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This article presents two experiences of applying a model-
based fault-identification method to real machines. The first
case presented is an unbalance identification in a 320 MW
turbogenerator unit operating in a fossil power plant. In the
second case, concerning a machine of the same size but from
a different manufacturer, the turbine has been affected by a
rub in the sealings. This time, the fault is modeled by local
bows. The identification of the faults is performed by means
of a model-based identification technique in a frequency do-
main, suitably modified in order to take into account simul-
taneous faults. The theoretical background of the applied
method is briefly illustrated and some considerations are
also presented about the best choice of the rotating speed set
of the run-down transient to be used for an effective iden-
tification and about the appropriate weighting of vibration
measurements at the machine bearings.
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Fault detection and diagnosis in rotating machinery is a very
important topic of rotordynamics, and many studies are present
in the literature. A complete review of the fault types considered,
of the identification methods employed, of the machine types,
and of the case histories would require a very long listing, but
some useful references can be obtained from Isermann (1995),
who has presented a detailed survey of the possible methods that
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can be employed in general technical processes, for both detec-
tion and diagnosis. By restricting the investigation to rotordy-
namics and limiting the research to the most recent contributions
to the literature, two main approaches can be discussed.

In the first approach, the symptoms can be defined using
qualitative information based on human operators’ experience,
which creates a knowledge base that can be used for fault de-
tection. A recent contribution is stated by White and Jecmenica
(1999): an expert system can be built up in which various diag-
nostic reasoning strategies can be applied. Fault-symptom ma-
trixes, fault-symptom trees, if/then rules, or fuzzy logic classifi-
cations can be used to indicate, using a probabilistic approach,
most probable the type and sometimes also the size and the lo-
cation of the fault. Also, artificial neural networks can be used
to create symptom/fault correlations or to forecast vibrational
behavior (Zanetta and Gregori 2001). This qualitative diagnos-
tic approach is widely used in both industrial environments and
advanced research work.

The second approach is quantitative and is called the model-
based fault-detection method. In this case, a reliable model of the
system, or of the process, is used to create the symptom fault cor-
relation, or the input/output relationship. However, this method
has many different forms of application. Among the recent con-
tributions to the literature are Mayes and Penny (1999), who
introduce a fuzzy clustering method the basis of which is consid-
eration of the vibration data as a high-dimension feature vector;
the vibration caused by a particular fault on a specific machine
can be considered to be a point in this high-dimension space. This
same fault, on a number of similar machines, should produce a
cluster of points in the high-dimension space that is distinct from
other clusters produced by different faults. The main drawback
of this method is the availability of a large database on the dy-
namic behavior of similar machines, which can emphasize the
differences in the responses of similar machines.

In other applications, fault detection can be performed by
means of various mode-based approaches, according to the
nature of the system under observation.
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• In parameter estimation, the characteristic constant pa-
rameters of the process or of the components are af-
fected by the fault.

• In state estimation, the constant parameters are
unaffected by possible faults and only the state of the
system, which is represented by a set of generally un-
measurable state variables (functions of time), is af-
fected by the faults; in this case the model acts as a
state observer.

• In parity equations, the faults affect some of the unmea-
surable input variables, the parameters are constant,
and only the output variables are measured and com-
pared with calculated model output variables.

Therefore, the fault can be identified on the basis of esti-
mation of parameter or state or on the basis of parity equations.

A modal expansion of the frequency-response function of the
system, on both the numerical model and the experimental re-
sults, is used in Kreuzinger-Janik and Irretier (2000) to identify
the unbalance distribution on a test rig rotor. In Markert and
colleagues (2000) and Platz and colleagues (2000), the authors
present a model and simulated results in which equivalent loads
due to the faults (rubbing and unbalances) are virtual forces and
moments acting on the linear undamaged system model to gener-
ate a dynamic behavior identical to the measured behavior of the
damaged system. The identification is then performed by least
squares fitting in the time domain. In Edwards and colleagues
(2000), a model-based identification in the frequency domain
is employed to identify an unbalance on a test rig. A balancing
method for nonlinear rotor bearing systems with hydrodynamic
bearings, which uses the unbalance response measured at a dis-
crete number of measurement planes is presented in Chen and
colleagues (2001) and applied to numerical results. In Patton
and colleagues (2001), a complex framework of model-based
identification techniques is applied to numerical results of a gas
turbine.

A more comprehensive approach, which is able to identify
several different types of faults and to discriminate among faults
that generate similar harmonic components, has been introduced
in Bachschmid and Pennacchi (2000). This method has been ex-
perimentally validated on various test rigs and on some real ma-
chines (Bachschmid et al. 1999, 2000a, 2000b, 2000c, 2000d;
Vania et al. 2001) with many types of faults, such as unbalances,
rotor permanent bows, rotor rubs, coupling misalignments,
cracks, journal, ovalization, and rotor stiffness asymmetries.

