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Abstract The Obnoxioug-Median ((pM) problem is the repulsive counterpart
of the more known attractive-median problem. Given a séof cities and a sef

of possible locations for obnoxious planty-gardinality subsef) of J is sought,
such that the sum of the distances between each cityanfd the nearest obnox-
ious site in@ is maximised. We formulate M as a{0, 1} Linear Programming
problem and propose three families of valid inequalitiesgéseparation problem
is polynomial. We describe a branch-and-cut approach baséuese inequalities
and apply it to a set of instances found in the location ltteka The computational
results presented show the effectiveness of these indigadtr QyM.

Keywords: Obnoxious Facility Location — Branch-and-cup-Median.
Mathematics Subject Classification (200@0C57-90B80

1 Introduction

A facility is calledobnoxiousvhen it is desired to locate it as far as possible from
an inhabited centre. Obnoxious location problems havewedsignificant atten-
tion in the last decades, due to the increasing environrhanthsocial impact of
facilities such as power plants and dump sites. Several lnbdee been presented
in the Operations Research literature for placing suclitiasi either on graphs or

The work of the first author has been partially supported leyGbordinated Project C.A.M.P.O.
and that of the third author by a short mobility grant, botlthaf Italian National Research Council.
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in a Euclidean space. In Erkut and Neuman (1989) many sudiigms are dis-
cussed and classified. More recent surveys are, for inst@aggpanera (1999),
Drezner and Hamacher (2002), and Eiselt and Laporte (1995).

Generally, given a set of possible locations for facilities, one seeks a subset
@ of J with given properties. The distance between poirgtad; in J is denoted
asc;;. Some problems admit the a priori installation of a subseditefs, to be
considered in the objective or in the problem constraints.

Many real-world problems deal with facilities for which tigportation costs
(Carrizosa and Conde, 2002) or distance constraints (ModrChaudhry, 1983)
must be taken into account. Such facilities (e.g. airpoesycle plants etc.) are
called semi-obnoxiousalthough their immediate closeness is disturbing or dan-
gerous, they cannot be located too far. This situation caadided by minimising
total nuisance while bounding distances from clients, erimising transportation
costs while guaranteeing a given distance from clientss Woirk deals with fully
obnoxious sites, hence we do not consider transportatists co distance limits.

If p undesirable facilities have to be located, one possibigitto maximise
the sum of all inter-facility distances, thus adopting a ir®xn objective. These
are calledp-maxianproblems (Church and Garfinkel, 1978; Kincaid, 1992) and
their NP-hardness is proven in Hansen and Moon (1988). IryK1887) a{0, 1}
Linear Programming model is presented fesmaxian problems, and in Chan-
drasekaran and Daughety (1981) a polynomial algorithmesearted for tree net-
works. In Erkut et al. (1990) the-maxian problem is solved through an implicit
enumeration method.

In dispersionproblems (Shier, 1977) the minimum distance between alspai
of facilities is maximised, thus adopting a maxi-min modakut (1989) presents
a model and a heuristic fgr-dispersion instances witly| = 40 andp = 16,
while a greedy algorithm for dispersion problems is preseéim Erkut and Neu-
man (1989) Another possibility is to adopt a maxi-sum-mihesoe: indefense
problems (Chaudhry et al., 1986) the sum of minimum inteilifs distance is
maximised. A dynamic programming scheme is presented irajgdrand Lowe
(1994) for solving diverse maxi-sum and dispersion prolsidmTamir (1991) the
complexity of several obnoxious problems is addressech Bahaxi-sum ang-
maxi-min problems are shown to be NP-hard for general graptisn the discrete
case. A polynomial heuristic is then presentedifanaxi-sum.

In some problems, a sétof clientsis given, possibly disjoint frony. When
maximising the minimum distance between client sites doathin I and their
respective nearest facility, we speakafti-centerproblems (see e.g. Klein and
Kincaid (1994)). Inanti-mediarproblems, the sum of distances between every site
in 7 and its nearest open facility is maximised. One such exawipheaxi-sum-
min scheme with facility dispersion is introduced in Tin@8B). Welch and Salhi
(1997) discuss a combination pfmaxi-sum angpb-maxi-min problem. Minieka
(1983) studies the single facility anti-median and antiteeproblems. In Burkard
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etal. (2000) a(n?) algorithmis described for solving the mini-sum-min weigght
problem, where negative weights are used to model obnogites

In the class of maxi-sum-min problems, which is of interestd, the objective
function is a combination of

Zmincij, Z min  cji.
P ico keQ\{j}

The problem dealt with in this work, which we call Obnoxiopdviedian
(OpM), can be described as follows:

Input a set! of clients and a sef of potential facility locations; & x m
matrix of distances;; € R, wheren = |I| andm = |J|; a positive
integerp < m.

