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ABSTRACT

Two models of the gamma-ray burst population, one with a standard candle luminosity and one with
a power-law luminosity distribution, are y>-fitted to the union of two data sets: the differential number
versus peak flux distribution of BATSE’s long-duration bursts and the time dilation and energy shifting
versus peak flux information of pulse duration time dilation factors, interpulse duration time dilation
factors, and peak energy shifting factors. The differential peak flux distribution is corrected for threshold
effects at low peak fluxes and at short burst durations, and the pulse duration time dilation factors are
also corrected for energy stretching and similar effects. Within an Einstein-de Sitter cosmology, we place
strong bounds on the evolution of the bursts, and these bounds are incompatible with a homogeneous
population, assuming a power-law spectrum and no luminosity evolution. Additionally, under the
implied conditions of moderate evolution, the 90% width of the observed luminosity distribution is
shown to be <102, which is less constrained than others have demonstrated it to be assuming no evolu-
tion. Finally, redshift considerations indicate that if the redshifts of BATSE’s faintest bursts are to be
compatible with that which is currently known for galaxies, a standard candle luminosity is unaccept-
able, and, in the case of the power-law luminosity distribution, a mean luminosity <10%7 photons s~ ! is
favored.

Subject headings: cosmology: theory — gamma rays: bursts

1. INTRODUCTION

The angular distribution of the gamma-ray burst popu-
lation has been shown to be highly isotropic (Meegan et al.
1992; Briggs et al. 1996). This suggests that the bursts are
either located in an extended galactic halo (e.g., Paczynski
1991) or that they are cosmological in origin (e.g., Paczynski
1986). Recent measurements of time dilation of burst dura-
tions (Norris et al. 1994, 1995; Wijers & Paczynski 1994;
however, see Mitrofanov et al. 1996), of pulse durations
(Norris et al. 1996a), and of interpulse durations (Davis
1995; Norris et al. 1996b) in the BATSE data, as well as
measurements of peak energy shifting (Mallozzi et al. 1995),
favor the latter explanation.

Models, both galactic and cosmological, are typically
fitted to the differential peak flux distribution of BATSE’s
long-duration (T, > 2 s) bursts. Furthermore, this distribu-
tion is typically truncated at a peak flux of 1 photon cm 2
s~ ! to avoid threshold effects. Here we fit two models, one
with a standard candle luminosity and one with a power-
law luminosity distribution, to not only BATSE’s 3B differ-
ential distribution but also to the pulse duration time
dilation factors (corrected for energy stretching and similar
effects) of Norris et al. (1996a), the interpulse duration time
dilation factors of Norris et al. (1996b), and the peak energy
shifting factors of Mallozzi et al. (1995). These three inde-
pendent sets of measurements are shown to be self-
consistent in § 4. (All three are for long-duration bursts
only.) Furthermore, by the analysis of Petrosian & Lee
(1996b), BATSE’s differential distribution is extended down
to a peak flux of 0.316 photons cm~2 s~ !, which corre-
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sponds to a trigger efficiency of ~4 on BATSE’s 1024 ms
timescale.

Together, the differential distribution and the time dila-
tion and energy shifting factors place strong bounds on the
evolution of the burst population. These bounds favor mod-
erate evolution and are incompatible with homogeneity,
assuming only minimal luminosity evolution. This result is
compatible with the analyses of Fenimore & Bloom (1995),
Nemiroff et al. (1996), and Horack, Mallozzi, & Koshut
(1996b).

Furthermore, under these conditions of moderate evolu-
tion, the 90% width of the observed luminosity distribution
is shown to be less constrained than others have demon-
strated it to be, assuming no evolution (see § 5).

Finally, redshift considerations indicate that if the red-
shifts of BATSE’s faintest bursts are to be compatible with
that which is currently associated with the formation of the
earliest galaxies, the mean luminosity of the bursts should
be ~10°7 photons s~ * or lower.