However, in all the literature, with few exceptions, the pro-
posed methods are tested only numerically or on small-scale test
rigs. This is normally due to the possibility of easy evaluation of
the actual fault, especially as regards unbalance. In this article,
a model-based identification method in the frequency domain,
able to handle also multiple simultaneous faults, is applied to
experimental data of two different 320 MW turbogenerators.

In the first case study, an unbalance identification is presented,
even if this case would be more correctly described as a balanc-

ing mass identification. Because in this case it was possible to
know all the fault-relevant parameters—position, module, and
phase—a rather accurate sensitivity analysis was performed; it
considered various models of the rotor, tuned on to one of the
experimental critical speeds, various rotating speed sets and op-
timization weights for the vibrations in the bearings of the ma-
chine, and also the nodes where these vibrations were measured.

In the second case, a rub on a Low Pressure (LP) turbine is
presented. In this case, the location of the rub remained unclear;
the most probable location was close to bearing 3 or 4. Only the
visual inspection made during the maintenance of the machine
that followed its stopping allowed discovery of exactly where
the rub had occurred.

MODEL-BASED IDENTIFICATION OF MULTIPLE FAULTS
IN THE FREQUENCY DOMAIN

In the model-based identification procedure, input variables
are the exciting forces, and output variables are the vibrations.
The procedure requires definition of the elements (rotors, bear-
ings, supporting structure) that compose the rotor system. A
finite-beam element was assumed for the rotor; the bearings were
represented by their stiffness and damping matrixes (therefore,
nonlinear oil-film effects are neglected); and several representa-
tions were used for the foundation, such as modal, elastodynamic
matrix, or lumped springs and dampers. Also, the effect of the
faults had to be modeled, and that was done by introducing an
equivalent system of external forces and moments. A more de-
tailed analysis is reported in Bachschmid and colleagues (2000b,
2002).

As regards the experimental data, vibration differences be-
tween a reference case and the considered case were used. That
way, if the system could be considered linear, the vibrational be-
havior would have been due to the developing fault only. In fact,
with reference to the standard matrix equation of the system

Mẍt + Dẋt + Kx t = F(t). [1]

The arising fault causes changesdM , dD, anddK in mass
M , dampingD, and stiffnessK matrices. In real machines only
a few measuring points along the shaft, usually in the bearings,
are available, so it seems difficult to identify these changes from
the measurement of vibrationxt . Equation (1) yields

(M + dM )ẍt+(D+ dD)ẋt+(K + dK )xt =W+(U+Mu)eiÄt

[2]

in which the right hand side (rhs) external forcesF(t) are gener-
ally unknown, because they are composed by the weight (which
is known) and by the original unbalance and bow (which are
unknown). If the system is considered to be linear, then the to-
tal vibrationxt can be split in two terms which can be simply
superposed:

xt = x1+ x. [3]
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The first vibration vectorx1 is due to the weightW as well as
to the unknown unbalance forceU eiÄt and unbalance moment
Mu eiÄt . The second termx is due to the fault. The component
x may be obtained by calculating the vector differences of the
actual vibrationsxt (due to weight, original unbalance, and fault)
minus the original vibrationsx1 measured, in the same operating
conditions (rotation speed, flow rate, power, temperature, etc.)
before the fault occurrence. Recalling the definition ofx1, the
pre-fault vibration, following equation holds:

M ẍ1+ D ẋ1+ K x1 =W + (U+Mu) eiÄt [4]

which substituted in Equation (2) gives:

M ẍ+ D ẋ+ K x = −dM ẍt − dD ẋt − dK x t [5]

The r.h.s. of Equation (5) can be considered as a system of
equivalent external forces, which force the fault-free system to
have the change in vibrations defined byx, that is due to the
developing fault only:

M ẍ+ D ẋ+ K x = F f (t) [6]

Using this last approach, the problem of fault identification is
then reduced to a force identification procedure with known sys-
tem parameters, keeping in mind that a particular force system
corresponds to each type of fault considered. Since the final goal
is the identification of faults, this approach is preferred since only
few elements of the unknown fault forcing vector are in reality
different from zero, which reduces significantly the number of
unknowns to be identified. In fact, the forces that model each
fault are considered to be applied in not more than two different
nodes along the rotor. If we consider a steady-state situation,
keeping in mind that also a slow run down transient can be con-
sidered to be a succession of steady-state situations, assuming
linearity of the system and applying the harmonic balance cri-
teria from Equation (6), we get, for each harmonic component,
the equations:[−(nÄ)2 M + inÄD+ K