Output a subse® of J such thafQ| = pand) ;. min{c;; : j € Q} is
maximum.

OpM is a discrete maxi-sum-min problem where only the distanesveen
clients and facilities is considered. A proof of its NP-haeds can be found in
Tamir (1991). As all facilities in this work are treated adlyfuobnoxious, our
model can be applied when transportation costs are nelgigiln.t. the overall
damage or danger caused by each site. It is worth pointinghaiitsince only
distances between clients and facilities are taken intowaug this model does not
achieve facility dispersion, needed when facilities hamegative influence on one
another. Such dispersion could be obtained, for exampleEnpgsing a minimum
inter-facility distance, but would also lead to a differgyye of problem.

Section 2 presents £, 1} Linear Programming formulation of gM. In or-
der to solve mid-size instances opl, we have devised three families of valid
inequalities, described in Section 3. In Section 4 we prieaeBranch-and-Cut
method that we have applied on a number pMOnstances. We report computa-
tional results in Section 5 and provide some conclusion®itiSn 6.

2 A mathematical model

Consider, for each paire I, j € J, the set of facilities more distant tharfrom
clients,
S(Z,j) = {k cJ: (Cik > Cij)\/ (Cik = Cij Nk >j)}

A client is said to bellocatedto the open location closest to it. If locatign
is open, then clientcannot be allocated to any locationdifi, 7). Notice that two
facilities having the same distance from a client are coexbar a lexicographic
manner. In the following, a facility is saitiore distanfrom a clienti than another
facility when the rule defined above applies, bearing in ntimat this retains at
least one optimal solution: two facilitigsandk equally distant from client have
the same coefficient; = c;, in the objective function.
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For eachj € J, we define the binary variable

~_J 1 ifafacility is located ay,
YI=0 otherwise,

and for each € I, j € J, the variable

- 1 ifclients is allocated toj,
" 0 otherwise.

A formulation of QoM is as follows

max E E CijLij

icl jeJ
s.t. > yizp 1)
jed
xijgyj Vié],jGJ (2)
y; + Z g <1 Viel,jeJ 3
keS(i,5)
xij,ij{O,l} ViEI,jEJ. (4)

Note that (1) can be inequality instead of equality constsabecause of the
assumption that all;;’s are positive. The importance of cliehinay be taken into
account, for instance to reflect its populatiepn by replacinge;; in the objective
function withc}; = «a;c;;. Constraint (2) imposes that a client be allocated to an
open location, whereas (3) allocates each client to theeseapen location and
is required in this obnoxious location problem as opposeatti@ctive location
problems. Constraint (4) specifies the discreteness ofrthielgom variables.

Let Fi (i) be thek-th most distant location from i.e., the locatiory such that
|S(i,7)| = k— 1. The most distant location froiris thenF; (i) with this notation.

It is barely worth noting here that some variables of the inebmodel can be
fixed from the beginning by setting;; = 0 for all (¢,5) € I x J such thatj €
S(i, Fy(1)), since none of the — 1 facilities farthest from client can be allocated
to it. We also notice that a clientis allocated to its nearest locatign= F,, ()

if and only if j is open. Therefore, for each clienwe haver; ¢, iy = yr,, i)
For this reason, we do not include the constraint that assigleast one facility to
every client;, i.e.,ZjEJ x;; < 1Vi e I, because this is already implied by (3) —
again, we use¥” instead of equality because of non-negativitycgfs.

3 Valid inequalities

Due to the size of common instances @iND, a branch-and-bound approach may
take great advantage of ad-hoc families of valid inequeitor the model. There-
fore we propose a branch-and-cut method based on threedamiilvalid inequal-
ities, described in detail in the following subsections.



A branch-and-cut method for the Obnoxigu$/edian problem 5

3.1 Inequalities A

If the open location nearest to clienis in S(i, j), then so are aj) open locations,
as they are at least as distant froms locationy. In other wordszkes(i ) Tik =

Limplies ;¢ ;) ¥ = p and hence we have

> (pra—yr) <0. (5)
keS(i,5)
To generalise (5), consider a subseof S(i, j). If Zkes(m i, = 1, there

are at leasp — |S(4,7) \ 4| open locations i (there are exactly as many if all
locations inS(i, j) \ A are open — see Figure 1a). We then have valid inequalities

(p—=1SENNAD D>z <D uk, (6)
KES(i,j) keA

defined by indices, j andA C S(i, j).

