of the fluid mesh.

1 INTRODUCTION

The computational treatment of the free surface and of ttezface between solid and fluid in
fluid-structure interaction problems is always criticalh€eTArbitrary Lagrangian Eulerian method
(ALE) [1] in which the movement of the fluid particles is indeqlent of that of the mesh nodes, is
often used coupled with methods to track the interfaces (etume of fluid [2] or level set [3]).
A possibility to avoid the difficulties concerning the irfiiees tracking is to adopt a Lagrangian
approach for both fluid and structure. In the present workid 8tructure interaction algorithm is
presented based on a staggered approach in which the flughied in a Lagrangian framework
using the Particle Finite Element Method [4] [5] and the stiwe using a classical finite element
method.

An advantage of the Lagrangian approach for the fluid flow & the convective terms in the
momentum conservation disappear. The difficulty is howesamrsferred to the necessity of fre-
guent mesh regeneration due to excessive element distoAicemedy which allows to avoid these
distortions consists of systematic remeshing of the praldlemain [6].

To avoid concentration and rarefaction of particles, duédluid motion, a remeshing strategy
has been implemented. In particular, the possibility ofaeimg particles too close to others and of
adding particles in regions where the number of nodes isawpi$ introudced.

2 THE PARTICLE FINITE ELEMENT METHOD

The Particle Finite Element Method (PFEM) is a method forgbleition of fluid flow problems
characterized by breaking waves and free-surfaces [5].cbheeptual steps of the PFEM can be
summarized as follows (see also the sketch in Figure 1):

1. discretize the fluid domain with a set of points (Figuré}(a

2. connect the points with a Delaunay triangulation obtajra triangular finite element mesh
(Figure 1(b));

3. identify the external and internal boundaries (Figuig)1(
4. solve the Lagrangian Navier-Stokes equations;

5. update points position using the computed velocity aedsure fields (Figure 1(d));
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6. go back to step 2 and repeat for the next time step.
In the next sections the steps of this solution scheme wigheained in details.

(a) Initial point set (b) Mesh generation

(c) Boundary identification (d) Update of the particle position

Figure 1: Steps of Particle Finite Element Method

2.1 Boundary identification

In a Lagrangian framework the reference volume and the matdoundaries are defined by the
node positions. Considering that the nodes of the mesh nmoe@ecansequence of the fluid flow,
every time the connectivity of the elements is regeneraiediodes belonging to the boundary may
change. Moreover with the Delaunay triangulation all thanfsoof the set are enclosed in a convex
figure (convex hull), which may not be conformal with the resfernal boundaries. Figure 2 clar-
ifies this difficulty: Figure 2(a) shows a set of points andure2(b) its Delaunay triangulation. It
is clear that the Delaunay triangulation does not matcheheaxternal and internal boundaries. To
overcome this difficulty the Delaunay triangulation can bemed with the so calledlpha-shape
method[8]. Using a criterion based on the element distortion, tipa@shape method allows to
remove the unnecessary triangles from the Delaunay trlatign, finding the real shape of geomet-
rical figure containing the nodes.

For every triangle the minimal distance between two nodesand the radius of the circumcircle
R, are introduced. The average valuef the h. over all the elements of the mesh is also defined.
The quantity:

R.
Qe = 7 (1)
is an index of the element distortion and can be used to iiyemtiich triangles should be removed.
In fact if
ae > a= R. > ah 2)



the trianglec is removed from the mesh. A parameter> 1 as been introduced. Increasing the
value of the parameter, less triangles are removed from the mesh, andfer oo the Delaunay
triangulation is recovered. Figure 2 shows an example oéffexts of the Delaunay triangulation
coupled with the alpha-shape criterion.

@ (b) (c)

Figure 2: (a) Distrubution of points, (b) Delaunay triargfion, (c) Delaunay triangulation with
a-shape.

The alpha-shape method can also be used to recover the fitidigmwhich separate from
the rest of the domain. In fact, if a particle is connectedh® domain only through excessively
disorted triangles, the alpha-shape scheme removes tha@sglés and the particle is considered to
be an isolated point. The motion of this isolated point isegaed by the equation of motion of a
concentrated mass subjected to its initial velocity ancheodxternal forces. Similarly, if a single
point comes close to the domain, the alpha-shape crietreates a triangle which incorporates the
particle in the rest of the fluid domain.

