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ARTICLE OPEN

Early-life stress lastingly impacts microglial transcriptome and
function under basal and immune-challenged conditions
Kitty Reemst1,5, Laura Kracht 2,5, Janssen M. Kotah 1,5, Reza Rahimian 3,4,5, Astrid A. S. van Irsen 1,
Gonzalo Congrains Sotomayor1, Laura N. Verboon1, Nieske Brouwer2, Sophie Simard3,4, Gustavo Turecki 3,4, Naguib Mechawar 3,4,
Susanne M. Kooistra2, Bart J. L. Eggen 2,6 and Aniko Korosi 1,6✉

© The Author(s) 2022

Early-life stress (ELS) leads to increased vulnerability to psychiatric disorders including depression later in life. Neuroinflammatory
processes have been implicated in ELS-induced negative health outcomes, but how ELS impacts microglia, the main tissue-resident
macrophages of the central nervous system, is unknown. Here, we determined the effects of ELS-induced by limited bedding and
nesting material during the first week of life (postnatal days [P]2–9) on microglial (i) morphology; (ii) hippocampal gene expression;
and (iii) synaptosome phagocytic capacity in male pups (P9) and adult (P200) mice. The hippocampus of ELS-exposed adult mice
displayed altered proportions of morphological subtypes of microglia, as well as microglial transcriptomic changes related to the
tumor necrosis factor response and protein ubiquitination. ELS exposure leads to distinct gene expression profiles during microglial
development from P9 to P200 and in response to an LPS challenge at P200. Functionally, synaptosomes from ELS-exposed mice
were phagocytosed less by age-matched microglia. At P200, but not P9, ELS microglia showed reduced synaptosome phagocytic
capacity when compared to control microglia. Lastly, we confirmed the ELS-induced increased expression of the phagocytosis-
related gene GAS6 that we observed in mice, in the dentate gyrus of individuals with a history of child abuse using in situ
hybridization. These findings reveal persistent effects of ELS on microglial function and suggest that altered microglial phagocytic
capacity is a key contributor to ELS-induced phenotypes.
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INTRODUCTION
Exposure to early-life stress (ELS) has long-lasting effects on brain
structure and function and increases the risk for psychiatric illness
later in life [1–3]. Human and rodent studies have demonstrated
that stress during sensitive developmental periods impacts mood
[2–5], cognition [6–10], and the neuroimmune system [11–16].
While the mechanisms for early-life programming of later-life

health remain poorly understood, there is increasing evidence that
long-term impact on the neuroimmune systems and microglia in
particular might contribute to these effects [17, 18]. Microglia are
innate immune cells in the brain parenchyma that can respond to
environmental cues such as stress by means of cytokine release
and phagocytosis [19–22] and are crucial for proper brain
development and function by, e.g., synaptic pruning [23–25].
There is ample evidence from maternal inflammation and early-

life infection studies in rodents that early experiences can
enduringly change microglial phenotypes [26]. This is thought to
be mediated via epigenetic mechanisms that reinforce microglial
training or desensitization, i.e. hyper- or hyposensitivity, towards
secondary inflammatory challenges in later life [15, 27–32].
Considering the well-documented interactions between stress

and inflammation [33–35], ELS might, similarly, program microglia
[36, 37]. In fact, we and others have previously shown age-
dependent effects of ELS on microglia that are largely based on
morphological characterization at basal [14, 38, 39] and
challenged states, e.g., in response to amyloid-β pathology [14].
While transcriptomic studies of microglia in the context of ELS are
rare, microglial gene expression profiling shortly after postnatal
stress revealed ELS-induced alterations in chemotactic and
phagocytic processes [13]. However, a thorough understanding
of ELS’ short and long-term impact on microglial gene expression
and function, and whether such changes also occur in the human
brain is currently lacking. Therefore, we studied (1) the immediate
effects of ELS on microglial gene expression; (2) the long-term
effects of ELS on microglial morphology and gene expression
profile in mice, in basal and immune-challenged states, in order to
unmask potentially latent impacts of ELS; (3) the implications of
these alterations for microglial phagocytic capacity; and (4)
whether one of our target genes is similarly altered in the human
condition.
We here demonstrate for the first time that ELS leads to long-

term changes in the microglial transcriptome at P200, modifies the
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trajectory of gene expression changes during development and in
response to LPS, and reduces microglial phagocytosis of synapses
at P9 and P200. Finally, we validate in a post-mortem human
cohort that GAS6, a phagocytosis-related gene found upregulated
in ELS mice, is also increased in the hippocampal microglia of
individuals with a history of child abuse.

MATERIALS AND METHODS
Experimental design, breeding, and early-life stress model
To determine the acute and long-term effects of ELS on microglia, we
exposed seven different cohorts of mice to ELS or control (CTR) conditions
from postnatal days (P)2 to P9 via the limited bedding and nesting model
(see Supplementary Methods). We confirmed across the generated cohorts
for this study the reduction in body weight gain between P2 and P9 in ELS-
exposed mice (Fig. S1A) [38, 40]. Male mice were used in all experiments.
Cohort 1 was used for morphological characterization of microglia

24 hours after PBS or LPS (5mg/kg) injection at the age of 3–5 months
(CTR-PBS: n= 5, ELS-PBS: n= 4, CTR-LPS: n= 10, ELS-LPS: n= 6). Cohort 2
was sacrificed at P9, while cohort 3 was allowed to mature until P200 and
injected with either PBS or LPS (1 mg/kg). Microglia from cohorts 2 and 3
were isolated for transcriptomic characterization (P9-CTR: n= 12, P9-ELS:
n= 12, P200-CTR-PBS: n= 7, P200-ELS-PBS: n= 6, P200-CTR-LPS: n= 7, P200-
ELS-LPS: n= 5, Fig. 1A).
For a functional readout of microglial function, we extracted microglia

from cohorts 4 and 5, which were kept until P9 or P200, respectively (P9-
CTR: n= 8, P9-ELS: n= 12, P200-CTR: n= 8, P200-ELS: n= 3). The extracted
microglia were incubated with age-matched synapses isolated from
cohorts 6 and 7, which were sacrificed at P9 and P150, respectively (P9-
CTR-synapses: n= 12, P9-ELS-synapses: n= 11, P150-CTR-synapses: n= 8,
P150-ELS-synapses: n= 7).
Power calculations were based on previously reported experiments

[14, 41, 42]. All experimental procedures were conducted according to the
Dutch national law and European Union directives on animal experiments
and were approved by the Animal Welfare Body of the University of
Amsterdam.

