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This article describes a model that allows the simulation
of the static behavior of a transverse crack in a horizontal
rotor under the action of weight and other possible static
loads and the dynamic behavior of cracked rotating shaft.
The crack breathes—that is, the mechanism of the crack’s
opening and closing is ruled by the stress on the cracked
section exerted by the external loads. In a rotor, the stresses
are time-dependent and have a period equal to the period of
rotation; thus, the crack periodically breathes. An original,
simplified model allows cracks of various shapes to be mod-
eled and thermal stresses to be taken into account, as they
may influence the opening and closing mechanism. The pro-
posed method was validated by using two criteria. First the
crack’s breathing mechanism, simulated by the model, was
compared with the results obtained by a nonlinear, three-
dimensional finite element model calculation, and a good
agreement in the results was observed. Then the proposed
model allowed the development of the equivalent cracked
beam. The results of this model were compared with those
obtained by the three-dimensional finite element model. Also
in this case, there was a good agreement in the results.

Therefore, the proposed models of the crack and the
equivalent model of the beam can be inserted into the finite
element model of the beam used for the rotor’s dynamic-
behavior simulation; the obtained equations have time-
dependent coefficients, but they can be integrated into the
frequency domain by using the harmonic balance method.
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The model is suitable for finite beam elements with 6 de-
grees of freedom per node in order to account also for tor-
sion vibrations and coupling between torsion and flexural
vibrations.
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The description of the dynamic behavior of a horizontal heavy
rotor that presents a transverse crack has been presented by many
researchers (e.g., Dimarogonas 1996; Gasch 1993; and Wauer
1990), particularly as regards the breathing mechanism. This
characteristic behavior takes place during the rotor’s rotation;
the crack moves from the upper position, in which the static
bending moment forces the crack to be closed to the opposite
position in which the crack is forced to be open. The gradual
opening and closing of the crack is called the breathing mech-
anism. Therefore, the stiffness changes periodically during one
rotation and, correspondingly, so does the static deflection due
to the weight (and to the bearing alignment conditions). In fact,
the stiffness of a rotor with an open crack is less than that of
one with a closed crack, in which the stiffness equals the value
of the uncracked shaft. The periodic deflection and the periodic
stiffness can be expanded in a Fourier series, of which the most
important components are the 1×, 2×, and 3× revolution com-
ponents. It can be shown that the same forces that excite the
static deflection components also excite the dynamic vibrations
when the shaft is rotating at higher speeds.

Along with the effect of the static bending moments, thermal
transients also have an influence on the breathing mechanism.
Often, in real machines, the sudden change in vibrational be-
havior during thermal transients allowed a crack in the rotating
shafts to be discovered. A case history presented by Lapini and
colleagues (1993) provides the derivation of Figure 1. It shows
the measured vibrations in a bearing of a cracked generator in a
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FIGURE 1
Thermal sensitivity of a cracked rotor.

power plant, operating at rated speed due to two thermal tran-
sients: first, a cooling in the refrigerating fluid from 40◦C to
34◦C; then a heating from 34◦C to 44◦C. During the heating
transient (a positive temperature gradient), compressive stresses
arise on the skin of the shaft and tensile stresses arise in the core
of the shaft. This has following effects.

• If a local bow is present in correspondence with the
crack, because of the crack’s propagation, the thermal
stresses reduce the existing bow, and therefore a re-
duction in the 1× revolution vibration component is
obtained.

• The thermal stresses tend to prevent and to reduce the
breathing behavior, so a reduction of all components
(1×, 2×, and 3× revolution) due to the breathing mech-
anism is generally obtained.

In the case of a cooling transient (a negative temperature
gradient), the opposite situation occurs, with tensile stresses on
the skin and compressive stresses on the core. This causes effects
on the crack:

• A local bow is generated (or an existing local bow is
increased) and the 1× revolution component of the vi-
brations due to the unbalance and to the bow is
modified.

• The thermal stresses tend to hold the crack open. The
breathing mechanism is modified and an increase in the
2× revolution component is expected.

Previous considerations suggest that a reliable model for the
crack’s breathing mechanism that also takes into account the
effect of thermal transients would be useful. A possible model
is described in this article. First, a simplified one-dimension

(1D) model, which was presented by Bachschmid and colleagues
(2000), to determine the temperature distribution in a cylindri-
cal rotor is described; then the stiffness changes in the cracked
element of the rotor are described by introducing a model with
6 degrees of freedom per mode. The proposed models are val-
idated by comparing the results obtained by performing three-
dimensional (3D) calculations.