]
Xn = F fn(Ä) [7]

where the force vectorF fn , has to be identified. This force vector
could be function ofÄ or not depending on the type of the fault.
If the presence of several faults (f.i.m faults) is considered, then
the force vectorF fn is composed by several vectorsF(1)

fn
, F(2)

fn
,. . . ,

F(m)
fn

:

F fn(Ä) =
m∑

i=1

F(i )
fn

(Ä) [8]

Generally the fault identification procedure is started when
the vibration vector change exceeds a suitable pre-established
acceptance region; in this case it is more likely that the change
in the vibrational behaviour is really caused by an impeding
fault only. Anyway, multiple faults may occur in real machines;

sometimes a bow (due to several different causes) and an unbal-
ance or a coupling misalignment may develop simultaneously.
Another case of multiple fault identification can be considered
when the reference situationx1 is not available. Then the arising
fault is superposed on the original unbalance and bow distribu-
tion. In this case also multiple fault identification may be useful
for selecting the developing fault and the original unbalance and
bow.

Few spectral componentsXn in the frequency domain (gen-
erally not more than three, in the absence of rolling bearings and
gears), measured in correspondence with the bearings, represent
completely the periodical vibration time history.

Moreover, thekth fault acts on few degrees of freedom (dofs)
of the system, so that the vectorF(k)

fn
is not a full-element vector;

it is convenient represent it by

F(k)
fn

(Ä) = [F(k)
L

]
A(k)(Ä) [9]

where [F(k)
L ] is the localization vector, which has all null ele-

ments except for the dof to which the forcing system is applied,
andA(k)(Ä) is the complex vector of the identified defects. The
localization vector gives the position of the fault along the ro-
tor and expresses the link between the force fault system and
the modulus and phase of the identified fault that has produced
it.

Many fault models have been introduced that correspond to
common faults that occur in real machines; see, for example,
Bachschmid and Pennacchi (2000), Bachschmid and colleagues
(2002), and Platz and Markert (2001). For this article, it is suf-
ficient to consider only the unbalance and the rub.

The unbalance has only a 1× revolution component. The
complex vector of the generalkth fault force system becomes,
in this case,

F(k)
f1
= [0 ... 1 0 i 0

... 0
]T · (mr)(k)Ä2eiϕ(k)

= [F(k)
L

]
A(k)(Ä) [10]

where the only elements different from zero are the ones rela-
tive to the horizontal and vertical dof of the nodej , where the
unbalance is supposed to be applied. Note that in this
case the fault force system is a function of the rotating
speedÄ.

Rub modeling is not as straightforward as unbalance model-
ing. Often nonlinear effects are present, and characteristic behav-
iors like the Newkirk effect can be observed (Bachschmid et al.
2001; Kellenberger 1980; Liebich 1998; Vania et al. 2001). In
general, rub determines an asymmetrical heating of a symmetri-
cal rotor, which causes an asymmetrical axial strain distribution
on the cross-section and the shaft bows. The asymmetrical heat-
ing can be localized when it is due to a full annular rub (local
bow), or can extend to a certain length of the rotor, as in a gen-
erator when a cooling duct is obstructed (extended bow). For di-
agnostics purposes, a bow can be simulated, generally in a fairly
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accurate way, by imposing on the rotor, in only two nodes of
the model, a suitable system of rotating and speed-independent
bending moments. These generate the same (polarly asymmet-
rical) strains, the same static deflection and, dynamically, at the
operating speed, the total vibration of the shaft. Therefore, in
each one of the two nodes of the finite element model (the ex-
tremity nodes of the part of the rotor that is affected by the bow)
only one rotating moment is applied in order to have an easier
identification procedure.

The complex vector of the fault force systemF(k)
f1

, which

simulates thekth bow, and the corresponding [F(k)
L ] and A(k)

become

[
F(k)

L

] = [0 ... 0 i 0 1
... 0

... 0 −i 0 −1
... 0

]T
A(k) = M (k)eiϕ(k)

[11]

where the only elements different from zero are the ones rela-
tive to the horizontal and vertical rotational dof of two nodes.
However, in this case the diagnostic significance of the identi-
fied fault is mainly in its location, whereas the bending moments
cannot be used directly because they do not correspond to any-
thing actually measured on the machines. But they can be used
to simulate the machine’s behavior and compare it with the ex-
perimental one.

