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Abstract The Obnoxiousp-Median (OpM) problem is the repulsive counterpart
of the more known attractivep-median problem. Given a setI of cities and a setJ
of possible locations for obnoxious plants, ap-cardinality subsetQ of J is sought,
such that the sum of the distances between each city ofI and the nearest obnox-
ious site inQ is maximised. We formulate OpM as a{0, 1} Linear Programming
problem and propose three families of valid inequalities whose separation problem
is polynomial. We describe a branch-and-cut approach basedon these inequalities
and apply it to a set of instances found in the location literature. The computational
results presented show the effectiveness of these inequalities for OpM.

Keywords: Obnoxious Facility Location – Branch-and-cut –p-Median.

Mathematics Subject Classification (2000):90C57–90B80

1 Introduction

A facility is calledobnoxiouswhen it is desired to locate it as far as possible from
an inhabited centre. Obnoxious location problems have received significant atten-
tion in the last decades, due to the increasing environmental and social impact of
facilities such as power plants and dump sites. Several models have been presented
in the Operations Research literature for placing such facilities either on graphs or

The work of the first author has been partially supported by the Coordinated Project C.A.M.P.O.
and that of the third author by a short mobility grant, both ofthe Italian National Research Council.
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in a Euclidean space. In Erkut and Neuman (1989) many such problems are dis-
cussed and classified. More recent surveys are, for instance, Cappanera (1999),
Drezner and Hamacher (2002), and Eiselt and Laporte (1995).

Generally, given a setJ of possible locations for facilities, one seeks a subset
Q of J with given properties. The distance between pointsi andj in J is denoted
as cij . Some problems admit the a priori installation of a subset ofsites, to be
considered in the objective or in the problem constraints.

Many real–world problems deal with facilities for which transportation costs
(Carrizosa and Conde, 2002) or distance constraints (Moon and Chaudhry, 1983)
must be taken into account. Such facilities (e.g. airports,recycle plants etc.) are
calledsemi-obnoxious: although their immediate closeness is disturbing or dan-
gerous, they cannot be located too far. This situation can betackled by minimising
total nuisance while bounding distances from clients, or minimising transportation
costs while guaranteeing a given distance from clients. This work deals with fully
obnoxious sites, hence we do not consider transportation costs or distance limits.

If p undesirable facilities have to be located, one possibilityis to maximise
the sum of all inter-facility distances, thus adopting a maxi-sum objective. These
are calledp-maxianproblems (Church and Garfinkel, 1978; Kincaid, 1992) and
their NP-hardness is proven in Hansen and Moon (1988). In Kuby (1987) a{0, 1}
Linear Programming model is presented forp-maxian problems, and in Chan-
drasekaran and Daughety (1981) a polynomial algorithm is presented for tree net-
works. In Erkut et al. (1990) thep-maxian problem is solved through an implicit
enumeration method.

In dispersionproblems (Shier, 1977) the minimum distance between all pairs
of facilities is maximised, thus adopting a maxi-min model.Erkut (1989) presents
a model and a heuristic forp-dispersion instances with|J | = 40 andp = 16,
while a greedy algorithm for dispersion problems is presented in Erkut and Neu-
man (1989) Another possibility is to adopt a maxi-sum-min scheme: indefense
problems (Chaudhry et al., 1986) the sum of minimum inter-facility distance is
maximised. A dynamic programming scheme is presented in Chhajed and Lowe
(1994) for solving diverse maxi-sum and dispersion problems. In Tamir (1991) the
complexity of several obnoxious problems is addressed. Both p-maxi-sum andp-
maxi-min problems are shown to be NP-hard for general graphsand in the discrete
case. A polynomial heuristic is then presented forp-maxi-sum.

In some problems, a setI of clientsis given, possibly disjoint fromJ . When
maximising the minimum distance between client sites contained in I and their
respective nearest facility, we speak ofanti-centerproblems (see e.g. Klein and
Kincaid (1994)). Inanti-medianproblems, the sum of distances between every site
in I and its nearest open facility is maximised. One such exampleof maxi-sum-
min scheme with facility dispersion is introduced in Ting (1988). Welch and Salhi
(1997) discuss a combination ofp-maxi-sum andp-maxi-min problem. Minieka
(1983) studies the single facility anti-median and anti-center problems. In Burkard
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et al. (2000) anO(n3) algorithm is described for solving the mini-sum-min weighted
problem, where negative weights are used to model obnoxioussites.

In the class of maxi-sum-min problems, which is of interest to us, the objective
function is a combination of

∑

i∈I

min
j∈Q

cij ,
∑

j∈Q

min
k∈Q\{j}

cjk.