3.2 Inequalities B

Consider a pair of client&i1, i2) and a pair of location§jy, j2). If S(i1,71) and
S(ia, j2) have at mosp — 1 locations in common, then eithey is allocated to
a location inS(i1,71) or iy is allocated to a location ¥ (i, j2), but not both,
1€, kes(iyjy) Tink ANAY 2 g, iy) Tiok CANNOt be both one. In fact, allopen
locations would otherwise be (i1, j1)NS(i2, j2), contradicting the assumption.

We have then
>k + Y wip<1 (7)

k€S (i1,1) keS(iz,j2)
forall i1, 12, j1, jo such that
|S (i1, g1) N S(iz, j2)| <p—1. (8)

Consider now a locatiohin J\ (S(i1, j1)US(i2, j2)). If Lis open, then neither
S(i1,41) nor S(is, j2) contain the open location to whigh or i, are allocated,
since locatior is closer tai; and toi, than any one contained in the two sets (see
Figure 1b). As a consequence, only one of the three expres@ges(m.l) iy ks

Zkes(h_jz) Zi,, andy; can be nonzero. This gives the family of valid inequalities

Z Tik + Z Tk +y1 <1 9)

keS(i1,51) keS(iz2,j2)

with (il,ig,jl,jg,l) S 1% x J3 st (8) holds and ¢ J\ (S(il,jl) U 5(22,]2))
Although we have used inequality (9) in our tests, it can beegalised as fol-
lows: consider a sel” of pairs (¢, ) such that (8) holds between any two el-
ements of7". Analogously to the clique inequality, a general version(of is
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then} . ser Dresu, i < 1. If there exists a facility such thatl € J \
U(M)GT S(i,7), then we have the generalised valid inequality

Y matuw <L (10)

(i,5)ET k€eS(4,7)

3.3 Inequalities C

Let us denoteS4(i,j) = S(i,7) N A forany A C J, i.e., the set of locations
in A more distant tharj from clienti. Let alsoF*(i) denote thek-th most dis-
tant location, among those id, from 4, i.e. F{(i) is the locationj such that
|S4(i,§)| = k — 1. Consider two clients; andi». If i; is allocated toF},(i1),
i.e., 7, r,i) = 1, then because of (5), thelocations most distant fromy and
belonging toB = S(i1, Fj+1(i1)) are open. Client, is allocated to the nearest
open location of3, which is also the-th most distant element d@ from i, thus
yieldingxizFI;(iz) = 1. Hence the valid inequality;, ¢, (i,) < Liy FB (i)

In general, ikaeS(il,jl) xi,,x = 1 then clientis is allocated to an open loca-
tion jo € S(i1, j1). However,js is none of they — 1 locations most distant from
ip Within S(iy, j1), i.€.,j2 ¢ S = S50 iy, F7091) (1)), Therefore s is to
be found inS (i1, j1) \ S, (see Figure 1c). Hence the valid inequality

om0 Tk (11)

keS(i1,j1) kES(il,jl)\S

4 A Branch-and-Cut approach

In this section we present a branch-and-cut method (NadukRanaldi, 2000)
to tackle large instances ofg®. We outline below the procedures that improve
the efficiency of our method: a Tabu Search heuristic thagégan initial lower
bound, an upper bounding routine, a heuristic for genayaifeasible solution,
and a separation procedure for the three families of vabdurlities presented in
the previous section. A best first strategy is used for selgthe next active node
to analyse. We assume that a solution to the linear relaxafi©pM is given by
(y*, x*). We have substantially reduced the separation time threffglient data
structures, such as the following matrices:

L: element/(, j) gives the index of thg-th nearest location to client(e.qg., if
3 and 7 are the closest and the second closest location i 8lieespectively,
theni(8,1) = 3 andi(8,2) = T7);

U: u(i,j) is the position of locatiory in row [(z,-) of L (it allows to detect
whetherk € S(i, j) for any triple (4, 7, k));
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S(i,7) 1o ] o
\ o o

12
(@) Tnequalities (6)p=5. As the openlocatiok (b)  Inequalities 9), S1=5(1,71),
is the nearest to, z;,=1. Thus(p — [S(3,5) \  S2=S(i2,52), p=5. As|S1 N S2| < p—1, at
Al) = 2and237, 5,5 Tit < 2ea¥iis  least one open facility is not i1 N Sz, hence
valid. eitherzjes1 Tiy g Zjesz Xy OF y; can be
one, wherd € J\ (S1 U S2).