Finally, Equation (7) can be rewritten, for each harmonic
component, in the following way:

[E(nÄ)]Xn =
m∑

i=1

F(i )
fn

(Ä) = F fn(Ä) [12]

where [E(nÄ)] is the system’s dynamical stiffness matrix for
the speedÄ and for thenth harmonic component. Nowadays,
experimental vibration data from real machines (Gregori et al.
2000) are commonly collected by condition-monitoring systems
and are available for many rotating speeds, typically those of the
run-down transient that, in the large turbogenerators of power
plants, occurs with slowly changing speed due to the high inertia
of the system, so that actually the transient can be considered as
a series of different steady-state conditions. This allows use of
these data in the frequency domain. The identification method
can be applied for a set ofp rotating speeds that can be organized
as a vector:

Ω = [Ä1Ä2 · · ·Äp]T. [13]

Then the matrix and vectors of Equation (12) have to be
expanded:

[E(nΩ)] Xn =


E(nÄ1) 0 0 0

0 E(nÄ2) 0 0
...

...
...

...

0 0 0E(nÄp)




Xn

Xn

...

Xn



=



m∑
i=1

F(i )
fn

(Ä1)

m∑
i=1

F(i )
fn

(Ä2)

...
m∑

i=1
F(i )

fn
(Äp)


= F fn(Ω) [14]

From a formal point of view, it is unimportant to consider one
or p rotating speeds in the identification. The fault vector is the
sum of all the faults that affect the rotor, as stated in Equation (8).
Matrix [E(nΩ)] can be inverted and Equation (12) becomes

Xn = [E(nΩ)] −1 · F fn(Ω) = αn(Ω) · F fn(Ω) [15]

whereαn(Ω) is the inverse of [E(nΩ)]. Reordering in a suitable
way the lines in Equation (15) by partitioning the inverse of the
system’s dynamic stiffness matrix and omitting fromαn andF fn
the possible dependence onΩ for conciseness, we obtain{

XBn = αBn · F fn

X An = αAn · F fn

[16]

whereXBn is the complex amplitude vector representing the
measured absolute vibrations in correspondence with the mea-
suring sections, andX An is the vector of the remaining dof of
the rotor system model.

Using the first part of Equation (16), the differencesδn, be-
tween calculated vibrationsXBn and measured vibrationsXBmn

can be defined, for each harmonic component, as

δn = XBn − XBmn = αBn · F fn − XBmn [17]

The number of equationsnE (the number of measured dofs)
is lower than the numbernF (the number of dofs in the complete
system model), which is also the number of elements ofF fn . But,
as noted before,F fn becomes a vector with many null elements,
even if the fault is single, so the number of unknown elements
in F fn is smaller than the number of equations. The system,
therefore, does not have a single solution for all the equations
and it is necessary to use the least squares approach in order to
find the solution (identified fault) that minimizes the differences
that are calculated for all the different rotating speeds that have
been taken into consideration. Moreover, it is useful to introduce
also a weighting of each of the measured vibrations so as to give
less relevance to those that are not significant or can be affected
by errors.

A scalar relative residue may be defined by the root of the ratio
of the squaredδn divided by the sum of the squared measured
vibration amplitudesXBmn :

δrn =
(

[αBn · F fn − XBmn ]
∗T[αBn · F fn − XBmn ]

X∗TBmn
XBmn

)1/2

. [18]
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FIGURE 1
Residue surface.

By means of the hypothesis of localization of the fault, the
residue is calculated for each possible node of application of
each defect. This implies that if we indicate withzk the abscissa
along the rotor in correspondence to thekth fault amongm faults,
the relative residue in Equation (18) is a surface in aRm+1 space;
in other terms,

δrn = f (z1, z2, . . . , zk, . . . , zm). [19]

The place where the residue reaches its minimum—that is, the
minimum of the surface in Equation (19)—is the most probable

FIGURE 2
320 MW turbogenerator model used for unbalance identification.

location of the fault. Figure 1 shows a sample of a residue surface
in a case of two faults.

The corresponding values ofF fn give the modulus and the
phase of the identified faults. The identification procedure is
implemented by the code ADVANT (automatic diagnosis by vi-
bration analysis of turbogenerator rotors), which has been used
in the case studies presented in the paper. The relative residue
also gives an estimate of the quality of the identification, be-
cause the closer to zero its value, the better the identified fault
corresponds to the actual one; this follows easily from analysis
of Equation (18).
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IDENTIFICATION OF UNBALANCE ON A 320 MW
TURBOGENERATOR

The first case presented concerns a 320 MW turbogenerator
(Fig. 2) composed of two turbines, a high-intermediate pressure
(HP-IP) and an LP, and a generator connected by rigid couplings,
on seven oil-film bearings, of which those on the HP-IP turbine
are tilting pads, those on the LP turbine are cylindrical, the first
two on the generator are lemon-shaped, and the last two are
tilting pads; it is operating at a rated speed of 3000 rpm. The
rotor, which is about 28 m long and has a mass of about 131 tons
(the HP-IP turbine 26 t , the LP turbine 53 t, and the generator
52 t), has been modeled by 167 beams. The bearing stiffness
and damping coefficients are defined for several rotating speeds
in the range 300–3000 rpm, and the foundation is modeled by
mass, spring, and damper systems whose parameters are defined
for several rotating speeds, also in the range 300–3000 rpm.