The problem dealt with in this work, which we call Obnoxiousp-Median
(OpM), can be described as follows:

Input: a setI of clients and a setJ of potential facility locations; an× m
matrix of distancescij ∈ R+, wheren = |I| andm = |J |; a positive
integerp < m.

Output: a subsetQ of J such that|Q| = p and
∑

i∈I min{cij : j ∈ Q} is
maximum.

OpM is a discrete maxi-sum-min problem where only the distancebetween
clients and facilities is considered. A proof of its NP-hardness can be found in
Tamir (1991). As all facilities in this work are treated as fully obnoxious, our
model can be applied when transportation costs are negligible w.r.t. the overall
damage or danger caused by each site. It is worth pointing outthat since only
distances between clients and facilities are taken into account, this model does not
achieve facility dispersion, needed when facilities have anegative influence on one
another. Such dispersion could be obtained, for example, byimposing a minimum
inter-facility distance, but would also lead to a differenttype of problem.

Section 2 presents a{0, 1} Linear Programming formulation of OpM. In or-
der to solve mid-size instances of OpM, we have devised three families of valid
inequalities, described in Section 3. In Section 4 we present a Branch-and-Cut
method that we have applied on a number of OpM instances. We report computa-
tional results in Section 5 and provide some conclusions in Section 6.

2 A mathematical model

Consider, for each pairi ∈ I, j ∈ J , the set of facilities more distant thanj from
client i,

S(i, j) = {k ∈ J : (cik > cij) ∨ (cik = cij ∧ k > j)} .

A client is said to beallocatedto the open location closest to it. If locationj
is open, then clienti cannot be allocated to any location inS(i, j). Notice that two
facilities having the same distance from a client are compared in a lexicographic
manner. In the following, a facility is saidmore distantfrom a clienti than another
facility when the rule defined above applies, bearing in mindthat this retains at
least one optimal solution: two facilitiesj andk equally distant from clienti have
the same coefficientcij = cik in the objective function.
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For eachj ∈ J , we define the binary variable

yj =

{

1 if a facility is located atj,
0 otherwise,

and for eachi ∈ I, j ∈ J , the variable

xij =

{

1 if client i is allocated toj,
0 otherwise.

A formulation of OpM is as follows

max
∑

i∈I

∑

j∈J

cijxij

s.t.
∑

j∈J

yj ≥ p (1)

xij ≤ yj ∀i ∈ I, j ∈ J (2)

yj +
∑

k∈S(i,j)

xik ≤ 1 ∀i ∈ I, j ∈ J (3)

xij , yj ∈ {0, 1} ∀i ∈ I, j ∈ J. (4)

Note that (1) can be inequality instead of equality constraints because of the
assumption that allcij ’s are positive. The importance of clienti may be taken into
account, for instance to reflect its populationαi, by replacingcij in the objective
function withc′ij = αicij . Constraint (2) imposes that a client be allocated to an
open location, whereas (3) allocates each client to the nearest open location and
is required in this obnoxious location problem as opposed toattractive location
problems. Constraint (4) specifies the discreteness of the problem variables.

Let Fk(i) be thek-th most distant location fromi, i.e., the locationj such that
|S(i, j)| = k−1. The most distant location fromi is thenF1(i) with this notation.
It is barely worth noting here that some variables of the original model can be
fixed from the beginning by settingxij = 0 for all (i, j) ∈ I × J such thatj ∈
S(i, Fp(i)), since none of thep−1 facilities farthest from clienti can be allocated
to it. We also notice that a clienti is allocated to its nearest locationj = Fm(i)
if and only if j is open. Therefore, for each clienti we havexi Fm(i) = yFm(i).
For this reason, we do not include the constraint that assigns at least one facility to
every clienti, i.e.,

∑

j∈J xij ≤ 1 ∀i ∈ I, because this is already implied by (3) –
again, we use “≤” instead of equality because of non-negativity ofcij ’s.

3 Valid inequalities

Due to the size of common instances of OpM, a branch-and-bound approach may
take great advantage of ad-hoc families of valid inequalities for the model. There-
fore we propose a branch-and-cut method based on three families of valid inequal-
ities, described in detail in the following subsections.
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3.1 Inequalities A

If the open location nearest to clienti is in S(i, j), then so are allp open locations,
as they are at least as distant fromi as locationj. In other words,

∑

k∈S(i,j) xik =

1 implies
∑

k∈S(i,j) yk ≥ p and hence we have

∑

k∈S(i,j)

(pxik − yk) ≤ 0. (5)

To generalise (5), consider a subsetA of S(i, j). If
∑

k∈S(i,j) xik = 1, there
are at leastp − |S(i, j) \ A| open locations inA (there are exactly as many if all
locations inS(i, j) \ A are open – see Figure 1a). We then have valid inequalities

(p − |S(i, j) \ A|)
∑

k∈S(i,j)

xik ≤
∑

k∈A

yk, (6)

defined by indicesi, j andA ⊆ S(i, j).

