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The past two decades have seen an explosion in the methods and directions

of neuroscience research. Along with many others, complexity research has

rapidly gained traction as both an independent research field and a valuable

subdiscipline in computational neuroscience. In the past decade alone, several

studies have suggested that psychiatric disorders affect the spatiotemporal

complexity of both global and region-specific brain activity ( Liu et al., 2013;

Adhikari et al., 2017; Li et al., 2018). However, many of these studies have

not accounted for the distributed nature of cognition in either the global or

regional complexity estimates, which may lead to erroneous interpretations of

both global and region-specific entropy estimates. To alleviate this concern,

we propose a novel method for estimating complexity. This method relies

upon projecting dynamic functional connectivity into a low-dimensional

space which captures the distributed nature of brain activity. Dimension-

specific entropy may be estimated within this space, which in turn allows

for a rapid estimate of global signal complexity. Testing this method on a

recently acquired obsessive-compulsive disorder dataset reveals substantial

increases in the complexity of both global and dimension-specific activity

versus healthy controls, suggesting that obsessive-compulsive patients may

experience increased disorder in cognition. To probe the potential causes

of this alteration, we estimate subject-level effective connectivity via a Hopf

oscillator-based model dynamic model, the results of which suggest that
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obsessive-compulsive patients may experience abnormally high connectivity

across a broad network in the cortex. These findings are broadly in line with

results from previous studies, suggesting that this method is both robust and

sensitive to group-level complexity alterations.

KEYWORDS

LEiDA, Hopf bifurcation, whole-brain model, obsessive-compulsive disorder,
independent component analysis, eigendecomposition, Shannon entropy, network-
based statistic

Introduction

Revolution has rocked the field of neuroimaging for the past
two decades. Technological development has led to previously
unattainable combinations of spatial and temporal resolution,
even as the discovery of organized resting state activity (Biswal
et al., 1996, 1997a,b, 1998; Biswal, 2012) has opened an entire
new area of study. These developments have complemented one
another in many lines of study, but perhaps the most notable
is in the study of psychiatric disorders, where ethical concerns
can make task-based or symptom provocation studies difficult
(DuVal, 2004). The ability to study functional connectivity
dynamics without the practical or ethical complications of
symptom provocation has allowed psychiatric data collection in
enormous quantity and quality. Indeed, so much data is now
available that analysis has surpassed collection as the biggest
challenge in neuroscience (Burns et al., 2013; Furcila et al., 2019).

Increasingly, neuroscientists have turned to mathematics
and computational tools to interpret this data. The nature of
neural data and the mixed backgrounds of many neuroscientists
have led to the use of tools from a wide variety of mathematical
fields, including statistics (Friston et al., 2006), econometrics
(Friston, 2011), network analysis (Bullmore and Sporns, 2009),
statistical physics (Deco et al., 2008), information theory
(Pincus, 1991; Richman and Moorman, 2000), and dynamical
systems (Rolls et al., 2008). The use of such tools has led to
dramatic conceptual advances in the study of brain function,
such as the use of network analysis to quantify structure in
brain activity (Meunier et al., 2009; Shen et al., 2010) and the
discovery that cognition is a distributed, rather than localized,
phenomenon (Hillebrand et al., 2016; Atasoy et al., 2018).
However, to paraphrase Dr. John Archibald Wheeler, as our
island of knowledge grows, so too does the shoreline which
surrounds it. The advances of the past two decades have revealed
as many questions as answers.

One longstanding question in neuroscience and
neuropsychiatry is how to quantify the complexity of the
brain’s functional dynamics. While microarray studies of
functional complexity are not new (Paninski, 2003; Pereda et al.,
2005; Quian Quiroga and Panzeri, 2009), the whole-brain level

presents two serious problems. First, even coarse neuroimaging
parcellations have more than N = 60 regions of interest (ROIs)
(Hagmann et al., 2008), and connectivity matrices have at
least N(N−1)

2 elements (assuming symmetry and neglecting the
main diagonal). The curse of dimensionality makes meaningful
results difficult to find in such a high-dimensional space.
Second, these regions are not generally statistically independent
in time. Indeed, functional connectivity analysis relies on such
interregional dependence. While these dependencies have
revealed much about brain function, they also invalidate the
most natural measure of functional complexity—namely the
Shannon joint entropy (Shannon, 1949)—as its calculation
requires statistical independence of the constituent signals.
Several authors have attempted to compare the functional
complexity of groups and subjects by other means (Ostwald and
Bagshaw, 2011; Liu et al., 2013; McIntosh et al., 2014; Grieder
et al., 2018; Zheng et al., 2020; Xin et al., 2021), but they may
overlook interregional statistical dependencies and thus risk
erroneous estimates of region-specific complexity. A rigorous
means of quantifying the functional complexity alterations
which characterize psychiatric disorders remains elusive.

In this paper, we propose a novel analysis pipeline aimed
at solving these problems. We begin by adapting the Leading
Eigenvector Dynamics Analysis (LEiDA) framework (Cabral
et al., 2017; Figueroa et al., 2019; Lord et al., 2019) to
identify a low-dimensional space which captures the temporal
dynamics and complexity of functional connectivity. This
requires two important innovations to the LEiDA framework.
First, we develop a data-based method to estimate the state
space dimensionality a priori. Previous studies have treated
the number of dimensions as a free parameter and relied on
post facto comparisons to determine an appropriate threshold
(Cabral et al., 2017; Gu et al., 2018; Shappell et al., 2019; Vergara
et al., 2020). While these methods have proven effective, they
require leaving the number of groups as a free parameter. This
requires multiple runs of a clustering algorithm to determine
which setting is most effective. Such runs are computationally
expensive, adding both time and cost to the analysis. Further,
such trial-and-error approaches offer no guarantee of selecting
the true number of meaningful groups. Thus, this development
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may improve both the precision and the efficiency of future
analyses.