Lipopolysaccharide injection
Adult mice were intraperitoneally (i.p.) injected with either Dulbecco’s
Phosphate-Buffered Saline (PBS, Sigma-Aldrich D8537) or lipopolysacchar-
ide (LPS, Sigma-Aldrich, E. coli, O111:B4, L4391) dissolved in PBS at a dose
of 5 mg/kg (cohort 1) or 1 mg/kg (cohort 3) body weight. Twenty-four
(cohort 1) or three hours (cohort 3) after injection, blood was collected via
tail cuts, and mice were sacrificed with i.p. euthasol injection and
transcardial perfusion.

Cytokine cytometric bead assay
Plasma protein concentrations of IFNγ, IL-6, IL-10, IL12p70, MCP-1, and TNF
were measured in PBS- and LPS-injected mice at P200 (cohort 4), using a
mouse inflammation kit, BD Cytometric Bead Assay (BS Bioscience, Vianen,
the Netherlands), according to manufacturer’s instructions. Samples were
acquired on the flow cytometer, LSR Fortessa. Data were analyzed using a
two-tailed two-way analysis of variance (ANOVA) after checking for
homogeneity of variance and normality.

Immunohistochemistry
Microglia were detected in free-floating paraformaldehyde-perfused brain
tissue by targeting ionized calcium-binding adaptor molecule 1 (rabbit
anti-IBA1, 019–19741, Wako, see Supplementary Methods for detailed
immunohistochemistry protocol).
Morphological analysis was done at ×10 magnification on a Nikon Eclipse

Ni-E microscope. Cell density was obtained by counting the number of IBA1+

cell bodies in the dentate gyrus and cornu ammonis and normalizing to total
area, while coverage was measured by dividing the thresholded IBA1 signal
by the total area. Microglia in the hilus of the dentate gyrus and the stratum
lacunosum-moleculare of the cornu ammonis were classified into five
morphological phenotypes as previously described [14, 16, 43].
After checking for homogeneity of variance and normality, coverage and

density data were analyzed using a two-tailed two-way ANOVA, while the
morphological subtypes were analyzed with a general linear multivariate
model, all using SPSS 25 (IBM software) and graphed using ggplot2

(v3.3.3.9000) [44] in R. Data were considered statistically significant when
p < 0.05.

Microglia isolation and mRNA sequencing
Microglia were isolated from left and right hippocampi of saline-perfused
mice as described [45]. Briefly, after mechanical dissociation and myelin
removal in adult (but not P9) brains using Percoll (Cytiva, 17–5445–02),
cells were incubated with a blocker for the mouse Fc Receptor (5 μg/ml,
eBioscience, 14–0161) for 15min. Afterwards, cells were stained with anti-
mouse CD11b-PE (1.2 μg/ml, eBioscience, 12–0112) and anti-mouse CD45-
FITC (2.5 μg/ml, eBioscience, 11–0451) for 30min. Shortly before cell
sorting, DAPI (0.15 μg/ml, Biolegend, 422801) and DRAQ5 (2 μM, Thermo
Scientific, 62251) were added to the cell suspension. Single, viable (DAPI-,
DRAQ5+) microglia (CD45int, CD11b+) were sorted with the Beckman
Coulter MoFlo XDP and were collected in 350 μl RNA lysis buffer (Qiagen,
1053393), and stored at −80 °C until further use. Following RNA isolation,
mRNA sequencing, and sequence alignment after quality check, bioinfor-
matic analyses were performed in RStudio (v4.0.2). Differential gene
expression was determined by a log-fold change of 0.1 and FDR < 0.05.
Gene ontology analysis was performed using enrichR (v3.0) [46] based on
the “GO_Biological_Process_2021” database. Of the cited GO terms
distinctly overrepresented in CTR or ELS groups, we also highlighted their
associated genes; for terms with >4 associated genes, the top 5 are listed
based on absolute logFC (see Supplementary Methods for further details
on microglia isolation, mRNA sequencing, and downstream analyses).

Ex vivo synaptosome phagocytosis assay
We adapted a flow cytometry-based ex vivo phagocytosis assay [42]. After
sacrifice via rapid decapitation, microglia were enriched from whole brains
(P9) or half brains from the cortex until the midbrain (P200) using an
isotonic Percoll gradient (Supplementary Methods). We incubated 50,000
(P9) or 80,000 (P200) cells with age-matched hippocampal synaptosomes
from P9 (1.2 μg) or P150 (2 μg) mice in 300 μl DMEM-F12. We used one
tube per mouse as negative control to ensure signal specificity.
Synaptosomes were extracted based on a published protocol [47]
(Supplementary Methods), and were conjugated to pHrodo-red (P36600,
Invitrogen) according to manufacturer instructions. Staining was per-
formed by first blocking the mouse Fc Receptor (5 μg/ml, eBioscience,
14–0161) for 15min and then by incubating with anti-mouse CD11b-APC
(1 μg/ml, eBioscience, 17–0112–82) for 30min. DAPI (0.15 μg/ml, Biole-
gend, 422801) was added before flow cytometry analysis using the BD
FACS Diva (BD Biosciences).
Approximately 1500 DAPI−/CD11b+ cells were recorded per tube, and

phagocytosis was defined as the proportion of CD11b+pHrodo+ cells
divided by the total number of DAPI−/CD11b+ cells. Data analysis was
done using a mixed linear model using the nlme package in R [48],
correcting for the seeding of multiple tubes from each animal, as well as
nest effects in P9 samples. The normality of the residuals was inspected by
generating a quantile-quantile plot in R.

Human cohort and fluorescent in situ hybridization in post-
mortem human hippocampus
Fresh-frozen hippocampal tissue, from well-characterized age-matched
adult males, (depressed suicides with a history of child abuse, n= 7, and
matched sudden-death controls, n= 6) were obtained from the Douglas-
Bell Canada Brain Bank (Montreal, Canada). Characterization of early-life
histories was based on adapted Childhood Experience of Care and Abuse
interviews assessing experiences of sexual and physical abuse (see
Supplementary Methods for further details on human cohort). Group
characteristics can be found in Table S1, together with correlations
between covariates (age, post-mortem interval (PMI), pH, substance
dependence, and medication) and the variables measured in this study.
Hippocampal tissues were cut into 10 μm-thick sections with a cryostat

and collected on Superfrost charged slides. In situ hybridization was
performed for Hs-TMEM119 and Hs-GAS6 using Advanced Cell Diagnostics
RNAscope® probes and reagents following the manufacturer’s instructions
(see Supplementary Methods for further details). Sections were imaged
using Olympus VS120 virtual slide microscope at ×20 magnification.
Dentate gyrus area was demarcated manually and QuPath (v0.3.2) [49] was
employed for automated cell detection based on DAPI (Vector Labora-
tories) staining and RNAscope signal quantification. For each probe, cells
bearing three or more fluorescence puncta were counted as positive. Data
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were analyzed using a two-sided T test after testing for homogeneity of
variance and normality.