The ADVANT code has been employed on this machine to
identify a force due to a mass added for balancing, which was
performed by adding a 630-g mass at a radial distance of 406 mm
from the rotating axis, thus producing an unbalance of 0.256 kg
on the coupling between the LP turbine and the generator, on the
coupling face toward the generator. The corresponding model
node is 132, and, considering the ADVANT code angle conven-
tion, the phase is−22.5◦ (Fig. 3).

The experimental data sets available for this turbo group are
related to four different run-downs of the machine in normal op-
erating conditions, two of which are considered reference cases,
as they were made before the balancing, and the other two of
which are the faulty cases, as they were made after the balancing.
Before using them for the identification, the data were screened,
taking into account the values of the vibration differences on all
the possible combinations between the reference and the faulty
cases. Then, only four typical rotating speeds were considered
(1500, 2000, 2500, and 3000 rpm) and were equally spaced in
the frequency range in which the system response to unbalance
is significant; the effect of the balancing mass at lower rotating
speed could not be appreciable. The analysis has given follow-
ing results in terms of percentage of deviation from the average
of the four vibration differences:

TABLE 1
Unbalance Case Experimental and Model Critical Speeds for the Turbines and the Generator

HP-IP turbine LP turbine Generator

1st 2nd 1st 2nd 1st 2nd

H V H V H V H V H V H V

Experimental 1560 1580 >3000 >3000 1230 1770 2350 ? 825 ? 2175 2565
Model A 1830 1830 3850 3850 1570 1470 3380 3230 1000 980 2710 2620
Model B 1600 1640 4470 4490 1480 1690 3130 3530 900 1010 2150 2550
Model C 1580 1630 4450 4490 1260 1690 2390 2850 860 1010 2170 2560
Model D 1570 1630 4450 4490 1260 1690 2490 3390 870 1010 2170 2550
Model E 1580 1620 4440 4490 1260 1680 2370 3310 870 1010 2170 2550

FIGURE 3
Balancing mass position.

• Maximum absolute deviation on all the vibrations
(normalized on bearing number 1, vertical vibration):
296%

• Minimum absolute deviation on all the vibrations (nor-
malized on bearing number 5, vertical vibration): 1.34%

• Maximum average deviation on all the vibrations and
all the differences: 168%

• Minimum average deviation on all the vibrations and
all the differences: 6%

• Average deviation on all the vibrations and all the dif-
ferences: 48%

• Average deviation on all the vibrations of bearings
numbers 1, 2, and 7 and all the differences: 83%

• Average deviation on all the vibrations of bearings
numbers 3, 4, 5, and 6 and all the differences: 22%

This analysis suggests giving a small weight to or not con-
sidering at all the data of bearings 1, 2, and 7 and indicates that
the expected result of the identification cannot be considered an
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FIGURE 4
320 MW turbogenerator, model of mode shape corresponding

to LP turbine, second critical speed in horizontal direction.

FIGURE 5
320 MW turbogenerator, model of mode shape corresponding

to LP turbine, second critical speed in vertical direction.

FIGURE 6
320 MW turbogenerator, model of mode shape corresponding

to generator, second critical speed in horizontal direction.

FIGURE 7
320 MW turbogenerator, model of mode shape corresponding

to generator, second critical speed in vertical direction.

TABLE 2
Experimental and Model Critical Speeds for

the Mode with Maximum on Coupling LP Generator

H V

Experimental >3000 >3000
Model A >5000 >5000
Model B 4220 >5000
Model C 4170 >5000
Model D 4150 >5000
Model E 4140 >5000

absolute value but should be related to the quality of the exper-
imental data. In this case, by excluding the data of bearings 1,
2, and 7, the quality can be measured by the 22% of the average
deviation in all the vibrational differences.

Then the rotor machine model was tuned, using the DYNARO
(dynamic analysis of rotors) code, and various models were pre-
pared. By considering the experimental results (Table 1), it was
not possible to identify exactly all the critical rotating speeds on
the turbogenerator under consideration. In particular, the second
critical speed of the LP turbine in the vertical direction, which on
this kind of machine is in the range of 10%, more or less, of the
operating speed, was not identified. Also the critical speeds in the
horizontal and vertical directions of the second mode of the HP-
IP turbine were not identified. Moreover, it is worth noting that
the frequency response in the range of 2500–3000 rpm is due pri-
marily to a mode with a maximum on the coupling between the
LP turbine and the generator, whose critical speed is higher than
3000 rpm.