2. COSMOLOGICAL MODELS

Both the standard candle luminosity model and the
power-law luminosity distribution model assume a power-
law redshift distribution, given by

n(z) = no(1 + 2)°, M

where n(z) is the number density of bursts of redshift z. This
distribution is bounded by 0 < z < z,,, where z,, is the
maximum burst redshift. The luminosity distributions of the
two models are given by

d)(L) — {d’O 5(%‘/3_ Lo) (Standard candle) (2)
$o L

The standard candle is of luminosity L, and the power-law
luminosity is bounded by minimum and maximum lumi-
nosities L,, < L < L,,. All luminosities are peak photon
number luminosities and all fluxes are peak photon number
fluxes (measured over BATSE’s 50-300 keV triggering

(power law)
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range); however, see recent papers by Bloom, Fenimore, &
in ’t Zand (1996) and Petrosian & Lee (1996a), which intro-
duce the fluence measure.

2.1. Integral Distribution

Assuming a power-law spectrum and an Einstein-de
Sitter cosmology, the bursts’ integral distribution, i.e., the
number of bursts with peak fluxes greater than an arbitrary
value F, is given for either model by (Mészaros & Mészaros
1995)

Nep =220 Moy " - g nrar, o
0 L 0
where
Xo = min (x4, X») (C)]
1
XU =11 (4c/H )nF/L) > ©)
and
1
X2=1-— Ttz)”? (6)

A photon number spectral index of —1 (or a power per
decade spectral index of 1) has been assumed. This value is
typical of burst spectra, especially at those frequencies at
which most of the photons are received (e.g., Band et al.
1993). In the case of the standard candle model, equation (3)
becomes

M>ﬂmfh—@*w#a, )

where L = L, in equation (5). The factor of proportionality
has been dropped because only normalized integral dis-
tributions (see § 3.1) and ratios of integral distributions (see
§2.2) are fitted to. Equation (7) has the analytic solution

N(>F) ocf(xo, 8 — 2D), ®)
where
Fo @) = A1 - —x3* ] 21 —x)?**e
’ 1+92+9B+q9 A+492+49g)
(1=t
TR ©

In the case of the power-law model, equation (3) becomes
K X0
N(>F)ocf x_ﬂdxj~ (1 — P ?Pxdy,  (10)
1 0

where
Ly
L b

m

K= 11)

and L = xL,, in equation (5). Equation (10) has the integral
solution

N(>F) c j Kf(xo, 8 — 2D)x P dx . (12)

2.2. Time Dilation and Energy Shifting Factors

In an idealized scenario of two identical bursts at differ-
ent redshifts, z, and z,, their time dilation and energy shift-
ing factors, 7,, and €, ,, are both simply equal to the ratios
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of their scale factors (neglecting the effects of energy stretch-
ing, which are inherent in pulse duration measurements, as
noted in Fenimore & Bloom 1995):

. _1_1+z1
T12 = €12 “1+z.°
2

(13)

In practice, however, measures of the scale factor are aver-
aged over peak flux ranges, and time dilation and energy
shifting factors are determined for pairs of these ranges.
Mészaros & Mészaros (1996) demonstrated that such mean
values of the scale factor, averaged over a peak flux range
F, < F < F,, are simple functions of the integral distribu-
tion, as modeled by equations (8) and (12):

ND+1(F19 Fu)
ND(FI, Fu) ’

(1 +2)F;, F,) = (14)

where
N(F,, F,)= N(>F,) — N(>F). (15)

Consequently, time dilation and energy shifting factors
between two such ranges, F; ,<F; <F;, and F,, <
F, <F, ,, are given by
-1 _ ND+ l(Fl,l, Fl,u)ND(FZ,l: F2,u)
Ti2 = €12 = .
ND(FI,D Fl,u)ND+ 1(F2,15 FZ,u)

(16)

The effects of energy stretching are not modeled here
because they are removed empirically from the pulse dura-
tion measurements of Norris et al. (1996a) in § 3.2. The
interpulse duration measurements of Norris et al. (1996b)
and the peak energy measurements of Mallozzi et al. (1995)
do not require such corrections.