RESULTS
Morphological characterization of hippocampal microglia
from ELS-exposed mice under basal and immune-challenged
conditions
Microglia can adapt a range of morphologies in response to
homeostatic disbalance [16, 50, 51]. We determined the effect of
ELS on microglia density, coverage, and morphology in subregions
of the hippocampus of adult mice under basal conditions and in
response to LPS (Fig. 1A). ELS exposure did not affect IBA1+ cell
numbers or coverage in the dentate gyrus and the cornus
ammonis subregions (Fig. S1B). However, LPS increased IBA1+ cell
density in both areas (DG: F= 27.179, p < 0.001; CA: F= 23.821,
p < 0.001,) and reduced IBA1+ coverage especially in the dentate
gyrus (F= 5.528, p= 0.028; cornus ammonis: F= 4.223, p= 0.053,
Fig. S1C).
To further investigate microglial morphology, we characterized

microglial subtypes [16, 43, 52] in the hilus (Fig. 1B) and stratum
lacunosum-moleculare (SLM, Fig. S1D). We identified two main
morphological subtypes in PBS-injected mice, characterized by
either a small cell soma and long-branched ramifications (type 1)
or a larger cell soma and thicker, branched ramifications (type 2).
In PBS-injected animals, ELS decreased the proportion of type 1
microglia in the hilus (interaction treatment*condition: F= 9.621,
p= 0.006; main effect condition: F= 11.135, p= 0.003) and SLM
(main effect condition: F= 8.606, p= 0.008). Additionally, two
other subtypes (type 3 and 4) were observed mostly in ELS mice,
characterized by fewer ramifications and larger cell bodies than
subtypes 1 and 2. Number of Type 3 microglia was increased by
ELS in PBS-injected mice in both regions (Figs. 1B, S1D).
LPS significantly affected the proportions of morphological

subtypes in the hilus (GLM main effect treatment, F= 8.386,
p < 0.001, Fig. 1B) and SLM (GLM main effect treatment, F= 8.386,
p < 0.001, Fig. S1D), with modulation by ELS in the hilus (GLM
interaction effect treatment*condition, F= 3.181, p= 0.035, Fig.
1B). LPS reduced type 1 microglia in the hilus (F= 49.442,
p < 0.001) and SLM (F= 50.609, p < 0.001) and increased type 3
(hilus: F= 20.789, p < 0.001; SLM: F= 33.000, p < 0.001) and type 4
(hilus: F= 8.537, p= 0.008; SLM: F= 5.719, p= 0.027) microglia
regardless of early-life condition. A fifth subtype, characterized by
an ameboid morphology, was also detected in some LPS-injected
mice (F= 3.171, P= 0.090) (Figs. 1B, S1D).
In summary, under basal conditions ELS altered the proportion

of morphological subtypes associated with immune reactivity.

Expectedly, LPS treatment also induced a morphological profile
associated with inflammation, independent of early-life condition.
In this experiment, a relatively high LPS dose was used (5 mg/kg,
i.p.), which might have overruled the potentially subtler effects of
ELS on microglia. To better detect these modulatory effects of ELS
on LPS responses, we used a dose of 1 mg/kg LPS for the
transcriptomic experiment.

ELS impacts the microglia transcriptome on the long-term at
P200 but not immediately after stress exposure at P9
To determine the acute (P9) and long-term (P200) effects of ELS
and LPS on microglial gene expression, we performed mRNA
sequencing on purified hippocampal microglia (Figs. 1A, S2A). We
confirmed the purity of sorted microglia by the high expression of
microglial signature genes, but not of other brain cell types (Fig.
S2B, Table S2). Correlation analysis of the first six principal
components (PC) with the experimental variables revealed “age”
as the main source of variability in the dataset (with PC1, R²= 0.97,
FDR < 0.001), followed by “treatment” (with PC2, R²= 0.23, FDR <
0.01; with PC3, R²= 0.67, FDR < 0.001), and “condition” (with PC6,
R²= 0.15, FDR < 0.05; Fig. S2C).
When comparing microglial transcriptomes between CTR and

ELS-exposed animals at P9, almost no transcriptional changes
were found. Only one differentially expressed gene (DEG) was
detected, triggering receptor expressed on myeloid cells (Trem1)
(logFC </>1, FDR < 0.05, Fig. S2D, Table S3). This gene was
however differentially expressed in only 3 out of a total of 13
ELS-exposed mice (Fig. S2E) and was therefore not considered
biologically relevant for ELS.
In adulthood, we detected 186 DEGs when comparing gene

expression profiles of CTR and ELS-exposed animals at basal state,
injected with PBS (P200: ELS-PBS versus P200: CTR-PBS), (Fig. 1C,
Table S4). Gene ontology (GO) analysis revealed that the genes
downregulated by ELS were involved in “regulation of microtubule
(de)polymerization/plasma membrane bounded cell projection
organization/neuron development” (Map, Stmn2, Stmn3) and
“gliogenesis” (Cdh2, Metrn). Genes upregulated by ELS were
associated with inflammatory pathways and processes, such as
“regulation of tumor necrosis factor production” (Ripk, Gas6,
Trim27, Pf4), “regulation of protein kinase B signaling” (C1qbp,
Gas6, Fermt2, Myorg), “positive regulation of leukocyte chemo-
taxis” (Akirin1, C1qbp, Gas6), and “positive regulation of cell
adhesion” (Frmd5, C1qbp, Rell2, Dusp26) (Fig. 1D, Table S5).
To identify modules of genes with similar expression patterns in

an unbiased manner, Weighted Gene Co-expression Network
Analysis (WGCNA) was performed on all P200 samples (P200: CTR-
PBS, P200: ELS-PBS, P200: CTR-LPS, P200: ELS-LPS). Thirteen co-