Five different models of the rotor were considered; they are
different from each other in terms of the critical speeds of the
rotor sections (see Table 1) and sometimes of the modal damp-
ings. Model A had already been used in previous analyses,
because it is one of the most common in Italian power sta-
tions and had not been tuned at all before being implemented
in ADVANT. Model B through model E are more carefully
tuned based on the experimental data and differ especially in
the values of the second critical speeds of the LP turbine. As
an example, Figures 4 through 7 show some mode shapes for
model E obtained by DYNARO. Table 2 reports also the criti-
cal speed values corresponding to the mode (Figure 8) that has

FIGURE 8
320 MW turbogenerator, model of mode shape corresponding

to mode with maximum on the coupling between the LP
turbine and the generator.
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a maximum on the coupling between the LP turbine and the
generator.

As regards the choice of the rotating speed set at which
the corresponding measures are used for the identification, the
above mentioned set of 1500, 2000, 2500, and 3000 rpm—all
the speeds available—were employed.

Several identifications have been preformed using ADVANT,
considering different models of the rotor, weights of the exper-
imental data, rotating speed sets, and measuring planes. As re-
gards the latter aspect, the element of the model in which the
experimental measures are considered to have been taken, two
hypotheses have been introduced: in the first case, the position of
the measuring plane is in the middle of the bearing; in the second
case, it is as close as possible to the actual measuring plane.

The unbalance identification results are shown in Table 3,
where the weights used for the horizontal and vertical measures
in the bearings are also reported. The differences in the amplitude
between the balancing mass and the identified unbalance are nor-
malized to the balancing mass value, while the phases are norma-
lized to 180 degrees (a 100% error is a 180-degree phase error).

TABLE 3
Unbalance Identification Results

Weights on the bearing
measure

Rotating Measuring Amplitude 1 1

Model speed set (rpm) 1 23 4 5 6 7 section Node (kg) amplitude Phase phase Residue

Actual unbalance 132 0.256 −22.5◦

Model A All the available H 1 1 1 1 1 1 1 Brg. 132 0.720 181% −28.4◦ −3% 0.607
V 1 1 1 1 1 1 1

Model B All the available H 1 1 1 1 1 1 1 Brg. 131 0.290 13% −35.8◦ −7% 0.710
V 1 1 1 1 1 1 1

Model B 1500, 2000, 2500, H 0.5 0.5 1 1 1 1 0.5 Brg. 131 0.535 109% −36.7◦ −8% 0.600
3000 V 0.5 0.5 1 1 1 1 0.5

Model C All the available H 0.1 0.1 1 1 1 1 0.1 Brg. 133 0.143 −44% −15.0◦ 4% 0.810
V 0.1 0.1 1 1 1 1 0.1

Model C 1500, 2000, 2500, H 0.1 0.1 1 1 1 1 0.1 Brg. 132 0.366 43% −34.2◦ −7% 0.672
3000 V 0.1 0.1 1 1 1 1 0.1

Model D All the available H 0 1 1 1 1 1 0 M.s. 133 0.212 −17% −27.5◦ −3% 0.685
V 0 1 1 1 1 1 0

Model D 1500, 2000, 2500, H 0.1 0.1 1 1 1 1 0.1 Brg. 132 0.385 50% −36.8◦ −8% 0.657
3000 V 0.1 0.1 1 1 1 1 0.1

Model D 1500, 2000, 2500, H 0.1 0.1 1 1 1 1 0.1 M.s. 132 0.339 32% −39.8◦ −10% 0.588
3000 V 0.1 0.1 1 1 1 1 0.1

Model D 1500, 2000, 2500, H 0.1 1 1 1 1 1 0.1 M.s. 133 0.358 40% −40.7◦ −10% 0.567
3000 V 0.1 1 1 1 1 1 0.1

Model D 1500, 2000, 2500, H 0 0 0 0 0 0 0 M.s. 50 0.0967 −62% −42.6◦ −11% 0.704
3000 V 0 1 1 1 1 1 0

Model E All the available H 0 1 1 1 1 1 1 M.s. 133 0.188 −27% −23.8◦ −1% 0.740
V 0 1 1 1 1 1 1

Model E 1500, 2000, 2500, H 0 1 1 1 1 1 0 M.s. 132 0.363 42% −39.3◦ −9% 0.560
3000 V 0 1 1 1 1 1 0

Brg, measuring plane in the middle of the bearing: M.s., measuring plane as close as possible to the actual one.

