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Abstract
This paper introduces two new variational properties, robust and continuous metric 
subregularity, for finite linear inequality systems under data perturbations. The moti-
vation of this study goes back to the seminal work by Dontchev, Lewis, and Rock-
afellar (2003) on the radius of metric regularity. In contrast to the metric regularity, 
the unstable continuity behavoir of the (always finite) metric subregularity modu-
lus leads us to consider the aforementioned properties. After characterizing both of 
them, the radius of robust metric subregularity is computed and some insights on the 
radius of continuous metric subregularity are provided.
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1 Introduction

In this paper we firstly analyze continuity properties of the modulus of metric 
subregularity for linear inequality systems. This analysis motivates the intro-
duction of new properties named as robust and continuous metric subregularity. 
Hereafter we frequently omit the word ‘metric’ for simplicity. We are particularly 
concerned with the radius (a sort of distance to ill-posedness) with respect to both 
properties, as well as with the connection with the modulus of robust subregular-
ity. This topic is framed in the broader paradigm

for some stability property, P , which has been widely studied in different contexts 
(cf. [11, 12, 20]). We also draw the reader’s attention to paper [4], devoted to the 
metric regularity of the inverse feasible set mapping for linear semi-infinite inequal-
ity systems (see [14]), where equality (1) holds. We advance that relation (1) does 
not always hold for the properties analyzed in the present paper.

We deal with (finite) linear inequality systems in ℝn of the form

where x ∈ ℝ
n is the decision variable, regarded as a column-vector, and the prime 

represents transposition. System � will be identified with the pair of coefficient 
functions (a,  b),   where a =

(
at
)
t∈T

∈ (ℝn)T and b =
(
bt
)
t∈T

∈ ℝ
T ≡ ℝ

m . For the 
sake of simplicity in the notation we will identify (ℝn)T with ℝn×m, so that function 
a ∶ t ↦ at will be regarded as a matrix whose t-th column is at . In this way system 
� may be abbreviated as a′x ≤ b. The space ℝn is equipped with an arbitrary norm 
‖⋅‖ , while ‖ ⋅ ‖∗ stands for its dual norm, given by ‖u‖∗ ∶= max‖x‖=1 �u�x� , whose 
associated distance is denoted by d∗, and ℝT is endowed with the supremum norm, 
‖b‖∞ ∶= maxt∈T �bt�.

In this framework, system � may be rewritten as the generalized equation

where Ga ∶ ℝ
n ⇉ ℝ

m and ℝm
+
 stands for the subset of elements of ℝm with nonnega-

tive coordinates. For each a ∈ ℝ
n×m, the inverse multifunction

given by x ∈ Fa(b) ⇔ b ∈ Ga(x) , is nothing else but the feasible set mapping  of 
system � under right-hand side perturbations.

Throughout the paper we work with a fixed consistent system denoted by 
� ≡

(
a, b

)
 and a fixed x ∈ Fa

(
b
)
 . We refer to a, b and x as the nominal data. 

Given any property P of Ga fulfilled at the nominal 
(
x, b

)
∈ gphGa (where gph 

stands for graph), the radius of P-stability at that point is defined as

(1)radius of P =
1

modulus of P

(2)� = {a�
t
x ≤ bt, t ∈ T = {1,… ,m}},

(3)Ga(x) ∶= a�x +ℝ
m
+
∋ b,

Fa ∶= G
−1
a

∶ ℝ
m ⇉ ℝ

n,
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where L(ℝn,ℝm) stands for the space of linear functions from ℝn to ℝm endowed 
with the norm subordinated to the norms under consideration in these spaces. This 
definition of radius is inspired by the one given in [12, Definition 1.4] for the metric 
regularity property in more general contexts; see also [11] for the property of metric 
subregularity. In order to adapt this concept to our current notation, let us identify a 
linear function g with the matrix g ∈ ℝ

n×m such that g(x) reads as g′x. In this way, 
denoting by gt the t-th column of g, we have

Remark 1 Observe that 
(
Ga + g

)
(x) = (a + g)�x +ℝ

m
+
 for all x ∈ ℝ

n . In other words,

In this way, linear perturbations of Ga translate into left-hand side (LHS, in brief) 
perturbations of the linear inequality system (2). Hence, assuming that � ≡

(
a, b

)
 

satisfies a certain stability property P, roughly speaking, rad PGa(x, b) provides the 
infimum size of LHS perturbations of � which cause failure of property P at the 
same point x with parameter b + g�x.

As already commented in [11, Example 1.1], when P is the metric subregularity 
property, then rad PGa(x, b) is + ∞ as, for any a ∈ ℝ

n×m , Ga is always metrically sub-
regular at any (x, b) ∈ gphGa (this fact follows from the classical work of Robinson 
[24]). Therefore, the associated modulus is always finite, but not necessarily zero 
(in which case (1) fails). Indeed, the subregularity modulus of Ga at (x, b) is known 
to coincide with the calmness modulus of Fa at (b, x) which is computed through an 
implementable formula in Theorem 2;  see Sect. 2 for further details. This comment 
motivates the fact of considering a different (more restrictive) property P which is 
not satisfied at all ((a, b), x) with (x, b) ∈ gphGa. In this way, the continuous/robust 
subregularity come into play.

It is important to emphasize the practical repercussions of the metric subregularity 
property (and its counterparts in terms of calmness and local error bounds), for 
instance with respect to the convergence of algorithms. Just observe that finding a solu-
tion of our generalized equation Ga(x) ∋ b, with b sufficiently close to the nominal b, 
might be considerably difficult, whereas the residual (in our case, maxt∈T

[
a�
t
x − bt

]
+
, 

where [�]+ represents the positive part of � ∈ ℝ ) is much easier to compute or esti-
mate. Hence, the metric subregularity of Ga at (x, b) with constant � (see Sect. 2 for the 
definition) ensures the existence of such a solution whose distance to x is no longer 
than � times the residual. In particular, if we know an estimate for the rate of conver-
gence of the residual to zero, then we can evaluate the rate of convergence of a sequence 
of approximate solutions to an exact solution. Two specific applications of calmness 

(4)

rad PGa(x, b) ∶= inf
g∈L(ℝn,ℝm)

�
‖g‖ ���Ga + g does not have P at

�
x, b + g

�
x
���

,

‖g‖ = max‖x‖=1 ‖g
�x‖∞ = max‖x‖=1max

t∈T

��g�tx�� = max
t∈T

��gt��∗.