3.2 Inequalities B

Consider a pair of clients(i1, i2) and a pair of locations(j1, j2). If S(i1, j1) and
S(i2, j2) have at mostp − 1 locations in common, then eitheri1 is allocated to
a location inS(i1, j1) or i2 is allocated to a location inS(i2, j2), but not both,
i.e.,

∑

k∈S(i1,j1)
xi1k and

∑

k∈S(i2,j2) xi2k cannot be both one. In fact, allp open
locations would otherwise be inS(i1, j1)∩S(i2, j2), contradicting the assumption.
We have then

∑

k∈S(i1,j1)

xi1k +
∑

k∈S(i2,j2)

xi2k ≤ 1 (7)

for all i1, i2, j1, j2 such that

|S(i1, j1) ∩ S(i2, j2)| ≤ p − 1. (8)

Consider now a locationl in J \(S(i1, j1)∪S(i2, j2)). If l is open, then neither
S(i1, j1) nor S(i2, j2) contain the open location to whichi1 or i2 are allocated,
since locationl is closer toi1 and toi2 than any one contained in the two sets (see
Figure 1b). As a consequence, only one of the three expressions

∑

k∈S(i1,j1) xi1k,
∑

k∈S(i2,j2)
xi2k andyl can be nonzero. This gives the family of valid inequalities

∑

k∈S(i1,j1)

xi1k +
∑

k∈S(i2,j2)

xi2k + yl ≤ 1 (9)

with (i1, i2, j1, j2, l) ∈ I2 × J3 s.t. (8) holds andl ∈ J \ (S(i1, j1) ∪ S(i2, j2)).
Although we have used inequality (9) in our tests, it can be generalised as fol-
lows: consider a setT of pairs (i, j) such that (8) holds between any two el-
ements ofT . Analogously to the clique inequality, a general version of(7) is
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then
∑

(i,j)∈T

∑

k∈S(i,j) xij ≤ 1. If there exists a facilityl such thatl ∈ J \
⋃

(i,j)∈T S(i, j), then we have the generalised valid inequality

∑

(i,j)∈T

∑

k∈S(i,j)

xik + yl ≤ 1. (10)

3.3 Inequalities C

Let us denoteSA(i, j) = S(i, j) ∩ A for any A ⊆ J , i.e., the set of locations
in A more distant thanj from client i. Let alsoFA

k (i) denote thek-th most dis-
tant location, among those inA, from i, i.e. FA

k (i) is the locationj such that
|SA(i, j)| = k − 1. Consider two clientsi1 and i2. If i1 is allocated toFp(i1),
i.e., xi1Fp(i1) = 1, then because of (5), thep locations most distant fromi1 and
belonging toB = S(i1, Fp+1(i1)) are open. Clienti2 is allocated to the nearest
open location ofB, which is also thep-th most distant element ofB from i2, thus
yieldingxi2F B

p (i2) = 1. Hence the valid inequalityxi1Fp(i1) ≤ xi2F B
p (i2).

In general, if
∑

k∈S(i1,j1) xi1k = 1 then clienti2 is allocated to an open loca-
tion j2 ∈ S(i1, j1). However,j2 is none of thep − 1 locations most distant from

i2 within S(i1, j1), i.e.,j2 /∈ S̃ = SS(i1,j1)(i2, F
S(i1,j1)
p (i2)). Therefore,j2 is to

be found inS(i1, j1) \ S̃, (see Figure 1c). Hence the valid inequality
∑

k∈S(i1,j1)

xi1k ≤
∑

k∈S(i1,j1)\S̃

xi2k. (11)

4 A Branch-and-Cut approach

In this section we present a branch-and-cut method (Naddef and Rinaldi, 2000)
to tackle large instances of OpM. We outline below the procedures that improve
the efficiency of our method: a Tabu Search heuristic that gives an initial lower
bound, an upper bounding routine, a heuristic for generating a feasible solution,
and a separation procedure for the three families of valid inequalities presented in
the previous section. A best first strategy is used for selecting the next active node
to analyse. We assume that a solution to the linear relaxation of OpM is given by
(y⋆, x⋆). We have substantially reduced the separation time throughefficient data
structures, such as the following matrices:

L: elementl(i, j) gives the index of thej-th nearest location to clienti (e.g., if
3 and 7 are the closest and the second closest location to client 8, respectively,
thenl(8, 1) = 3 andl(8, 2) = 7);

U : u(i, j) is the position of locationj in row l(i, ·) of L (it allows to detect
whetherk ∈ S(i, j) for any triple(i, j, k));
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i1

i2

j1

S(i1, j1)

S̃

(c) Inequalities (11),p=4. Because all open
facilities are in S(i1, j1), so is the one
closest to i2. However, it cannot be in
S̃ = SS(i1,j1)(i2, F

S(i1,j1)
p (i2)). Thus,

P

k∈S(i1,j1) x1k ≤
P

k∈S(i1,j1)\S̃
x2k .