The use of independent component analysis represents
the second major innovation to the LEiDA pipeline. Previous
LEiDA analyses have used a k-means clustering algorithm
to isolate connectivity state centroids and assign state labels
to each time point. While this allows a characterization
of state transition mechanics (Cabral et al., 2017; Lord
et al., 2019; Vohryzek et al., 2020), k-means clustering
suffers from two serious shortcomings which render it
unsuitable for our purposes. First, k-means clusters generally
display temporal dependencies, which make the calculation
of statistical complexity extremely complex. Independent
component analysis’ minimization of such dependencies
(Calhoun et al., 2013) drastically simplifies these calculations.
Second, most (although not all) k-means clustering algorithms
assign only a single state to each time point. This enforces a
binary, on-off image of state activity which discards much of the
signal’s complexity—entirely incompatible with an algorithm
designed to measure that complexity.

To alleviate these concerns, we replace the k-means
clustering algorithm of LEiDA with independent component
analysis (ICA) (Hyvärinen and Oja, 2000). ICA has been shown
to maximize the temporal independence of its components
(Calhoun et al., 2013) and so avoids dependencies between
components. In addition, ICA does not assign a single active
state to each time point, but instead estimates the activity of
each state across the entire dataset. This provides a far more
detailed view of how functional activity evolves in the space
which these independent components define. A similar method
has been proven highly effective in the context of neural spike
trains (Lopes-dos-Santos et al., 2013).

These two innovations produce a space with the minimum
number of independent dimensions necessary to capture
meaningful patterns. Such a space makes calculating and
comparing temporal complexity (as measured by the Shannon
entropy) of each subject simple. Given the critical nature of
ICA, we have named our analysis pipeline LEICA (Leading
Eigenvector Independent Component Analysis) to differentiate
it from the LEiDA framework on which it is based.

We elected to test this pipeline on a dataset (Moreira
et al., 2017) consisting of obsessive-compulsive disorder (OCD)
patients and number of age-, gender-, and education-matched
controls (NOCD = 40, Ncontrol = 39). The wide prevalence
and severe effects of OCD factored into this choice of
dataset; with some 2.1% of the population affected each
year (DuPont et al., 1995), it is a widespread, yet poorly
understood disorder that causes its victims great distress.
Obsessive thoughts and compulsive behaviors often hinder
victims’ ability to concentrate, with predictable effects on
learning and productivity (Piacentini et al., 2003; Weidle et al.,
2014). These factors contribute to a high societal cost of illness
(DuPont et al., 1995; Lenhard et al., 2021) and reduced quality of
life for patients. Despite its prevalence, the disorder’s functional

dynamics remain poorly understood; in particular, we have
been unable to find any attempts to examine the functional
complexity of OCD patients. In this study, we demonstrate that
the obsessive-compulsive group displays elevated joint entropies
compared to healthy controls. Indeed, not only can we identify
which group has higher joint entropy, but also along which
dimension the entropy changes.

Finally, in order to inform hypotheses on possible causes
of this altered complexity, we implemented a coupled Hopf
oscillator network model (Kuznetsov, 1998; Freyer et al.,
2011, 2012; Deco et al., 2017b). The model estimates subject-
level connectivity by fitting observed entropies. Notably, this
requires the model to be trained in component space rather
than the parcellation space, as the joint entropy can only be
reliably calculated in this low-dimensional space. The trained
model suggests that patients express enhanced connectivity
in a brain-wide network, while having reduced connectivity
in several small networks. It must be emphasized that link-
level model results should be considered a hypothesis rather
than a conclusion, as the high dimensionality of the model
space makes drawing such small-scale conclusions premature.
Nonetheless, the finding of general cortical hyperconnectivity
coupled with targeted hypoconnectivity is consistent, and link-
level results provide targets for future research. Overall, model
results suggest that the LEICA method can extract alterations
invisible in other spaces.

Materials and methods

Participants

This paper uses a dataset from a previous study at
the Universidad do Minho, Portugal (Moreira et al., 2017).
A detailed description may be found in that paper, but a
summary is included here for completeness.

Eighty right-handed subjects (40 patients with OCD, 40
controls) participated in this study. Recruitment ensured that
controls matched patients in age, sex, education, and ethnic
origin. Both patients and controls were screened to remove
subjects with comorbid mental health, neurological or major
medical disorders (except nicotine use or dependence). Patients
were all confirmed to have been using stable doses of medication
for three months prior to the study. Specifically, 72.2%
used selective serotonin reuptake inhibitors (SSRIs), 11.1%
tricyclic antidepressants (TCA), and 16.7% a combination of
these medications.

Image acquisition occurred in a 1.5 T Siemens Magnetom
Avanto MRI scanner (Siemens, Erlangen, Germany) with
a standard 12-channel receiver coil. Images were visually
examined for artifacts and the functional data preprocessed
using FSL. Slice-timing correction used the first slice as
a reference, a rigid-body spatial transformation aligned the
volumes of each subject with the mean volume, and motion
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scrubbing identified time points contaminated by significant
motion. Participants with more than 20 such time points
were removed from analysis. Images were then non-linearly
normalized to MNI standard space and linear regression used
to remove motion-related variance and signals from white
matter and cerebrospinal fluid. Acquisitions were filtered with
a Gaussian spatial smoothing kernel (8 mm FWHM) and a
temporal band-pass filter (0.01–0.08 Hz). This frequency band
has demonstrated greater reliability and functional relevance
in fMRI compared to others (Biswal et al., 1995; Achard
et al., 2006; Buckner et al., 2009; Glerean et al., 2012). This
low frequency band has the additional advantage of averaging
out physiological noise and hemodynamic response functions,
as these signals have frequencies above 0.08 Hz and thus
fall outside the passband of this filter. Finally, following the
preprocessing, Moreira et al. (2017) extracted the mean BOLD
time series of the 116 cortical, subcortical, and cerebellar
regions of the Anatomical Automatic Labeling atlas (Tzourio-
Mazoyer et al., 2002). As our study focuses on cortical and
subcortical regions, the 26 cerebellar regions of the Anatomical
Automatic Labeling (AAL) atlas were removed. A complete
and ordered list of regions in this study may be viewed in
Table 1.