(5)Ga + g = Ga+g.
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modulus are given in [6, Section 5] to the computation of some constants related to the 
convergence of certain optimization methods. The first one is focused on a particular 
procedure described in [19, Section 3.1] for a descent method, and the second deals 
with a concrete regularization scheme for mathematical programs with complementa-
rity constraints introduced in [17]. In [23] we can find several references on the algo-
rithmic repercussions of Hoffman constants (of a global nature, in contrast with the 
local character of calmness) as well as other related error bounds in establishing con-
vergence properties of a variety of modern convex optimization algorithms.

Concerning interior-point methods, in [5, Section  4] the well-known central 
path construction associated with a linear programming problem is considered. If 
{(x(�), y(�), z(�)), for 𝜇 > 0} denotes such a path and Λ is the primal-dual solution set 
for the original problem (corresponding to � = 0 ), then, under appropriate hypotheses, 
[5, Theorem 4.1] shows that

for � small enough, where � is directly related with the calmness modulus of a suit-
able feasible set mapping defined in terms of the nominal problem’s data, so that 
constant � can be computed through an implementable procedure as it involves only 
fixed elements. A closely related problem is tackled in [1, Corollary 3], where an 
application to the convergence of a certain path-following algorithmic scheme, also 
in terms of calmness constants, is developed.

Aside the importance of the regularity concepts themselves, the study of related 
radii is also relevant. As already mentioned in [11, Section 5], the radius of nonsin-
gularity of matrices is ultimately related to their condition number, and precondition-
ing is a highly efficient tool for enhancing computations in numerical linear algebra. 
In that paper the authors also suggest that different radius expressions could be utilized 
in procedures for conditioning of problems of feasibility and optimization. For a wider 
insight on conditioning, see [2].

The present paper is structured as follows: Sect. 2 sets up the necessary notation and 
preliminary results. Section 3 deals with the continuity behavior of the subregularity 
modulus of linear inequality systems under LHS perturbations, which is analyzed in 
two steps. First, Theorem 3 sheds light on the stability of the end set of polyhedra. As a 
consequence of this result, the continuity of the subregularity modulus is characterized 
in Theorem 4. In Sect.  4 we introduce the properties of robust and continuous sub-
regularity and characterize them in Theorem 5 and Corollary 2 , respectively. Section 5 
computes the radius of robust subregularity (Theorem 6) and gives some insights on 
the radius of continuous subregularity (see Example 4). The paper finishes with a sec-
tion of conclusions and future research.

d((x(�), y(�), z(�)),Λ) ≤ ��
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2  Preliminaries

Firstly, let us give some definitions and notations used along the paper. Given 
S ⊂ ℝ

� , � ∈ ℕ , convS denotes the convex hull of S. From the topological side, intS, 
clS,  and bdS stand for the interior, the closure, and the boundary of S, respectively. 
Additionally, if S is convex, its  end set (introduced in [15]) is defined as

Here we recall the lower/inner and upper/outer limit of sets in the Painlevé-Kura-
towski sense (cf. [22, p. 13], see also [25, p. 152]). Given two metric spaces X and 
A and a family of subsets of X,   

{
Xa

}
a∈A

 , we say x ∈ Lim infa→a Xa if for each 
sequence {ar}r∈ℕ converging to a there exist r0 ∈ ℕ and {xr}r≥r0 verifying xr ∈ Xar 
for all r ≥ r0 and limr→∞ xr = x. Regarding the outer limit, x ∈ Lim supa→a Xa if 
x = limr→∞ xr with xr ∈ Xar for some sequence {ar}r∈ℕ converging to a.

A set-valued mapping M ∶ X ⇉ Y  between metric spaces (with both distances 
denoted by d) is said to be (metrically) subregular at (x, y) ∈ gphM if there exist a 
constant � ≥ 0 together with a neighborhood U of x such that

Here d(x,C) ∶= infy∈C d(x, y) denotes the point-to-set distance, with d(x, �) = +∞ . 
Throughout the paper we assume 1∕0 = +∞ and 1∕(+∞) = 0. The infimum of con-
stants � in (6), over the set of all possible (�,U) is called the subregularity modulus 
of M at (x, y) and it is denoted by subregM(x, y).

The subregularity property of M at (x, y) ∈ gphM is known to be equivalent 
to the calmness of its inverse M−1 at (y, x) and it is also known that subregM(x, y) 
coincides with the calmness modulus of M−1 at (y, x) (cf. [13, 16, 18, 22, 25]).

Our focus is on mapping Ga, with a ∈ ℝ
n×m, given in (3), where a point-based 

formula (in terms of the given data) for its subregularity modulus is known (see 
Theorem 2). More specifically, given our nominal data � ≡

(
a, b

)
 and x ∈ Fa

(
b
)
, 

such expression of subregGa

(
x, b

)
 appeals to the set of active indices at x,

and involves the family Da (introduced in [9, Section 4] under the name D
(
x
)
 ) of 

subsets D ⊂ T𝜎
(
x
)
 such that system

is consistent in the variable d ∈ ℝ
n. Observe that if D ∈ Da and d is such a solution, 

then 
{
at, t ∈ D

}
 is contained in the hyperplane {z ∈ ℝ

n ∣ d�z = 1}, which leaves 
{0n} ∪ {at, t ∈ T�

(
x
)
⧵ D} on one of its two associated open half-spaces.

Another key tool in the present paper is the family of sets D0

a
 (see [7, Section 3.2]) 

formed by all D ⊂ T𝜎
(
x
)
 such that system

end S ∶=
{
u ∈ cl S |∄𝜇 > 1 such that 𝜇u ∈ cl S

}
.

(6)d(x,M−1(y)) ≤ �d(y,M(x)) for all x ∈ U.

T�
(
x
)
∶=

{
t ∈ T ∣ a

�
t
x = bt

}
,

(7)
{

a
�
t
d = 1, t ∈ D,

a
�
t
d < 1, t ∈ T𝜎

(
x
)
⧵ D,

}
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has nonzero solutions in the variable d ∈ ℝ
n . Now, if D ∈ D

0

a
 and d ∈ ℝ

n�{0n} sat-
isfies (8), then the hyperplane {z ∈ ℝ

n ∣ d�z = 0} contains {0n} ∪ {at, t ∈ D} and 
leaves {at, t ∈ T�

(
x
)
⧵ D} on one of its two associated open half-spaces.

