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Abstract 
The problem of the robust definition of the acceptance regions in condition monitoring of the 
vibrations of rotating machinery is related to the more wide field of the analysis of bivariate data. 
Traditional parametric techniques and innovative non-parametric methods based on the statistical 
concept of the data depth are presented and critically examined in the paper. The performances with 
respect to the robustness in the estimation of the acceptance regions are analysed by means of 
experimental cases of real rotating machinery of a power plant. 
Keywords: bivariate analysis of data, rotor dynamics, condition monitoring, acceptance regions, 
data depth, robust estimation. 

1 INTRODUCTION 
One of the most common tasks performed by condition monitoring systems applied to rotating 
machines, or to vibrating systems in general, is to define acceptance regions for safe operation on 
the basis of statistical analysis of the monitored data. Producers of condition monitoring systems 
usually implement algorithms in their systems, which are able to define dynamically over time, on 
the basis of the observation and the statistical analysis of the monitored vibration vectors, 
acceptance region boundaries (see for instance [1]). Usually, both pre-alarm, alarm and trip levels 
can be set by the user and the exceeding of a level can cause different actions. Sometimes this 
information is used for diagnostic purposes [2][3][4], so the correct definition of the acceptance 
region boundaries is a very important task.  
The errors in the definition of the acceptance regions can be of two types. The first is the defective 
inclusion of normal operating conditions outside of the acceptance region: this causes false alarm or 
at least trips with consequent losses of production. The second is the over estimation of the 
acceptance region so that actual dangerous operating conditions are considered as normal. The 
capability of avoiding both errors can be seen as robust estimation of the acceptance region, 
therefore the discussion will be focused on the robustness in the following.  
The harmonic components of the vibration signal are complex numbers and among all their possible 
graphical representation for condition monitoring purpose, a 2  space with Real and Imaginary 
axes is usually employed, in which the tip of the vibration vector defines a bivariate data cloud of 
points (figure 1). The data cloud can be organized as 2m×  matrix X, composed by m row vectors 
xj, ( )1,...,j m∈ , of real xj1 (1st column) and imaginary xj2 (2nd column) part of a data sample. Each 
vector xj has module (amplitude in case of a vibration vector) xj and phase φj. Fm is the empirical 
distribution of X. 
The analytical methods presented in the paper are applied in the case of condition monitoring of 
rotating machinery, but they are suitable to any kind of bivariate data. 
Statistical analysis of complex bivariate data is included in the more comprehensive field of 
multivariate analysis, which is a field growing in importance in statistics. On one hand, classical 
multi-variate analysis relies strongly on the hypothesis of normality or near-normality of Fm, which 
is often difficult to justify in condition monitoring. On the other hand, these methods are parametric 
and use straightforward extension of the statistical moment approach of the univariate case, so that 
they are easy to understand and to implement. Thus they are very popular in engineering field. 
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Figure 1. Graphical representation of vibration data in 2  space. 

Historically, first acceptance regions were defined by circles in the 2  plane, but they were 
substituted by circle sectors in order to have a better evaluation of the phase changes [2]. Then, in 
order to define the acceptance region for a normal operating condition of the machine, once the 
collected data are composed by a sufficient number of measures, the boundaries of the region have 
to be defined.  
This task is usually performed by considering the amplitude and the phase of the vibration vector 
having separately a univariate normal distribution. The maximum and minimum value of the 
amplitude and the phase are fixed so that a certain percentile, for instance 95%, of the collected data 
are included in the amplitude and phase boundary respectively. This methodology is not robust and 
has four main drawbacks:  
i) it is not guaranteed that the required amount of data is actually included in the region;  
ii) the assumption of a univariate normal distribution for the amplitude and the phase could not be 

appropriate since the actual data distribution might not be normal nor phase and amplitude 
might be correlated;  

iii) phase boundaries sometimes could not be accurate when the vibration amplitude is small;  
iv) circle sectors have a fixed orientation, i.e. they are generated by circles centred in the polar axes. 
These topics are discussed in detail in section 2. 
A partial solution to the third and fourth drawbacks is to consider a normal bivariate distribution of 
the vibration data, as introduced in section 3. Even if this method can give a better evaluation of the 
acceptance region in case of data having small amplitude, it has its drawback (and lack of 
robustness) in the assumption of the normal distribution of the data.  
The solution, proposed by the authors in the paper, to these problems is to apply a general 
nonparametric multivariate methodology based on the statistical concept of data depth. The main 
idea is to analyse the region containing a certain amount of observations without inferring its data 
statistical distribution, but simply counting and ordering them, or better introducing a ranking in the 
values. In this sense the approach is nonparametric. 
This fact is not trivial, since the considered data have a 2  distribution and ordering is not defined 
in 2 , but considerable efforts have been made over the years, a survey can be obtained in [5], and 
different data depth have been developed [6][7] for statistical multivariate analysis. Section 4 
presents an overview on data depth and ranking. 
All the introduced methods are also analysed under the aspect of descriptive statistics and in 
particular the location, the dispersion (spread or scale), the correlation (related to the orientation of 
the sample), the skewness and the kurtosis (related to the presence of tails), accordingly also to the 
definition of robustness usually adopted by statistical inference, i.e. with respect to gross errors and 
outliers. It is worth to note that a parametric based method that is not robust in the last meaning, is 
also not robust in the estimation of the acceptance region, since, for instance, an error in the location 
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of the acceptance region might cause both the consideration of normal operating conditions outside 
of the acceptance region or the inclusion of dangerous operating conditions inside it. 
Finally, the comparison of the results obtained by means of parametric and nonparametric methods 
on condition monitoring data of rotating machinery is presented and the different capabilities of the 
method used to define acceptance regions are evaluated. 
 