Functional connectivity

Dynamic functional connectivity
This study uses Coherence Connectivity Dynamics (Deco

et al., 2017a) to compute the dynamic functional connectivity
(dFC) (Figure 1A). The remaining 90 cortical and subcortical
time series were demeaned, detrended, and underwent a Hilbert
transform to produce a phase time series θ, such that θ(n,t)
represents the phase of region n at time t (Figure 1C). Upon
computing θ, the phase coherence between regions m and n at
time t

(
dFC (m, n, t)

)
is computed using Equation 1:

dFC (m,n, t) = cos (θ (m, t)−θ (n, t))

where cos is the cosine function. Thus, dFC (m, n, t) = 1
if the regions m and n are in phase at time t
(θ (m, t)−θ (n, t) = 0,±2π), and dFC (m, n, t) = 0 if the
regions are perfectly out of phase at time t
(θ (m, t)−θ (n, t) = ±π). This produces a dFC array with
dimensions N×N× T, where N is the number of ROIs and T
represents the number of time points. Since cos (θ) is an even
function, each N×N matrix dFC (t) is symmetric.

Leading eigenvector analysis: Theoretical basis
The fundamental goal of the LEiDA process is to project the

dominant spatial connectivity pattern dynamics into a lower-
dimensional space for ease of analysis. Identifying this dominant
pattern at each time point is greatly simplified by the symmetry
and realness of individual dFC matrices. As symmetric and real

TABLE 1 Table displays the 90 cortical and subcortical regions of the
standard 116-region AAL parcellation (Tzourio-Mazoyer et al., 2002) in
symmetrical, left-first order.

R Precentral Gyrus

R Superior Frontal Gyrus, Dorsolateral

R Superior Frontal Gyrus, Orbital Part

R Middle Frontal Gyrus

R Middle Frontal Gyrus, Orbital Part

R Inferior Frontal Gyrus, Opercular Part

R Inferior Frontal Gyrus, Triangular Part

R Inferior Frontal Gyrus, Orbital Part

R Rolandic Operculum

R Supplementary Motor Area

R Olfactory Cortex

R Superior Frontal Gyrus, Medial

R Superior Frontal Gyrus, Medial Orbital

R Gyrus Rectus

R Insula

R Anterior Cingulate and Paracingulate Gyri

R Median Cingulate and Paracingulate Gyri

R Posterior Cingulate Gyrus

R Hippocampus

R Parahippocampal Gyrus

R Amygdala

R Calcarine Fissure

R Cuneus

R Lingual Gyrus

R Superior Occipital Gyrus

R Middle Occipital Gyrus

R Inferior Occipital Gyrus

R Fusiform Gyrus

R Postcentral Gyrus

R Superior Parietal Gyrus

R Inferior Parietal Gyri

R Supramarginal Gyrus

R Angular Gyrus

R Precuneus

R Paracentral Lobule

R Caudate Nucleus

R Lenticular Nucleus, Putamen

R Lenticular Nucleus, Pallidum

R Thalamus

R Heschl Gyrus

R Superior Temporal Gyrus

R Temporal Pole: Superior Temporal Gyrus

R Middle Temporal Gyrus

R Temporal Pole: Middle Temporal Gyrus

R Inferior Temporal Gyrus

L Inferior Temporal Gyrus

L Temporal Pole: Middle Temporal Gyrus

L Middle Temporal Gyrus

L Temporal Pole: Superior Temporal Gyrus

(Continued)
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TABLE 1 (Continued)

L Superior Temporal Gyrus

L Heschl Gyrus

L Thalamus

L Lenticular Nucleus, Pallidum

L Lenticular Nucleus, Putamen

L Caudate Nucleus

L Paracentral Lobule

L Precuneus

L Angular Gyrus

L Supramarginal Gyrus

L Inferior Parietal Gyri

L Superior Parietal Gyrus

L Postcentral Gyrus

L Fusiform Gyrus

L Inferior Occipital Gyrus

L Middle Occipital Gyrus

L Superior Occipital Gyrus

L Lingual Gyrus

L Cuneus

L Calcarine Fissure

L Amygdala

L Parahippocampal Gyrus

L Hippocampus

L Posterior Cingulate Gyrus

L Median Cingulate and Paracingulate Gyri

L Anterior Cingulate and Paracingulate Gyri

L Insula

L Gyrus Rectus

L Superior Frontal Gyrus, Medial Orbital

L Superior Frontal Gyrus, Medial

L Olfactory Cortex

L Supplementary Motor Area

L Rolandic Operculum

L Inferior Frontal Gyrus, Orbital Part

L Inferior Frontal Gyrus, Triangular Part

L Inferior Frontal Gyrus, Opercular Part

L Middle Frontal Gyrus, Orbital Part

L Middle Frontal Gyrus

L Superior Frontal Gyrus, Orbital Part

L Superior Frontal Gyrus, Dorsolateral

L Precentral Gyrus

Unless otherwise noted, all figures in this study sort brain regions identically to this table.
Due to space constraints, figures do not generally contain all 90 regional labels.

matrices are always diagonalizable, the dFC at any time point t
can be decomposed into

dFC (t) = VDV−1

with V being the eigenvectors of dFC (t) and D the diagonal
matrix of eigenvalues. As the eigenvectors of a symmetric matrix

must be orthogonal, V−1
= VT ; thus,

dFC (t) = VDVT

which may be equivalently written as

dFC (t) = VDVT
=

∑
n

λnvnvT
n

where vn is the nth eigenvector and λn the nth eigenvalue of
dFC (t). At each time point, the instantaneous FC matrix may be
decomposed into a weighted sum of eigenvector outer products
vnvT

n weighted according to the respective eigenvalue λn. Thus,
finding the dominant spatial pattern at any time point simply
involves finding the eigenvector with the largest eigenvalue
at that time point. In addition, one may easily compute the
proportion of variance which this pattern captures simply by
dividing the leading eigenvalue by the sum of all eigenvalues:

ρ =
λl∑
n λn

Previous work demonstrates that the leading eigenvector
consistently represents more than 50% of data variance (Cabral
et al., 2017; Lord et al., 2019), a finding confirmed in the
present study. Further, experiments with the use of additional
eigenvectors demonstrated no improvement in performance or
clinical interpretability. The authors thus believe that a single
eigenvector is sufficient to represent functional connectivity
dynamics.

This compression has three distinct advantages for further
signal analysis. First, by compressing each N×N dFC (t)
matrix to an N× 1 vector pl, this method reduces sample
dimensionality from N(N−1)

2 to N. Second, the primary
connectivity pattern should contain virtually no noise, as noise
components generally appear in trailing eigenvectors. Finally,
previous work in spectral community detection (Newman, 2006;
Leicht and Newman, 2008) has demonstrated that the leading
eigenvector pl (t) can separate brain regions into communities
based on the sign of each region r ∈ pl (t), with the magnitude
of r indicating that assignment’s “strength”. Thus, transforming
the dFC (t) matrix to pl (t) converts interregional phase-locking
values into regional community assignment values. Put another
way, the leading eigenvector of an FC matrix naturally separates
network nodes into two mutually opposing communities.