Client
Unopened facility
Open facility

Fig. 1. An explanation of the valid inequalities (Euclidean distance is assumed).

X̂, Ẑ: values ofx⋆ andy⋆ sorted w.r.t.L, i.e.,x̂ij = x⋆
i l(i,j) andẑij = y⋆

l(i,j);
Θ, Λ, whose elements are the sum ofx̂ andŷ, respectively, according toL, i.e.,

θij =
∑

k∈S(i,l(i,j)) x⋆
ik andλij =

∑

k∈S(i,l(i,j)) y⋆
k.

4.1 A Tabu Search heuristic

A lower bound is computed before applying the branch-and-cut method in or-
der to further decrease the computational effort. We have applied a variant of the
Tabu Search heuristic that has appeared in a previous work onthe Cumulative As-
signment problem with an application to satellite communications (Dell’Amico et
al., 1999). This approach, calledeXploring Tabu Search(X-TS), adds to the clas-
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sic Tabu Search paradigm the following features, some of which are well-known
techniques to diversify the search:

a) A long-term solution list: this list contains somegoodsolutions that have been
evaluated but not explored by the procedure. This techniqueallows for a better
local exploration of the solution space.

b) A dynamic tabu list, whose length increases when the objective of the current
solution decreases forhd consecutive iterations and decreases when the current
solution improves forhi consecutive iterations.

c) A global restart mechanism that generates a new starting solution by applying
a randomized greedy algorithm that uses the rank information described in
Subsection 4.3 below.

Applying this heuristic step has boosted the performance ofour algorithm, as
the primal solution found by this procedure is often optimal. We shall not give
details about this heuristic approach to OpM; the interested reader may refer to
Belotti et al. (2000).

4.2 A bounding heuristic

As a lot of time is spent by the LP code at each node, before calling the LP solver
it is effective to compute a less tight bound by a fast heuristic. If this upper bound
is lower than the value of the best feasible solution found sofar, the node can be
fathomed. Given a nodeν in the decision tree and a set ofy variables that have
been set in the ancestor nodes, letJo be the set of open locations,Jo = {j : yj =
1 at nodeν}, andJc the set of closed ones. Hence no feasible solution descending
from ν can have objective greater than

∑

i∈I

min
(

min
j∈Jo

cij , ciF
J\Jc
p (i)

)

.

4.3 Obtaining feasible solutions

Given a fractional solutiony⋆ to the linear relaxation of a problem in the branch-
and-bound tree, a greedy solutionQ′ to OpM can be obtained as follows: consider
a vectord such thatdj = min{cij |i ∈ I} for each locationj ∈ J . Let us define a
rankr(j) for all j ∈ J as the number of facilitiesk whose value ofdk is greater
thandj , i.e.,r(j) = |{k ∈ J : dk > dj}| ∀j ∈ J . The lower the rankr(j), the
greater the distance fromj to the nearest client, and therefore the more likelyj is to
be included in an optimal solution. Thep elements with lowest rank are a solution
to OpM that can be used to generate a feasible solution at low computational cost
satisfying the branching constraints at each node of the decision tree.

Locationsj whose variable has not been set at nodeν are included inQ′ de-
pending on their fractional value in the current LP solutionand on their rank. More
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precisely, letα(j) = (1 + γy⋆
j )µr(j), whereγ, µ ∈ [0, 1]. Assumingk locations

are already open according to the variables fixed by the branching, we include in
Q′ thosep− k locationj with highest values ofα(j). Parametersγ andµ balance
the importance ofy⋆

j versus that ofr(j). In our tests we have used valuesµ = 0.85
andγ = 0.5.

4.4 Separation routines

The separation step is performed after the linear relaxation of the subproblem as-
sociated with a node of the Branch-and-bound tree is solved.In order to give the
same chances to our inequalities, we separate them in the same call to the routine
and re-solve the LP solution if some new cuts have been added.