THE THERMAL BEHAVIOR AND BREATHING
MECHANISM OF A CRACKED ROTOR

To determine the temperature distribution, the equation of the
thermal exchange is used in the case of axial symmetry and of
an infinite cylinder:

ρcp

k

∂T

∂t
= 1

r

∂

∂r
r
∂T

∂r
[1]

whereρ is the density,cp the specific heat,k the conduction co-
efficient,r the radial coordinate, andT the generic temperature
of the section.

To solve the equation, the finite differences were used with
two different boundary conditions, depending on the type of heat
exchange.

1. In the case of convection on the external surface

∂T
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∣∣∣∣
rint

= 0 k
∂T
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rest

= H (Trest− Tw) [2]

whereH is the thermal exchange coefficient between steam
or surrounding fluid and metal,Trest is the temperature of the
external surface of the section, andTw is the fluid temperature.
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2. In the case of an imposed temperature gradient1T/T on the
external surface.

∂T

∂r

∣∣∣∣
rint

= 0 Trest(t +1t) = Trest(t)+1T. [3]

If the number of the discretization points in the finite differ-
ence method and the time step1t are fixed, and if the material
properties are considered as constant (at the average working
temperature), the solving system is of the following type:

{T(t +1t)} = [ A]{T(t)} [4]

where matrix [A] has constant coefficients, and{T(t+1t)} and
{T(t)} are the vectors of the temperatures in the radial coordi-
nates determined over the section. Note that the radial coordi-
nates were chosen in order to divide the section into rings with
equal surfaces; therefore, they are thinner close to the external
surface.

By iterating Equation (4) with time step1t , it is possible
to determine the temperature distribution in each point of the
section as a function of the time. The axial stress distribution
corresponding to the temperature distribution is given by

σ = αE

1− ν (Tm − T(r )) [5]

whereα is the linear thermal expansion,E the Young’s modu-
lus, ν the Poisson’s coefficient,T(r ) the temperature at the ra-
dial coordinater , andTm the average section temperature. The
effect of the centrifugal forces on the axial stresses has been
neglected.

The thermal bow is calculated in the following way: the
cracked areas in which no contact occurs cannot transmit
stresses; therefore, the thermal stress distribution is no longer
axial-symmetrical and the resulting momentsMBx and MBy of
this thermal stress distribution can be calculated with respect to
the reference frame, which is fixed to the beam. These moments,
with opposite signs, are then applied to both ends of the equiva-

FIGURE 2
Skin temperature (left) and axial stresses (right) for temperature gradient of±100◦C/min.

lent beam of lengthlc, which will be defined later, and generate
the bow.

This procedure is obviously a rough, approximate approach
because the actual stress distribution over the cracked area is
completely different from the one assumed by the proposed sim-
plified approach. But it can be assumed that the bow depends
on the uncompensated thermal stresses, and the results confirm
that the proposed procedure allows estimation of the bow with
satisfactory accuracy, as will be shown.

The results obtained are different depending on whether there
are short time transients in which the heating or cooling process
involves the outer skin of the beam more than the whole body,
or whether there are long time transients in which the complete
body is affected by the temperature change and also whether
high radial strains arise. With respect to the short transients,
both the stress distribution around the crack and the deflections
are different in long-lasting transients.

NUMERICAL SIMULATIONS
Some 1D and 3D calculations were made on a round-beam

test specimen with a diameter of 25 mm and a length of 50 mm
that presented a crack with relative depths of 25% and 50% of the
diameter. Also, mechanical loads were applied to an extension
(on the left side) in order to avoid local deformations due to load
application. The loads were a bending moment of 10 nm and a
torsion of 25 nm.

Figure 2 shows the skin temperature and the corresponding
axial stresses as a function of time for a±100◦C/min tempera-
ture gradient, calculated with the 1D model, starting from a
uniform temperature distribution of 40◦C.

Figure 3 shows the temperature and the stress distribution
over the cross-section of the beam at 5 sec for the±100◦C/min
transient.

All these results were obtained with the 1D model, but the
actual temperature and stress distributions, obtained by the 3D
model in cross-sections that are unaffected by the crack and by
the boundary conditions, are quite similar.
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FIGURE 3
Internal temperatures (left) and axial stresses (right) for±100◦C/min gradient at time 5 sec.