Fig. 1 ELS exerts long-term, but no immediate effects on the microglia transcriptome. A Overview of the experimental design for the
microglia morphometric and transcriptomic analysis (cohorts 1, 2, and 3): from P2 to P9 mice were exposed to limited bedding and nesting
material resulting in early-life stress. Control mice were left undisturbed. For the morphological analysis of microglia (cohort 1), mice received
an i.p. injection with LPS (5mg/kg) at 3–5 months (CTR-PBS (n= 5), ELS-PBS (n= 4), CTR-LPS (n= 10), ELS-LPS (n= 6) and were sacrificed 24 h
later. Two other cohorts were created for transcriptomic analysis of microglia. Cohort 2 was sacrificed immediately after ELS at P9 (P9-CTR
(n= 12), P9-ELS (n= 13)) and cohort 3 was left undisturbed until P200, when they received an i.p. injection with PBS or LPS (1mg/kg) (P200-
CTR-PBS (n= 7), P200-ELS-PBS (n= 6), P200-CTR-LPS (n= 7), P200-ELS-LPS (n= 5) and were sacrificed 3 hours later. From cohort 2 and 3,
hippocampi were dissected, microglia were FACS-purified, and expression profiled. Created with BioRender.com. B Effects of condition (CTR/
ELS) and treatment (PBS/LPS) on the proportion of morphological microglia subtypes in the hilus of 3–5 months mice, including
representative images of morphological Iba1+ subtypes. Objective ×40, scale bar= 10 µm. General Linear Model Multivariate test, *: main
effect treatment, %: interaction effect treatment*condition, #: treatment effect for subtype 1, 3, and 4, ^: condition effect for subtype 1, &:
interaction treatment*condition for subtype 1. p < 0.05. Stacked bar plot depicts the average proportion of each cell type per group. C Volcano
plot depicting differentially expressed genes between P200: ELS-PBS and P200: CTR-PBS (logFC < />1, FDR < 0.05). Each dot represents a gene.
Significantly more abundant genes in P200: CTR-PBS are marked in turquoise and significantly more abundant genes in P200: ELS-PBS are
marked in dark turquoise. The 10 most enriched genes in each condition are labeled. D Gene ontology (GO) analysis of relatively lower (−) and
abundant (+) significant genes in P200: ELS-PBS when compared to P200: CTR-PBS. Top 10 significantly enriched GO terms (p < 0.05) based on
gene count are depicted (Table S5). E Pearson correlation of modules detected with weighted gene co-expression network analysis and
condition (ELS/CTR). P value is indicated as number and R2 as color for each correlation. F Significantly enriched GO terms associated with the
pink module genes (adjusted p value < 0.05, Table S7). CTR control, ELS early-life stress, GO gene ontology, h hours, LPS lipopolysaccharide, m
months, PBS phosphate-buffered saline.
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expression modules were identified (Fig. S2F), of which one
(purple, Table S6) significantly correlated with early-life condition
(R2= 0.6, p= 0.002, Fig. 1E). GO analysis of genes in this module
suggests a role in protein ubiquitination (Fig. 1F, Table S7).
In brief, ELS does not impact the microglial transcriptome at P9,

but at P200 we detected an upregulation of genes associated with
inflammatory processes and protein ubiquitination and a down-
regulation of genes linked to morphological reconstruction.

Shared and unique transcriptional changes between P9 and
P200 CTR and ELS microglia
To investigate how ELS impacts microglial transcriptional changes
over development from P9 to P200, we compared the transcrip-
tomes of P9 and P200 microglia from CTR and ELS-exposed
animals, revealing DEGs shared between (gray dots, 2899) and
unique for CTR and ELS microglia (P9: ELS, light blue dots, 617;
P200: ELS-PBS, dark turquoise dots, 473; P9: CTR, light green dots,
797; P200: CTR-PBS, turquoise dots, 353) (Fig. 2A, Tables S8, S9).
These developmental DEGs (P200 compared to P9) in CTR and ELS
animals mostly did not overlap with the transcriptional changes
between CTR-PBS and ELS-PBS animals at P200, pointing to an
altered maturation gene expression program of mouse microglia
in response to ELS (Fig. 2B).

GO analysis was performed on the shared and unique DEGs and
redundant GO terms were reduced into parent GO terms (Fig. 2C, D,
Tables S10, S11). The shared DEGs in CTR and ELS microglia revealed
that P9 microglia had relatively enriched expression of genes
associated with mitosis and neurodevelopmental processes (e.g.,
“mitotic cell cycle phase transition”, “positive regulation of cell
differentiation”, “nervous system development”, “chemical synapse
organization”; Fig. 2C, gray ribbons), whereas, at P200, microglia
upregulated genes associated with inflammation (e.g., “positive
regulation of cytokine production”, “regulation of cell migration”,
“regulation of innate inflammatory response”, Fig. 2D, gray ribbons).
In CTR animals specifically, P9 microglia were uniquely enriched

in genes associated with the “regulation of intracellular signal
transduction” (e.g., Gnai1, Mapk11, Arhgef17, Bst1, Rhov), “supra-
molecular fiber organization” (e.g., Shroom2, Col9a3, Tspan15,
Myo5b, Ccdc13) and “chemical synaptic transmission” (e.g., Chrna4,
Crhbp, Hrh1, Pcdhb16, Pcdhb5) (Fig. 2C, light green ribbons), while
P200 microglia were uniquely enriched in genes controlling the
immune-response (e.g., “response to tumor necrosis factor (TNF)”:,
e.g., Acod1, Hyal3, Ccl3, Nfe2l2, Ccl25; “negative regulation of
cytokine production”:, e.g., Acod1, Mefv, Ptpn22, Ppp1r11, Fcgr2b;
“regulation of innate immune response”:, e.g., Acod1, Ptpn22,
Trim21, Birc3, Polr3f; Fig. 2D, turquoise ribbons).

29

90

2809

29
1061

38

1112

P200: ELS- PBS vs. P9:ELSP200: ELS-PBS vs. P200: CTR-PBS

P200: CTR-PBS vs. P9-CTR

exp. group

parent GO term

exp. group

parent GO term

Fig. 2 ELS alters microglia development from P9 to P200. A Four-way plot depicting expression changes in developmental (P200 vs. P9)-
associated genes in ELS and CTR microglia (logFC < />1, FDR < 0.05, Tables S8, S9). Each dot represents a gene. Light green dots mark DEGs
uniquely enriched in CTR microglia of P9 compared to P200 animals. Light blue dots mark DEGs uniquely enriched in ELS microglia of P9
compared to P200 animals. Turquoise dots mark DEGs uniquely enriched in CTR microglia of P200 compared to P9 animals. Dark turquoise
dots mark DEGs uniquely enriched in ELS microglia of P200 compared to P9 animals. Overlapping genes in the development from P9 to P200
of ELS and CTR microglia are marked in gray. B Venn diagram depicting the gene expression overlap of all DEGs between adult ELS effects
(ELS vs. CTR, Table S3) and developmental effects (P200 vs. P9) in ELS and CTR microglia. C, D Alluvial plots illustrating the top 5 enriched
parent GO terms P9- (C) and P200- associated (D) genes in CTR and ELS microglia. Significant GO terms (p < 0.05) for each experimental group
were reduced into parent GO terms (Tables S10, S11), which were ranked based on the total gene count belonging to that parent GO term.
Color indicates the experimental group and ribbon thickness depicts the number of genes overlapping with parent GO term-specific genes.
CTR control, ELS early-life stress, exp. experimental, GO gene ontology, PBS phosphate-buffered saline.
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In ELS-exposed animals, P9 microglia were uniquely enriched in
genes associated with biological processes such as “cellular
macromolecule biosynthetic process” (e.g., Rps16, Rps15a, Rpl39,
Rps27a, Rps12), “cotranslational protein targeting to membrane”
(e.g., Rps16, Rps15a, Rpl39, Rps27a, Rps12), “ribosome biogenesis”
(e.g., Rps16, Rpl39, Rpl17, Rps24, Rpl9) and “rRNA processing“ (e.g.,
Rps16, Rpl39, Rpl17, Rps24, Rpl9) (Fig. 2C, light blue ribbons),
whereas genes uniquely enriched at P200 were related to the
“negative regulation of intracellular signal transduction” (e.g., Ddit4,
Gper1, Pik3cb, Prkaa2, Per1), “positive regulation of transcription,