¢)
© o e Open facility
o Unopened facility
o Client
71 @)
d o)

(c) Tnequalities (11),p=4. Because all open
facilities are in S(i1,j1), so is the one
closest to iz. However, it cannot be in

S = 8§86 (ig, FY191) (i), Thus,
DokeS(ing1) Tk S 2okes(ir,ji)\§ T2k

Fig. 1. An explanation of the valid inequalities (Euclidean dis&iis assumed).

X, Z: values ofz* andy* sorted W.r.tL, i.e.,&;; = 5. @25 =yl o
O, A, whose elements are the sumio&ndy, respectivefy, according tb, i.e.,

0ij = D kes@ic,g) Tie AN = 30 c g6y Vi

4.1 A Tabu Search heuristic

A lower bound is computed before applying the branch-artdagethod in or-
der to further decrease the computational effort. We hapdiexpa variant of the
Tabu Search heuristic that has appeared in a previous watieddumulative As-
signment problem with an application to satellite commatians (Dell’Amico et
al., 1999). This approach, calleXploring Tabu SearcfX-TS), adds to the clas-
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sic Tabu Search paradigm the following features, some othvare well-known
techniques to diversify the search:

a) A long-term solution list: this list contains sorgeodsolutions that have been
evaluated but not explored by the procedure. This techratjoes for a better
local exploration of the solution space.

b) A dynamic tabu list, whose length increases when the tibgeof the current
solution decreases fay consecutive iterations and decreases when the current
solution improves foh; consecutive iterations.

c) A global restart mechanism that generates a new stamingan by applying
a randomized greedy algorithm that uses the rank informat&scribed in
Subsection 4.3 below.

Applying this heuristic step has boosted the performanaiofilgorithm, as
the primal solution found by this procedure is often optimé&e shall not give
details about this heuristic approach tpND the interested reader may refer to
Belotti et al. (2000).

4.2 A bounding heuristic

As a lot of time is spent by the LP code at each node, beforimgdhe LP solver

it is effective to compute a less tight bound by a fast heigriftthis upper bound

is lower than the value of the best feasible solution founthsathe node can be
fathomed. Given a node in the decision tree and a set givariables that have
been set in the ancestor nodes, Jgbe the set of open locationd, = {j : y; =

1 at nodev}, and.J. the set of closed ones. Hence no feasible solution desagndin
from v can have objective greater than

min ( min ¢;;, ¢. o\Je, . |-
Z (jeJU EARC A ‘(Z))
el

4.3 Obtaining feasible solutions

Given a fractional solutiop* to the linear relaxation of a problem in the branch-
and-bound tree, a greedy soluti@to OpM can be obtained as follows: consider
a vectord such thatl; = min{c;;|7 € I} for each locatiory € J. Let us define a
rankr(j) for all 7 € J as the number of facilitied whose value ofl, is greater
thand;, i.e.,r7(j) = {k € J : di, > d;}| ¥j € J. The lower the rank(j), the
greater the distance frojito the nearest client, and therefore the more likigl/to
be included in an optimal solution. Theslements with lowest rank are a solution
to OpM that can be used to generate a feasible solution at low ctatipnal cost
satisfying the branching constraints at each node of thisidedree.

Locationsj whose variable has not been set at nodee included iR’ de-
pending on their fractional value in the current LP solutiowl on their rank. More
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precisely, leta(j) = (1 + yy})u"?), wherey, 1 € [0, 1]. Assumingk locations
are already open according to the variables fixed by the biagcwe include in
Q' thosep — k locationj with highest values of(j). Parameters andy balance
the importance of; versus that of (). In our tests we have used valyes- 0.85
and~ = 0.5.

4.4 Separation routines

The separation step is performed after the linear relaxatiaghe subproblem as-
sociated with a node of the Branch-and-bound tree is solweakder to give the

same chances to our inequalities, we separate them in theealhto the routine

and re-solve the LP solution if some new cuts have been added.

Inequalities A. These are uniquely identified by indicésj and a setd C
S(i,j), whose cardinality is betweg§ (i, j)| — p + 1 and|S(z, j)|. In order not
to insert too many inequalities at each iteration of theiegtplane routine, for
each client we look for the facilityj and the subsed yielding the most violated
inequality. Although the number of subsetof S(i, j) is exponential ifS (i, 7)|,
it suffices to consider the facilitigswith smally;:.