2 UNIVARIATE PARAMETRIC METHOD APPLIED TO BIVARIATE DATA 
The definition of acceptance regions by means of sectors is based on the hypothesis, questionable, 
that amplitude and the phase of the vibration vector have uncorrelated univariate normal 
distribution. Let: 

{ } { }1 2 1 2, , , , , ,A m mx x x= =X x x x   and { } { }1 2 1 2arg( ),arg( ), , arg( ) , , ,m mφ φ φ= =x x x Φ  (1) 

respectively the vectors of amplitude and phase of the vibration vector. It is assumed that the 
probability density functions of the amplitude and phase of the sample are univariate normal 

( , )A A AN µ σ  and ( , )Nφ φ φµ σ , so they are parameterised with respect to means and standard 
deviations. These are estimated by means of the averages and sample standard deviations: 

1 1

1 1,
m m

A A i i
i i

x x
m mφµ µ φ φ

= =

← = ← =∑ ∑  (2) 

( ) ( )
1 2 1 2

22

1 1

1 1,
1 1

m m

A A i A i
i i

s x x s
m mφ φσ σ φ φ

= =

   ← = − ← = −   − −   
∑ ∑  (3) 

Then, given a percentage p that have to be included in the acceptance region, the amplitude and 
phase values, which defines the frontier of the region symmetrical with respect to the averages 
(figure 2), are: 

( )11, , 1 erf , 2 erf 2 1
2 2A A

zx x s z s z p z pφφ φ −  = ± = ± = + = −  
  

 (4) 

where the error function erf is: 

( ) 2

0

2erf te dt
ξ

ξ
π

−= ∫  (5) 

Thus, the obtained region is a circular ring sector.  
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Figure 2. Sector position and shape. 
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With regards to the descriptive statistics aspect, since the present method uses a parametric estimate, 
the considered characteristics are related to the moments of the each univariate distribution of 
vibration vector amplitude and phase. In particular, the location, dispersion, skewness and kurtosis 
are defined respectively in terms of the first, the second, the third and the fourth moment. Therefore 
they descend “automatically” from the estimated distribution. 
The location of the sample is estimated by means of the averages of vectors XA and Φ , i.e. by 
vector i

Ax e φ  see eq. (2) and figure 2, but it is well known that average is not a robust with respect 
to outliers [9,10,11].  
The spread is related to the standard deviations of vectors XA and Φ , thus to the second moment: 
the height of the sector is 2 As  and the angular extension 2 sφ . The robustness is similar to that of 
the location, since sample standard deviations are employed.  
The orientation of the sector is fixed, due to its geometrical definition. Moreover the sector is 
always centred in the origin of the reference system. 
The skewness of the sample is not evaluated nor reproduced, since the sector is symmetrical with 
respect to to vector i

Ax e φ . Moreover the estimated univariate distribution of vectors XA and Φ is 
symmetric and the third moment is always null for normal distribution. 
The kurtosis is related to that of the two univariate normal distributions and therefore equal to 3. So 
the capability to indicate outliers is rather poor if the sample distribution has not near-normal 
distribution for the amplitude and phase of the vibration. 
These drawbacks are rather evident in figure 3, where some acceptance region, 99%-thick line, 
94%-dashed line, 63%-thin line, are drawn on a data cloud coming from the condition monitoring 
system of the generator of a 50 MW combined cycle power plant. Even the sample is quite 
pathological and two data cluster are evident, if no preventive clustering is made, XA and Φ  
empirical distribution is not near-normal and the actual data estimation is not good. The acceptance 
region estimation is not robust and this fact can be evaluated also graphically. 
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Figure 3. 1X vibration collected by one of the two proximity probes in a bearing of the generator of a 50 MW 

combined cycle power plant (left). Amplitude and phase distributions (right). 

 

3 BIVARIATE PARAMETRIC METHOD 
Whilst the definition of acceptance regions by means of circle sectors uses a univariate normal 
distribution separately for the amplitudes and the phases of the collected vibration data, the normal 
estimate uses a normal bivariate distribution for the real and the imaginary part of the vibrations. 
Also in this case it is questionable the hypothesis that the 2  distribution of X can be split into two 
  distributions. Let: 
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{ }1 11 21 1, , , mx x x=X   and { }2 12 22 2, , , mx x x=X   (6) 

respectively the vectors of real and imaginary parts of the vibration vector.  
The continuous probability density function of the normal bivariate distribution is given by: 

( )1 2 1 222
121 1 12

1 1( , ) exp ( , )
2 12 1

f x x B x x
ρπ σ σ ρ

 
 = −
 −−  

 (7) 

where 
2 2

1 1 1 1 2 2 2 2
1 2 12

1 1 2 2

( , ) 2x x x xB x x µ µ µ µρ
σ σ σ σ

       − − − −
 = − +      
        

 (8) 

and 1µ , 2µ , 1σ  and 2σ  are the mean value and the standard deviation of the marginal distribution 
of x1 and x2, 12ρ  the correlation coefficient defined as: 