3. DATA ANALYSIS

3.1. Integral Distribution

BATSE’s sensitivity becomes less than unity at peak
fluxes below ~ 1 photon cm~2 s~ ! (Fenimore et al. 1993).
Petrosian, Lee, & Azzam (1994) demonstrated that BATSE
is additionally biased against short-duration bursts:
BATSE triggers when the mean photon count rate, defined
by

C@) = Alt JHNC(t)dt , @17

where At = 64, 256, and 1024 ms are BATSE’s predefined
timescales, exceeds the threshold count rate, Cy;,,,, on a par-
ticular timescale. Consequently, peak photon count rates
are underestimated for bursts of duration T < At, some-
times to the point of nondetection. Peak fluxes are similarly
underestimated. Petrosian & Lee (1996b) developed a cor-
rection for BATSE’s measured peak fluxes and a nonpara-
metric method of correcting BATSE’s integral distribution.
A burst’s corrected peak flux is given by

_ At
F=F1+—), 18
( Ty a8

where F is the burst’s measured peak flux and Ty, is the
burst’s 90% duration. Consequently, if T, > At, F ~ F;
however, if Ty, < At, F > F. Petrosian & Lee (1996b)
demonstrated that equation (18) adequately corrects
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BATSE’s measured peak fluxes on the 1024 ms timescale,
for bursts of duration Ty, > 64 ms, and for a variety of
burst time profiles.

BATSE’s corrected integral distribution is given by

(=1
ﬁ <1 + i) i>1
j=2 M; ’
where F; > F,. |, F; > Fy,, {(Ty), and M; is the number of
points in the associated set M ; = {(F;, Fyp (Too)):F; > F;
and Fy, (Too) < F;}. The corrected threshold flux,

Fiim(T5), is the minimum value of the corrected peak flux
that satisfies the trigger criterion: F > F,,,, where

_ _ (F
Flim = Clim<:> > (20)

and C is the measured peak photon count rate. By equation
(18), Fiim(Tso) is indeed a function of T;, and is similarly
given by

N(>F) = (19)

_ At
Fiin(To0) = Flim<1 + T_> . (21)
90

We apply the peak flux and integral distribution correc-
tions of Petrosian & Lee (1996b) with one restriction:
Kouvelioutou et al. (1993), Petrosian et al. (1994), and
Petrosian & Lee (1996b) have demonstrated that the dis-
tribution of BATSE burst durations is bimodal, with the
division occurring at Ty, ~ 2 s. This suggests that short
(Tyo < 2 s) and long (T, > 2 s) duration bursts may be
drawn from separate populations. This notion is further
supported by the tendency of short-duration bursts to have
steeper integral distributions than long-duration bursts
(Petrosian & Lee 1996b) and to have lower energy shifting
factors than long-duration bursts, especially at low peak
fluxes (Mallozzi et al. 1995). Consequently, we exclude
short-duration bursts from our sample.

Of the 1122 bursts in the 3B catalog, information suffi-
cient to perform these corrections, subject to the above
restriction, exists for 423 bursts. The corrected integral dis-
tribution is plotted in Figure 1. It can be seen that the
corrected distribution differs significantly from the uncor-
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FiGc. 1.—Uncorrected and corrected integral distributions of long-
duration (T, > 2 s) BATSE bursts.
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rected distribution only at peak fluxes below F ~ 04
photons cm ™2 s~ 1. For purposes of fitting, we truncate and
normalize the integral distribution at F = 0.316 photons
cm ™2 s~ 1, which corresponds to a trigger efficiency of ~ 3.
The remaining 397 bursts are divided into 18 bins: 15 are of
logarithmic length 0.1, and the brightest three are of
logarithmic length 0.2.