Figures 4 and 5 show the axial stress distribution on the longi-
tudinal section of the cracked beam, clamped on the right end—
Figure 4 in the case of a negative sharp transient (−100◦C/min
in 5 sec) and Figure 5 in the case of a positive sharp transient
±100◦C/min in 5 sec).

The behavior was as expected: during the negative transient,
the positive tensile stresses on the skin and the negative com-
pression stresses on the internal part vanish in correspondence
with the crack; the crack is completely open. This can be seen
in Figure 6, which shows the relative axial displacements on the
crack surface. Only in the dark blue area are the relative dis-
placements vanishing so that some contact can occur. Figure 7
shows the axial stresses on the cracked section. On the cracked
surface, the axial stress is roughly 0; in the inner part, a max-
imum compressive stresse of 11.8 MPa is reached; and on the
outer part, close to the crack’s tip, a maximum tensile stress of
117 MPa is reached. All these figures and some of the following
were obtained using the nonlinear 3D model for the crack of
50% depth.

During the positive transient, the negative compression
stresses on the skin remain in correspondence with the crack,

FIGURE 4
Axial stress distribution, cracked beam clamped at right hand side, transient−100◦C/min, 5 sec.

but below that small portion, the rest of the crack has no stresses
and is therefore open. In correspondence with the crack’s tip,
very high tensile stress occurs.

Figure 8 shows the stress distribution along the vertical di-
ameter passing through the middle of the crack in the cases
of positive and negative transients. This figure shows that the
positive temperature transient affects the closure of the crack,
as is known from field experience. In fact, in a small area
close to the skin, negative compression stresses appear. But
very high tensile stresses are generated at the crack’s tip (be-
tween 110 and 120 MPa), and they could be responsible for
the propagation of the crack in many machines (turbogener-
ators) in which a slowly propagating crack has been found.
This happens then when the rotor is heated during the start-up
procedure.

In the simplified model, 1D thermal stresses are simply super-
posed on stresses arising from mechanical loads; the nonlinear
effects cannot be accounted for. Therefore, excellent agreement
is found in all parts that are not close to the crack (or to the
boundary), but poor agreement is found in the cracked section.
Despite this, acceptable agreement was found in the breathing
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FIGURE 5
Axial stress distribution, cracked beam clamped at right hand side, transient+100◦C/min, 5 sec.

mechanism, as shown hereafter, and a rather good agreement
was found in the evaluation of bow due to smooth or sharp tem-
perature transients (±20◦C/min and±100◦C/min).

The deflections were calculated when the thermal transient
was superposed on a mechanical load. This situation, which is

FIGURE 6
Relative axial displacements on the crack’s surface.

always present in real machines, allows verification of nonlinear
effects in the superposition. In order to emphasize the thermal
effect, the deflection due to the mechanical load alone was sub-
tracted. Only the position of external loads, which leads to open
crack, has been considered.
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FIGURE 7
Axial stresses on the cracked section.

From the results of Table 1 the following conclusions can be
drawn:

• The behaviors corresponding to equal and opposite
temperature gradients are symmetrical.

FIGURE 8
Stress distribution along the vertical diameter passing though

the middle of the crack.

• The 1D linear model systematically underestimates the
deflections for deeper cracks (50%) and for smaller
cracks (25%) in cases of sharper temperature gradients.

• Because the errors introduced by the 1D linear model
are between a minimum of+0.7% and a maximum of
23%, the results can be considered a rough estimate of
the actual behavior.

Other simulations show that when the cracked beam is with-
out mechanical loads, and is loaded only by thermal stresses,
then the symmetry of behavior is lost. Negative gradients pro-
duce the same deflections, as shown in Table 1, but positive
gradients produce only very little deflections.

Thermal transients are considered to be long when the heat is
propagated to the whole body of the beam. As previously noted,
completely different stress and strain distributions can be found
with respect to short transients. The axial stress distribution over
the cross-section of the beam, as obtained by the 1D model with
the smoother thermal transient (±20◦C/min) after 15 min, is very
similar to that obtained for±100◦C/min gradient after 5 sec (see
Fig. 3).
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TABLE 1
Comparison of Deflections Due to Thermal Stresses inµm

+20◦C/min −20◦C/min +100◦C/min −100◦C/min

Model 3D 1D 3D 1D 3D 1D 3D 1D
25% crack +0.133 +0.135 −0.133 −0.134 +0.541 +0.433 −0.571 −0.459
50% crack +0.419 +0.320 −0.416 −0.320 +1.66 +1.36 +1.66 −1.36

Considering the 50% crack and the smoother thermal heating
transient (+20◦C/min) after 15 min, the contact pressures shown
in Figure 9 are obtained, to be compared with those in Figure 10,
which are related to the same transient, but after 10 sec.