DNA-templated” (e.g., Gper1, Thrb, Ciita, Nr4a1, Zbtb16), and
“transforming growth factor beta (TGFβ) signaling pathway” (e.g.,
Gdf9, Src, Smurf1, Zfyve9, Arhgef18) (Fig. 2D, dark turquoise ribbons).
These observations show that independent of early-life condi-

tion, P9 microglia are involved in processes related to cell division,
cell differentiation and neurodevelopment, while adult microglia
perform more inflammation-related. Additionally, ELS at
P9 specifically induced processes related to protein translation
and biosynthesis of other macromolecules, and at P200 induced
genes related to TGFβ signaling.

CTR-LPS vs. CTR-PBS

ELS-LPS vs. ELS-PBSELS-PBS vs. CTR-PBS

exp. group

parent GO term

exp. group

parent GO term
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ELS impacts the microglia gene expression response to an LPS
challenge in adulthood
To determine if ELS alters the transcriptional response of microglia
to a systemic immune challenge, we compared microglial
transcriptomes of P200 CTR and ELS mice i.p. injected with either
PBS or LPS. We identified shared (gray dots, 810), CTR-specific
(CTR-PBS, turquoise dots, 299; CTR-LPS, orange dots, 423), and ELS-
specific (ELS-PBS, dark turquoise dots, 253; ELS-LPS, dark orange
dots, 236) genes dysregulated in response to LPS (Fig. 3A, Tables
S12, S13).
Measurement of plasma levels of select cytokines (IFNɣ, IL-6, IL-

10, MCP-1 and TNF) confirmed the effectiveness of LPS injections
(Fig. S3A), without further modulation by ELS. LPS-induced
upregulated genes in both conditions, as expected, were
associated with inflammatory response GO terms, such as
“cytokine-mediated signaling pathway”, “positive regulation of
cytokine production”, “regulation of apoptotic process” (Fig. 3B,
gray ribbons, Table S14). Shared downregulated genes in LPS-
exposed CTR and ELS mice were related to GO terms such as
“double-strand break repair via homologous recombination”,
“positive regulation of autophagy”, and “regulation of protein-
containing complex assembly” (Fig. 3C, gray ribbons, Table S15).
The majority of LPS-induced DEGs in ELS (ELS-LPS) compared to

CTR (CTR-LPS) microglia did not overlap with the gene expression
changes induced by ELS itself (ELS-PBS vs CTR-PBS) (Fig. 3D),
indicating that the differential response to LPS in ELS microglia were
not simply due to the differential expression profile caused by ELS.
Cluster analysis of LPS-responsive genes shared between CTR

and ELS microglia identified six gene clusters (Fig. S3B, Table S16).
Genes in cluster 3 are upregulated by LPS in CTR microglia and
even more so in ELS microglia (Fig. 3E), indicative of microglia

training [29, 53] by ELS. The list of trained genes in ELS microglia is
distinct from a common training gene set detected in (acceler-
ated) aging, and mouse models of Alzheimer’s disease and
amyotrophic lateral sclerosis (Table S2, Fig. 3F) [54].
Next, GO analysis was performed on the unique transcriptional

changes in CTR and ELS microglia in response to LPS, respectively.
LPS-induced genes in CTR microglia were related to “positive
regulation of cell differentiation” (e.g., Snai1, Mapk11, Bmpr1b,
Zbtb16, Ctnna2), “positive regulation of intracellular signal
transduction” (e.g., Nedd4, Adra1a, Fn1, Lck, Fermt2) and “regula-
tion of cell migration” (e.g., Plet1, Snai1, Ctnna2, Fermt2, Sema3c)
(Fig. 3B, orange ribbons), whereas LPS-downregulated genes in
CTR microglia were associated with the “glycosaminoglycan
biosynthetic process” (Pxylp1, Ndst2, Ndst1, Hs2st1, B4galt4),
“negative regulation of innate immune response” (Susd4, Dcst1,
Trim21) and “positive regulation of cell projection organization”
(e.g., Map3k13, Reln, Grip1, Fut9, Ptprd) (Fig. 3C, orange ribbons).
Genes induced in LPS-treated ELS microglia were involved in

inflammatory processes such as “defense response to bacterium”
(e.g., Nos2, Chga, Slpi, Isg15, Optn), “neutrophil activation involved
in immune response” (e.g., Hp, Tnfaip6, Tarm1, Rab37, Sell) and
“positive regulation of cell migration” (e.g., Sema3e, Pdpn, Edn1,
Sod2, Rhoc) (Fig. 3B, dark orange ribbons), whereas LPS-
downregulated genes were associated with “cytoskeleton organi-
zation” (Sema6a, Cecr2, Zmym6, Mast1, Arap3), “DNA replication”
(e.g., Cdc6, Dna2, Chek1, Dbf4, Polg2) and “regulation of cell cycle
process” (Chek1, Sbf4, Cul9, Zfyve26) (Fig. 3C, dark orange ribbons).
Summarizing, while we observed shared regulation of genes in

response to LPS in both adult CTR and ELS microglia, ELS appears
to prime a distinct set of LPS-responsive genes in microglia,
resulting in a distinct transcriptional response to LPS.