Inequalities A. These are uniquely identified by indicesi, j and a setA ⊆
S(i, j), whose cardinality is between|S(i, j)| − p + 1 and|S(i, j)|. In order not
to insert too many inequalities at each iteration of the cutting plane routine, for
each clienti we look for the facilityj and the subsetA yielding the most violated
inequality. Although the number of subsetsA of S(i, j) is exponential in|S(i, j)|,
it suffices to consider the facilitiesk with smally⋆

k.
For each clienti, consider allj such that

∑

k∈S(i,j) xik > 0. At most(m − p)

pairs(i, j) may give violated inequalities, as all locationsk more distant thanFp(i)
from i havexik = 0. Consider a permutation of location indices(k1, k2, . . . , km)
that sorts vectory⋆ in non-decreasing order, i.e.,y⋆

k1
≤ y⋆

k2
≤ . . . ≤ y⋆

km
. The

setA ⊆ S(i, j) of given cardinalityh (where|S(i, j)| − p + 1 ≤ h ≤ |S(i, j)|)
that minimizes the right-hand side of (6) is given by the firsth elements of the per-
mutation withinS(i, j) – setA is obtained by scanning the sorted arrayS(i, j), a
step whose complexity is|S)i, j)| ≤ m. Hence, separating inequalities A requires
O(m log m + n(m − p)m) = O(nm(m − p)) steps.

Inequalities B. These are identified by a 5-ple(i1, j1, i2, j2, l) such that (8) holds
and l ∈ J \ (S(i1, j1) ∪ S(i2, j2)). Analogously to inequalities A, we limit the
number of separated cuts by choosing at most one inequality for each(i1, i2) (we
assumei1 < i2 to avoid symmetries). The triplet(j1, j2, l) that gives the max-
imally violated inequality can then be found in polynomial time. Although this
procedure requiresO(n2m3) steps, the actual separation time is negligible with
respect to the LP time, as shown in the next section. It is alsoworth pointing out
that the separation problem of the generalised inequality (10) is NP-hard as it is
equivalent to the Max-Clique.

Inequalities C. Separating these inequalities takes more computational time than
it seems. Although each is identified by a triplet(i1, j1, i2), computing its viola-
tion requires repeated scans of vectorsx⋆ andy⋆. However, the data structures de-
scribed in the beginning of the section help reducing the running time. Again, we
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have chosen to limit the number of inequalities by selecting, for each pair(i1, i2),
the facility j1 that gives the maximally violated inequality. As checking the viola-
tion for each triple requiresO(m) simple operations, the separation procedure has
complexityO(n2m2).

5 Experimental results

We have applied the algorithm described above to a set of instances with a wide
range of values forn andm, so as to give a complete overview of the performance
of our method when compared to a general MIP solver. We have obtained these
instances from three sources available on the Internet:

– (http://www.bus.ualberta.ca/eerkut/testproblems) thep-median Test Problems
Page, with severalp-median instances used as test bed in Alp et al. (2003),
Galvão and ReVelle (1996), and Koerkel (1989).

– (http://people.brunel.ac.uk/˜mastjjb/jeb/info.html)the OR-Library, with data
sets for several Operations Research problems (Beasley, 1990).

– (http://www.lac.inpe.br/˜lorena/instancias.html)a web page with diversep-median
instances.

As the majority of the instances give a generic set of locations and do not
discern clients from facilities, we have randomly divided them into setsI andJ .
None of them specifies the value ofp, hence we solve each instance forp equal
to m/2, m/4, andm/8. All tests have been performed on a Sun Fire 240 work-
station, with two 1.64GHz UltraSparc64 processors, 4 GB of RAM memory, and
the parallel Cplex solver. The routines explained in the previous section have been
coded in C language and linked to Cplex 9.1’s Callable Libraries. In order to evalu-
ate the families of cuts introduced, we compare our branch-and-cut approach with
the standard branch-and-cut procedure provided by Cplex with the default cutting
planes, and the feasible solution computed by our Tabu Search procedure in the
beginning is passed to both exact methods. A time limit of four hours has been
given to both methods. In Tables 2, 1, and 3 we report, for eachinstance:

– the instance parameters (m, n andp);
– the running time of Cplex’s branch-and-cut (cpu1) and of ourbranch-and-cut

(cpu2) methods, respectively, if the instance is solved to optimality, otherwise
in brackets the gap w.r.t. the best upper bound;

– the number of B&B nodes (nod1 and nod2) for the two algorithms;
– the number of inequalities separated (#A, #B, #C) and the total running time

taken by the separation routines (sep).