For each client, consider allj such thab_, . ; ;) zir > 0. Atmost(m — p)
pairs(i, j) may give violated inequalities, as all locationmsore distant thai’, (¢)
from i havez;;, = 0. Consider a permutation of location indicgs, ko, . . ., ki)
that sorts vectog* in non-decreasing order, i.e;y < y; < ... < y; .The
setA C S(i,7) of given cardinalityh (where|S(i,j)| —p+1 < h < |S(4,5)])
that minimizes the right-hand side of (6) is given by the firelements of the per-
mutation withinS(7, j) — setA is obtained by scanning the sorted arfy, j), a
step whose complexity i$)i, j)| < m. Hence, separating inequalities A requires
O(mlogm + n(m — p)m) = O(nm(m — p)) steps.

Inequalities B. These are identified by a 5-pl& , j1, i2, j2, {) such that (8) holds
andl € J\ (S(i1,71) U S(iz, j2)). Analogously to inequalities A, we limit the
number of separated cuts by choosing at most one inequaltigeich(iy , i) (we
assume; < io to avoid symmetries). The tripl€t , jo, () that gives the max-
imally violated inequality can then be found in polynomiahé. Although this
procedure require®(n?m?) steps, the actual separation time is negligible with
respect to the LP time, as shown in the next section. It is\atath pointing out
that the separation problem of the generalised inequdl®y 6§ NP-hard as it is
equivalent to the Max-Clique.

Inequalities C. Separating these inequalities takes more computationalttian
it seems. Although each is identified by a triplét, j1, ¢2), computing its viola-
tion requires repeated scans of vector&ndy*. However, the data structures de-
scribed in the beginning of the section help reducing tha@ingtime. Again, we
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have chosen to limit the number of inequalities by selecfiogeach pair(i1, is),

the facility j; that gives the maximally violated inequality. As checkihg viola-

tion for each triple require®(m) simple operations, the separation procedure has
complexityO(n?m?).

5 Experimental results

We have applied the algorithm described above to a set @&rinss with a wide
range of values fon andm, so as to give a complete overview of the performance
of our method when compared to a general MIP solver. We hatagdrea these
instances from three sources available on the Internet:

— (http://www.bus.ualberta.ca/eerkut/testproblems)timedian Test Problems
Page, with severgl-median instances used as test bed in Alp et al. (2003),
Galvao and ReVelle (1996), and Koerkel (1989).

— (http://people.brunel.ac.uk/"mastjjb/jeb/info.htrtile OR-Library, with data
sets for several Operations Research problems (Beasl&§).19

— (http://www.lac.inpe.br/"lorenal/instancias.html) abymge with diversg-median
instances.

As the majority of the instances give a generic set of locatiand do not
discern clients from facilities, we have randomly dividéerm into setd and.J.
None of them specifies the value @fhence we solve each instance foequal
to m/2, m/4, andm/8. All tests have been performed on a Sun Fire 240 work-
station, with two 1.64GHz UltraSparc64 processors, 4 GB AlRmemory, and
the parallel Cplex solver. The routines explained in theioies section have been
coded in C language and linked to Cplex 9.1’s Callable Lilesain order to evalu-
ate the families of cuts introduced, we compare our bramzheat approach with
the standard branch-and-cut procedure provided by Cpléxtive default cutting
planes, and the feasible solution computed by our Tabu Beaoredure in the
beginning is passed to both exact methods. A time limit of foours has been
given to both methods. In Tables 2, 1, and 3 we report, for @esthnce:

— the instance parametens.(n andp);

— the running time of Cplex’s branch-and-cut (cpul) and of lmanch-and-cut
(cpu2) methods, respectively, if the instance is solvedotintality, otherwise
in brackets the gap w.r.t. the best upper bound;

— the number of B&B nodes (nod1 and nod?2) for the two algorithms

— the number of inequalities separated (#A, #B, #C) and thad tahning time
taken by the separation routines (sep).

For many instances, our branch-and-cut approach eithes &torter running
time or obtains a smaller gap than the standard MILP methsdhéprimal bound
is the same for the two methods, a smaller gap indicateshbaialid inequalities
separated are effective fop®I.