As an example, Figure 9, shows the residues along the ro-
tor for the last case in Table 3, with model E. Note the sharp
minimum corresponding to the node of the identified fault.

The comparisons between experimental and calculated re-
sults for bearings 3, 4, 5, and 6, using the parameters of the
identified fault in the last case, are shown in Figures 10 through
13. The results can be deemed good in the vertical direction,
whereas in horizontal direction the calculated results generally
underestimate the amplitude corresponding to the second critical
speed, even with good behavior on the phase.

The results summarized in Table 3 can be considered ac-
ceptable, in particular, the use of the no-tuned model A, which
allowed the position of the fault and its phase to be identified
correctly, even if the amplitude was overestimated; the use of
few measuring points (as in the last case, model D) produces
completely wrong results.

Better results could have been obtained by means of a more
accurate tuning of the models that was not possible due to the
difficulty of determining some of the critical speeds in the experi-
mental data. Anyway, the position of the fault is always identified
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FIGURE 9
Unbalance identification; residue along the rotor as calculated by ADVANT.

FIGURE 10
Unbalance identification; comparison between experimental and calculated results for bearing 3.
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FIGURE 11
Unbalance identification; comparison between experimental and calculated results for bearing 4.

with high accuracy, and the error in the phase is never greater
than 20 degrees. The identified amplitude results are more sensi-
tive to the model-tuning and the rotating speed set, but the error
is acceptable from an engineering point of view.

ROTOR RUB IDENTIFICATION IN A 320 MW
TURBOGENERATOR

The second case concerns another 320 MW turbogenerator
(Fig. 14) composed of two turbines, an HP-IP and a LP, and a

FIGURE 12
Unbalance identification; comparison between experimental and calculated results for bearing 5.

generator connected by rigid couplings, on seven oil-film bear-
ings of which those on the HP-IP turbine are bilobed and the
others lemon-shaped, operating at a rated speed of 3000 rpm.
The rotor, which also in this case is about 28 m long and has
a mass of about 120 t (the HP-IP turbine, 22 t; the LP tur-
bine, 52 t; and the generator, 46 t), has been modeled by 132
beams. The bearing stiffness and damping coefficients are de-
fined for rotating speeds of 1000, 2000, and 3000 rpm, while
the foundation is modeled by mass, spring, and damper systems
whose parameters are defined only at 3000 rpm and therefore are
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FIGURE 13
Unbalance identification; comparison between experimental and calculated results for bearing 6.

considered to be constant for all the rotating speeds used for the
identification.

The available experimental data are relative to two machine
run-downs, of which the first was considered the reference case
and the second the consequence of a suspected rub. Analysis
of the latter data indicated as the possible rubbing sections the
two sealing zones close to both last stages of the LP turbine
(Fig. 14).

Also in this case it was not possible to fine-tune the rotor
model. In fact, neither the analyses of the two experimental data
sets on this turbogenerator nor those of a similar turbogenerator
in another plant allowed correct identification of all the critical
speeds, as reported in Table 4. This notwithstanding, by com-
bining these data, a model that can reproduce approximately
the average speeds of the two similar turbogenerators has been
implemented in ADVANT. No tuning was made on the modal
dampings of the model.

First, an identification of a single local bow, corresponding
to a rub, was performed.

The results are reported in Figure 15 and shows that the hy-
pothesis of a rub in the last stage of the LP turbine, close to

FIGURE 14
320 MW turbogenerator model used for unbalance identification.

bearing 4, was confirmed. Figure 16 shows the approximate po-
sitions of the sealings on the LP turbine and it can be easily
confirmed that sealing 4 is in the identified position of the rub.

Then, the identification of two local bows, looking also for a
possible rub in the last stage of the LP, close to bearing 3, was
not successful because the second local bow was located on the
generator whereas the first was practically in the same section
as before (Fig. 17) even if in this case, the residue value was less
than that of previous identification.

A further identification was made in looking for a local bow
(a rub) and an extended bow on a certain length of the rotor.
The results, shown in Figure 18, show that the rub was again
identified in sealing 5, close to the last stage of LP turbine,
but the LP turbine also presents an extended bow. Also, in this
case the residue value is less than that of a single local bow.
Figures 19 and 20 show the comparison between experimen-
tal vibrations and calculated vibrations on the bearings of the
LP turbine. The agreement can deemed good, considering that
the model is not tuned and that the quality of the experimental
data is fair. The final validation of the identification procedure
was obtained by the result of the visual inspection during the
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TABLE 4
Rotor Pub Case: Experimental Critical Speeds for the Turbines and the Generator

HP-IP turbine LP turbine Generator

1st 2nd 1st 2nd 1st 2nd

H V H V H V H V H V H V

Rubbing turbogenerator ? 2020 ? ? 1000 1460 2200 2870 833 ? 1800 ?
Similar turbogenerator 1300 1800 ? ? ? 1440 ?>3000 1010 1215 2200 2800

maintenance, which indicated the rub in the sealing close to the
LP last stage.