Dark blue indicates no contact pressure. If the mechanical
external load is superposed, then higher compressive stresses
arise in the middle of the beam (the distribution over the cracked
surface is shown in Fig. 11). The behavior is therefore as would
be expected.

THE 1D MODEL OF THE CRACK
The proposed crack model, briefly described, is as follows.

The steps for modeling the breathing behavior, including thermal
effects, are:

FIGURE 9
Contact pressure distribution, transient+20◦C/min, 15 min.

1. The bending momentM , due to the weight and the bearing
alignment conditions of the rotor, is calculated in correspon-
dence with the cracked section

2. One revolution of the shaft is divided into several parts. In
each position, the following iterative calculations are per-
formed on the discretized section shown in Figure 12 in order
to define the open and closed sections of the cracked area,
the position of the center of gravity G of the closed surface,
the position of the main axis of inertia (angleϑ) with ori-
gin in G, the second-area moments with respect to the main
axis, and the momentsMBx, MBy due to the thermal stress
distribution.
• Initially, the main axes (x′m, y′m) are considered to be

coincident with the rotating crack axes (ϑ = 0); the
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FIGURE 10
Contact pressure distribution, transient+20◦C/min, 10 sec.

stresses due to bending moment are calculated (with
the assumedx′y′ main axis), and the thermal stresses
are then added in each point.

• Then the stress distribution is known over the cross-
section, and the sign of the stress can be checked in
each point of the cracked area: a plus sign means ten-
sion, and therefore there are no contact forces at this
point (the crack area element is open); a minus sign
means compression, and therefore there are contact
forces (the crack area element is closed). The open
and closed areas were determined.

• The surface gravity center of the total area (formed by
the uncracked area plus the closed cracked area) can
be calculated.

• The second moments of the area can then be calculated
with respect to the reference system, with the origin in
G and the angular positionϑ , the main axis of inertia
can be found.

• Then the procedure is repeated with the new value of
ϑ until ϑ converges into a stable value.

3. At this point, the position of the main axis and the second
moments of areaMBx, MBy are known. The second moment
of areaJx, Jy, and Jxy, with respect to the fixed reference
frame (xy), and the components of the moments due to the
thermal stress distribution (Mx, My), with respect to the same
reference frame, are calculated. This is repeated for each
angular position of the shaft.

The second moments of area, which are a function of the
angular position, can then be used for calculating the stiffness
Kc(Ät) that is also a function of the angular position of the
cracked beam element, which has a suitable lengthlc. The mo-
ments of the thermal stress distribution are used for calculating
the thermal bow.

EQUIVALENT BEAM STIFFNESS MATRIX
Once the breathing mechanism and the second moments of

area have been defined for the various angular positions, the
stiffness matrix of the cracked element of suitable lengthlc can
be calculated, assuming a Timoshenko beam.
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FIGURE 11
Contact pressure distribution over the cracked section, transient+20◦C/min, 10 sec.

The stiffness matrix (square, symmetrical, 12× 12 elements)
is represented by Equation (6):

Kc(Ät)

{
X1

X2

}

=



a c p q w m −a c −p q −w −m

e −q r i 0 −c f q s −i 0

b −d k n −p −q −b −d −k −m

h j 0 −q s d g − j 0

t 0 −w −i −k − j −t 0

u −m 0 −n 0 0 −u

a −c p −q w m

e q r i 0

b d k n

h j 0

t 0

u





x1

ϑy1

y1

ϑx1

z1

ϑz1

x2

ϑy2

y2

ϑx2

z2

ϑz2


[6]

where the coefficients are defined as follows:

a = 12JyE

(1+ φ)l 3
c

b = 12Jx E

(1+ φ)l 3
c

[7]

c = 6JyE

(1+ φ)l 2
c

d = 6Jx E

(1+ φ)l 2
c

e= (4+ φ)JyE

(1+ φ)lc
f = (2− φ)JyE

(1+ φ)lc
[8]

g = (2− φ)Jx E

(1+ φ)lc
h = (4+ φ)Jx E

(1+ φ)lc

p = − 12JxyE

(1+ φ)l 3
c

q = 6JxyE

(1+ φ)l 2
c

[9]

r = (4+ φ)JxyE

(1+ φ)lc
s= (2− φ)JxyE

(1+ φ)lc
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FIGURE 12
Cracked cross-section.