Leading eigenvector analysis: Application
We adapt the LEiDA (Cabral et al., 2017; Figueroa et al.,

2019; Lord et al., 2019) by examining only the leading
eigenvector vl (t) of each N×N dFC (t) matrix. At each time
point, the leading eigenvector of the N×N dFC (t) is extracted
(Figure 1D); once the leading eigenvectors of all time points
have been extracted, they are concatenated horizontally to form
a space-time matrix E (Figure 1E). Each row r of E represents
one brain region r, and each column t contains the leading
eigenvector vl (t) for time t. The laws of linear algebra render
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FIGURE 1

To compute time-resolved functional connectivity (dynamic
functional connectivity, or dFC), each regional time series (green
trace) is converted into an analytic signal using the Hilbert
transform. Euler’s formula converts this analytic signal into a

(Continued)

FIGURE 1 (Continued)

time-resolved phase signal (A) with both real and imaginary
parts (dashed black traces). For each time point, the phase
signals of all regions are sampled (B) and the cosine distance
between each pair of regions is computed to produce an
instantaneous functional connectivity matrix (C). The leading
eigenvector V1 of this functional connectivity matrix is then
isolated (D). Repeating this process for all time points and
subjects across the dataset results in a 2-D array E of leading
eigenvectors (E). Running an eigendecomposition on E‘s
autocorrelation matrix and counting the number of eigenvalues
greater than the upper bound of the Marčenko–Pastur
distribution reveals the number of dimensions necessary to
describe the nonrandom activity in panel (E).

vl (t) and −vl (t) equivalent, so we follow the convention that
most elements in each eigenvector should be negative (Figueroa
et al., 2019).

Component detection
To find the communities that recur above chance, we must

determine a significance threshold for regional co-activation.
Although surrogate methods, e.g., a permutation test, can
establish such a threshold, they are slow and computationally
intensive. We propose a far cheaper and more elegant method
based on autocorrelation matrix eigenvalues (Peyrache et al.,
2009, 2010). It has been established for several decades that if an
m×n matrix M has statistically independent rows (as would be
expected for uncoupled noisy oscillators), the eigenvalues of its
autocorrelation matrix follow the Marčenko–Pastur distribution
(Marčenko and Pastur, 1967). Crucially, this distribution has
analytically tractable limits

λmax
min = σ2

(
1±

√
1
q

)2

where σ is the standard deviation of M and q≡ n
m≥1. Thus,

if communities do not recur over time, the eigenvalues of
E′s correlation matrix should lie within the limits imposed
by λmax

min . Conversely, should any communities of E recur at
a rate significantly above chance, a corresponding number of
eigenvalues of the correlation matrix of E should exceed the
upper limit λmax. This method has been validated in the spike
activity context (Lopes-dos-Santos et al., 2011, 2013) and in
a previously published fMRI study (Deco et al., 2019). In the
present dataset, it detects 12 components (Figure 4A).

Component extraction
Upon finding the total number of recurrent communities

with the Marčenko–Pastur distribution, we utilize the fastICA
algorithm (Laubach et al., 1999; Hyvärinen and Oja, 2000) to
extract these communities and their activity time courses from
the matrix E. Since the fastICA algorithm requires the user to
manually specify the number of independent components, the
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Marčenko–Pastur distribution threshold is crucial to providing
an objective, data-driven metric for the number of components.

After computing E′s covariance matrix, 12 eigenvalues were
found to surpass the Marčenko–Pastur upper bound. ICA was
then run to extract these 12 distinct and temporally independent
components (Figure 4A). As fastICA can only extract the
magnitude of an independent component, not its sign, the
spatial map’s positive and negative signs should be understood
to represent relative orientations rather than absolute weights.

Entropy analysis
Independent component analysis was selected as a clustering

algorithm because, by definition, it minimizes the statistical
dependencies between components. This should completely—or
at least almost completely—prevent the temporal dependencies
between components. If this is the case, then the joint entropy
over all components is simply the sum of the individual
components’ Shannon entropies (Cover and Thomas, 2005):

H (C1, ..., CN) =

N∑
j=1

H
(
Cj
)

It is possible to compute the joint entropy of each subject by
computing the Shannon entropy of each component’s activation
time series and summing them. This allows the construction
of a distribution of subject joint entropies, which can then be
analyzed for group-level differences.

Group comparisons
We search for group-level differences using a difference-of-

means permutation test (Krol, 2021) with 10,000 permutations,
and provide multiple-comparison correction via the false
discovery rate (Benjamini and Hochberg, 1995). The Bonferroni
(1935) and Sidak (1967) thresholds verify these results.

Effective connectivity

Brain network model
The brain network consists of the 90 cortical and subcortical

nodes (regions) of the AAL parcellation, coupled according
to the standard 90-region AAL connectivity template C.
Internal node dynamics are modeled as the normal form of a
supercritical Hopf oscillator (Deco et al., 2017b). This produces

dxj

dt
= xj

(
αj−x2

j−y2
j

)
−ωjyj+G

∑
i

Cij
(
xi−xj

)
βηj (t)

dyj

dt
= yj

(
αj−x2

j−y2
j

)
−ωjxj+G

∑
i

Cij
(
yi−yj

)
βηj (t)

where Cij is the connection strength from j to i and G represents
global coupling efficiency. ωj is estimated directly from the
BOLD time series by extracting the dominant frequency of node
j within the band of 0.01 to 0.08 Hz. α and G are set to the initial

values of α = 0 and G = 0.2, in line with previous work (Deco
and Kringelbach, 2016; Deco et al., 2017b).

Particle swarm optimization
The connection strengths Cij are optimized using the

population swarm algorithm (Kennedy and Eberhart, 1995;
Erik et al., 2010; Mezura-Montes et al., 2011). This algorithm
simulates a population of individual particles moving in random
directions within an N-dimensional space, where N is the
number of free parameters. At each optimization step, each
particle can continue exploring the space, move to its optimal
prior position, or move to the global optimal prior position. The
model is then tested using the new positions of each particle as
parameters, and the individual and global optima are updated as
necessary.