Theorem 1 Let � ≡

(
a, b

)
 and x ∈ Fa

(
b
)
. Then

Proof It is a direct consequence of [21, Corollary 2.1 and Remark 2.3].   ◻

Theorem 2 Let � ≡

(
a, b

)
 and x ∈ Fa

(
b
)
. Then

Proof For x ∈ bdFa

(
b
)
 the result follows from [9, Theorem 4] together with Theo-

rem 1. If x ∈ intFa

(
b
)
, then Da = {�} and

  ◻

Remark 2 (On semi-infinite systems) For the sake of completeness, let us comment 
on some facts which may arise when the set T indexing the constraints is infinite. 
To start with, in the case when T is a compact metric space and t ↦

(
at, bt

)
 is con-

tinuous on T,  the set T�
(
x
)
 is also compact and [21, Corollary 2.1 and Remark 2.3] 

ensures, denoting B
�
x
�
∶=

⋃
D∈Da

conv
�
at, t ∈ D

�
, that

hence,

which generalizes to this continuous semi-infinite case the second equality in Theo-
rem 2. The first equality in Theorem 2 holds under the following regularity condi-
tion (see [21, Corollary 2.1, Remark 2.3 and Corollary 3.2]): “There exists a neigh-
borhood W of x such that

(8)
{

a
�
t
d = 0, t ∈ D,

a
�
t
d < 0, t ∈ T𝜎

(
x
)
⧵ D,

}

(9)end conv
{
at, t ∈ T�

(
x
)}

=
⋃
D∈Da

conv
{
at, t ∈ D

}
.

subregGa(x, b) =d∗
(
0n, end conv

{
at, t ∈ T�

(
x
)})−1

=max
D∈Da

d∗
(
0n, conv

{
at, t ∈ D

})−1
.

0 = subregGa(x, b) = d∗
(
0n, �

)−1
.

B
(
x
)
⊂ end conv

{
at, t ∈ T𝜎

(
x
)}

⊂ clB
(
x
)
,

d∗
(
0n, end conv

{
at, t ∈ T�

(
x
)})

= inf
D∈Da

d∗
(
0n, conv

{
at, t ∈ D

})
,

(10)Fa(b) ∩W =
(
x + (cone

{
at, t ∈ T�

(
x
)}

)◦
)
∩W”,



1 3

Robust and continuous metric subregularity for linear…

where X◦ denotes the (negative) polar of X. Observe that this condition is held at 
all points of polyhedral sets and, for instance, at the vertex of the ice-cream cone. 
Indeed, the fulfilment of the condition (10) at all points of Fa(b) is equivalent the 
fact that system � is locally polyhedral (see [21, Corollary 3.3] and also [14, Sec-
tion 5.2]). To the authors knowledge, the exact computation of subregGa(x, b) for 
more general semi-infinite systems via a point-based formula (in terms exclusively 
of the nominal data a, b, x ) remains as an open problem.

3  On the continuity of the subregularity modulus

Given the nominal data � ≡

(
a, b

)
 and x ∈ Fa

(
b
)
 , we follow the perturbation struc-

ture of [12, p. 496]. In other words, we are considering arbitrary LHS perturbations 
a − a of � and, in order to preserve feasibility of x, the corresponding right-hand side 
perturbations are given by b +

(
a − a

)�
x . In this way, (5) with g = a − a shifts 

(
x, b

)
 

to 
(
x, b +

(
a − a

)�
x
)
. In the sequel, it will be useful to note that, denoting the set of 

active indices of system (2) at x ∈ Fa(b) by T(a,b)(x) ∶=
{
t ∈ T ∣ a�

t
x = bt

}
, we have

Now we introduce the function S ∶ ℝ
n×m → ℝ given by

In order to simplify the notation, in S(a) we omit the dependence on the nominal 
data a , b, and x . Taking Theorem 2 and equality (11) into account, the end set of 
conv

{
at, t ∈ T�

(
x
)}

 constitutes a crucial ingredient in the computation of S(a) for 
any a ∈ ℝ

n×m. The following subsection is devoted to analyzing the stability behav-
ior of this end set under perturbations of the at’s; this is a subject of independent 
interest.

3.1  Stability of the end set of polyhedra

This subsection is intended to be self-contained as far as our statements on {
at, t ∈ T�

(
x
)}

 could be given for any finite family in ℝn, not necessarily coming from 
a linear inequality system. In this way, set T�

(
x
)
 could be replaced by any finite index 

set. Accordingly, throughout this subsection we consider a finite index set I. For each 
a =

(
at
)
t∈I

∈ (ℝn)I , we define

and the families Da and D0
a
 coming from replacing in (7) and (8), respectively, T�

(
x
)
 

by I and a by a. Recall that, from Theorem 1,

(11)T(
a,b+(a−a)

�
x
)(x) = T�

(
x
)
for all a ∈ ℝ

n×m.

(12)S(a) ∶= subregGa(x, b +
(
a − a

)�
x), a ∈ ℝ

n×m.

(13)E(a) ∶= end conv
{
at, t ∈ I

}
,



 J. Camacho et al.

1 3

The following lemma provides the Painlevé-Kuratowski upper/outer limit of Da ⊂ 2I 
(the subsets of I),  with a approaching a; in it, the finite set 2I is endowed with the 
discrete topology.

Lemma 1 Given a ∈ (ℝn)I , we have: 

 (i) Lim sup
a→a

⋃
D∈Da

conv
�
at, t ∈ D

�
=

⋃
D∈ Lim sup

a→a

Da

conv
�
at, t ∈ D

�
;

 (ii) Lim sup
a→a

Da =
{
S ⊂ I ∣ ∃D ∈ Da ∪D

0

a
with S ⊂ D

}
.

Proof (i) Let u ∈ Lim supa→a

⋃
D∈Da

conv
�
at, t ∈ D

�
 be written as u = limr→∞ ur 

with ur =
∑

t∈Dr
�r
t
ar
t
, 
∑

t∈Dr
�r
t
= 1, �r

t
≥ 0 for all t ∈ Dr, for certain Dr ∈ Dar asso-

ciated with some sequence ar → a. Since Dr ⊂ I (finite) for all r,   it is not restric-
tive to assume (by taking a suitable subsequence) that 

{
Dr

}
r∈ℕ

 is constant, say 
Dr = D, and 

{
�r
t

}
r
 converges to some �t ≥ 0 for each t ∈ D, hence 

∑
t∈D �t = 1 and 

u =
∑

t∈D �tat, with

Now, let us prove ‘ ⊃ ’. Take u =
∑

t∈D̃ �tat with 
∑

t∈D̃ �t = 1, �t ≥ 0 for all t ∈ D̃ and 
D̃ ∈ Lim sup

a→a

Da. Then, there exists ar → a with D̃ ∈ Dar for all r,  which entails

Accordingly, u ∈ Lim supa→a

⋃
D∈Da

conv
�
at, t ∈ D

�
.