t = E A

la
u = G Jp

lt
[10]

w = t∗X∗gc3 k = −t∗Y∗g c3

m = a∗YgT
∗c1 n = b∗XgT

∗c1
[11]

i = t∗Xg
∗c2 j = t∗Yg

∗c2

The parameterφ accounts for the shear effects and is given
by

φ = 12E J

GSl2c
. [12]

E andG, respectively, are the Young’s modulus and the shear
modulus;S is the cross-section area. The various lengthslc, la,
and l t , which are responsible for the direct stiffnes-
ses, and the parametersc1, c2, andc3, which are responsible
for the cross-coupling terms, were tuned by means of the 3D
model.

The lengthslc, la, and l t represent the extent to which the
crack exerts its influence. The lengths are obviously related to
the depth of the crack, as shown in Figure 13, where the rel-
ative length (the ratio of lengthlc to diameter) is represented
as a function of the relative depth (the ratio of depth to di-
ameter). The cracked element can then be introduced into the
original beam element of lengthl . If length l is greater than
the maximum value amonglc, la, and l t , the stiffness of the
element is easily calculated as is its deflection due to exter-
nal loads in the various angular positions. If, on the contrary,
the original element is shorter than the same maximum value,
some additional processing ofKc(Ät) is required, as shown
below.

FIGURE 13
Equivalent lengthlc of the cracked beam.

DERIVATION OF LOCAL CRACK STIFFNESS
The rotation-dependent stiffness matrixKc of a cracked beam

element of lengthl (Fig. 14A) can be split into a stiffness matrix
with three different parts: the stiffness of two equal uncracked
beams of lengthl /2 combined with a “local” stiffness part com-
posed of “springs” that represent the crack (Fig. 14B).

These springs have an infinite stiffness when the crack is
closed and a finite stiffness when the crack is open. To extract
the local stiffness due to the crack from the total stiffness, it’s
necessary to introduce two additional nodes, L and R, which
represent, respectively, the left and right sides of the crack faces.

Denoting by 1 the initial node of the cracked beam element, by
2 its final node, and byX1 andX2 the vectors of the displacements
of nodes 1 and 2, respectively,Kc can be considered a 12× 12

FIGURE 14
Cracked beam.
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matrix that leads to the following equation:

[Kc]

{
X1

X2

}
=
[

[K11]

[K21]

[K12]

[K22]

]{
X1

X2

}
=
{

F1

F2

}
[13]

whereF1 andF2 represent the force vectors applied to the end
nodes of the beam. This matrix, being 1 and 2 external nodes of

FIGURE 15
(A) A 50%-depth crack after a 5-sec temperature transient on the outer surface of−100◦C/min, with external loads, at a

90-degree angle. (B) A 50%-depth crack after a 5-sec temperature transient on the outer surface of−100◦C/min, with external
loads, at a120-degree angle.(Continued)

the beam, has to be distinguished from local crack stiffnessKII

(Fig. 14B) corresponding to nodes L and R of the crack face:

[KII ] =
[

[KLL ]

[KLR]

[KLR]

[KRR]

]
. [14]
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FIGURE 15
(Continued) (C) 50%-depth crack after a 5-sec temperature transient on the outer surface of−100◦C/min, with external loads,

at a 150-degree angle. (D) A 50% depth crack after a 5-sec temperature transient on the outer surface of−100◦C/min,
with external loads, at a 180-degree angle.

Considering the stiffness matrix according to Figure 14B, the
following structure is produced:


[K11] [K1L] [ K1R] [K12]

[KL1] [ KLL ] [ KLR] [ KL2]

[KR1] [ KRL] [ KRR] [ KR2]

[K21] [ K2L] [ K2R] [ K22]




X1

XL

XR

X2

 =


F1

0

0

F2

 . [15]

This matrix can be reordered considering the external (E) and
internal (I) degrees of freedom of the beam element. Calling{

X1

X2

}
= XE,

{
XL

XR

}
= XI,

{
F1

F2

}
= FE, [16]

leads to [
[KEE][KEI]

[KIE] [KII ]

]{
XE

XI

}
=
{

FE

0

}
[17]