Cost function
The particle swarm algorithm seeks to minimize

the difference between simulated and empirical data
distributions. We quantify this difference as the
Euclidean distance between entropy distributions:

d (S, E)

√√√√ N∑
j=1

(
S
(
j
)
− E

(
j
))2

After simulating a BOLD signal, this simulated signal is
separated into components using the mixing matrix W, and
the Shannon entropy of each component is computed. The
Euclidean distance between the simulated entropy distribution
and its empirical counterpart is used as the optimization cost
function, which guides the particle swarm algorithm’s estimates
for optimal model parameters. Pre-fit and post-fit cost function
distributions are shown in Figure 2.

Network analysis

Our study’s goal is to find network-level connectivity
changes in obsessive compulsive disorder patients. To this end,
we apply two group-level analyses to the connectivity estimates
obtained in the previous section.

Network-based statistic
The network-based statistic (NBS) is a component detection

approach (Zalesky et al., 2010) with substantially greater power
than traditional family-wise error (FWE) correction. Unlike
traditional FWE correction, the NBS tests the significance of an
effect’s size rather than its magnitude. This drastically reduces
the multiple-comparison correction and allows the estimation
of an empirical null distribution via a permutation test.

Upon estimating the effective connectivity of each subject,
we run a group-level comparison with the NBS to search
for significant connectivity changes in obsessive compulsive
disorder. As control parameters, we used a significance
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FIGURE 2

The particle swarm fitting algorithm, like most optimization algorithms, minimizes a cost function to determine how well the model predicts
real data. We chose the Euclidean distance between empirical and simulated entropy vectors as a cost function due to its conceptual simplicity
and confirmed its superiority versus absolute maximum distance. Comparisons of component-level entropy distributions pre-fit (A) and post-fit
(C) demonstrate that this method does improve the model for controls. Comparisons of pre-fit (B) and post-fit (D) joint entropy confirm this.
While optimization brings the mean entropies of patient models closer to those of empirical subjects, its performance is quite inconsistent in
this group. This is reflected in the extremely high variance in post-optimization dimensional and joint entropies (C,D).

threshold of t = 4.5 and a standard case-comparison contrast.
Additional significance thresholds of t = 4, 5, and 5.5 were
also tested, the results of which results may be viewed in the
Supplementary Figures.

Degree strength analysis
In addition to the NBS, we run a group-level comparison

of the node strengths. Specifically, we test for differences
in strength between groups for each node in the effective

connectivity network. The directed nature of effective
connectivity required that both in- and out-strength
be examined.

Comparison analyses

To compare LEICA’s efficacy to more familiar methods,
we repeated the above analyses with two other versions of
the dynamic functional connectivity array. The first such
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comparison simply consists of the vectorized upper triangle
of each dFC (t), concatenated to form a space-time array(

N(N−1)
2 ×T

)
. The second comparison consists of the spatial

average of each dFC (t), likewise concatenated to form a space-
time array (N×T). Pre- and post-eigendecomposition steps are
identical for all inputs.

Results

Functional analysis

Dynamic functional connectivity
Both control and patient time series are parcellated

according to the AAL atlas (Tzourio-Mazoyer et al., 2002). Each
subject’s dynamic functional connectivity is computed using
Coherence Connectivity Dynamics (Deco et al., 2017a). Analysis
is restricted to the cortical and subcortical regions; as such,
the 26 cerebellar regions of the AAL atlas are discarded. The
resultant three-dimensional array must be converted into two
dimensions for further analysis. Three methods are tested. In
the first method, we extract the leading eigenvector (90×1)

of each time point’s connectivity matrix. The eigenvectors of
all time point are then concatenated to form a subject-level
90×175 eigenvector time series E. In the second method, each
time point’s connectivity matrix is averaged horizontally, and
the resulting average coherence vectors (90×1) are concatenated
to form a subject-level 90×175 mean coherence time series
M. Finally, each time point’s connectivity matrix is vectorized
to form a 4005×1 connectivity vector, and these vectors are

again concatenated to form a subject-level 4005×175 dFC
time series (as each connectivity matrix is symmetric and
the main diagonal neglected, only the upper triangle is
vectorized).

Functional dimensions
To determine the number of dimensions necessary, all

subjects’ time series are concatenated and the autocorrelation
matrix of this global time series array calculated. The number
of significant dimensions is then the number of eigenvalues in
the autocorrelation matrix which exceed the upper bound of
the Marčenko–Pastur distribution (Marčenko and Pastur, 1967).
Applying this method to the eigenvector time series E identifies
12 independent dimensions across the resting state of all
subjects (Figure 4A). ICA can then convert the 90-dimensional
eigenvector time series E into its 12-dimensional representation
TE (Lopes-dos-Santos et al., 2011, 2013) (Figure 4B). Repeating
this process for the vectorized dFC produces the 347-
dimensional representation TF , and the spatially averaged M
produces the 11-dimensional representation TM .

Joint entropy
Since each time series in the low-dimensional space is

statistically independent, each dimension’s Shannon entropy
may be calculated (Singh et al., 2003; Delattre and Fournier,
2017) independent of the others’. Computing the subject-
level Shannon entropy of each substate’s time series results
in a D×S array of entropy values for patients and controls,
where S is the number of dimensions and S the number of
subjects per group. This format means that computing the
subject-level joint entropy simply requires summing along

FIGURE 3

Analysis of eigenvector-based component time series (TE) shows that obsessive-compulsive patients display substantially higher joint entropy
than age-, gender-, and education-matched controls. On average, controls display a joint entropy of 14.5695±1.2473, while patients display a
mean joint entropy of 15.2214±1.1535. Neither spatial average-based components nor vectorized dFC-based components display group-level
changes.
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FIGURE 4

Twelve of the eigenvalues of E’s autocorrelation matrix exceed the upper limit of the Marčenko-Pastur distribution, suggesting that 12
dimensions are necessary to capture E’s activity. Independent component analysis reveals how these dimensions map to brain regions (A). Map
weights have been converted into z-scores for this figure and regions with a weight z < 1.3 are depicted in faded color. Plotting these mapping
vectors in the brain and as connectivity (B) reveals that the trailing dimensions (9, 10, 11, and 12) display notable homotopic symmetry, while
leading dimensions are strongly asymmetric. Finally, group-level entropy analysis shows that the first dimension displays significantly higher
entropy in obsessive-compulsive patients than in controls (C). Note that dimensions are ordered according to average activity level across the
dataset.

this array’s first dimension. This produces two 1×S joint
entropy distributions, which can be compared with any standard
statistical test. Applying this process to eigenvector-based
entropy scores again shows elevated entropy in patients relative

to controls (p = 0.0119, Hodges’ G = –0.5833) (Figure 3).
However, the joint entropy distributions of TF and of TM

display no significant group-level differences. Eigenvector-based
analysis thus appears to preserve the information of the full
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signal while reducing dimensionality almost 30-fold—–a crucial
consideration, as the curse of dimensionality states that patterns
become exponentially harder to detect as dimensionality
increases.