A branch-and-cut method for the Obnoxigu$/edian problem 11

cplex b&c

Name n m P cpul nodl cpu2 nod2 #A #B  #C sep
orlib-cap41 50 16 4 0.3 0 0.3 0 0 0 0 0.01

orlib-cap81 50 25 6 0.5 0 0.5 0 0 0 0 0.01

orlib-cap111 50 50 12 2.2 0 2.2 0 0 0 0 0.03

Hoefer-O1 100 100 25 (43.8) 19119| 18945 117 981 5863 0 11.67
Hoefer-O2 100 100 25 (45.4) 4671 (43.9) 1532 986 69 1 2.70
Hoefer-P1 200 200 50 (63.8) 11 (60.1) 0 3928 0 0 28.25

Hoefer-P2 200 200 50 (63.4) 230 (60.3) 0 3790 0 0 59.30

Hoefer-Q1 300 300 75 (65.7) 2 (64.3) 0 3300 0 0 153.27
Hoefer-Q2 300 300 75 (65.7) 8 (64.2) 0 3592 0 0 167.12
BK-D1.1 80 30 7 (2.7) 41979| 12431.4 48885 233 0 0 0.56
BK-D2.1 80 30 7 (23.1) 7572| 4795.8 22990 225 43 0 0.24
BK-D3.1 80 30 7 (21.4) 6194 | 4812.1 11618 228 0 0 0.27
BK-D4.1 80 30 7 (16.2) 11500| 3649.3 19600 223 0 0 0.16
BK-D5.1 80 30 7] 13923.0 13129| 3368.1 10747 228 10 0 0.56
BK-D6.1 80 30 7 (18.4) 12580| 2522.9 24065 232 84 0 0.18
BK-D7.1 80 30 7 (24.4) 11989| 3879.7 39393 228 69 1 0.18
BK-D8.1 80 30 7 (10.2) 12822 2656.6 22221 232 91 0 0.18
BK-D9.1 80 30 7 (17.8) 13289| 3662.1 24026 233 0 0 0.17
BK-D10.1 80 30 7 (23.0) 10621| 5974.3 28001 229 87 0 0.21
CLSA1032 100 100 25| (47.7) 22639 (43.3) 16286 114 6 0 2.35
CLSB1131 100 100 25 (49.3) 12844| (48.6) 14714 92 7 0 3.19
CLSC1133 100 100 25 (53.1) 17733 (52.8) 12566 27 0 0 1.79
FPP11-1 133 133 33 (79.7) 1179 (78.4) 1405 526 2 0 8.00
FPP11-10 133 133 33 (79.8) 243 (79.7) 116 658 5 13 10.33
FPP11-30 133 133 33 (79.9) 1511 (79.4) 2534 307 1 0 7.55
GR-50.1 50 50 12 189.2 659 701.0 1328 163 47 2 0.19
GR-50.2 50 50 12 74.6 263 61.4 233 26 23 79 0.25
GR-100.1 100 100 2§ (8.8) 1114 (12.3) 957 447 125 1 3.78
GR-100.2 100 100 25 (13.2) 682 (16.3) 268 519 86 32 3.92

Table 1. Computational results over a set of real-life instances pMQp = |m/4]). Under the
“cpul” and “cpu2” columns we report the running time of thetalgorithms if the instance is solved
to optimality, otherwise the gap w.r.t. the best upper bosrgiven in brackets.

The best results are obtained for= |m/4| (see Table 1). For the 80
BildeKrarup (BK) instances, the result is more apparentugily all such in-
stances are solved within two hours while Cplex alone reathe time limit in
many of them. The difference in performance is less reméekimbthe Hoefer
set of instances. Notice however that, unlike in BK instanoer branch-and-cut
code generates less nodes and spends much more sepana¢iomhiich results in
a slightly better gap even though for Hoefer-P and Hoefengainces no branch
is performed. Instance Hoefer-O1 has been solved in avelatshort time, ap-
parently due to the insertion of a large number of inequaliB which took a short
separation time. The instances orlib, CLS and FPP do nardiffi much in terms
of branch-and-bound nodes, but our method still achievestterresult. For the
Galvao-Raggi (GR) instances, instead, our method doésrf@bne only instance
out of four. It is worth pointing out that in many instancesedter gap or running
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cplex b&c

Name n m P cpul nodl cpu2 nod2 #A #B #C sep
orlib-cap41 50 16 8 0.1 0 0.2 0 0 5 2 0.00

orlib-cap81 50 25 12 0.2 0 0.2 0 0 0 0 0.00

orlib-cap111 50 50 25 0.6 0 0.6 0 0 0 0 0.02

Hoefer-O1 100 100 50 (29.4) 5520 (28.7) 6585 0 41 37 5.84
Hoefer-O2 100 100 50 (28.5) 5631 | (29.6) 5286 0 52 111 6.25
Hoefer-P1 200 200 10Q (45.7) 24| (44.3) 24 0 131 72  62.68
Hoefer-P2 200 200 10Q (45.3) 27| (38.8) 64 0 783 46  26.13
Hoefer-Q1 300 300 150 (47.1) 0| (47.1) 0 0 0 0 40.94