For many instances, our branch-and-cut approach either takes shorter running
time or obtains a smaller gap than the standard MILP method. As the primal bound
is the same for the two methods, a smaller gap indicates that the valid inequalities
separated are effective for OpM.
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cplex b&c
Name n m p cpu1 nod1 cpu2 nod2 #A #B #C sep
orlib-cap41 50 16 4 0.3 0 0.3 0 0 0 0 0.01
orlib-cap81 50 25 6 0.5 0 0.5 0 0 0 0 0.01
orlib-cap111 50 50 12 2.2 0 2.2 0 0 0 0 0.03
Hoefer-O1 100 100 25 (43.8) 19119 1894.5 117 981 5863 0 11.67
Hoefer-O2 100 100 25 (45.4) 4671 (43.9) 1532 986 69 1 2.70
Hoefer-P1 200 200 50 (63.8) 11 (60.1) 0 3928 0 0 28.25
Hoefer-P2 200 200 50 (63.4) 230 (60.3) 0 3790 0 0 59.30
Hoefer-Q1 300 300 75 (65.7) 2 (64.3) 0 3300 0 0 153.27
Hoefer-Q2 300 300 75 (65.7) 8 (64.2) 0 3592 0 0 167.12
BK-D1.1 80 30 7 (2.7) 41979 12431.4 48885 233 0 0 0.56
BK-D2.1 80 30 7 (23.1) 7572 4795.8 22990 225 43 0 0.24
BK-D3.1 80 30 7 (21.4) 6194 4812.1 11618 228 0 0 0.27
BK-D4.1 80 30 7 (16.2) 11500 3649.3 19600 223 0 0 0.16
BK-D5.1 80 30 7 13923.0 13129 3368.1 10747 228 10 0 0.56
BK-D6.1 80 30 7 (18.4) 12580 2522.9 24065 232 84 0 0.18
BK-D7.1 80 30 7 (24.4) 11989 3879.7 39393 228 69 1 0.18
BK-D8.1 80 30 7 (10.2) 12822 2656.6 22221 232 91 0 0.18
BK-D9.1 80 30 7 (17.8) 13289 3662.1 24026 233 0 0 0.17
BK-D10.1 80 30 7 (23.0) 10621 5974.3 28001 229 87 0 0.21
CLSA1032 100 100 25 (47.7) 22639 (43.3) 16286 114 6 0 2.35
CLSB1131 100 100 25 (49.3) 12844 (48.6) 14714 92 7 0 3.19
CLSC1133 100 100 25 (53.1) 17733 (52.8) 12566 27 0 0 1.79
FPP11-1 133 133 33 (79.7) 1179 (78.4) 1405 526 2 0 8.00
FPP11-10 133 133 33 (79.8) 243 (79.7) 116 658 5 13 10.33
FPP11-30 133 133 33 (79.9) 1511 (79.4) 2534 307 1 0 7.55
GR-50.1 50 50 12 189.2 659 701.0 1328 163 47 2 0.19
GR-50.2 50 50 12 74.6 263 61.4 233 26 23 79 0.25
GR-100.1 100 100 25 (8.8) 1114 (12.3) 957 447 125 1 3.78
GR-100.2 100 100 25 (13.2) 682 (16.3) 268 519 86 32 3.92

Table 1. Computational results over a set of real-life instances of OpM (p = ⌊m/4⌋). Under the
“cpu1” and “cpu2” columns we report the running time of the two algorithms if the instance is solved
to optimality, otherwise the gap w.r.t. the best upper boundis given in brackets.