(ii) We start by proving the inclusion ‘ ⊃ ’. Let S ⊂ I be such that S ⊂ D for some 
D ∈ Da ∪D

0

a
 . If D ∈ Da, take p = 1, otherwise ( D ∈ D

0

a
) take p = 0. In any case, 

let d ∈ ℝ
n ⧵ {0n} be such that

Define the sequence by

so that, denoting by ‖⋅‖2 the Euclidean norm,

(14)E(a) =
⋃
D∈Da

conv
{
at, t ∈ D

}
, for each a ∈ (ℝn)I .

D ∈ Lim sup
r→∞

Dar ⊂ Lim sup
a→a

Da.

⋃
D∈Dar

conv
{
ar
t
, t ∈ D

}
∋
∑
t∈D̃

�ta
r
t
→ u.

{
a
�
t
d = p, t ∈ D,

a
�
t
d < p, t ∈ I ⧵ D.

ar
t
∶=

{
at +

1

r
d, t ∈ S,

at, t ∈ I ⧵ S,

�
ar
t

���
p +

1

r
‖d‖2

2

�−1

d

�
= 1, t ∈ S,

< 1, t ∈ I ⧵ S,
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for all r ∈ ℕ ; i.e., in both cases ( p = 0 or p = 1 ), S ∈ Dar for all r ∈ ℕ . Therefore, 
S ∈ lim supa→a Da.

Let us prove the converse inclusion, ‘ ⊂ ’. Take any S ∈ Lim supa→a Da and 
assume the non-trivial case S ≠ ∅. There exists some sequence ar → a such that 
S ∈ Dar for all r ∈ ℕ . Hence, for each r there exists an associated dr ∈ ℝ

n�{0n} such 
that

If {dr}r∈ℕ is bounded, then we can take a subsequence (denoted as the whole 
sequence for simplicity) converging to some d ∈ ℝ

n. Since 
(
ar
t

)�
dr = 1 for t ∈ S ≠ �, 

we conclude a�
t
d = 1 for those t, which entails d ≠ 0n, i.e.,

(the inclusion may be strict) and D ∈ Da.

In the case when {dr}r∈ℕ is unbounded we may assume (by taking an appropriate 
subsequence if necessary) that ‖dr‖ → +∞ and dr

‖dr‖ → d ∈ ℝ
n with ‖d‖ = 1 . Then, 

dividing both sides of (15) by ‖dr‖ and letting r → +∞ we obtain

(the inclusion may be strict again) and D ∈ D
0

a
. In any case S ⊂ D , with 

D ∈ Da ∪D
0

a
, and the proof is complete.   ◻

Theorem 3 Let a ∈ (ℝn)I . We have 

 (i) Lim inf
a→a

E(a) =
⋃

D∈Da

conv {at, t ∈ D} = E
�
a
�
;

 (ii) Lim sup
a→a

E(a) =
⋃

D∈Da∪D
0

a

conv {at, t ∈ D} ⊃ E
�
a
�
.

Proof (i) The second equality is established Theorem  1 and it is clear from the 
definition that Lim infa→a E(a) ⊂ E

(
a
)
 as E is closed-valued. In order to prove the 

converse inclusion, take D ∈ Da and u =
∑

t∈D �tat for some � =
(
�t
)
t∈D

∈ ℝ
D
+
 

with 
∑

t∈D �t = 1 and let d ∈ ℝ
n with a�

t
d = 1 for all t ∈ D and a′

t
d < 1 for 

all t ∈ I�D. Taking any {ar}r∈ℕ ⊂ (ℝn)I converging to a, define, for each r,   
wr ∶=

∑
t∈D �ta

r
t
∈ conv

�
ar
t
, t ∈ I

�
. Then

On the other hand, for a fixed r and any v ∈ conv
{
ar
t
, t ∈ I

}
, writing v =

∑
t∈I �ta

r
t
 

with � ∈ ℝ
I
+
 and 

∑
t∈I �t = 1, one has

(15)
{(

ar
t

)�
dr = 1, if t ∈ S,(

ar
t

)�
dr < 1, if t ∈ I ⧵ S.

S ⊂ D ∶=
{
t ∈ I ∣ a

�
t
d = 1

}

S ⊂ D ∶=
{
t ∈ I ∣ a

�
t
d = 0

}

(wr)�d → u�d =
∑
t∈D

�ta
�
t
d = 1 as r → ∞.
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in particular, (wr)�d ≤ 1 + ��ar − a��‖d‖. This entails, for each r ∈ ℕ such that 
(wr)�d > 0, the existence of

such that ur ∶= �rw
r ∈ E(ar). Consequently,

Since {ar}r∈ℕ has been arbitrarily chosen, one has u ∈ Lim infa→a E(a) .
(ii) comes from the Lemma 1 together with (14).   ◻

Remark 3 (i) Theorem  3 (i) establishes the lower semicontinuity in the sense of 
Berge of mapping E at a (equivalently, the inner semicontinuity at a ). Here we do 
not have an analogous result to Lemma 1 (ii); more specifically, Lim infa→a Da may 
be strictly contained in Da. For instance, for the family

one has Lim infa→a Da = {�, {1}, {3}}, whereas Da = {�, {1}, {3}, {1, 2, 3}}.

(ii) The union in Theorem 3 (ii) could be confined to those D ∈ Da ∪D
0

a
 which 

are maximal with respect to the inclusion order. Moreover, the inclusion ‘ ⊃ ’ may be 
strict as Example 1 below shows.

3.2  Lower and upper semicontinuity of the subregularity modulus

Let us consider the nominal data � ≡

(
a, b

)
 and x ∈ Fa

(
b
)
. From now on in the 

paper, for each a ∈ ℝ
n×m, we consider the end set defined in (13) in the particular 

case I = T�
(
x
)
; i.e.,

Observe that the index set T�
(
x
)
 does not vary as a varies by virtue of (11). From 

Theorem 2 we can write

Theorem 4 Let � ≡

(
a, b

)
and x ∈ Fa

(
b
)
. Then: 

v�d ≤

��
t∈I

�ta
�
t
d

�
+

��
t∈I

�t
��art − at

��∗‖d‖
�

≤ 1 + ��ar − a��‖d‖;

�r ∈

�
1,

1 + ��ar − a��‖d‖
(wr)�d

�

u = lim
r→∞

ur ∈ Lim inf
r→∞

E(ar).

{
a1 =

(
1

1

)
, a2 =

(
1

0

)
, a3 =

(
1

−1

)}

(16)E(a) ∶= end conv
{
at, t ∈ T�

(
x
)}

.

(17)S(a) = d∗
(
0n,E(a)

)−1
, for any a ∈ ℝ

n×m.
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 (i) S is lower semicontinuous at a; i.e., 

 (ii) We have 

Proof (i) Since E is inner semicontinuous at a , by [25, Proposition 5.11(b)] we have 
that d∗

(
0n,E(⋅)

)
 is upper semicontinuous at a and, accordingly, d∗

(
0n,E(⋅)

)−1 is 
lower semicontinuous at a.