12
12

1 2

σρ
σ σ

=  (9) 

and 12σ  is the covariance of x1 and x2. 
A relative frequency given by eq. (7) is corresponding to each couple of values 1 2( , )x x , while 
probability is given by the cumulative distribution function that is the volume bounded by eq. (7) 
and the plane parallel to plane x1x2 passing through 1 2( , )x x . Since the acceptance regions of a 
vector quantity are regions of the polar plane, in which a certain amount of the vector tips of the 
measured value is included, if the data distribution F is normal, the region definition is possible by 
means of the cumulative distribution function and its sections made by planes parallel to the polar 
plane x1x2. The sliced sections are ellipses as it is shown in appendix 1 
Then, distribution parameters of normal bivariate are substituted by their estimators: 
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Once parameter C is determined as function of the given percentage included in the region, ellipse 
semi-axes, see eq. (30) and figure 4, are given by: 

1a C s= , 2b C s=  (13) 

while the angle between semi-axis a and x is given by: 

( )( )

( ) ( )

1 1 2 2
1 1

2 2
1 1 2 2

1 1

2
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2

m

i i
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m m

i i
i i
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α − =
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− −
=

− − −

∑

∑ ∑
 (14) 
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Figure 4. Ellipse position and shape. 

Once again it is worth to remember that if the data distribution is not exactly normal bivariate, the 
actual quantity of the data included inside an ellipse could not be corresponding to the probabilistic 
estimate. An example is shown using the data of the 1X vibration collected by one of the two 
proximity probes in a bearing of the exciter of a 660MW power unit measured with the rotor current 
ranging from 2000 A to 3600 A with a short circuit at initial stage (figure 5). Also the two marginal 
distributions are shown and are not near-normal. The sample has a “banana shape” and the region 
containing the 99%-thick line, 94%-dashed line, 63%-thin line are calculated using a normal 
estimate. If these regions were assumed to be acceptance regions, the actual percentage of the 
sample included inside them is reported in table 1. From the analysis of figure 5 and table 1, the 
normal estimate does not give a good estimation of the data in this case and a not robust estimation 
of the acceptance region.  

Table 1. Actual amount of data contained in the acceptance region. 

Nominal percentage 63% 94% 99% 
Normal estimate 73.00%  98.37% 100% 

 
 

In regards to the descriptive statistics aspect, since also the present method uses a parametric 
estimate, the considered characteristics are related to the moments of the bivariate distribution.  
The location of the sample is estimated by means of the averages of vectors X1 and X2, see eq. (10), 
since all the ellipses are centred in 1 2( , )x x , see eq. (30), but again these estimators of the means are 
not robust with respect to outliers [8][9][10]. Moreover, notice that in general: 

2 2
1 2 1 2, arg( )Ax x x x i xφ≠ + ≠ +  (15) 

so that the location given by bivariate estimation is different from that of univariate. 
The dispersion is related to the standard deviations of vectors X1 and X2, thus to the second moment, 
since ellipse axes are proportional to sample standard deviations, see eq. (13). The robustness is 
similar to that of the location, since sample standard deviations are employed. Sophisticated 
parametric methods have been developed, in order to have robust estimation of the dispersion, see 
[11] and one of them is used in the following in eq. (24), but a detailed discussion about them is far 
from the scope of this work.  
The orientation of the sample is again related to the first and second moments, see eq. (14) that 
allows the axis inclination to be calculated. 
The skewness of the sample is impossible to be evaluated, since the estimated distribution is 
symmetric and the third moment is always equal to zero. 
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The kurtosis is related to that of the single marginal normal distribution and therefore equal to 3. So 
the capability to indicate outliers is rather poor if the sample distribution is not near-normal. 
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Figure 5. 1X vibration collected by one of the two proximity probes in a bearing of the exciter of a 660MW 

power unit measured with the rotor current ranging from 2000 A to 3600 A with a short circuit at initial stage 
(left). Real and imaginary part marginal distributions (right). 

 

4 NONPARAMETRIC APPROACH BASED ON DATA DEPTH 
Whilst nonparametric approaches are well-known in Statistics for sample analysis [12], they are not 
commonly applied in engineering, so it is useful an introduction about the main concepts. In general 
terms, a data depth ( ; )DD θF  is a way of measuring how deep (or central) a given point dθ ∈ , 

1d ≥  with respect to a continuous probability distribution F or to a given data cloud Fm. A unique 
definition of data depth does not exist and some of the proposed are: 
• The Mahalanobis’ depth [13]: 

( ) ( ) 11( ; ) 1hM D θ θ µ θ µ
−− = + − Σ − F F FF  (16) 

where µF  is the mean vector and Σ the covariance matrix of F. In the sample version µF  
and Σ are replaced by their estimators. 

• The Oja’s depth [14]: 

[ ]( ){ } 1

1( ; ) 1 , , , dOD E volume Sθ θ
−

 = + FF X X  (17) 

where [ ]1, , , dS θ X X  is the closed simplex with vertices θ and d random observation 

1, , dX X  from F, E is the expected value operator. A simplex, sometimes called a 
hypertetrahedron [15], is the generalization of a tetrahedral region of space to n dimensions. 
The simplex is so-named because it represents the simplest possible polytope (a finite region 
of n-dimensional space enclosed by a finite number of hyperplanes) in any given space.,  
For the sample version: 

[ ]( ){ }
1 1

1
*

( ; ) 1 , , ,m d

m
OD volume S

d
θ θ

− −
   = +     

∑F X X  (18) 

where * indicates that the sum is extended to all the d-plets 1( , , )di i  such that 

11 di i m≤ ≤ ≤ ≤ . 
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• The simplicial depth [16] developed by Liu: 

[ ]{ }1 1( ; ) , , dSD P Sθ θ += ∈FF X X  (19) 

where [ ]1 1, , dS +X X  is a closed simplex formed by 1d +  random observation from F. The 
sample version replaces F with Fm or alternatively: 

[ ]( )1 1, ,
*

( ; )
1 dm S

m
SD I

d θθ
+∈

 
=  + 

∑ X XF


 (20) 

where I(.) is the indicator function, i.e. 1 if the condition (.) is true, 0 otherwise, and * 
indicates that the sum is extended to all the d-plets 1 1( , , )di i +  such that 1 11 di i m+≤ ≤ ≤ ≤ . 