The best results are obtained forp = ⌊m/4⌋ (see Table 1). For the 80×30
BildeKrarup (BK) instances, the result is more apparent: virtually all such in-
stances are solved within two hours while Cplex alone reaches the time limit in
many of them. The difference in performance is less remarkable in the Hoefer
set of instances. Notice however that, unlike in BK instances, our branch-and-cut
code generates less nodes and spends much more separation time, which results in
a slightly better gap even though for Hoefer-P and Hoefer-Q instances no branch
is performed. Instance Hoefer-O1 has been solved in a relatively short time, ap-
parently due to the insertion of a large number of inequalities B which took a short
separation time. The instances orlib, CLS and FPP do not differ so much in terms
of branch-and-bound nodes, but our method still achieves a better result. For the
Galvão-Raggi (GR) instances, instead, our method does better in one only instance
out of four. It is worth pointing out that in many instances a better gap or running
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cplex b&c
Name n m p cpu1 nod1 cpu2 nod2 #A #B #C sep
orlib-cap41 50 16 8 0.1 0 0.2 0 0 5 2 0.00
orlib-cap81 50 25 12 0.2 0 0.2 0 0 0 0 0.00
orlib-cap111 50 50 25 0.6 0 0.6 0 0 0 0 0.02
Hoefer-O1 100 100 50 (29.4) 5520 (28.7) 6585 0 41 37 5.84
Hoefer-O2 100 100 50 (28.5) 5631 (29.6) 5286 0 52 111 6.25
Hoefer-P1 200 200 100 (45.7) 24 (44.3) 24 0 131 72 62.68
Hoefer-P2 200 200 100 (45.3) 27 (38.8) 64 0 783 46 26.13
Hoefer-Q1 300 300 150 (47.1) 0 (47.1) 0 0 0 0 40.94
Hoefer-Q2 300 300 150 (47.2) 0 (47.2) 0 0 129 0 35.53
BK-D1.1 80 30 15 (16.1) 12100 (16.4) 11456 0 0 9 0.20
BK-D2.1 80 30 15 3701.0 9103 3167.0 7222 0 0 5 0.72
BK-D3.1 80 30 15 3001.9 9341 (7.3) 9593 0 0 7 0.20
BK-D4.1 80 30 15 (11.6) 12633 (12.7) 11268 0 3 9 0.21
BK-D5.1 80 30 15 3105.6 11302 3264.3 11265 0 2 16 0.23
BK-D6.1 80 30 15 (9.7) 14318 (10.9) 12702 0 21 13 0.20
BK-D7.1 80 30 15 (13.3) 13756 (14.6) 13494 0 1 10 0.26
BK-D8.1 80 30 15 (3.9) 13978 (6.9) 13362 0 0 16 0.23
BK-D9.1 80 30 15 (9.1) 14152 (9.9) 13165 0 0 12 0.22
BK-D10.1 80 30 15 (9.9) 13591 (12.1) 12794 0 4 13 0.21
CLSA1032 100 100 50 (74.1) 11150 (73.8) 11561 0 0 0 1.24
CLSB1131 100 100 50 (75.4) 8432 (75.4) 8480 0 0 0 2.15
CLSC1133 100 100 50 (68.5) 13551 (68.5) 13361 0 0 0 1.58
FPP11-1 133 133 66 (90.0) 6266 (88.5) 3639 0 0 9 4.42
FPP11-10 133 133 66 (89.7) 3671 (89.7) 3361 0 4 11 5.10
FPP11-30 133 133 66 (90.0) 3174 (88.5) 2800 0 1 2 5.72
GR-50.1 50 50 25 166.8 2414 171.3 2524 0 2 14 0.24
GR-50.2 50 50 25 88.8 112 63.6 128 0 33 32 0.25
GR-100.1 100 100 50 (8.4) 5169 (6.9) 2387 0 155 81 2.90
GR-100.2 100 100 50 (11.8) 6636 (10.5) 4122 0 193 57 3.72

Table 2. Computational results over a set of real-life instances of OpM (p = ⌊m/2⌋). Under the
“cpu1” and “cpu2” columns we report the running time of the two algorithms if the instance is solved
to optimality, otherwise the gap w.r.t. the best upper boundis given in brackets.

time has been achieved with a very short separation time, thus strengthening the
model at almost no computational cost.

For p = ⌊m/2⌋ (see Table 2), the two algorithms have somehow similar per-
formances, probably due to the limited generation of inequalities. In particular, no
inequalities A are violated in any node of the decision tree,while more inequalities
B and C are separated. This has a significant impact for the Hoefer instances, but
does not improve the performance for the remaining ones. As shown in Table 3 for
p = ⌊m/8⌋, our inequalities improve the gap for the Hoefer instances in general,
but do not give a better result in other instances, and for theBilke-Krarup ones
even turn out to be less useful than the standard MILP cuts provided within Cplex.