(ii)
Appealing to (17), we may write

where the third equality follows from [25, Exercise 4.8] and the last one comes from 
Theorem 3(ii).   ◻

Corollary 1 If Lim infa→a E(a) = Lim supa→a E(a) = E
(
a
)
, i.e., if E is continuous 

in the Painlevé-Kuratowski sense, then S is continuous at a.

Proof As in the proof of statement (ii) in Theorem  4, and applying the current 
assumption, we have

  ◻

Remark 4 Observe that: 

 (i) S may fail to be upper semicontinuous at a, i.e., one can have 

lim inf
a→a

S(a) =

[
d∗

(
0n,

⋃
D∈Da

conv {at, t ∈ D}

)]−1

= S
(
a
)
;

lim sup
a→a

S(a) =
⎡⎢⎢⎣
d∗

⎛⎜⎜⎝
0n,

�
D∈Da∪D

0

a

conv {at, t ∈ D}
⎞⎟⎟⎠

⎤⎥⎥⎦

−1

≥ S
�
a
�
.

lim sup
a→a

S(a) = lim sup
a→a

d∗
(
0n,E(a)

)−1

=

(
lim inf
a→a

d∗
(
0n,E(a)

))−1

= d∗
(
0n, Lim supa→a E(a)

)−1

= d∗

(
0n,

⋃
D∈Da∪D

0

a

conv {at, t ∈ D}

)−1

.

lim supa→a S(a) = d∗
(
0n, Lim supa→a E(a)

)−1
= d∗

(
0n,E

(
a
))−1

= S
(
a
)
.

lim sup
a→a

S(a) > S(a)
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 and the ‘continuity gap’ can be finite (Example 1) or infinite (Example 2).
 (ii) The sufficient condition for the continuity of S given in Corollary 1 is not 

necessary. Just replace a3 in Example 1 below with 
(
1∕2
1∕2

)
.

Example 1 Consider the nominal system in ℝ2, endowed with the Euclidean norm,

and take x = 02. One easily checks from Theorem  3(ii) that 

Lim sup
a→a

E(a) = conv

��
0

2

�
,

�
1

2

��⋃
conv

��
0

1

�
,

�
0

2

��
 while E

(
a
)
=

conv

{(
0

2

)
,

(
1

2

)}
. Regarding function S, from Theorem 4(ii), one has

Example 2 Consider the nominal system in ℝ2, endowed with the Euclidean norm,

and take x = 02. Again from Theorem  3(ii), we have 

Lim supa→a E(a) = conv

{(
0

1

)
,

(
0

−1

)}
 while E

(
a
)
=

{(
0

1

)
,

(
0

−1

)}
 and

4  Robust and continuous subregularity

Starting from the fact that

and taking into account that the inequality above may be strict, this section is firstly 
devoted to characterizing the finiteness of the continuity gap, i.e., to characterize the 
condition lim supa→a S(a) < +∞, through an alternative (in principle, simpler) con-
dition to the one which can be derived from the explicit formula of Theorem 4(ii) . 
In a second stage, we provide a new approach to lim supa→a S(a) which allows us to 
interpret this quantity as a modulus of a robust-type metric subregularity property.

To start with, appealing to the definitions of Da and D0

a
, recall (7)-(8), one easily 

checks that

and the following proposition is an immediate consequence of this inclusion together 
with Theorem 4(ii).

� ∶=
{
x2 ≤ 0, 2x2 ≤ 0, x1 + 2x2 ≤ 0

}
,

lim sup
a→a

S(a) = 1 > S(a) = 1∕2.

� ∶=
{
x2 ≤ 0, − x2 ≤ 0

}
,

lim sup
a→a

S(a) = +∞, S(a) = 1.

lim sup
a→a

S(a) ≥ S
(
a
)
= lim inf

a→a
S(a),

⋃
D∈Da∪D

0

a

conv {at, t ∈ D} ⊂ bd conv
{
at, t ∈ T𝜎

(
x
)}

,
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Proposition 1 We have

The following example shows that the inequality in Proposition 1 may be strict.

Example 3 [9, Example 4] Let us consider the nominal system, in ℝ2 endowed with 
the Euclidean norm,

(associated with indices 1, 2, and 3, respectively) and the nominal solution x = 02 ; 
in other words, recalling that each at is regarded as a column-vector,

which entails T�
(
x
)
= T = {1, 2, 3}. Then, after a routine computation, we can show 

that ��a − a�� ≤
1

2
√
2
 implies

Observe that the condition ‘ ��a − a�� ≤
1

2
√
2
 ’ is not superfluous to ensure (19); indeed, 

if we take the unitary vector u = 1√
2

�
1

1

�
 and, for any 𝜇 >

1

2
√
2
, we consider the per-

turbed matrix a� =
(
a1 + �u a2 + �u a3 − �u

)
, then we obtain 

end conv
{
a
�
t , t = 1, 2, 3

}
= conv

{
a1, a2

}
. Moreover, ��a − a�� ≤

1

2
√
2
 also implies 

d∗
(
02, bd conv

{
at, t ∈ T�

(
x
)})

= d∗
(
02, conv

{
a1, a2

})
. In particular,

In spite of not having equality in (18), d∗
(
0n, bd conv

{
at, t ∈ T�

(
x
)})

 can be 
used to characterize the finiteness of lim supa→a S(a), as the following theorem 
establishes.

Theorem  5 Given � ≡

(
a, b

)
and x ∈ Fa

(
b
)
, the following statements are 

equivalent: 

 (i) lim supa→a S(a) is finite; 
 (ii) 0n ∉ bd conv

{
at, t ∈ T�

(
x
)}

;

(18)lim sup
a→a

S(a) ≤ d∗
(
0n, bd conv

{
at, t ∈ T�

(
x
)})−1

.

{
x1 ≤ 0, x2 ≤ 0, x1 + x2 ≤ 0

}

a =
(
a1 a2 a3

)
=

(
1 0 1

0 1 1

)
, b = 03,

(19)end conv
{
at, t ∈ T�

(
x
)}

= conv
{
a1, a3

}
∪ conv

{
a2, a3

}
.

lim sup
a→a

S(a) = d∗
�
02, conv

�
a1, a3

�
∪ conv

�
a2, a3

��−1
= 1

< d∗
�
02, bd conv

�
at, t ∈ T𝜎

�
x
���−1

=
√
2.
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 (iii) There exist constants � ≥ 0 and 𝜀 > 0 along with a neighborhood U of x such 
that 

 for all x ∈ U and all a ∈ ℝ
n such that ‖a − a‖ < 𝜀.