Fig. 3 ELS alters the microglia immune response to LPS. A Four-way plot depicting gene expression changes in response to LPS (LPS vs.
PBS) in ELS and CTR microglia (logFC < />1, FDR < 0.05, Tables S12, S13). Each dot represents a gene. CTR-specific LPS-responsive genes are
marked in turquoise and orange, whereby the turquoise dots mark DEGs relatively lowest and orange dots mark DEGs relatively abundant
expressed in CTR-LPS compared to CTR-PBS. ELS-specific LPS-responsive genes are marked in dark turquoise and dark orange, whereby the
dark turquoise dots mark DEGs relatively lowest and the dark orange dots mark DEGs relatively abundant expressed in CTR-LPS compared to
CTR-PBS. Overlapping genes in the LPS response of ELS and CTR microglia are marked in gray. B, C Alluvial plots illustrating the top 5 enriched
parent GO terms, for upregulated (B) and downregulated (C) genes in LPS- compared to PBS-treated CTR and ELS microglia. Significant GO
terms (p < 0.05) for each experimental group were reduced into parent GO terms (Tables S14, S15), which were ranked based on the total gene
count belonging to that parent GO term. Color indicates the experimental group and ribbon thickness depicts the number of genes
overlapping with parent GO term-specific genes. D Venn diagram depicting the gene expression overlap between ELS- (P200: ELS-PBS vs.
P200: CTR-PBS, Table S3) and LPS- (P200: ELS-LPS vs. P200: ELS-PBS and P200: CTR-LPS vs P200: CTR-PBS) introduced transcriptomic differences
in P200 ELS and CTR microglia. E Heatmap depicting z scores of logCPM of primed/trained genes (cluster 3, Fig. S3, Table S16). F Venn diagram
showing gene overlap between genes detected to be primed/trained by ELS and LPS (cluster 3, Table S16) and trained genes detected by
Holtman et al. [54] (Table S2). CTR control, ELS early-life stress, LPS lipopolysaccharide, PBS phosphate-buffered saline.

Fig. 4 Assessing ELS effects on microglial phagocytosis ex vivo. A Experimental design for phagocytosis assay (cohorts 4–7). Whole brain
(P9, cohort 4) or hemi-cortex brains (P200, cohort 5) were enriched for microglia using Percoll and incubated with age-matched pHrodo-
labeled hippocampal synaptosomes (isolated from cohorts 6–7) for 30min before flow cytometry analysis. Data were analyzed using a mixed
model to correct for animal source and nest for P9 microglia, and animal source for P200 microglia. Created with Biorender.com. B Reduced
uptake of labeled hippocampal synaptosomes isolated from P9-ELS mice as compared to those from CTR mice, independent of early-life
condition of microglia source. C At P200, ELS synapses are phagocytosed less than CTR synapses, with a trend towards decreased uptake by
ELS microglia. Mixed effect linear model, *: synaptosome-condition effect, p < 0.05, #: microglia-condition effect, p= 0.05. CTR control, ELS
early-life stress, HPC hippocampus. Center values represent the mean, and boundaries of the box plots represent the SEM.
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ELS microglia phagocytes less synaptosomes ex vivo at P200,
but not at P9
To further our understanding of the functional consequences of
ELS on microglia and to complement our transcriptomic data, we
incubated whole brain microglia from P9 and P200 CTR and ELS
mice with labeled age-matched hippocampal synaptosomes from
CTR and ELS mice (Fig. S4).
While at P9 microglia phagocytosis of synaptosomes did not

depend on the origin of microglia (Fig. 4B, t(4)= 0.910, p= 0.414),
P200 microglia from ELS mice exhibited decreased phagocytosis
of synaptosomes (Fig. 4C, microglia-condition: t(9)=−2.226,
p= 0.050). At both ages, ELS synaptosomes were phagocytosed
less than CTR synaptosomes, with no interaction between
synaptosome source and microglia source (P9 – Fig. 4B, synapse
condition: t(58)=−5.720, p < 0.001; interaction: t(58)=−0.695,
p= 0.490; P200–Fig. 4C, synapse condition: t(15)=−4.779,
p < 0.001; interaction: t(15)= 0.425, p= 0.677).

Increased microglial GAS6 expression in the hippocampus of
post-mortem samples of depressed individuals with a history
of childhood abuse
Although animal models are essential to understand the short-
and long-term neurobiological consequences of ELS, they cannot
fully mirror the complexity of the human brain and experience
[55]. It is therefore important to study the cellular and molecular
consequences of ELS, as experienced through child abuse, in post-
mortem human brain samples.
To validate the ELS-induced alterations observed in mice, we

selected Gas6 as a target gene due to its role in phagocytosis [56],

its strong upregulation in ELS-PBS vs. CTR-PBS mice (Fig. 5A), and
its reported expression also in human microglia [57]. We studied
GAS6 in the dentate gyrus (Fig. 5B) of post-mortem samples from
depressed suicides with a history of childhood abuse (CA, n= 7)
and matched healthy controls (CTR, n= 6) using RNAScope in situ
hybridization (Fig. 5C, D, Supplementary Table). Using a TMEM119
probe to label microglia, we found that CA subjects displayed
increased numbers of microglia (Fig. 5E, t(11)= 3.308, p= 0.007),
GAS6+ cells (Fig. 5F, t(11)= 3.238, p= 0.008), and GAS6+ microglia
(Fig. 5G, t(11)= 2.208, p= 0.049) in the dentate gyrus. These
results highlight the translational value of our ELS mouse model.

DISCUSSION
We demonstrate in this study that ELS exposure in mice, induced
by limiting bedding and nesting material, changed the proportion
of morphological microglia subtypes and microglial transcriptome
in the adult hippocampus, without impacting the transcriptome
immediately after stress exposure. Additionally, ELS modulated
age-related changes in the microglial gene expression profile
between P9 and P200, and the microglia transcriptional response
to an LPS challenge in adulthood. The impact of ELS on microglia
was also evident at the functional level in the ex vivo phagocytosis
of synaptosomes, where P200 (but not P9) ELS microglia exhibited
reduced phagocytic capacity. At both ages, ELS synapses were
phagocytosed less by both CTR and ELS microglia. Lastly, in order
to provide evidence for the translational value of our findings, we
demonstrate that one of the identified targets altered by ELS
exposure in mouse microglia (i.e., increased GAS6 expression) is

Fig. 5 GAS6 expression is increased in mouse and human hippocampal microglia following ELS. A Increased expression of microglial Gas6
in mice following early-life stress was validated in B human post-mortem dentate gyrus (DG) using RNAscope fluorescent in situ hybridization.
Hippocampi from male depressed suicide subjects with a history of childhood abuse (CA, n= 7) were compared with age-matched control
samples (CTR, n= 6). TMEM119 was used to probe microglia. Scale bar: 500 µm. C Representative image depicting CA-associated changes in
the number of cells expressing GAS6, TMEM19, and double positive cells. The number of subpopulations expressing the mRNA of interest
were counted and shown as percentage to total cells detected using DAPI staining. Scale bar: 20 µm. CA is associated with a significant
increase in D microglia counts as identified by TMEM19+ cells, E total GAS6+ cells, and F microglia expressing GAS6+, detected by cells
positive for both TMEM19 and GAS6. Data were analyzed using a two-tailed t test. *, condition effect, p < 0.05. CTR control, CA childhood
abuse. Center values in the box plots represent the mean, borders represent the first and third quartiles, and whiskers represent 1.5*IQR value.
Bar graphs represent mean and SEM.
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also increased in the hippocampal microglia of individuals that
experienced childhood adversity.