CONCLUSIONS
A multiple-model–based fault-identification method has

been described, and two successful and interesting applications
of the procedure, on experimental data from turbogenerators
in power plants, have been shown. In the first case, data rel-
ative to a balancing on a 320 MW turbogenerator was used,

FIGURE 15
Residue along the rotor as calculated by ADVANT for a single rub.

and some considerations are presented regarding the choice
of the rotating speed set for the identification. In the second
case, the real machine, again a 320 MW turbogenerator but
from a different manufacturer, presented a rub in a sealing,
and the proposed method allowed identification of the posi-
tion of the rub, as confirmed by subsequent maintenance in-
spection of the machine. In both cases, the proposed technique
was effective in detecting the fault, even if the models of the
machines were not fine-tuned, as often occurs in cases of real
machines.
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FIGURE 16
Sealing position on right hand side of the LP turbine.

FIGURE 17
Residue map of the rotor as calculated by ADVANT for a double rub.
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FIGURE 18
Residue along the rotor as calculated by ADVANT for a single rub and an extended bow.

FIGURE 19
Rub and bow identification; comparison between experimental and calculated results for bearing 3.
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FIGURE 20
Rub and bow identification; comparison between experimental and calculated results for bearing 4.

NOMENCLATURE
A(k) complex vector of thekth fault
D damping matrix
dD damping matrix change due to faults
dK stiffness matrix change due to faults
dM mass matrix change due to faults
[E(nÄ)] system dynamical stiffness matrix
F force vector
F f force vector due to faults
F f n nth force vector harmonic component due to faults
[F(k)

L ] localization vector of thekth fault
F force amplitude
K stiffness matrix
M moment vector, mass matrix
Mu original bow of the rotor
M moment amplitude
m number of faults, unbalance mass
n number of the harmonic component
r distance of the unbalance mass from the rotating axis
U original unbalance of the rotor
W rotor weight
X vector of vibration harmonic component
X An partition of Xn for the nodes not corresponding to

measuring points
XBn partition ofXn for the nodes corresponding to mea-

suring points
Xn nth vibration harmonic component
Xst static deformation
x vibration due to fault only
xt rotor total vibration
x1 vibration due to weight original unbalance and bow
z rotor axial abscissa
αn inverse of [E(nÄ)]

αBn partition ofαn for the nodes corresponding to mea-
suring points

αAn partition of αn for the nodes not corresponding to
measuring points

δn difference between calculated and measured vibra-
tions

δrn relative residue
ϕ phase
Ω vector of rotating speeds
Ä rotating speed, frequency
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Kellenberger, W. 1980. Spiral vibrations due to the seal rings in turbo-
generators: thermally induced interaction between rotor and stator.
Journal of Mechanical Design. 102:177–184.

Kreuzinger-Janik, T., and Irretier, H. 2000, September. Unbalance
identification of flexible rotors based on experimental modal

analysis, 335–346.IMechE, 7th International Conference on Vibra-
tions in Rotating Machinery.Nottingham, England: University of
Nottingham.

Liebich, R. 1998, September. Rub-induced non-linear vibrations con-
sidering the thermo-elastic effect, 802–815.IFToMM 5th Inter-
national Conference on Rotor Dynamics. Darmstad, Germany:
Darmstadt University of Technology.

Markert, R., Platz, R., and Siedler, M. 2000, March. Model-based fault
identification in rotor systems by least squares fitting, 901–915.
ISROMAC-8 Conference. Honolulu, Hawaii: Texas A&M Univer-
sity.

Mayes, I., and Penny, J. E. T. 1999, July. Model-based diagnostics of
faults in rotating machines, -–-12th International Congress on Con-
dition Monitoring and Diagnostic Engineering Management, CO-
MADEM 99. Sunderland, UK: COMADEM International.

Patton, R. J., Simani, S., Daley, S., and Pike, A. 2001, October. Identifi-
cation and model-based fault diagnosis of a gas turbine system, 27–
48.Survelliance 4: Acoustical and Vibratory Surveillance Methods
and Diagnostic Techniques. Compiégne, France: Soci´eté Françoise
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de Mécaniciens.

White, M. F., and Jecmenica, M. 1999, July. Fault diagnosis using
a fault matrix incorporating fuzzy logic, xxx–xxx.12th Interna-
tional Congress on Condition Monitoring and Diagnostic Engineer-
ing Management, COMADEM 99. Sunderland, UK: COMADEM
International.