Moreover, lim supa→a S(a) coincides with the infimum of constants � over the tri-
plets (�, �,U) satisfying (20) .
Proof (i) ⇔ (ii) Implication ‘ ⇐ ’ is a direct consequence of Proposition 1. In 
order to prove the converse implication, assume reasoning by contradiction that 
0n ∈ bd conv

{
at, t ∈ T�

(
x
)}

. By separation, consider d ∈ ℝ
n�{0n} such that 

a
′
t
d ≤ 0 for all t ∈ T�

(
x
)
, which necessarily satisfies D ∶=

{
t ∈ T ∣ a

�
t
d = 0

}
≠ �. 

Consider an arbitrary 𝜀 > 0 and let a�
t
∶= at + �d for all t ∈ T . For 

d̃ ∶=
(
�d�d

)−1
d we clearly have 

(
a�
t

)�
d̃ = 1 for all t ∈ D and 

(
a𝜀
t

)′�d < 1 for 
all t ∈ T�

(
x
)
�D. Consequently, taking (11) into account, D ∈ Da� . Moreover, 

the fact that 0n ∈ bd conv
{
at, t ∈ T�

(
x
)}

 and the definition of D easily imply 
0n ∈ conv

{
at, t ∈ D

}
 and, then, �d ∈ conv

{
a�
t
, t ∈ D

}
. Accordingly, recalling The-

orem 2, we attain the contradiction

(i) ⇔ (iii) Implication ‘ ⇐ ’ comes from the fact that any � ≥ 0 as in the statement is a 
subregularity constant for Ga at 

(
x, b + (a − a)�x

)
; in other words, taking � and � as 

in (iii), we have

entailing lim supa→a S(a) ≤ �. In order to prove the converse implication assume 
that lim supa→a S(a) is finite and take any 𝜅 > lim supa→a S(a). Let us prove that 
there exists a neighborhood U of x along with 𝜀 > 0 such that (20) holds for all 
x ∈ U and all a ∈ ℝ

n with ‖a − a‖ < 𝜀 . To do this we appeal to [10, Theorem 3], 
which shows –adapted to our current notation– that each S(a) is indeed a subregular-
ity constant itself with an associated neighborhood Ua, which –see formula (8) in 
that paper–, taking into account (11) and the ‘slack relationship’ [
bt +

(
at − at

)�
x
]
− a�

t
x = bt − a

�
t
x, is given by

with the convention inf � ∶= +∞. First, we analyze the case 
{t ∈ T�T�

(
x
)
∣ at ≠ 0n} ≠ �. Now define 𝜌 ∶= mint∉T𝜎(x)

(
bt − a

�
t
x
)
> 0 (recalling 

the finiteness of T) and take any

(20)d
(
x,Fa

(
b + (a − a)�x

))
≤ �d

(
b + (a − a)�x,Ga(x)

)

S(a�) ≥ d∗
�
0n, conv

�
a�
t
, t ∈ D

��−1
≥
�
�‖d‖∗

�−1
→ +∞ as � ↓ 0.

S(a) ≤ 𝜅, whenever ‖a − a‖ < 𝜀,

(21)Ua ∶=

{
x ∈ ℝ

n

||||||
‖‖x − x‖‖ < 𝛿a ∶= inf

t∉T𝜎(x), at≠0n

bt − a
�
t
x

2‖‖at‖‖∗

}
,
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Assume ‖a − a‖ < 𝛿1; then, at ≠ 0n whenever t ∉ T�
(
x
)
 and at ≠ 0n. If, for some 

t ∉ T�
(
x
)
, we haveat ≠ 0n and at = 0n, then,

Therefore, ‖a − a‖ < 𝛿1 implies

Finally, take any 𝛿3 > 0 satisfying ‖a − a‖ < 𝛿3 ⇒ S(a) ≤ 𝜅. Then,

which establishes (iii) in this case.
Consider now the case when T�

(
x
)
= T . In this case, �a = +∞ for all a ∈ ℝ

n×m. 
Hence, (20) holds whenever ‖a − a‖ < 𝛿3 (defined as above) and x ∈ ℝ

n. Finally, 
assume at = 0 for all t ∈ T�T�

(
x
)
≠ �. This entails bt > 0 for all t ∈ T�T�

(
x
)
. 

Define � ∶= min
{
bt, t ∈ T�T�

(
x
)}

. Then �a ≥
�

2‖a−a‖ for all a ∈ ℝ
n×m. Accord-

ingly, (20) holds whenever ‖a − a‖ < 𝛿3 and ‖x − x‖ <
𝜌

2𝛿3
.

Moreover, reviewing the previous argument and observing that the proof is valid 
for any 𝜅 > lim supa→a S(a) , we conclude that lim supa→a S(a) coincides with the 
infimum of constants � over the triplets (�, �,U) satisfying (20).   ◻

Definition 1 Given system � ≡ (a, b) and x ∈ Fa

(
b
)
, we say that 

 (i) Ga is robustly subregular at 
(
x, b

)
 if any of the three equivalent conditions of 

Theorem 5 holds. Regarding Theorem 5(iii), the infimum of constants � over 
the triplets (�, �,U) satisfying (20) is called the robust subregularity modulus 
of Ga at 

(
x, b

)
 and will be denoted by robGa

(
x, b

)
 . As stated there, 

 (ii) Ga is continuously subregular at 
(
x, b

)
 if S is continuous at a.

Remark 5 Condition (iii) in Theorem 5 looks like a kind of uniform regularity prop-
erty with respect to a. Since the term uniform calmness has been already introduced 
in [3, Definition 1] (to be applied to the feasible set mapping Fa ) with another mean-
ing –uniformly with respect to x in Fa

(
b
)
 –, we have preferred here the term robust. 

0 < 𝛿1 < min

{
𝜌

2𝛿a
, min

{‖‖at‖‖∗ ∣ t ∉ T𝜎
(
x
)
, at ≠ 0n

}}
.

bt − a
�
t
x

2‖‖at‖‖∗
≥

bt − a
�
t
x

2�1
≥

�

2�1
≥ �a.

�a ≥ min
t∉T�(x), at≠0n

bt − a
�
t
x

2
(‖‖at‖‖∗ + �1

) =∶ �2.

‖a − a‖ < � ∶= min
�
𝛿1, 𝛿3

�
‖x − x‖ < 𝛿2

�
⇒ (20) holds,

(22)robGa

(
x, b

)
= lim sup

a→a

S(a).
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See the comment preceding Corollary 3 below. Also observe that [4, Theorem 2.1], 
adapted to our current setting, entails that the metric regularity property of Ga at (
x, b

)
 is characterized as 0n ∉ conv

{
at, t ∈ T�

(
x
)}

. Indeed, [4, Corollary 3.2] pro-
vides the following expression for the the modulus of metric regularity:

Accordingly, if 0n ∈ int conv
{
at, t ∈ T�

(
x
)}

, then Ga is robustly regular but not 
metrically regular at 

(
x, b

)
.