ELS affects the microglial transcriptome in adulthood but not
immediately after stress exposure
Concerning the immediate effects of ELS on microglia, we did not
detect any change in hippocampal microglial transcriptomes after
ELS at P9. This is in contrast with the short-term effects on
microglial transcriptomes after exposure to brief daily maternal
separation [13], as well as with our reported ELS-induced
reduction of IBA1 coverage in the dentate gyrus and IBA1+ cell
complexity in the hilus at P9 [14]. The discrepancy with the
findings by Delpech et al. might be due to differences between
the ELS model used (brief daily maternal separation versus limited
bedding and nesting) and specific ages studied (P14 versus P9).
The morphological effects we described previously were
subregion-specific [14], while the generated transcriptomic
profiles in the present study were from whole hippocampi,
possibly diluting out subregion-specific changes. Alternatively,
such transcriptional changes might be latent and emerge only
later in life. In fact, there is accumulating evidence for mediation of
ELS-associated phenotypes by epigenetic alterations [30, 58–60]. It
is thus possible that ELS-induced effects on microglia at P9
manifest at the epigenetic level, e.g., via stressor- and brain-
region-dependent alterations to DNA methylation as described by
others [61], that lead to later-life alterations in gene expression
and function.
Moreover, the effects of ELS on other cell types in the brain,

such as neurons [40], oligodendrocytes [62] and astrocytes [63, 64]
also raise the possibility that transcriptional changes in microglia
occur only at later time points through interactions with other
brain cells. Notably, in our transcriptomic data, despite the high
overlap between our detected genes with other previously
published microglia datasets (Fig. S2B) [65], we also detected
the presence of genes canonically defined as expressed by other
cell types (e.g., Gfap for astrocytes, Serpinb6b for endothelial cells,
and Dlg2 for neurons). Beyond any potential contamination, the
detection of these genes could be interpreted in various ways.
These could be present in microglia due to phagocytosis of these
other cell types, or atypical microglial expression of these genes,
which has been previously described [66, 67]. For instance,
microglia have been documented to express Gfap under disease
or injury states [66, 67]. It will be valuable to investigate direct
effects of ELS on microglia and their interactions with the
mentioned cell types via, e.g., RNAscope, single-cell mRNA
sequencing or genetic manipulations, in future experiments.
Concerning the long-term effects of ELS on P200 microglia, ELS

induced a shift in microglial morphological subtypes, which are
indicative for immune reactive cells [52]. These alterations were
accompanied by increased expression of genes related to
inflammatory response, in line with the previously reported
‘immune-activated’ microglial phenotype following ELS
[36, 38, 39], and downregulation of genes involved in microtubule
(de)polymerization, typically involved in morphological modula-
tions [68]. The motility and dynamics of the microglial cytoske-
leton are important for core functions such as chemotaxis [69] and
phagocytosis [70], thus potentially contributing to the observed
reduction in phagocytic capacity of adult ELS-derived microglia.
Furthermore, genes involved in neuronal development, gliogen-
esis, and microtubule regulation were downregulated by ELS at
P200, which could contribute to earlier reported ELS-induced
deficits in various forms of cellular plasticity [38, 40, 71].
With an unbiased weighted gene co-expression network

analysis (WGCNA) analysis, we identified an ELS-associated gene
module in P200 microglia specifically related to protein ubiqui-
tination and degradation of ubiquitinated proteins, consistent
with reported alterations in the ubiquitin-proteasome system in
the hippocampus and cortex of adult rats exposed to maternal

separation [72]. Ubiquitin is crucial for protein degradation
processes and is also involved in inflammatory pathways [73].
This could contribute to ELS-induced increased risk for diseases
with a neuroimmune component such as Alzheimer’s disease, a
link that has been proposed in pre-clinical models [74–77] and
epidemiological studies [78–80].
In summary, while at P9 we did not detect effects of ELS on

microglial gene expression, latent changes nonetheless occur, and
resulted in the observed differential microglial gene expression in
adult ELS-exposed mice.

ELS modulates microglia development between P9 and P200
In line with the hypothesis of ELS-associated alterations to
developmental trajectories, we observed both shared and unique
shifts in gene expression profiles between P9 and P200 in CTR and
ELS mice. Microglia upregulated inflammatory pathways across
developmental patterns independent of early-life condition,
consistent with earlier reported developmental pattern of micro-
glial gene expression, transitioning from processes related to the
cell cycle and pruning to those related to immune surveillance
[24, 81–84]. We detected several differences in the transcriptional
changes from P9 to P200 between CTR and ELS animals. For
instance, development of CTR microglia specifically involved the
Tnf pathway, whereas the Tgfβ pathway was specifically induced
during development of ELS microglia. Tgfβ signaling has been
reported to drive microglial survival [85], and Tgfβ serum levels
have been linked to ELS, as it positively correlated with plasma
cortisol levels after an acute stressor in 2-year old primates that
experienced ELS [86].
These results indicate that ELS and CTR microglia follow

different developmental trajectories, specifically in immune-
response related genes. The exact implications of this differential
trajectory for ELS microglia remain to be determined, but it might
underlie how ELS modulates the response to later-life challenges,
such as other forms of stress and infection reported by others and
us [27, 31, 32, 82, 87].

ELS modulates microglia immune reactivity to LPS challenge
in adulthood
We were able to confirm an LPS-associated increased of various
inflammatory cytokines, without interaction with ELS. This is in
contrast with our recently reported ELS-induced exacerbation of
LPS-induced increased plasma levels of IL-6, CXCL1, and CCL2 [88].
This difference in cytokine levels is likely due to different LPS
doses used (1 versus 5 mg/kg) and the time post injection before
cytokine levels were determined (3 versus 24 hours). Beyond
confirming an LPS-induced upregulation of inflammatory genes
[22, 27, 28] and downregulation of autophagy genes [89, 90] in
both CTR and ELS microglia, we also uncovered a differential LPS
response dependent on early-life exposure. These results are in
line with the two-hit hypothesis, which postulates that a ‘first hit’
increases sensitivity to later-life challenges that are unmasked by a
‘second hit’ [91]. We previously reported that a first hit in the form
of an LPS challenge or deficiency of the DNA repair enzyme Ercc1
interacts with a second LPS hit to unmask long-lasting epigenetic
changes leading to either reduced or exaggerated LPS responses
as compared to naïve mice injected with LPS [41, 53, 92]. Here, we
demonstrate that ELS can similarly serve as a first hit that affects
the transcriptional response of microglia to an LPS challenge in
adulthood. Interestingly, beyond exacerbating the expression of a
group of LPS-responsive genes, suggesting microglia priming [53],
ELS also led to a distinct transcriptional profile in response to LPS.