• The majority depth [6] developed by Singh: 

( ){ }1( ; )  is in a major side determined by , ,j dM D Pθ θ= FF X X  (21) 

major side is a half-space bounded by the hyperplane containing ( )1, , dX X  which has 
probability 0.5≥ . The sample version replaces F with Fm. 

• The likelihood depth LD [6] is simply the probability density function. The empirical 
version can be any consistent density estimate at θ. 

• The projection depth [7][17]: 

( ) 1( ; ) 1 ( )PD Oθ θ −= +F  (22) 

where  

{ }
{ }

1

1 1

Med
( ) sup

MAD
i m i

i m i

O
θ

θ ≤ ≤

= ≤ ≤

′ ′−
=

′u

u u X
u X

 (23) 

is the robust measure of the outlyingness of θ with respect to F [18] and MAD denoted the 
univariate median absolute deviation: 

( )MAD( ) Med Med( )= −Y Y Y  (24) 

The sample version replaces F with Fm. 
• The convex hull peeling depth CD [5] at the sample point Xk with respect to the data set 

{ }1, , mX X  is simply the level of the convex layer Xk belongs to. To build the first convex 

layer, the smallest convex hull that encloses all sample points { }1, , mX X  is considered. 
The sample points on the perimeter are designed as the first convex layer and removed. The 
next convex hull is considered and the second convex layer defined. The procedure iterates 
and sequence of nested convex layers is formed. The higher layer a point belongs to, the 
deeper the point is within the data cloud.  

• The half-space depth [6][19] developed by Tukey: 

( ; ) inf ( ) :  is a closed half-space in and d

H
HD P H H Hθ θ = ∈ F   (25) 

The sample version replaces F with Fm. If bivariate finite sample is considered, which is 
more pertinent to this paper, 2d =  and an equivalent definition is: 

{ }( ; ) min # ; iH
HD i Hθ = ∈F x  (26) 

where # indicates the number of the data samples satisfying the condition inside the brace 
parentheses and H ranges over all the half-planes of which the boundary line passes through 
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θ . The definition in eq. (26), given in [18][20], is not normalized like those before, but is 
geometrically meaningful: practically it represents the smallest number of ix  contained in 
any half-plane with boundary line passing through θ . The consideration of figure 6 is useful 
to understand the definition given in eq. (26): the considered θ  on the three centre-left side 
pictures has depth equal to 1. Practically, a line, passing through each point of the 2  field 
to which the collected data belong, is drawn. The 2  field is divided into two half-planes 
and the number of the data point in each half-plane is counted. 
Obviously, a point θ  outside the convex hull of X has ( ; )HD θF  equal to zero, as shown in 
rightmost side of figure 6 and this limits the points θ to be considered.  

Several researchers have compared the presented depth measures with respect to different statistical 
criteria [6][7][18][21][22][23] and HD appears to have the best overall performances and robustness. 
Therefore we will consider it only, using definition in eq. (26) that have the advantage of giving an 
integer number as data depth measure. Anyhow, data ordering criterion (see [24][25][26]) described 
in the following is applicable whichever DD definition is chosen (except for CD that directly orders 
the element of the data) with few adjustments. 

 
Figure 6. Calculation of the half-space depth of a general point θ. 

The depth region of depth k is defined as the set Dk of points θ  having ( ; )HD kθ ≥F . Likewise, Dk 
is the intersection of all the closed half-planes that contain at least 1m k− +  data points, so Dk is a 
limited and convex polytope. Moreover 1k kD D+ ⊂  as proven in [18]. The boundary of Dk is a 
convex polygon which is called contour of depth k and each vertex is the intersection point of two 
lines each one is passing through two data points.  
Since HD is used, if only one point θ  exists that has the maximum ( ; )HD θF  then it is defined as 
Tukey’s median T* of X, otherwise T* is the centre of mass of the maximum depth region. If others 
DD are used, the deepest point concept is retained, but it is generally defined as depth median. Now, 
the i-percentile region Ai that includes the percentile Qi of the data is built as follows: if #Dk is the 
number of the experimental data in Dk, first the value k is determined such as: 