Hoefer-Q2 300 300 15Q (47.2) 0| (47.2) 0 0 129 0 3553
BK-D1.1 80 30 15| (16.1) 12100| (16.4) 11456 0 0 9 0.20
BK-D2.1 80 30 15| 3701.0 9103| 3167.0 7222 0 0 5 0.72
BK-D3.1 80 30 15| 3001.9 9341 (7.3) 9593 0 0 7 0.20

BK-D4.1 80 30 15| (11.6) 12633| (12.7) 11268 0 3 9 0.21
BK-D5.1 80 30 15| 3105.6 11302 3264.3 11265 0 2 16 0.23
BK-D6.1 80 30 15 (9.7) 14318| (10.9) 12702 0 21 13 0.20
BK-D7.1 80 30 15| (13.3) 13756| (14.6) 13494 0 1 10 0.26
BK-D8.1 80 30 15 (3.9) 13978 (6.9) 13362 0 0 16 0.23
BK-D9.1 80 30 15 (9.1) 14152 (9.9) 13165 0 0 12 0.22
BK-D10.1 80 30 15| (9.9) 13591| (12.1) 12794 0 4 13 0.21
CLSA1032 100 100 50 (74.1) 11150| (73.8) 11561 0 0 0 1.24
CLSB1131 100 100 50 (75.4) 8432 | (75.4) 8480 0 0 0 2.15

CLSC1133 100 100 50 (68.5) 13551| (68.5) 13361 0 0 0 1.58
FPP11-1 133 133 66 (90.0) 6266 | (88.5) 3639 0 0 9 4.42

FPP11-10 133 133 66 (89.7) 3671| (89.7) 3361 0 4 11 5.10
FPP11-30 133 133 66 (90.0) 3174 | (88.5) 2800 0 1 2 5.72

GR-50.1 50 50 25/ 166.8 24141 171.3 2524 0 2 14 0.24
GR-50.2 50 50 25 88.8 112 63.6 128 0 33 32 0.25
GR-100.1 100 100 50 (8.4) 5169 (6.9) 2387 0 155 81 2.90
GR-100.2 100 100 50 (11.8) 6636 | (10.5) 4122 0 193 57 3.72

Table 2. Computational results over a set of real-life instances pMQp = |m/2]). Under the

“cpul” and “cpu2” columns we report the running time of thetalgorithms if the instance is solved

to optimality, otherwise the gap w.r.t. the best upper bosrgiven in brackets.

time has been achieved with a very short separation tims, stvengthening the
model at almost no computational cost.

Forp = |m/2] (see Table 2), the two algorithms have somehow similar per-

formances, probably due to the limited generation of inéties. In particular, no
inequalities A are violated in any node of the decision tvddle more inequalities
B and C are separated. This has a significant impact for théedmestances, but
does not improve the performance for the remaining onesh8ws in Table 3 for
p = |m/8], our inequalities improve the gap for the Hoefer instanoeggeineral,
but do not give a better result in other instances, and foBilies-Krarup ones
even turn out to be less useful than the standard MILP cutsged within Cplex.

From Tables 1 and 3 we notice that inequalities A prevail ekrerother two,
although we separate them independently. This could begqul by the structure
of the test instances, nevertheless we cannot concludetfiese results which
inequality is more effective. To this purpose, we have sbls@me instances with
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cplex b&c