3.2. Time Dilation and Energy Shifting Factors

The pulse duration time dilation factors of Norris et al.
(1996a), computed using both peak alignment and autocor-
relation statistics, are subject to energy stretching: pulse
durations tend to be shorter at higher energies (Fenimore et
al. 1995); consequently, pulse duration measurements of
redshifted bursts are necessarily underestimated. Further-
more, Norris et al. (1996a) demonstrated that the unavoid-
able inclusion of the interpulse intervals in these analyses
has a similar effect. To correct for these effects, Norris et al.
(1996a) provided a means of calibration: they stretched and
shifted, respectively, the time profiles and the energy spectra
of the bursts of their reference bin by factors of 2 and 3, and
from these “redshifted ” bursts, they computed “observed ”
time dilation factors. For each statistic, we have fitted these
“observed ” time dilation factors to the “actual ” time dila-
tion factors of 2 and 3 with a power law that necessarily
passes through the origin. Calibrated time dilation factors
are determined from these fits and are plotted in Figure 2.

These calibrated time dilation factors are consistent with
both the interpulse duration time dilation factors of Norris
et al. (1996b) and the energy shifting factors (long-duration
bursts only) of Mallozzi et al. (1995) (see § 4), neither of
which require significant energy stretching corrections. The
interpulse duration time dilation factors were computed for
various combinations of temporal resolutions and signal-
to-noise thresholds. Norris et al. (1996b) provided error esti-
mates for two such combinations, which they described as
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F1G. 2—Calibrated (§ 3.2) pulse duration time dilation factors of Norris
et al. (1996a) computed using peak alignment ( filled circles) and autocor-
relation (open circles) statistics; interpulse duration time dilation factors of
Norris et al . (1996b) computed using temporal resolutions of 512 ms ( filled
squares) and 128 ms (open squares) and signal-to-noise thresholds of 1400
counts s~ ! (filled squares) and 2400 counts s~ ! (open squares); and inverse
peak energy shifting factors of Mallozzi et al. (1995) (filled triangles). The
time dilation factors and the energy shifting factors have been computed
using two different reference bins.
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“conservative ” with respect to their statistical significance.
These time dilation factors and the energy shifting factors of
Mallozzi et al. (1995) are additionally plotted in Figure 2.
All 22 of the time dilation and energy stretching factors are
fitted toin § 4.

4. MODEL FITS

Both the standard candle luminosity model and the
power-law luminosity distribution model have been x2-
fitted to the corrected and binned differential distribution of
Figure 1 (see § 3.1) and to the time dilation and energy
shifting factors of Figure 2 (see § 3.2). Additionally, both
models have been y-fitted to the union of these data sets. In
the case of the standard candle model, Ay?> confidence
regions, as prescribed by Press et al. (1989), are computed
on a 100? point grid. In the case of the power-law model,
Ay? confidence regions are computed on a 50* point grid
and are projected into three two-dimensional planes.

4.1. Standard Candle Luminosity Model

The standard candle model consists of three parameters:
h2L,, D, and z,,, where h = H,/100. By equations (5) and
(6), z,, is constrained by

HO LO 1/27]2
Zy > |:1 + 4c <7rF,,,) ] 1, (22)
where F,, = 0.201 photons cm~2 s~ ! is the peak flux of
BATSE’s faintest burst. However, above this limit, z,, is
independent of the data.

The standard candle model fits both the differential dis-
tribution (x2 = 18.3, v = 16) and the time dilation and
energy shifting factors (y2 = 16.2, v = 20). The significance
of the latter fit testifies to the consistency of the independent
time dilation and energy shifting measurements. The Ay?
confidence regions of these fits (Fig. 3), while demonstrating
strong correlations between h*L, and D, do not place
bounds on either parameter. However, the latter fit places
strong bounds on h2L,, for reasonable values of D.