1# #k i kD mQ D −≤ ≤    (27) 

where ⋅    indicates the floor function, i.e. it rounds ⋅  to the nearest integer less than or equal to ⋅ . 
Then, a linear interpolation between Dk and Dk-1 relative to point T* is made in order to obtain the 
region Ai for which # i iA mQ=    . Note that the i-percentile region Ai is a convex polygon too, but it 
has not necessarily vertexes belonging to data cloud X. 
By considering now the engineering application of these concepts, two criteria can selected to 
define acceptance region on the basis of data depth analysis.  
The first is to define acceptance region simply choosing the confidence level of the percentile 
region, similarly to the parametric methods presented in paragraphs 2 and 3. In regards to the 
descriptive statistics aspect, since all the DD methods are nonparametric, moments are not 
considered: the location is estimated by means of the depth median, the spread by the size of the 
percentile region, the correlation by region orientation, the skewness by of the shape of the region. 
Data points outside the i-percentile region are considered outliers at confidence level i. 
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The second criterion is to use the bagplot, introduced by Rousseeuw et al. [24], which is a 
generalization of Tukey’s univariate boxplot to bivariate data set distributions. As the fundamental 
concept is the rank in the univariate case, as is the DD, in the bivariate case. To build a bagplot, the 
previous exposed ordering method is followed up to eq. (27) in which the k value of region of the 
50-percentile is instead determined: 

1# 2 #k kD m D −≤ ≤    (28) 

The set A50 for which 50# 2A m=    , obtained by a linear interpolation between Dk and Dk-1 relative 
to point T* is defined as bag. Similarly to the boxplot, also in this case a fence is defined and it is 
obtained by inflating bag A50 by a certain factor relatively to T*. Conventionally, after the results of 
simulations reported in [24], the inflating factor has been chosen equal to 3. The loop contains all 
the points between the bag and the fence, so its vertexes belong to X. An example of bagplot of 
bivariate data is shown in figure 7, compared with the boxplots of the univariate marginal 
distributions. 

 
Figure 7. Bagplot of a bivariate data. 

In Rousseeuw’s opinion, the bagplot is effective in giving an immediate graphical and descriptive 
representation of some fundamental characteristics of a bivariate data distribution: 

• its location or position (by means of the Tukey’s median); 
• its spread or dispersion (by means of the bag size); 
• its correlation (by means of the bag orientation); 
• its asymmetry or skewness (by means of the shape of the bag and the loop); 
• the presence of tails (by means of the points next to the boundary of the loop and outside of 

the fence, which are considered as outliers). 
The main drawback of DD methods with respect to parametric methods of paragraphs 2 and 3 is 
that specific algorithms for depth calculation have to be used. Anyhow, for the HD and the bagplot 
some public domain algorithms have been developed by Rousseeuw et al. [27][28] and they are 
used for the data analysis presented in the following. Due to HD definition, the algorithm that 
implements its calculation is rather time consuming since it is 2( log )O m m , therefore some 
approximation are made if m is greater than 200, thus in this case Ai region could not contain 
exactly the percentile Qi of the sample, but this has a marginal relevance in the analyses presented 
in the following. The authors have developed an alternative algorithm that overrides this limit and 
takes advantage from the increasing calculation speed of nowadays computers and it has been used 
for the calculation of the percentile regions. 
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5 CASE 1 
The first experimental case presented is relative to the condition monitoring of a 50 MW combined 
cycle power plant. Figure 8 shows the time history of the amplitude and phase of the synchronous 
(1X in the following) vibration over little less than six days. No evident conditions of different load 
appear from the diagram. Figure 9 shows the polar plot of the same data, from which the data cloud 
has an “almond” shape, but no further information about data density is manifest. In order to have a 
better idea the consideration of the 3D histogram of the data in figure 10 suggest that the 
distribution could be considered with a certain degree of approximation as a near-normal bivariate, 
even if the tails are not very symmetric. Therefore a good estimation of the actual distribution can 
be expected by ellipses. 
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Figure 8. Case 1: time history 1X of vibration collected 
by one of the two proximity probes in a bearing of the 

generator of a 50 MW combined cycle power plant.  

-45 -40 -35 -30 -25 -20 -15 -10 -5 0

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Real part [µm]

Im
ag

in
ar

y 
pa

rt 
[ µ

m
]

x1031912

 
Figure 9. Case 1: polar plot 1X of vibration collected 

by one of the two proximity probes in a bearing of the 
generator of a 50 MW combined cycle power plant. 

The acceptance regions defined by means of the four different criteria described in paragraphs 2, 3 
and 4 are shown in figure 11 for the circle sectors, in figure 12 for the ellipses, in figure 14 for the 
bagplot and in figure 13 for the percentile regions. For the circle sectors and the ellipses, the sectors 
are shown for confidence levels from 10% to 90% with a 10% step (thin lines) and for the 99% 
(bold dashed line). The same confidence levels are shown also for the percentile regions, but note 
that the 99% value is less significant in this case, since it is very close to the first convex hull of the 
data. In all the diagrams, the estimated location of the data obtained by means of the respective 
method is indicated by a target sign (note that for the bagplot and the percentile regions the 
estimator is the Tukey’s median in both cases). 
The location of the data obtained by all the four criteria can be deemed as good, even if Tukey’s 
median appears a little bit more “central” then the estimates given by eq. (2) and eq. (10), when 
figure 10 is considered. The dispersion estimation is good for all criteria except for circle sectors, 
since they overestimate acceptance regions for higher percentiles. Similar comments can be made in 
regards to the presence of tails. 
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Figure 10. 3D histogram of case 1. 
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Figure 11. Case 1: acceptance regions defined by 

means of circle sectors. 
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Figure 12. Case 1: acceptance regions defined by 

means of ellipses. 
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Figure 13. Case 1: acceptance regions defined by 

means of percentile regions. 
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Figure 14. Case 1: acceptance regions defined by 

means of bagplot. 