Dimension-specific entropy
To determine whether alterations in entropy concentrate

in specific dimensions, we started with the same D×S patient
and control arrays of entropy values as the previous section.
Each row of these arrays was compared and corrected
with the false discovery rate. As above, this analysis was
run for all three compression methods: TE (eigenvectors),
TF (uuncompressed), and TM (spatial average). Only the
eigenvector-based representation (TE) detects a significant
alteration along any dimension, specifically the first (ordered
according to mean activity). This dimension consists of paired
anticorrelated communities and both display significantly
higher entropy in patients than in age-, gender-, and education-
matched controls (Figure 4C).

In component space, we find that one LEICA component
displays higher entropy in patients than in controls
(1.1818±0.1401 , 1.3075±0.2276, p = 0.0020, Hedges’
g − 0.6634

)
. This substate consists of two opposing

communities, with the sign of each brain region denoting
to which community that region belongs and the magnitude of
that region’s weight denoting the strength of its association with
that community (see Table 2 for a list of implicated regions).
We opted to concentrate on regions with absolute z-scores
above 1.3 (|z|>1.3) (Figure 4A). Under these constraints,
the first community contains the left precentral gyrus, left
and right frontal superior cortex (orbital), left middle frontal
gyrus (orbital), the left inferior frontal gyrus (opercular), left
cuneus, right olfactory bulb, and right inferior parietal gyrus. Its
opposite number includes the right lingual gyrus, right occipital
medial gyrus, right putamen, right pallidum, left amygdala,
right middle temporal gyrus, and right temporal pole of the

TABLE 2 Table displays the regions of the first dimension with
absolute z-scores exceeding 1.3 ( |z| >1.3).

Component 1 (z > 1.3)

Positive Negative

L Precentral Gyrus L Amygdala

L Superior Frontal Gyrus, Orbital Part R Temporal Pole: Middle
Temporal Gyrus

L Middle Frontal Gyrus, Orbital Part R Middle Temporal Gyrus

L Inferior Frontal Gyrus, Opercular Part R Lenticular Nucleus, Pallidum

L Cuneus R Lenticular Nucleus, Putamen

R Inferior Parietal Gyri R Middle Occipital Gyrus

R Olfactory Cortex R Lingual Gyrus

R Superior Frontal Gyrus, Orbital Part

The sign of each regional weight indicates to which of two communities it belongs,
with the magnitude of its weight indicating its centrality to that community. Regions
with absolute z-scores exceeding 1.3 (|z|>1.3) can be considered core nodes in a more
distributed network which covers the entirety of the brain space.

middle temporal gyrus (Figure 4). This result survives both
the false discovery rate and the Sidak multiple comparison
correction.

Connectivity model

Network-based statistic
In order to hypothesize on causes for these shifts in

dynamical richness, we fit a networked Hopf model (Deco
et al., 2017b) to each subject’s entropy profile. After obtaining
subject-level effective connectivity profiles from these models,
we applied the network-based statistic (NBS) (Zalesky et al.,
2010) to determine which, if any, connections display significant
group-level alterations. In addition, we examined the in-
strength and out-strength of each node for significant alterations
between groups. Only the eigenvector-based decomposition
produced a generative model which displays significant group-
level alterations in network connectivity; the spatially averaged
and uncompressed decompositions failed to find meaningful
results.

Results from the network-based statistic depend upon the
t-statistic chosen at the thresholding step. Unfortunately, no
data-driven method for determining an optimal threshold has
yet been developed, nor has such a threshold been established
experimentally. As such, it must be treated as a free parameter.
A threshold of 4.5 reveals a single large hyperconnected
component and 11 small hypoconnected components in
the patient population (Figure 5). These hypoconnected
components consist of

1. Left superior frontal gyrus (orbital), left superior frontal
gyrus (medial orbital), and left lenticular nucleus
(putamen)

2. Left middle frontal gyrus and left caudate nucleus
3. Left Rolandic operculum, left insula, left supramarginal

gyrus, left superior temporal gyrus, left middle temporal
gyrus, and left temporal pole (middle temporal gyrus)

4. Left middle occipital gyrus, left superior frontal gyrus
(medial), left middle occipital gyrus, left inferior occipital
gyrus, left and right precuneus, left superior parietal gyrus,
and right superior occipital gyrus

5. Left calcarine fissure, left fusiform gyrus, left cuneus,
left and right posterior cingulate gyrus, and left superior
occipital gyrus

6. Right temporal pole (superior temporal gyrus), right
inferior temporal gyrus, and right middle frontal gyrus
(orbital)

7. Right middle temporal gyrus and right inferior frontal
gyrus (orbital)

8. Right supplementary motor area and right paracentral
lobule

9. Right amygdala and right fusiform gyrus
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FIGURE 5

Results from the network-based statistic. A t-statistic threshold of 4.5 returns 12 connected components (C), visualized together as a
connectivity matrix (A) and in cortical space (B). Cyan links indicate that the connection is stronger in OCD patients than in healthy controls,
while magenta links indicate the converse. Although only one connected component displays increased strength in patients, this component
includes 87 of the 90 cortical nodes in the AAL parcellation, suggesting that obsessive-compulsive disorder may be characterized by
widespread cortical hyperconnectivity. The 11 control-biased components, by contrast, consist of between one to six links, with larger
components tending to concentrate in small topographical areas. Notably, many regions displaying depressed connectivity in patients are
known to be involved in top-down control and impulse inhibition. OCD may thus be characterized by localized disruptions in top-down
inhibitory activity, which may explain the widespread hyperconnectivity observed in patients.