2.2 Governing equations and space discretization

Let X be the position of particles in the reference configurafignat timet¢, U = U(X,¢)
andp = p(X,t) the velocity and pressure fields, respectively. The motioa Mewtonian incom-
pressible fluid is governed by the momentum conservationtla@anass conservation which, in a
Lagrangian framework, write:

DU 1. i I e ,
Py =50V (JpF T)+juD|v [J (GradU) F'F~ "] +pb inQ 3)

Div (JF'U) =0 inQp (4)

wherep is the densityF is the deformation gradient] = deff’, b the body forces ang the
viscosity. In the Lagrangian approach, the non linearityus to fact that the current configuration



differs from the original one by large displacements. Thigtinearity appears in the equations
through the deformation gradieht

To discretize in space the problem (3)-(4) an isoparamitite element discretization is intro-
duced. As explained in the next section, the same order@fgotation is used for both velocity and
pressure unknows. The semi-discretized form of the equa(i®)-(4) reads:

M(x)D—V+K(x)V+DT(x)P: B (5)

Dt
D(x)V=0 (6)

whereM is the mass matriXg is the fluid stiffness matrixD is the discretization of the divergence
operator and is the vector of external forces:

My = / poNa Ny 140
Qo
Dap = / JN,Grad N,)F~1dQ
Qo
Kab:/ pd (Grad N,)F~') @ (Grad Ny)F~1) dS
Qo
Ba:/ pobN, d
Qo

wherel is the identity matrix anaV,, the nodal shape function. The matrix operatorsndD clearly
depend on the current configuratiwrihrough the deformation gradieRt

2.3 Pressure stabilization

In the present approach every time the mesh is regenerate@ciing the points with the De-
lauany triangulation, the element related informatioreslast. The same occurs forinformations
related tonodes not coinciding with triangle vertices. &muently, to avoid convecting data from
the old to the new mesh, only vertx node data can be storedoigdinear shape functions can
be used in the space discretization of the problem (3)-(d)avbid spurious oscillations due to the
fact that theinf-sup conditionis not satisfied [9], a stabilization must be introduced. #mtiou-
lar a pressure-stabilizing/Petrov-Galerk{iSPG) stabilization is adopted [10]. Introducing a finite
element space discretization as in the previous sectiersémi-discrete stabilized equations read:

M(x)% +K(x)V+D'(x)P=B 7)
C(x)%\t/ +D(x)V + L(x)P =H(x) (8)



where the matrice€, L andH are given by:
Ney
Car=>_ / 7 pgGrad N, ) Ny d<o
e=1 Qf

Nei e
Ths _
Lab :2 //S %Grac{]\fa) -Grad N,)F~1dQo
e=1 0

Hy=Y" / ThopgGradNa) - b2
e=1 0

and the stabilization parameter is defined as:

Ze

T pg = ©9)

e 2wl

and z. is the "element length” defined to be equal to the diametehefdircle which is area-
equivalent to the element

2.4 Time integration

The time integration is performed with a classical backwanter scheme. Introducing a par-
tition of the time domain intaV time steps of the same lengtk¢, and choosing as the reference
configuration at time”, the discretized system reads:

1

oMU UK UTTHUTT 4 DT UTTHPTT = B (10)
1
~C [umtt — U] + DUTHUrH LU TP = H (11)

where the matriceK, D andL and the vectoH depend nonlinearly on the vectof .

2.5 Adding and removing particles

In the Lagrangian approach, the particles move as a coseqoéthe fluid flow and it may hap-
pen that particles concetrate in same regions of the donaaudiyon the contrary, in other regions the
number of particles becomes too low to obtain an accuratgisnl To overcome these difficulties,
the possibility of adding and removing particles has begwduced in the proposed implementation
based on two criteria: the first one to establish if a parstleuld be removed from a certain region
and the second one to determine if new particles are negdaasamother region.

The first criterion checks if the particles are too close withpect to each other. For every node
of the mesh a circle, which has the node as center, is creBtedadiusy of the circle is a parameter
depending on the average dimensions of a mesh elementelfrtides of the mesh lay in the circle,
the node on the center is removed from the mesh. Decreagngthe ofy less nodes are removed
from the mesh.