TRANSVERSE CRACK MODELING 125

whereKEI andKIE are the stiffness matrixes of the uncracked
beam elements of lengthl/2. Therefore,KII can be extracted
according to the following procedure, combining Equations (13)
with Equation (17):

KcXE = FE

KEEXE+ KEIXI = FE

KIEXE+ KII XI = 0 [18]

XI = K−1
II (−KIEXE)[

KEE− KEI
(
K−1

II KIE
)]

XE = KcXE

from which KII is extracted:

KII =
[
K−1

EI (KEE− Kc)K
−1
IE

]−1
. [19]

It is interesting to note that the resulting local stiffness matrix
KII does not show coupling terms between rotations and deflec-
tions, which instead exist in matrixKc. This result was expected,
considering that the local stiffnesses refer to a “beam” with zero
length.

The local stiffness matrix can then be introduced into the
cracked beam element removing any restriction about the
length of the element. The bow, which has been calculated with
the equivalent-lengthlc beam, generates a relative angular de-
flection of the end nodes; the same relative angular deflection
can be applied directly to the crack faces in the local crack
model.

VALIDATION OF THE BREATHING MECHANISM
MODEL BY TEMPERATURE GRADIENTS

Positive and negative gradients and their effects on 25%-
and 50%-depth cracks were considered. Because the dimen-
sions of the model are small, and the maximum statical bend-
ing stress reaches 6.5 N/mm2, a rather robust thermal transient
was applied in order to generate stresses of the same order of
magnitude.

Constant gradients of±100◦C/min and±20◦C/min were ap-
plied to the external surface of the cylinder, and the resulting
stresses and breathing behavior were calculated after 5 sec and
10 sec, respectively.

If the external load (bending plus torsion) is superposed onto
the thermal load, the following figures are obtained for the
50%-depth crack and the sharper temperature transient
(−100◦C/min after 5 sec): Figure 15 shows the situation cor-
responding to the following angular positions: 90, 120, 150, and
180 degrees.

For smaller angles, the crack is completely open; for an-
gles between 180 and 360 degrees; a symmetrical behavior
is found, as expected. Similar results are obtained for other
crack depths and other thermal transients. Note that the dark

blue zones indicate zones in which contact between the crack
faces occurs.

Although the agreement is not as good as it is in the case
of simple mechanical loading, it can be considered satisfac-
tory, bearing in mind that the actual stress distribution over
the cracked section deviates strongly from the superposition of
stresses used by the simplified linear model.

CONCLUSION
The thermal behavior of cracked round beams was analyzed

by means of a 3D nonlinear model. The temperature distribution
was unaffected by the crack, but the stress and strain distributions
were strongly influenced by the crack. This resulted in a bow of
the beam.

A 1D model for calculating temperature and axial stress dis-
tributions in an infinite cylinder was presented, and the results
of the axial stress distribution were used to calculate thermal
bows by means of a rough approximation. The acceptable level
of agreement with results obtained by means of the 3D nonlinear
model validated the proposed procedure.

Further, a 1D model of a crack was described; it allowed
cracks of various shapes to be modeled and thermal stresses to
be taken into account. The breathing mechanism obtained with
this 1D model was validated by 3D nonlinear calculations. The
good agreement obtained allows proposal of the 1D model as a
powerful tool for analyzing cracked rotors.

NOMENCLATURE
c1, c2, c3 cross-coupling stiffness coefficient tuning

parameters
cp specific heat
E Young’s modulus
F force vector
G shear modulus
H thermal exchange coefficient
Jx, Jy,Jxy second moments of area
k conduction coefficient
K stiffness matrix
Kc stiffness matrix of cracked beam element
l beam length
la equivalent length for the axial stiffness
lc length of the equivalent beam used to model the

crack
l t equivalent length for the torsional stiffness
M bending moments due to the weight and the bearing

alignment conditions of the rotor
Mx,My bending moments due to thermal stress distribution,

with respect to the fixed reference
MBx,MBy bending moments due to thermal stress distribution,

with respect to the main axes
r radial coordinate
T temperature
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Tm average section temperature
Trest temperature of the external surface
Tw fluid temperature
x, y fixed reference frame
x′, y′ reference system fixed on the rotor
x′m, y′m main axes
X displacement vector
Xg,Yg coordinates of the center of the area of the section
XgT,YgT coordinates of the center of the area of the section

that participates in the torsion
α linear thermal expansion
ϑ angular position of main axis of inertia
ν Poisson’s coefficient
φ parameter of the shear effect
ρ density
σ axial stress
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