 

6 CASE 2 
The second experimental case is relative to the same power plant of Case 1, but in a different period. 
The time history of the amplitude and phase of the 1X vibration over about six days (figure 15) 
shows almost two different operating conditions, depending on the day-light vs. night-time load. 
The polar plot in figure 16 has an “S” shape which can hardly be alike to a normal distribution.  
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Figure 15. Case 2: time history 1X of vibration collected 
by one of the two proximity probes in a bearing of the 

generator of a 50 MW combined cycle power plant. 
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Figure 16. Case 2: polar plot 1X of vibration collected 
by one of the two proximity probes in a bearing of the 

generator of a 50 MW combined cycle power plant. 

Thus, instead of analyzing the raw data, a preliminary cluster analysis has been performed. This fact 
implies that the condition monitoring system is able to perform by itself this kind of operation. 
Some proposal in this sense in rotor dynamics have been presented in literature [29] using artificial 
neural networks. However, for the purposes of the paper, more traditional clustering techniques 
have been used, which are briefly described in appendix 2. 
 

6.1 Case 2: Analysis of the Data Cluster 
Since data of case 2 are relative to almost two different operating conditions, depending on the 
day-light vs. night-time load, it is appropriate to analyze data grouped in clusters having the same 
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operating conditions. Even if this operation might be performed manually, being the data records 
time and day based, it has been preferred to apply an automatic clustering in order to be 
independent from the operator action and to simulate the procedure of an automated condition 
monitoring system. Among the possible criteria that can be applied to cluster data, a hierarchical 
clustering of the data has been used. A detailed explanation about hierarchical clustering can be 
found in [30] [32] and is far from the scope of this paper, while some basic concepts are reported in 
appendix. Figure 17 shows the result of the clustering, in which the two clusters having the highest 
level of consistency, when the different criteria described in appendix 2 are used for the calculation 
of the distance between points and the linkage, are indicated by black and grey solid dots 
respectively. In the hierarchical clustering terminology the clusters with the highest level of 
consistency are said to have the highest cophenetic coefficient, see eq. (48). 
The implicit criterion that clustering seems to have applied is to discriminate the clusters on the 
basis of an amplitude threshold, but the automatic clustering can be deemed as acceptable, since 
indicate acceptably the different operating conditions. 
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Figure 17. Case 2: time history with the data grouped 
into two clusters. Cluster 1 is indicated by solid black 

dots, cluster 2 by solid grey dots. 
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Figure 18. Case 2: polar plot of the two data cluster. 
Cluster 1 is indicated by solid black dots, cluster 2 by 

solid grey dots. 

From the polar plot of the two clusters shown in figure 18, it is difficult to recognise a near-normal 
distribution for both the clusters. This opinion is confirmed by the 3D histograms in figure 19 and 
figure 20. 

 
Figure 19. 3D histogram of cluster 1. 

 
Figure 20. 3D histogram of cluster 2. 
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Figure 21. Case 2: acceptance regions defined by 

means of circle sectors for both clusters. 
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Figure 22. Case 2: acceptance regions defined by 

means of ellipses for both clusters. 
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Figure 23. Case 2: acceptance regions defined by 

means of percentile regions for both clusters. 
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Figure 24. Case 2: acceptance regions defined by 

means of bagplot for both clusters. 

 
The location of the data obtained by all the four estimation criteria can be deemed as good. These 
results are not confirmed for the dispersion estimation. Only percentile regions, see figure 23, keeps 
the two clusters separated. The application of the other estimation methods determines the 
overlapping of the acceptance regions of the data clusters, see figure 21, figure 22 and figure 24, 
indicating that these methods are not effective in the estimation of outliers. The last result can be 
surprising if the bagplot is accounted for, but probably the inflating factor proposed by the authors 
that introduced it [24] should be less than 3. This way, the shape of the fence would be retained, but 
it would be closer to the bag and a better estimation of outliers would be obtained. 

7. CASE 3 
The last experimental case is again relative to the same power plant of Case 1 and 2, but in a 
different period. The time history of the amplitude and phase of the 1X vibration over about five 
days (figure 25) shows almost two different operating conditions, depending in this case on the 
different load in work-days or holydays. These conditions cause a rather strange “atoll” shape for 
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the data distribution in the polar plot (figure 26). The 3D histogram in figure 27 confirms that the 
data distribution is far from near-normal.  
Even if it is evident that two cluster of data are present, the complete sample was analyzed using the 
four methods described (figure 28 for circle sectors, figure 29 for ellipses, figure 30 for percentile 
regions and figure 31 for bagplot) in order to evaluate their capability with respect to data 
characterized by strong “seasonal” behaviour. Obviously, acceptance regions are largely 
overestimated by parametric methods (figure 28 and figure 29). The necessity to correct the fence 
inflating factor is confirmed (figure 31). Also the performance of the percentile regions is not 
optimal, since they are necessarily convex (see the properties described in paragraph 4) and thus 
cannot reproduce the “hole” of the “atoll”, but in any case there is not the overestimation of the 
region since, as already reported, they tend to the first convex hull of the data. Therefore, percentile 
regions are able to acceptably handle also data affected by strong “seasonal” behaviour. 
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Figure 25. Case 3: time history 1X of vibration collected 
by one of the two proximity probes in a bearing of the 

generator of a 50 MW combined cycle power plant. 
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Figure 26. Case 3: polar plot 1X of vibration collected 
by one of the two proximity probes in a bearing of the 

generator of a 50 MW combined cycle power plant. 