The second criterion checks if in a region there are too fedeso The area of every element
of the mesh is compared with a reference valudf an element area is greater thara particle is
added in the center of the triangle. Increasing the valug tdss nodes are added to the mesh. Once
a new particle is added, to solve equations (10)-(11), theevaf the velocity at the previous step is
required. This value is computed linearly interpolating trelocity of the nodes of the element in
which the new node lays.



3 FLUID-STRUCTURE INTERACTION ALGORITHM

The fluid-structure interaction problem is solved with aggiered scheme. This algorithm con-
sists of the independent solution of fluid and structure soitlpms coupled via transmission condi-
tions. The main advantage of this approach is that existovg éind structure solvers can be reused
to perform the computations. In this work the LagrangiartiBlarFinite Element Method is used
to solve the fluid part and a classical finite element methadésl for the solid part. The Dirichlet-
Neumann algorithm is used to compute the coupling terms. rigllet boundary condition (conti-
nuity of velocities) is imposed at the interface for the flaibproblem, while a Neumann boundary
condition (continuity of stresses) is imposed for the stitee subproblem. The Dirichlet-Neumann
algorithm iterates over these two subproblems until cayeece is reached.

One of the main difficulties in the dynamic fluid-structuréeiraction is the determination of the
currentinteraction surfaces. This is achieved, in the gsed formulation, by exploiting the features
of the Lagrangian approach based on continuous remesHing et of fictitious fluid particles is
superposed to the nodes of the solid domain which can commiact with the fluid domain. When
the Delaunay triangulation is performed, the alpha-sh&perion selects those parts of the interface
where the fluid particles are actually in contact with thealuire. Once the interfaces are identified
the Dirichlet-Neumann algorithm is applied to compute tbagied solution. Figure 3 shows the
superposition of fictitious particles and the generatiotwaf distinct domains (Figure (a), (b) and
(c)) and of a coupled domain (figure (d) and (e)).
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Figure 3: Sketch of fluid structure interaction: (a) supsifion of the fictitious fluid particles. (b)
Delaunay triangulation; (c) Delaunay triangulation wittshape correction; (d) same as (a) but with
the two domains in contact; (e) same as (c) but with the twoalosin contact.



It is known that the Dirichlet-Neumann algorithm has difftes in the convergence when the
densities of the fluid of the solid are comparable [11]. Irttedl examples considered in the next sec-
tion the density of the solid is significantly greater thaa density of the fluid, avoiding convergence
problem.

4 NUMERICAL EXAMPLES

4.1 Dam collapse

In the first example, the interaction between a fluid and alrggintainer is considered. The
problem consists of a column of water initially located oe thft part of a tank sustained by a
removable wall. At time t = 0, the removable wall is sudderdynoved and, under the effect of
gravity, the water flows until it collides with the right wailf the tank. Figure 4 shows same snapshots
of the problem. In particular Figures 4(a), 4(c) and 4(eyshize snapshots of the analysis with the
standard remeshing, while Figures 4(b), 4(d) and 4(f) sth@shapshots at the same time steps using
the remeshing strategy described in section 2.5. It candzelglobserved how the re-positioning
of some particles according to the simple proposed scheaalgimproves the quality of the finite
element mesh.

4.2 Fluid flow through an elastic valve

The proposed particle finite element method is particuladiyed to model fluid-structure in-
teractions involving large fluid motions with large strugwdisplacements. To give a qualitative
example of the potential of the method, the following ideadi problem has been modeled.

A fluid flow hitting an elastic valve is considered. Under tlo#i@n of the gravity force the fluid
drops down from a funnel-shaped rigid container into anotiggd container. When all the fluid
particles are fallen down, the rigid bottom is suddenly reeth so that the fluid, due to its weight
pushes on the elastic valve which deforms and let the fluid frasugh the valve.

In this example, all the capabilities of the implementedecade required: a flow with free sur-
face and fluid-structure interaction in which the solid ugdes large displacements are considered.
Figure 5 shows snapshots of the problem configuration atreifit time steps, in which the dots
represent the nodes of the fluid mesh (here identified as fartitfes) while the quadrilateral finite
elements represent the discretization of the structure.
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Figure 4: Dam collapse: snapshots at different time steps.
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Figure 5: Fluid flow trough an elastic valve: snapshots decéht time steps.
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Figure 6: Fluid flow trough an elastic valve: snapshots decght time steps.
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