The standard candle model additionally fits the union of
these data sets (y2 = 38.2, v =38). The Ay? confidence

56 56.5 57 57.5 58 58.5 59
log h°L, (ph s™)

Fic. 3.—Ay? confidence regions of the standard candle model fitted to
the differential distribution (A) and to the time dilation and energy shifting
factors (B). Dotted lines are 1 o, short-dashed lines are 2 o, and long-
dashed lines are 3 o.
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FiG. 4—Ay? confidence region of the standard candle model fitted to
the union of the differential distribution and the time dilation and energy
shifting factors. 1, 2, and 3 o are as described in Fig. 3.

region of this joint fit (Fig. 4) places strong bounds on both
h®L, and D: h®’L, = 2.3*3:% x 10°7 photons s™! and D =
3.6%95:3. By equation (22), this implies that z,, > 6.071:3, the
implications of which are discussed in § 5.

4.2. Power-Law Luminosity Distribution Model

The power-law model consists of five parameters: hL, D,
B, K, and z,,, where

_(1—B\(K* -1
) =

is the mean luminosity of the luminosity distribution, ¢(L).
The fifth parameter, z,,, is again constrained by equation
(22), except with L, — L,,. However, unlike in the standard
candle model, z,, is not necessarily independent of the data
above this limit. For purposes of fitting, we assume that z,,
is indeed beyond what BATSE observes. The limitations of
this assumption are discussed in § 5.

The power-law model fits the differential distribution
(x2 = 11.2, v = 14), the time dilation and energy shifting
factors (y2 = 13.6, v = 18), and the union of these data sets
(x2 = 34.1, v = 36). The Ay? confidence region of the joint
fit (Fig. 5) places strong bounds on D: D = 3.7*$4 and for
h*L < 10°7 photons s ', 3.4 < D < 3.8 to 1 ¢. This region
is additionally divisible into four unique subregions (see
Table 1). Using the terminology of Hakkila et al. (1995,
1996), the luminosity distribution of each subregion is
described as L,-dominated (independent of L), L,,-
dominated (independent of L,), range-dominated
(dependent upon both L,, and L,,), or similar to a standard
candle (L,, ~ L,,). For each subregion, bounds are placed
on L, B, K, and K,,, where Ko, is the 90% width of the
observed luminosity distribution and is given by (following

TABLE 1

POWER-LAW MODEL Ay? CONFIDENCE SUBREGIONS

Subregion d(L) L B K Ky,

| IO L,,-dominated <L, unbounded® 210°  10°5°
2, range-dominated ~ L, <15 <103 <102
3. standard candle ~L, unbounded ~1 ~1
T L,-dominated ~L, =25 =10>5 <10

2 <2 for cosmological values of L.
b <102 for cosmological values of L.
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FiG. 5—Projected Ay> confidence regions of the power-law model
fitted to the union of the differential distribution and the time dilation and
energy shifting factors. 1, 2, and 3 o are as described in Fig. 3. Subregions
1-4 are described in Table 1.

the convention of Ulmer & Wijers 1995):

L
Koo = L_Q: s (24)
where L,, the “p% luminosity” of this distribution, is

defined by

Ny (>F,) = <ﬁ>NL<LM(>Fm) . (25)
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It is important to note that others (e.g., Horack, Emslie, &
Meegan 1994) define Ky, differently:

Lyo/L,, (L, dominated)

Koo = {LM/LIO (L), dominated)’ (26)

which results in reduced values. The former definition is
applied here.