Name n m P cpul nodl cpu2  nod2 #A  #B #C sep
orlib-cap41 50 16 2 1.0 0 0.9 0 0 2 15 0.00
orlib-cap81 50 25 3 0.3 0 0.3 0 0 0 0 0.01
orlib-cap111 50 50 6 1.8 0 1.8 0 0 0 0 0.04
Hoefer-O1 100 100 12 (60.68) 121] (50.63) 92 914 0 0 1.97
Hoefer-02 100 100 12 (59.67) 115| (49.70) 447 897 0 0 1.59
Hoefer-P1 200 200 25 (67.54) 2| (63.65) 0 1400 0 0 6.61
Hoefer-P2 200 200 25 (67.79) 7| (64.47) 0 1200 0 0 5.65
Hoefer-Q1 300 300 37 (70.09) 0| (69.60) 0 599 0 0 10.10
Hoefer-Q2 300 300 37 (70.01) 0| (69.10) 0 900 0 0 17.88
BK-D1.1 80 30 3| 485.42 3825| 2721.74 4029 160 8 235 0.19
BK-D2.1 80 30 3| 604.16 2067| 1989.63 2418 160 0 33 0.11
BK-D3.1 80 30 3| 375.34 2069| 1952.97 2301 165 17 245 0.13
BK-D4.1 80 30 3| 377.95 2042| 1467.45 2269 175 15 277 0.21
BK-D5.1 80 30 3| 368.96 2029| 1043.14 1909 160 0 77 0.15
BK-D6.1 80 30 3| 309.62 1770| 1904.95 2508 170 18 237 0.17
BK-D7.1 80 30 3| 603.80 2325| 2195.20 3274 170 20 220 0.10
BK-D8.1 80 30 3| 564.09 1951| 1374.30 2053 166 7 217 0.22
BK-D9.1 80 30 3| 402.77 2065| 1524.95 2457 172 5 271 0.24
BK-D10.1 80 30 3| 463.44 2413| 1550.87 2778 165 6 135 0.18
CLSA1032 100 100 12/ (30.91) 2333| (30.60) 1680 296 0 0 1.37
CLSB1131 100 100 12 (39.21) 2000| (40.47) 1798 308 0 0 1.41
CLSC1133 100 100 17 (40.75) 2160| (40.96) 2154 138 0 0 1.40
FPP11-1 133 133 14 (64.74) 321| (64.68) 131 804 0 0 4.38
FPP11-10 133 133 16 (64.65) 349| (64.66) 200 722 0 0 4.45
FPP11-30 133 133 16 (64.65) 282| (64.70) 221 634 4 0 4.15
GR-50.1 50 50 6| 208.44 510 147.60 282 50 10 174 0.26
GR-50.2 50 50 6 0.27 0 0.26 0 0 0 0 0.01
GR-100.1 100 100 12 (2.10) 1183 (5.55) 544 0 3 1544 4.20
GR-100.2 100 100 12 (7.51) 856 (3.29) 870 98 24 2676 7.73

Table 3. Computational results over a set of real-life instances pMQp = |m/8]). Under the

“cpul” and “cpu2” columns we report the running time of thetalgorithms if the instance is solved
to optimality, otherwise the gap w.r.t. the best upper bosrgiven in brackets.

p = |m/4], separating each inequality alone, and evaluated the sponeling
running time or gap, with a time limit of one hour. The reswdte reported in
Table 4. For instance GR-100.1 and GR-50.1 inequality B mdlke difference,
although inequalities C, separated in relatively shorétisolve instances GR-50.1
and GR-50.2 in comparable time. Remarkably, inequalitiesiich are separated
extensively in the first test, show to be useful only for ins@CLSA1032.

From a modeling standpoint, it is worth noting that for somstances the
optimal solution is a set of facilities spread unevenly omdgeographic area, in a
corner or at the boundaries of the region, as in the left ddftgure 2, where the

Table 4. Comparison of the valid inequalities.
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optimal solution of a randomly-generated instance Withm, p) = (20,40, 8) is
shown. This is justified by an objective function that take® ino account other
practical needs, such as transportation costs or reatthalfithe open locations,
which are dealt with by dispersion models. Consideringnttidying outside the
region may change the solution but does not avoid clusteritige open facilities,
as shown in the right part of Figure 2, with 53 new clients sunding the initial
area.
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Fig. 2. An optimal solution of two instances of @M. 20 clients are placed in the left part, and the
obnoxiousp-median objective function yields @dusteredsolution where all open facilities are in the
upper-right corner. Considering 53 more clients aroundrikance obtains a different, but still clus-
tered, solution.

6 Concluding remarks

In this work, we study an obnoxious location problem whekéahtions are fully
obnoxious, and the average distance from each client togheest open facility
is maximised. This problem is found in those contexts whaodify dispersion
is not necessary because of limited inter-facility nuisaacd/or negligible trans-
portation cost.

We have presented three families of valid inequalities, sefgeparation prob-
lem is polynomial, and developed an efficient exact procedurtackle mid-size



A branch-and-cut method for the Obnoxigu$/edian problem 15

instances in limited time. This exact method, coupled withsd tabu search pro-
cedure, helps computing the optimal solution more rapidgntwith a general-
purpose Mixed Integer Programming software. Although weehaned our sep-
aration and our branch-and-cut algorithms to this specifiblem, the valid in-
equalities we have introduced are rather general and capgiea in different
location problems.

Acknowledgments. The authors wish to thank two anonymous referees for useful
comments and suggestions.
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