10. Right inferior frontal gyrus (triangular) and right middle
frontal gyrus

11. Right inferior frontal gyrus (opercular) and right
precentral gyrus

However, it should be emphasized that other settings
of the t-statistic threshold will produce slightly different
results. For example, raising the threshold to t = 5 causes
the hyperconnected network to fragment into a single
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large component and two small ones (see Supplementary
material). Similarly, one could expect that hypoconnected
components would consolidate into fewer, larger networks at
lower thresholds.

Discussion

Summary

The replacement of k-means clustering with ICA and
post hoc goodness-of-fit metrics with data-driven estimates
of dimensionality allowed us to directly quantify and
compare whole-brain functional complexity between groups.
Independent component analysis has, of course, been used in
neuroimaging research for several decades. Thus, one must
ask whether LEICA provides an advantage over independent
component analysis on the unmodified dynamic functional
connectivity array. Of the three low-dimensional spaces
evaluated in this study, only the eigenvector-based space
captured any differences between patient and control groups.
In addition to finding group-level joint entropy alterations,
this eigenvector-based space could isolate the dimensions
responsible for this increase. Training a model in this space
allowed us to capture several connectivity alterations which
are well-supported in the neurophysiological literature. This
substantial improvement in sensitivity suggests that LEICA
will prove a useful tool for future research into functional
complexity and dimensionality.

Phenomenological considerations

Perhaps the greatest advantage of ICA compared to
alternative clustering methods, such as k-means, is the ability
to use metrics which depend on statistical independence. It is
probable that this improved resolution will lend itself to other
information-theoretic metrics such as functional complexity
(Zamora-López et al., 2016) or Granger causality. Such direct
comparisons of activity complexity may lead to a deeper
understanding of the pathophysiological bases of psychiatric
disorders and other neurobehavioral phenomena.

At the phenomenological level, analysis of both leading
eigenvectors and unmodified dFC showed higher average
entropy in patients than controls. This is in contrast to
previous reports of decreased entropy in obsessive-compulsive
patients (Aydin et al., 2015), although reports of adolescents
with OCD have found increased entropy in networks of
cortical and subcortical nodes in the cortico-striatal-thalamo-
cortical (CSTC) circuit (Sen et al., 2020). How this apparent
increase in complexity—which, in information-theoretic terms,
is equivalent to randomness—maps to the well-established
tendency of obsessive-compulsive patients to become “stuck”

in stereotyped, repetitive patterns will be an interesting
topic for future research. It may be that these stereotyped
patterns represent a coping mechanism, intended to reduce the
randomness of brain activity by imposing control of inputs and
responses.

Such a hypothesis receives some support in the fact that
the dimension found to increase patient entropy maps to
two anticorrelated networks which roughly separate prefrontal-
parietal regions vs. subcortical-temporal nodes. Prefrontal
and parietal regions exert a top-down inhibitory control on
striatal and limbic regions, which has been related to emotion
regulation and cognitive control capacities (Ochsner et al.,
2012; Etkin et al., 2015). Alterations in such interregional
interactions have been associated with mood and anxiety
disorders, including OCD (Etkin and Wager, 2007; Picó-Pérez
et al., 2017). Decreased order within this network may disrupt
top-down inhibition and thus affect emotion regulation and
cognitive control, both of which are affected in the context
of CSTC dysfunction in OCD (van den Heuvel et al., 2016).
Stereotyped, repetitive behaviors—i.e. compulsions—may thus
act as a compensatory mechanism by which the brain attempts
to impose order on its surroundings.

Interestingly, the affected dimension also contains several
occipital nodes. Although the occipital cortex has not typically
been considered a core part of neurobiological models of
OCD, previous research has shown that such regions and
their projections to limbic cortices may play an important role
in the induction of increased anxiety levels in patients with
contamination obsessions induced by actual or mental images
(i.e., intrusive thoughts) of dirt (Göttlich et al., 2014; Moreira
et al., 2017). In future research, it may be worth examining
whether the patient’s entropic alterations along this dimension
correlates with anxiety or compulsive behavior, which could be
as measured by e.g. the Hamilton Anxiety Rating Scale (HAM-
A) (Hamilton, 1959) or the Yale-Brown Obsessive-Compulsive
Scale (Y-BOCS) (Goodman et al., 1989).

Mechanistic considerations

Regarding the mechanistic analyses, we observe that the
generative model recovers a broad network of hyperconnected
regions in the patient population. This network includes
most nodes in the 90-region AAL atlas and is evident
up to a to t-statistic threshold of 4.5. OCD may then
be characterized by hyperconnectivity across much of the
cortex and subcortical regions. Such a hypothesis would
contrast OCD with disorders such as schizophrenia or
autism, which appear to be characterized by long-range
hypoconnectivity (Friston et al., 2016; Hull et al., 2017);
however, previous studies have shown cortical hyperexcitability
in patient populations (Cano et al., 2018; Rolls et al., 2020). It
is possible that, in keeping with phenomenological results, the
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hypoconnected components represent regulatory regions whose
underperformance encourages hyperactivity. The pallidum, for
instance, as part of the CSTC circuitry, is the major inhibitory
output from the striatum to the thalamus and the subthalamus,
and an increased inhibitory output the from the external globus
pallidum to the subthalamus may result in the thalamic and
cortical hyperexcitability that has been shown to characterize
patients with OCD (Cano et al., 2018). Alterations in the
Rolandic operculum, on the other hand, have been related to
the impulsive nature of the so-called autogenous obsessions and
compulsions in a subgroup of patients with OCD (Subirà et al.,
2013), as well as with the premonitory urges associated with tic
behaviors and sensory phenomena (Wang et al., 2011) that are
observed in a large proportion of patients with OCD (Rosario
et al., 2009).

Limitations and future steps

Three cautionary notes must be added. First, the LEICA
method is, by necessity, agnostic as to the true orientation
of its communities. Since eigendecomposition and ICA can
determine only the orientation of communities relative to each
other, not relative to the data itself, LEICA cannot determine
which community is “positive” or “negative” in any absolute
sense. This may be established by a parallel analysis observing
which community is more or less active at any given time; such
an analysis is unnecessary for the present purposes.