From Tables 1 and 3 we notice that inequalities A prevail overthe other two,
although we separate them independently. This could be explained by the structure
of the test instances, nevertheless we cannot conclude fromthese results which
inequality is more effective. To this purpose, we have solved some instances with
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cplex b&c
Name n m p cpu1 nod1 cpu2 nod2 #A #B #C sep
orlib-cap41 50 16 2 1.0 0 0.9 0 0 2 15 0.00
orlib-cap81 50 25 3 0.3 0 0.3 0 0 0 0 0.01
orlib-cap111 50 50 6 1.8 0 1.8 0 0 0 0 0.04
Hoefer-O1 100 100 12 (60.68) 121 (50.63) 92 914 0 0 1.97
Hoefer-O2 100 100 12 (59.67) 115 (49.70) 447 897 0 0 1.59
Hoefer-P1 200 200 25 (67.54) 2 (63.65) 0 1400 0 0 6.61
Hoefer-P2 200 200 25 (67.79) 7 (64.47) 0 1200 0 0 5.65
Hoefer-Q1 300 300 37 (70.09) 0 (69.60) 0 599 0 0 10.10
Hoefer-Q2 300 300 37 (70.01) 0 (69.10) 0 900 0 0 17.88
BK-D1.1 80 30 3 485.42 3825 2721.74 4029 160 8 235 0.19
BK-D2.1 80 30 3 604.16 2067 1989.63 2418 160 0 33 0.11
BK-D3.1 80 30 3 375.34 2069 1952.97 2301 165 17 245 0.13
BK-D4.1 80 30 3 377.95 2042 1467.45 2269 175 15 277 0.21
BK-D5.1 80 30 3 368.96 2029 1043.14 1909 160 0 77 0.15
BK-D6.1 80 30 3 309.62 1770 1904.95 2508 170 18 237 0.17
BK-D7.1 80 30 3 603.80 2325 2195.20 3274 170 20 220 0.10
BK-D8.1 80 30 3 564.09 1951 1374.30 2053 166 7 217 0.22
BK-D9.1 80 30 3 402.77 2065 1524.95 2457 172 5 271 0.24
BK-D10.1 80 30 3 463.44 2413 1550.87 2778 165 6 135 0.18
CLSA1032 100 100 12 (30.91) 2333 (30.60) 1680 296 0 0 1.37
CLSB1131 100 100 12 (39.21) 2000 (40.47) 1798 308 0 0 1.41
CLSC1133 100 100 12 (40.75) 2160 (40.96) 2154 138 0 0 1.40
FPP11-1 133 133 16 (64.74) 321 (64.68) 131 804 0 0 4.38
FPP11-10 133 133 16 (64.65) 349 (64.66) 200 722 0 0 4.45
FPP11-30 133 133 16 (64.65) 282 (64.70) 221 634 4 0 4.15
GR-50.1 50 50 6 208.44 510 147.60 282 50 10 174 0.26
GR-50.2 50 50 6 0.27 0 0.26 0 0 0 0 0.01
GR-100.1 100 100 12 (2.10) 1183 (5.55) 544 0 3 1544 4.20
GR-100.2 100 100 12 (7.51) 856 (3.29) 870 98 24 2676 7.73

Table 3. Computational results over a set of real-life instances of OpM (p = ⌊m/8⌋). Under the
“cpu1” and “cpu2” columns we report the running time of the two algorithms if the instance is solved
to optimality, otherwise the gap w.r.t. the best upper boundis given in brackets.

p = ⌊m/4⌋, separating each inequality alone, and evaluated the corresponding
running time or gap, with a time limit of one hour. The resultsare reported in
Table 4. For instance GR-100.1 and GR-50.1 inequality B makes the difference,
although inequalities C, separated in relatively short time, solve instances GR-50.1
and GR-50.2 in comparable time. Remarkably, inequalities A, which are separated
extensively in the first test, show to be useful only for instance CLSA1032.

Table 4.Comparison of the valid inequalities.

From a modeling standpoint, it is worth noting that for some instances the
optimal solution is a set of facilities spread unevenly on the geographic area, in a
corner or at the boundaries of the region, as in the left part of Figure 2, where the
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optimal solution of a randomly-generated instance with(n, m, p) = (20, 40, 8) is
shown. This is justified by an objective function that takes into no account other
practical needs, such as transportation costs or reachability of the open locations,
which are dealt with by dispersion models. Considering clients lying outside the
region may change the solution but does not avoid clusteringof the open facilities,
as shown in the right part of Figure 2, with 53 new clients surrounding the initial
area.

ClientUnopened facilityOpen facility

Fig. 2. An optimal solution of two instances of OpM. 20 clients are placed in the left part, and the
obnoxiousp-median objective function yields aclusteredsolution where all open facilities are in the
upper-right corner. Considering 53 more clients around theinstance obtains a different, but still clus-
tered, solution.

6 Concluding remarks

In this work, we study an obnoxious location problem where all locations are fully
obnoxious, and the average distance from each client to the nearest open facility
is maximised. This problem is found in those contexts where facility dispersion
is not necessary because of limited inter-facility nuisance and/or negligible trans-
portation cost.

We have presented three families of valid inequalities, whose separation prob-
lem is polynomial, and developed an efficient exact procedure to tackle mid-size
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instances in limited time. This exact method, coupled with afast tabu search pro-
cedure, helps computing the optimal solution more rapidly than with a general-
purpose Mixed Integer Programming software. Although we have tuned our sep-
aration and our branch-and-cut algorithms to this specific problem, the valid in-
equalities we have introduced are rather general and can be applied in different
location problems.
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