Corollary 2 For the nominal data � ≡ (a, b)and x ∈ Fa

(
b
)
 , the following statements 

are equivalent: 

 (i) Ga is continuously subregular at 
(
x, b

)
;

 (ii) robGa

(
x, b

)
= S

(
a
)
;

 (iii) It holds 

Proof The proof comes straightforwardly from (22) and Theorem 4.   ◻

5  Radii

In this section we formally introduce the radii announced in the introduction and 
succeed to compute one of them and give some hints on the other.

Following the notation introduced in (4), let us denote by rad robGa

(
x, b

)
 and 

rad cont Ga

(
x, b

)
 the radius of robust subregularity and continuous subregularity, 

respectively, of Ga at 
(
x, b

)
 . As a direct consequence of the definitions, continuous 

subregularity implies robust subregularity, and, hence,

The next technical lemma provides a quite standard result that could be given with 
more generality. We state it as we need it, in ℝn endowed with the dual norm ‖⋅‖∗.

regGa

(
x, b

)
= 1∕d∗

(
0n, conv

{
at, t ∈ T�

(
x
)})

.

0 ≠ d∗

�
0n,

�
D∈Da

conv {at, t ∈ D}

�
= d∗

⎛⎜⎜⎝
0n,

�
D∈Da∪D

0

a

conv {at, t ∈ D}
⎞⎟⎟⎠
.

(23)rad robGa

(
x, b

)
≥ rad cont Ga

(
x, b

)
.
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Lemma 2 For i = 1, 2, let Ci = conv
{
ui
j
, j = 1, ...,m

}
⊂ ℝ

n . Assume that for some 

u0 ∈ ℝ
n we have d∗

(
u0, bdC1

)
= 𝛿 > 0 and max1≤j≤m

‖‖‖u1j − u2
j

‖‖‖∗ ≤ 𝜀 < 𝛿. Then

Proof Firstly we consider the case u0 ∉ clC1 and assume, reasoning by contradic-
tion, that d∗

(
u0, bdC2

)
= ‖‖u0 − w2

‖‖∗ < 𝛿 − 𝜀 for some w2 ∈ C2. Let us write 
w2 =

∑m

j=1
�ju

2
j
 , with �j ≥ 0 for all j and 

∑m

j=1
�j = 1. Take w1 ∶=

∑m

j=1
�ju

1
j
∈ C1. 

Then

contradicting the fact that d∗
(
u0, bdC1

)
= d∗

(
u0,C1

)
= �.

Secondly, consider the case u0 ∈ intC1, so that u0 + 𝛿B∗ ⊂ C1. Then we will 
prove that u0 + (𝛿 − 𝜀)B∗ ⊂ C2. The argument here is similar to that of [8, Lemma 
6], which we sketch here for completeness. Assume by contradiction that there 
exists w̃2 ∈

(
u0 + (� − �)B∗

)
�C2 . Then we can strictly separate w̃2 and C2 , so that 

there exists p ∈ ℝ
n such that

Take z ∈ ℝ
n with ‖z‖∗ = � and p�z = ‖p‖‖z‖∗. Then

entailing w̃2 − z ∈ C1. Thus write w̃2 − z =
∑m

j=1
�̃ju

1
j
 , with �̃j ≥ 0 for all j and ∑m

j=1
�̃j = 1. Therefore, recalling (24), we attain the contradiction

  ◻

Theorem 6 Assume that Ga is  robustly subregular at 
(
x, b

)
. Then

Proof Write � ∶= d∗
(
0n, bd conv

{
at, t ∈ T�

(
x
)})

 and pick any a ∈ ℝ
n with ‖‖a − a‖‖ < 𝛿. Then Lemma 2 entails

d∗
(
u0, bdC2

)
≥ � − �.

‖‖u0 − w1
‖‖∗ ≤ ‖‖u0 − w2

‖‖∗ +
m∑
j=1

𝜆j
‖‖‖u

2
j
− u1

j

‖‖‖∗ < 𝛿 − 𝜀 + 𝜀 = 𝛿,

(24)p��w2 < p�u2
j
for all j = 1, ...,m.

��w̃2 − z − u0
��∗ ≤ ��w̃2 − u0

��∗ + ‖z‖∗ ≤ � − � + � = �,

p��w2 − p�z =

m�
j=1

�𝜆jp
�u2

j
+

m�
j=1

�𝜆jp
�
�
u1
j
− u2

j

�
> p��w2 − ‖p‖𝜀 = p��w2 − p�z.

rad robGa

(
x, b

)
= d∗

(
0n, bd conv

{
at, t ∈ T�

(
x
)})

.

d∗
(
0n, bd conv

{
at, t ∈ T�

(
x
)})

≥ � − ‖‖a − a‖‖,
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which in particular implies 0n ∉ bd conv
{
at, t ∈ T�

(
x
)}

. Therefore, Theorem  5 
yields that Ga is robustly subregular at 

(
x, b +

(
a − a

)�
x
)
. This, together with (5), 

proves rad robGa

(
x, b

)
≥ �.

In order to prove the converse inequality, take u ∈ bd conv
{
at, t ∈ T�

(
x
)}

 with 
‖u‖∗ = �. Let us show that 0n ∈ bd conv

{
at − u, t ∈ T�

(
x
)}

. It is clear that 
0n ∈ conv

{
at − u, t ∈ T�

(
x
)}

 since, if u =
∑

t∈T �tat , with �t ≥ 0 for all t ∈ T  and ∑
t∈T �t = 1, then 0n =

∑
t∈T �t

�
at − u

�
. Moreover, a very similar calculation shows 

that if there existed 𝜀 > 0 with 𝜀B∗ ⊂ conv
{
at − u, t ∈ T𝜎

(
x
)}

, i.e. 
0n ∈ int conv

{
at − u, t ∈ T�

(
x
)}

, then we would have the contradiction 
u + 𝜀B∗ ⊂ conv

{
at, t ∈ T𝜎

(
x
)}

. Now Theorem  5 ensures that G(at−u)t∈T is not 

robustly subregular at 
(
x,
(
bt − u�x

)
t∈T

)
. Accordingly, rad robGa

(
x, b

)
≤ �.   ◻

As an immediate consequence of Theorem 6, together with Proposition 1, (22), 
and Example 3, we obtain the following result. Observe that this is the opposite 
inequality to that obtained in general for the radius of metric regularity in [12, 
Theorem  1.5] (where radius ≥ 1∕modulus ). The last part of this result, which 
comes from Theorem  5(ii) together with the definition of robust subregularity, 
asserts that if Ga is robustly subregular at 

(
x, b

)
, then the robust subregularity 

radius is positive. Otherwise, the term ‘robust’ would sound inappropriate.