Second, the Hopf network model should not be considered
predictive at the level of individual links. It has been able
to replicate known phenomena and mechanisms in past
studies (Jobst et al., 2017) and brain-level results, e.g., the
widespread cortical hyperconnectivity in obsessive-compulsive
patients, appear robust. However, the Hopf oscillator remains
an idealized simplification of neural dynamics. To predict
neurobiological mechanisms would require both more detailed
data and a more sophisticated model, e.g., a model incorporating
transmission delays and neuromodulation. Link-level model
results in this paper should thus be considered starting points
for future research rather than forming hard conclusions
themselves.

Finally, while the network-based statistic (NBS) is a well-
established method, its results remain dependent on the choice
of t-statistic threshold employed. This does not affect the power
of the results, only the effect size of the results reported.
Unfortunately, no data-driven method has yet been established
for determining an appropriate threshold. However, studying
which connections survive the different thresholds allows us to
partially quantify the group-level effect size.

In addition to these general concerns, the present model fits
the control group considerably better than the patient group.
It is not immediately clear to the authors why this is the
case, as both groups undergo identical procedures. That the
model returns meaningful results despite this poor performance

suggests that improving the fitting procedure’s performance may
yield entirely novel insights. The question of model optimization
will be of major interest in future studies.

The widespread alterations in cortical connectivity likely
affect activity propagation and organization. While such
alterations were outside the scope of this study, they are of great
interest to the understanding of OCD’s functionality. Leveraging
established network analyses frameworks, such as community
detection or node centrality measures, may provide further
insights into the cortical activity adaptations of OCD, and
potentially in related disorders such as anxiety and depression.

Conclusion

The search for a natural low-dimensional space for the
analysis of functional connectivity dynamics remains an
active area of research. We present a novel method based
on established theory to map functional activity to such a
space. The resulting space ensures interdimensional statistical
independence, which allows the quantification and direct
comparison of information content (randomness) between
groups and subjects. Comparisons with classic independent
component analysis shows that LEICA preserves functional
complexity while increasing sensitivity and power. This
increased power allows LEICA to recover evidence supporting
several extant hypotheses on the causes of obsessive-compulsive
disorder, most notably the importance of top-down control as
exerted by prefrontal and parietal regions on the limbic system.
Training a generative model in this space similarly recovers
known functional characteristics of OCD, e.g., broad cortical
hyperconnectivity, and highlights specific connections as targets
for future studies. Given these results and its novel ability to
directly compare information content, we anticipate that the
LEICA framework and its extensions will become a crucial tool
in the ongoing efforts to quantify and explain the connectivity
substates of the brain in both human and nonhuman studies.
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SUPPLEMENTARY FIGURE 1

To compute time-resolved functional connectivity (dynamic functional
connectivity, or dFC), each bandpass-filtered regional time series is
converted into an analytic signal using the Hilbert transform. Euler’s
formula converts this analytic signal into a time-resolved phase signal
(A). For each time point, the phase signals of all regions are sampled (B)
and the cosine distance between each pair of regions is computed to
produce an instantaneous functional connectivity matrix (C). The
leading eigenvector V1 of this functional connectivity matrix is then
isolated (D). Repeating this process for all time points and subjects
across the dataset results in a 2-D array E of leading eigenvectors (E).
Running an eigendecomposition on E’s autocorrelation matrix and
counting the number of eigenvalues greater than the upper bound of
the Marčenko-Pastur distribution reveals the number of dimensions
necessary to describe the nonrandom activity in E. This figure displays
all regions with a z-score higher than z = 1 in full color.

SUPPLEMENTARY FIGURE 2

Results from the network-based statistic. A t-statistic threshold of 4.0
returns six connected components (C), visualized together as a
connectivity matrix (A) and in cortical space (B). Cyan links indicate that
the connection is stronger in OCD patients than in healthy controls,
while magenta links indicate the converse. Although only one
connected component displays increased strength in patients, this
component includes all 90 of the cortical nodes in the AAL parcellation,
suggesting that obsessive-compulsive disorder may be characterized by
widespread cortical hyperconnectivity. Control-biased components, by
contrast, consist of between three to nine links, with larger components
tending to concentrate in small topographical areas. Notably, many
regions displaying depressed connectivity in patients are known to be
involved in top-down control and impulse inhibition. OCD may thus be
characterized by localized disruptions in top-down inhibitory activity,
which may explain the widespread hyperconnectivity
observed in patients.

SUPPLEMENTARY FIGURE 3

Results from the network-based statistic. A t-statistic threshold of 5.0
returns 11 connected components (C), visualized together as a
connectivity matrix (A) and in cortical space (B). Cyan links indicate that
the connection is stronger in OCD patients than in healthy controls,
while magenta links indicate the converse. At this threshold, the
connected component displaying increased strength in patients breaks
into three sections, with the largest containing 78 of the 90 nodes in the
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AAL parcellation. This is considerably larger than the other two
control-biased components, which have one and two links respectively.
The eight surviving control-biased components consist of
up to three links.

SUPPLEMENTARY FIGURE 4

Results from the network-based statistic. A t-statistic threshold of 5.5
returns 16 connected components (C), visualized together as a
connectivity matrix (A) and in cortical space (B). Cyan links indicate that
the connection is stronger in OCD patients than in healthy controls,
while magenta links indicate the converse. At this threshold, the
connected component displaying increased strength in patients breaks
into 10 sections, with the largest containing 33 of the 90 regions of the
AAL. The six control-biased components consist of up to two links. The
fall in number of control-based components with increasing

t-threshold further indicates that OCD is characterized by excessive
connectivity across the cortex.

SUPPLEMENTARY FIGURE 5

Results from the network-based statistic. A t-statistic threshold of 6.0
returns 17 connected components (C), visualized together as a
connectivity matrix (A) and in cortical space (B). Cyan links indicate that
the connection is stronger in OCD patients than in healthy controls,
while magenta links indicate the converse. At this threshold, the
connected component displaying increased strength in patients breaks
into 14 sections. Most of these consist of only one or two links. The two
largest consist of a 14-region and nine-region chain, respectively. Only
three control-biased components survive, neither of which exceeds a
single link in size. It thus appears that OCD is characterized by excessive
connectivity in patients.
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