ELS impacts on microglial phagocytosis of synaptosomes
In line with our transcriptomic data, we demonstrated deficits in
the ex vivo uptake of synaptosomes in P200, but not P9, microglia
isolated from ELS mice. This is important considering the key role
of microglial phagocytosis (i.e., pruning) in brain development and
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function [25, 93], and the role of neuron-microglia crosstalk in
mediating the hippocampal response to stress [94, 95].
At P9, we found reduced microglial phagocytosis, which was

driven by the origin of the synaptosomes (i.e., the early-life
condition of the mice we extracted synaptosomes from) rather
than the origin of the microglia. This suggests that ELS leads to an
altered molecular signature in the developmental synapses in the
hippocampus. Such reduction of the phagocytosis of ELS
synapses, is in line with ELS-induced impaired pruning of
excitatory synapses in the hypothalamus at P9 [96]. These synaptic
signatures could drive the lasting microglial (mal-)adaptations, as
we found in our adult data, where the early-life condition of both
synaptosomes and microglia contributed to reduced synaptic
uptake, possibly ultimately contributing to the well-established
ELS effects on hippocampal plasticity [40, 97, 98]. The down-
regulation of synaptic phagocytosis by P200 ELS microglia might
seem counterintuitive considering the literature on ELS-induced
reduction of dendritic and synaptic complexity [99–101], which
would imply increased phagocytosis. In fact, we previously
demonstrated increased CD68 immunoreactivity in two separate
cohorts of adult ELS-exposed mice [14, 38], and observed here the
upregulation of genes regulating phagocytosis (e.g., C1qbp and
Gas6) in our adult transcriptomic data. These are in line with the
increased phagocytosis of bacterial particles observed in mice
exposed to maternal separation [13], despite the difference in age.
Our data, together with the reported findings by Delpech et al.
[13] and Bolton et al. [96], suggest that ELS effects of phagocytosis,
rather than being generalized, are complex and dependent on,
e.g., specific substrates and possible eat-me signals. The identity of
these different pathways, their regulators, and how ELS modulates
them, is still unexplored and awaits future studies.
One specific gene that we explored further is the opsonin Gas6.

We demonstrated Gas6 to be increased not only in ELS-exposed
microglia in mice, but also, importantly, in the post-mortem
hippocampi of patients with a history of childhood abuse, both
globally and specifically in microglia. GAS6 is a ligand for the
tyrosine kinase receptors TYRO3, AXL, and MERTK (TAM) that
stimulate microglial phagocytosis [102]. Its signaling is also known
to dampen the LPS inflammatory response of primary cultured
microglia [103], mediated by TGF-β expression [104], which was
increased in ELS microglia. GAS6 is present at high levels in the
brain throughout development, continues to be expressed in
adulthood in rodents and humans [57, 105], and may act as a
neurotrophic factor for hippocampal neurons [106]. The modula-
tion of this pathway by ELS is in line with the findings by Bolton
et al., where the impaired synaptic phagocytosis of hypothalamic
excitatory neurons was mediated via the AXL and MERTK
receptors [96]. While the increase in GAS6 might raise expecta-
tions towards increased microglial phagocytic capacity, it is
important to note that GAS6 both activates and is secreted by
microglia [56, 104]. Because activation of the GAS6 receptor
MERTK has been shown to stimulate synaptic phagocytosis in
astrocytes [107], the observed increase in microglial GAS6 might
be a mechanism to recruit other phagocytes to compensate for
their deficient functioning.
Moreover, the induction of the TAM pathway by secreted

ligands such as GAS6 inhibits prolonged and unrestricted inherent
immune responses in macrophages/microglia. Activation of TAM
receptors triggers the expression of suppressors of cytokine
signaling proteins, which either terminate cytokine receptor-
mediated signaling or inhibit nuclear factor kappa B (NF-κB)
transcriptional activity [108]. In line with this, we found relative
downregulation of NF-κB-related GO terms in ELS-PBS microglia
versus CTR-PBS microglia. According to this mechanism, over-
expression of Gas6 in dentate gyrus microglia after ELS might
represent a compensatory mechanism to prevent microglia from
becoming hyperresponsive to activation due to stressors or other
stimuli in adulthood. This upregulation would imply a non-

inflammatory phenotype of microglia in major depression,
consistent with recent post-mortem investigations [109] that
revealed, e.g., increased homeostatic marker expression in the
microglia of depressed individuals [110, 111].
An additional significance of the hippocampal GAS6-TAM

pathway is its dual role in regulating neurogenesis both directly
by supporting neural stem cells, and indirectly by inhibiting
microglia and astrocytes [103]. Given the ample evidence of long-
term modulation of adult hippocampal neurogenesis by ELS [112],
there might be clinical implications for targeting TAM receptor-
mediated signaling pathways to treat conditions accompanied by
neurogenesis loss [108, 113], such as depression [109], for which
ELS is a major risk factor [3]. Importantly, especially in the context
of deriving translational insights from our data, we were not able
to include female mice in our study. This is pertinent given the
documented sex differences in microglia [114], phenotype after
ELS exposure [40, 115], and LPS response [116]. These effects
should be followed up in future studies.
Overall, we report here that ELS has long-term effects on

hippocampal microglia. ELS altered the distribution of morpholo-
gical subtypes of microglia, the adult microglia transcriptome at
basal state, the microglial developmental trajectory, and their
response to an acute immune challenge during adulthood. We
provide evidence that these changes have functional conse-
quences for phagocytosis, and that microglia are lastingly
impacted in the human brain after childhood abuse. These data
highlight the key role of microglia in the lasting effects of ELS
exposure, thereby possibly mediating the ELS-induced increased
vulnerability to psychopathologies with a neuroinflammatory
component such as Alzheimer’s disease and depression.

DATA AVAILABILITY
The mRNA sequencing data generated in this study is available at the Gene
Expression Omnibus database, under accession number GSE207067. All other data
will be made available upon request.
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