Corollary 3 One has

and the inequality may be strict. Moreover, robGa

(
x, b

)
< +∞ implies 

rad robGa

(
x, b

)
> 0.

The next example shows that inequality (23) may be strict, as well as provides 
some hints for the study of the radius of continuous subregularity.

Example 4 Let us consider the nominal system, in ℝ2 endowed with the Euclidean 
norm,

(associated with indices 1, 2 and 3, respectively) and the nominal solution x = 02. 
Hence, T�

(
x
)
= {1, 2, 3}. Let us check that

rad robGa

(
x, b

)
≤

1

robGa

(
x, b

) ,

� =
{
x1 + 2x2 ≤ 0, x1 + 4x2 ≤ 0, 6x1 + 5x2 ≤ 0

}

rad cont Ga

�
x, b

�
=

1√
10

< rad robGa

�
x, b

�
=
√
5,
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where the last equality comes from Theorem 6. Indeed, writing � ≡

(
a, b

)
 , the min-

imum perturbation size from a making the perturbed a have proportional a1 and a2 
(i.e., making a1 and a2 belong to some straight line in ℝ2 passing through the origin), 
obtained by computing, with the well-known Ascoli formula, the distance from a1 
and a2 to such line, is 1∕

√
10. This minimum perturbation size is attained at the fol-

lowing system �� ≡ (a�, b�) for � = 1∕
√
10, where the perturbed a1∕

√
10

1
 and a1∕

√
10

2
 

are the only possible ones with the aimed property and the perturbed a1∕
√
10

3
 is irrel-

evant (so that we have kept it as in the nominal system), and where we have followed 
the criterion b� = b +

(
a� − a

)�
x. Define

Thus, we have:

Hence, S is continuous in the open ball centered at a with radius 1∕
√
10. On the 

other hand,

which entails

Consequently, lim
𝜇→

�
1∕

√
10
�+ S(a𝜇) =

����a
1∕

√
10

1

����
−1

∗

=
√
10

7
> S

�
a1∕

√
10
�
 

=
����a

1∕
√
10

2

����
−1

∗

=
√
10

13
. Putting all together, we have rad cont Ga

�
x, b

�
= 1√

10
.

�� =

⎧
⎪⎨⎪⎩

�
1 − 3√

10
�
�
x1 +

�
2 + 1√

10
�
�
x2 ≤ 0,�

1 + 3√
10
�
�
x1 +

�
4 − 1√

10
�
�
x2 ≤ 0,

6x1 + 5x2 ≤ 0.

��a − a�� ≤
1√
10

⇒ S(a) = d∗
�
02, end conv

�
at, t ∈ T�

�
x
���−1

=d∗
�
02, conv

�
a2, a3

��−1
= ��a2��−1∗ .

end conv
�
a
𝜇

1
, a

𝜇

2
, a

𝜇

3

�
=

⎧⎪⎨⎪⎩

conv
�
a
𝜇

2
, a

𝜇

3

�
, if 0 ≤ 𝜇 ≤

1√
10
,

conv
�
a
𝜇

1
, a

𝜇

2

�
∪ conv

�
a
𝜇

2
, a

𝜇

3

�
, if

1√
10

< 𝜇 ≤
5
√
10

11
,

S(a𝜇) =

⎧⎪⎨⎪⎩

���a
𝜇

2

���
−1

∗
, if 0 ≤ 𝜇 ≤ 1∕

√
10,

���a
𝜇

1

���
−1

∗
, if 1∕

√
10 < 𝜇 ≤ 5

√
10∕11.
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6  Conclusions and further research

The following diagram is intended to provide a complete picture of the main results 
of this work. In it, for each a ∈ ℝ

n×m , S(a) and E(a) represent the subregularity mod-
ulus and the end set defined in (12) and (16), respectively.

Our starting background is:

• Theorem 1 (from [21, Corollary 2.1 and Remark 2.3] ), which establishes 

• Theorem 2 (derived from [9, Theorem 4]), which yields 

Hereafter, (I) and (II) are used as abbreviations as follows:

The next diagram summarizes the main results of this paper, all of them being new 
except equality S

(
a
)
= d∗

(
0n,E

(
a
))−1

= (I) .

diagram of results on the stable behavior of S

lim inf
a→a

S(a) = S
(
a
)
= d∗

(
0
n
,E

(
a
))−1

= (I)

≤ lim sup
a→a

S(a)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
∥

= d∗

(
0
n
, Lim sup

a→a
E(a)

)−1
= (II)

robG
a

(
x, b

)

≤ d∗

(
0
n
, bd conv

{
a
t
, t ∈ T�

(
x
)})−1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
∥

[ rad rob Ga

(
x, b

)
]−1

≤ [ rad cont Ga

(
x, b

)
]−1.

Finally, let us point out some remarkable facts:

• Examples 1 and 2 show that the gap with respect to the first inequality of the 
diagram may be finite or infinite, respectively. Examples 3 and 4 show that the 
second and the third inequalities may be strict.

E(a) =
⋃
D∈Da

conv
{
at, t ∈ D

}
, a ∈ ℝ

n×m.

S(a) = d∗
(
0n,E(a)

)−1
, a ∈ ℝ

n×m.

(I) ∶=

�
d∗

�
0n,

�
D∈Da

conv {at, t ∈ D}

��−1

,

(II) ∶=
⎡⎢⎢⎣
d∗

⎛⎜⎜⎝
0n,

�
D∈Da∪D

0

a

conv {at, t ∈ D}
⎞⎟⎟⎠

⎤⎥⎥⎦

−1

.
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• Regarding the second inequality, from Theorem  5, the gap cannot be infi-
nite, as condition d∗

(
0n, bd conv

{
at, t ∈ T�

(
x
)})

= 0 is equivalent to 
lim supa→a S(a) = +∞.

• The modulus and radius of robust subregularity, robGa

(
x, b

)
 and 

rad robGa

(
x, b

)
 , are computed through point-based formulae (only involving 

the nominal data 
(
a, b, x

)
 , not appealing to elements in a neighborhood).

• The problem of finding a point-based formula for the radius of continuous 
subregularity, rad cont Ga

(
x, b

)
, remains as an open problem; Example 4 pro-

vides some hints for future research, as far as it illustrates some of the difficul-
ties which may arise in the computation of this radius.
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