5. CONCLUSIONS

Assuming no evolution (D = 3), Fenimore & Bloom
(1995), Nemiroff et al. (1996), and Horack et al. (1996b) have
demonstrated that BATSE’s differential distribution is
inconsistent with a time dilation factor of ~2 between the
peak flux extremes of Norris et al. (1996a, 1996b). This has
prompted suggestions that either the bursts’ observed time
dilation is largely intrinsic or that strong evolutionary
effects are present in the differential distribution. The former
explanation, however, is discredited by the degree to which
the time dilation and energy shifting measurements are con-
sistent. Hakkila et al. (1996), also assuming no evolution,
have demonstrated that the differential distribution alone is
incompatible with a standard candle luminosity. These
results agree with our results for D = 3. We additionally
determine at what values of D that these incompatibilities
disappear: D = 3.69:3 for the standard candle model and
D =37%3% for the power-law model. For mean lumi-
nosities h*L < 10°7 photons s~ !, evolution is even more
tightly constrained: 3.4 < D < 3.8(to 1 ).

Horack et al. (1994), Emslie & Horack (1994), Ulmer &
Wijers (1995), Hakkila et al. (1995, 1996), and Ulmer,
Wijers, & Fenimore (1995) have demonstrated that Ky, <
10 for a variety of galactic halo and cosmological models.
When cosmological, these models assume no evolution.
However, when D > 3, Ky, need not be so tightly con-
strained (Horack, Emslie, & Hartmann 1995; Horack et al.
1996a). We find that for 10°7 photons s~ < h*L<$10°73
photons s~ 1, K, is only constrained to be less than ~ 102
(see Fig. 5). Furthermore, for h2L<510°% photons s~ ?,
K4y = 10. The former result is more conservative than esti-
mates that assume no evolution. The latter is the result of
new solutions that do not fit the data for D = 3.

In the standard candle model, the redshift of BATSE’s
faintest burst is 6.071:3, which is much greater than that
which is measured for galaxies. The power-law model,
under certain conditions, provides more reasonable esti-
mates. In Table 2, 1 ¢ bounds are placed on the redshift of
BATSE’s faintest burst for three representative lumi-
nosities: Ly, Lso, and Lg,, where L, is as defined in
equation (25). (For example, L5, is the median luminosity of
the observed luminosity distribution, and 80% of the
observed bursts have luminosities between L;, and Lg,.)
Defining the redshift z, as the maximum redshift at which

TABLE 2
POWER-LAW MODEL REDSHIFT OF BATSE’S FAINTEST BURST*

L, h2L < 10°7 photons s ! h%L = 10°7 photons s !
Lig...... 10 S 2,0 $23 1252, S42
Lsg...... 295250 S 46 425250 <594

51 <240 < 6.1 53 < 299 < 131
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bursts of luminosity L, can be detected, we find that 2.9 <
Zso < 4.6 for h2L < 10°7 photons s~ ! and 4.2 < z5, < 9.4
otherwise. However, z,, < 4.2 for all mean luminosities
and < 2.3 for h’L < 10°7 photons s~ *. If L, X Lo, the red-
shift of this burst is again quite large. Consequently, a mean
luminosity of h2L < 10%7 photons s~ ! coupled with a lumi-
nosity for BATSE’s faintest burst of L, < L, is favored.

In conclusion, the results presented in this paper demon-
strate that when both the differential distribution and the
time dilation and energy shifting factors are fitted to, mod-
erate evolution is required if an Einstein-de Sitter cosmol-
ogy, a power-law spectrum of photon number index — 1, no
luminosity evolution, and, in the case of the power-law
model, a nonobservable maximum burst redshift are

assumed. We have additionally demonstrated that under
these conditions, the 90% width of the observed luminosity
distribution is not necessarily < 10, as appears to be the
case if no evolution is assumed. Finally, redshift consider-
ations indicate that if the redshifts of the faintest bursts are
to be compatible with that which is currently known about
galaxies, the standard candle model is unacceptable, and,
for the power-law model, a mean burst luminosity h*L <
10°7 photons cm ~2 s~ ! is favored.
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5-2857 and an AAS/NSF-REU grant. We are also grateful
to E. E. Fenimore and E. D. Feigelson for useful dis-
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