 

 
Figure 27. 3D histogram of case 3. 
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Figure 28. Case 3: acceptance regions defined by 

means of circle sectors. 
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Figure 29. Case 3: acceptance regions defined by 

means of ellipses. 
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Figure 30. Case 3: acceptance regions defined by 

means of percentile regions. 
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Figure 31. Case 1: acceptance regions defined by 

means of bagplot. 

 

7.1 Data clustering 
Figure 32 shows the result of the clustering which has the higher cophenetic coefficient, see eq. (48) 
The implicit criterion that clustering seems to have applied is to discriminate the clusters on the 
basis of both amplitude and phase thresholds, and the automatic clustering can be deemed as 
acceptable, discriminate the different operating conditions and the “atoll” is split into two parts 
(figure 33). By comparing the 3D histogram of all the data in figure 27 with figure 33, a preliminary 
analysis indicates that cluster 1 has a camel-back shape, whilst cluster 2 can be considered 
near-normal. 
The definition of the acceptance regions (figure 34, figure 35, figure 36 and figure 37) can be 
considered rather satisfactory for all the methods for cluster 2. For cluster 1, the estimation of the 
dispersion is rather good, but the Tukey’s median gives a better estimation of the location as results 
by considering 3D histogram of figure 27. Moreover, the good performances of circle sectors can be 
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ascribed to the favourable “geometry” and position with respect to the axis origin of the data cloud 
clusters, which are suitable to be inscribed in circle sectors. 
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Figure 32. Case 3: time history with the data grouped 
into two clusters. Cluster 1 is indicated by solid black 

dots, cluster 2 by solid grey dots. 
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Figure 33. Case 3: polar plot of the two data cluster. 
Cluster 1 is indicated by solid black dots, cluster 2 by 

solid grey dots. 
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Figure 34. Case 3: acceptance regions defined by 

means of circle sectors for both clusters. 
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Figure 35. Case 3: acceptance regions defined by 

means of ellipses for both clusters. 
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Figure 36. Case 3: acceptance regions defined by 

means of percentile regions for both clusters. 
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Figure 37. Case 3: acceptance regions defined by 

means of bagplot for both clusters. 
 

9 CONCLUSIONS 
A review on existing parametric techniques applied to bivariate data has been presented in the first 
part of the paper in order to have analytical tools to define acceptance regions of vibration vectors 
for condition monitoring systems in rotating machinery. Then, new non-parametric bivariate data 
description methods have been introduced. They are based on the general concept of data depth and 
a method to give a ranking to the data is presented. Two possible criteria to define acceptance 
regions using data depth are discussed: the bagplot and the percentile regions. Obviously, the 
methods presented here are suitable to all bivariate data, not only to vibration in rotating machinery.  
Some experimental cases, coming from combined cycle power plant have been presented in order to 
evaluate the performances and the robustness in the estimation of the acceptance region of the 
different methods. Two of the experimental cases present also strong seasonal behaviour depending 
on the operating conditions and loads. The analyses were performed either pre-processing or not the 
data by means of clustering techniques. The results of the analyses indicates that parametric 
methods are generally less robust than percentile regions, while the bagplot definition given in 
literature have to be tuned before being considered acceptable in this field of application. Another 
interesting result is that percentile regions are rather robust also in case of data presenting strong 
seasonal behaviour. Since calculation algorithms for non-parametric methods, for percentile regions 
in particular, are now available and computers are sufficiently powerful, their application into 
on-field condition monitoring systems will by very useful and limit the errors in alarm signals.  
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APPENDIX 1 
Starting from the continuous probability density function of the normal bivariate distribution given 
by eq. (7), the acceptance regions are obtained in the polar plane as: 

( )1 2, constantz f x x= =  (29) 

and passing to natural logarithms: 
2 2

21 12 1 2 2
2 2
1 1 2 2

2x x x x Cρ
σ σ σ σ

− + =  (30) 

Eq. (30) is the analytical expression (parametric in the constant C) of the ellipses that can be 
projected on the polar plane x1x2. The percentage of the data enclosed in each of them is given by 
the integral of the probability density function over the region itself. The centre co-ordinates of the 
ellipses is given by the mean values of x1 and x2, i.e. 1 2( , )µ µ , while it is necessary to define the 
value of the constant C, in order to have an ellipse containing a certain percentage of the data. This 
is possible by considering that the surface A of a generic ellipse is: 

( )2 2 2 2
1 2 121A Cπ σ σ ρ= −  (31) 

Differentiating eq. (31), we have: 

( )2 2 2
1 2 122 1dA C dCπ σ σ ρ= −  (32) 

The height of the probability density function over surface dA is given by: 

( )
2 2

2 2 2
1 2 12

1

2 1
Ch e

π σ σ ρ
−=

−
 (33) 

so that the volume included over the plane points that are exterior to the ellipse is: 

( )
( )

2 22 2 2 2 2
1 2 12 2 2 2

* 1 2 12

12 1
2 1

C C

C

V C e dC eπ σ σ ρ
π σ σ ρ

∞

− −= − =
−∫  (34) 

Eq. (34) is also the probability that some data are outside of the ellipse: 

2
2 2

2 21 12 1 2 2
2 2
1 1 2 1

2 Cx x x xP C eρ
σ σ σ σ

− 
− + > = 

 
 (35) 

while the probability that the data are inside of the ellipse is: 
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2 2
1 1 2 2

2 1 Cx x x xP C eρ
σ σ σ σ

− 
− + ≤ = − 

 
 (36) 

Solving eq. (36) for C, the relation between the parameter C and the percentage of the data included 
is obtained: 

21ln
1

C
P

 =  − 
 (37) 

 

APPENDIX 2 

Given the experimental data organized in a 2m×  matrix X, composed by m row vectors xj, 
( )1,...,j m∈ , of real xj1 (1st column) and imaginary xj2 (2nd column) part of a data sample, the 

various distances between vector xr and xs are defined as follows: 
Euclidean distance: 

2 T( , ) ( )( )Euclidean r s r sd r s = − −x x x x  (38) 

Standardized euclidean distance: 
2 1 T( , ) ( ) ( )Seuclidean r s r sd r s −= − −x x D x x  (39) 

where D is the diagonal matrix of the variance 2
jσ  of j-th variable over m. 

Mahalanobis distance: 
2 T 1( , ) ( ) ( )Mahalanobis r s r sd r s −= − −x x V x x  (40) 

where V is the sample covariance matrix. 
City block metric: 

2

1
( , )Cityblock rj sj

j
d r s x x

=

= −∑  (41) 

Minkowski metric: 
1

2

1
( , )

p
p

Minkowski rj sj
j

d r s x x
=

 
= − 
 
∑  (42) 

Note that in case of p = 1, Minkowski metric coincides to City block metric, of p = 2 to euclidean 
distance, so in the paper we consider p = 3. 
Distances calculated by means of eqs. (38) to (42) for all the ( 1) / 2m m −  pairs of points are then 
organized in a vector Y. The distance information contained in Y is used first to link pairs of objects 
that are close together into binary clusters and then to link these newly formed clusters to other 
objects to create bigger clusters until all the objects in the original data set are linked together in a 
hierarchical tree called dendrogram that has on the horizontal axis the indices j of the objects in the 
original data set the incremental distance between the object pairs on the vertical axis. The link 
pairs are ordered in matrix Z of ( 1) 3m − ×  in which the columns 1 and 2 are the indexes of the 
points and column 3 is the distance. 
Given nR the number of points in cluster R, nS the number of points in cluster S, xRi the i-th point in 
cluster R and xSj the j-th point in cluster S. Five algorithms have been used to generate the 
gerarchical cluster tree information. 
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Single linkage, or nearest neighbour, algorithm uses the shortest distance between objects in the two 
groups: 

( )( , ) min ( , ) , (1,..., ), (1,..., )single Ri Sj R Slk R S d x x i n j n= ∈ ∈  (43) 

Complete linkage, or furthest neighbour, algorithm uses the longest distance between objects in the 
two groups: 

( )( , ) max ( , ) , (1,..., ), (1,..., )complete Ri Sj R Slk R S d x x i n j n= ∈ ∈  (44) 

Average linkage algorithm uses the average distance between all pairs of objects in the two groups: 

1 1

1( , ) ( , )
SR nn

average Ri Sj
i jR S

lk R S d x x
n n = =

= ∑∑  (45) 

Centroid linkage algorithm uses the distance between the centroids of the two groups: 

1 1

1 1( , ) ( , ), ,
SR nn

centroid R S R Ri S Sj
i jR S

lk R S d x x x x x x
n n= =

= = =∑ ∑  (46) 

Ward linkage uses the incremental sum of squares; that is, the increase in the total within-group 
sum of squares as a result of joining groups R and S:  

2 ( , )( , ) R S centroid
Ward

R S

n n d R Slk R S
n n

=
+

 (47) 

The within-group sum of squares of a cluster is defined as the sum of the squares of the distance 
between all objects in the cluster and the centroid of the cluster. 
An example is of dendrogram for data of Case 3 using Euclidean distance eq. (38) and average 
linkage eq. (45) is shown in figure 38. Due to the high number of data points, unfortunately the 
object indexes are not visible. 
The evaluation of the validity of the cluster information generated by the link algorithms of eqs. (43) 
to (47) is to compare it with the original proximity data calculated using the distances in eqs. (38) to 
(42). If the clustering is valid, i.e. clusters are consistent, a strong correlation have to exist. In the 
clustering literature, this fact is evaluated by means of the construction of two matrices, the so 
called dissimilarity matrix and cophenetic matrix, and by the calculation of the correlation 
coefficient between the entries of the two matrices. The full explanation is far from the scope of the 
paper, so only the coefficient, which is called cophenetic coefficient c, is introduced and it can be 
calculated as: 

( )( )

( ) ( )2 2

ij ij
i j

ij ij
i j i j

Y y Z z
c

Y y Z z

<

< <

− −
=

− −

∑

∑ ∑
 (48) 

where ijY  is the distance between objects i and j in Y, ijZ  is the distance between objects i and j in 
the last column of matrix Z and y  and z  are the respective averages. The closer the c value is to 1, 
the better is the clustering solution. More details about the cophenetic matrix and coefficient can be 
found in a concise form in [30] [31] and in a detailed form in [32]. 
For Case 2 and 3 of the paper, all the combinations of distance and linkage algorithms have been 
used to find out the higher cophenetic coefficient and the corresponding clustering and dendrogram. 
Since two operating conditions are looked for in the paper, the two required cluster are build up 
splitting the two higher leaves of the dendrogram (ideally with the dash-dot line of figure 38). 
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Figure 38. Dendrogram for Case 3 data clustering. 
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