
HyAuLib: modelling Hybrid Automata in Modelica

Tiziano Pulecchi Francesco Casella
Politecnico di Milano, Dipartimento di Elettronica e Informazione

Piazza Leonardo da Vinci 32, 20133 Milano, Italy

Abstract

A library of components for modelling hybrid au-
tomata in a natural fashion has been implemented in
Modelica. This library exploits and extends the free
Modelica library StateGraph to the modelling and sim-
ulation of deterministic hybrid systems described by
the hybrid automaton formalism. In this contribution
the library’s main features are described and its flexi-
bility highlighted by developing models for two classic
hybrid systems literature examples.
Keywords: hybrid automata; simulation

1 Introduction

Hybrid systems (see [7]) are dynamical systems in-
volving the interaction of both continuous state and
discrete state dynamics. Recall that a state variable
is called discrete if it can take a finite (or countable)
number of values and continuous if it takes values in
the Euclidean spaceRn for somen≥ 1. By their na-
ture, discrete states can change value only through a
discretejump; on the other hand, continuous states can
change values either through ajump, or by flowing in
time according to a given differential equations set.
Physical systems are by their own nature inherently
continuous. Nevertheless, because of the couplings
with very high frequency dynamics, or in presence of
mechanisms too complicated to be dealt with in sim-
ulation by a sound physical description, many physi-
cal systems can be conveniently represented under the
hybrid systems paradigm. This provides a convenient
framework for modelling systems in a wide range of
engineering applications, including for instance elec-
trical circuitry, where continuous dynamic is affected
by switches opening and closing; chemical processes
control, where the continuous evolution of chemical
reactions is controlled by valves and pumps; or digital
control, where digital computers interact with a con-
tinuous time physical system. Of course, highly non-

linear systems such as for instance diodes, switches,
valves, mechanical backlashes and dead strokes, can
be conveniently described via abstracted hybrid mod-
els.

The analysis and design of hybrid systems is in gen-
eral more demanding than that of purely discrete or
purely continuous systems, because of the necessity to
accurately deal with the interplay between the discrete
and continuous dynamics. The same consideration
holds true for their simulation, that presents specific
challenges requiring special care. Specifically, it is
of paramount importance to be able to determine with
great accuracy the time instant when discrete jumps
take place, and consistently deal with simultaneous
events occurrences, which represents one of the main
sources of modelling inconsistencies.

Nowadays, general purpose simulation packages such
as Matlab and Simulink can deal adequately with most
complications. Specialized packages have also been
developed that allow accurate simulation of hybrid
systems (seee.g. [2], [3], [1], [5]). The interested
reader is addressed to [4] for a thorough overview on
the subject.

In this paper a library of components for modelling
(autonomous) hybrid automata (HyAuLib), imple-
mented in Modelica (see [9, 6]), has been designed.
Modelica is already capable of efficiently handle hy-
brid systems modelling and simulation via suitable
scripts (see [8]). Nevertheless, sometimes this oper-
ation can turn out to be very cumbersome and error
prone for the unexperienced user. This library, extend-
ing the free Modelica library StateGraph (see [10]),
overcomes these difficulties by providing an easy way
to the consistent modelling and simulation of hybrid
systems described by the hybrid automaton formalism.

The paper is organized as follows: in Sections 2 and 3
the hybrid automaton formalism and the implemented
Modelica HyAuLib will be respectively described. In
Section 4, the library capabilities shall be illustrated
on two classic hybrid systems textbook examples. Fi-

HyAuLib: Modelling Hybrid Automata in Modelica

The Modelica Association 239 Modelica 2008, March 3rd − 4th, 2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/55191013?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


nally, in Section 5 concluding remarks and future de-
velopments will be presented.

2 Hybrid Automata

A hybrid automaton is a dynamical system describ-
ing the evolution in time of a set of discrete and
continuous variables. In this paper we will focus on
autonomous hybrid automata,i.e. hybrid automata
which have no inputs nor outputs. More specifically,
the transitions between two modes of our automata
shall occur in accordance with a user-specified deter-
minism. This topic will be thoroughly discussed in
Section 3. The hybrid automaton will answer to the
following definition (seee.g.[7]):

Definition 2.1 (Hybrid Automaton) A hy-
brid automaton H is a collection H =
(Q,X, f , Init ,D,E,G,R) where

• Q = {q1,q2, . . .} is the set of all admissible dis-
crete states, ormodesof H;

• X ⊆ Rn is the set of continuous states;

• f (·, ·) : Q×X → Rn is avector field, defining the
evolution in time of the continuous part of the
state ofH;

• Init ⊆ Q×X is the set of all admissible initial
states forH;

• Inv(·) : Q→P(X) is a theinvariant setor domain;

• E ⊆ Q×Q is a set ofedges, defining all transi-
tions from one mode ofH to the next;

• G : E→ P(X) is the set ofguardconditions;

• R(·, ·) : E×X → P(X) is areset map,

whereP(X) denotes the power set (the set of all pos-
sible subsets ofX), and the pair(q,x) ∈ Q×X is the
state ofH, made up by its discrete and continuous con-
tributors.
Hybrid automata define possible evolutions for their
state. Roughly speaking, starting from an initial value
(q0,x0) ∈ Init , the continuous statex flows according
to the differential equation

{
ẋ = f (q0,x)
x(0) = x0

defined by the hybrid automaton vector field, while the
discrete stateq remains constant,i.e.,

q(t) = q0

as long asx ∈ Inv(q0). If at some pointx reaches
the guardG(q0,q1) ⊆ Rn of some edge(q0,q1) ∈ E,
then the discrete part of the stateq maychange toq1.
If this happens,x is reset according to the reset map
R(q0,q1,x). After a discrete transition has taken place,
continuous evolution resumes, until a new transition is
triggered, and so on.
To define the time horizon over which the states
of the hybrid system evolve, we need to introduce
the concept of Hybrid Time Set by the following
definition (seee.g. [7]):

Definition 2.2 (Hybrid Time Set) A hybrid time set is
a sequence of contiguous intervalsτ = {I0, I1, . . . , In}
finite or infinite such that

• Ii = [τi ,τ ′i ] for all i < n;

• if N < ∞ then eitherIN = [τN,τ ′N] or IN = [τN,τ ′N);

• τi ≤ τ ′i = τi+1 for all i,

whereτ ′i represents the time instant immediately pre-
ceding a discrete transition occurrence, whereasτi+1

corresponds to the time instant just following the dis-
crete transition. The adoption of this representation of
time in hybrid automata allows the handling of situa-
tions where multiple transitions occur simultaneously.
When the range of a generic intervalI j shrinks to a
single valueτ j , it means that the associated modeQk

has been entered and exited in the very same instant.
If multiple transitions are enabled and do occur si-
multaneously, the automaton evolves to its new mode
Qr passing through several intermediate modes, whose
associated residing times are zero.
The triple(τ,q,x) consisting of a hybrid time set and
two sequences of functionsq = {qi} andx = {xi} is
named ahybrid trajectory, whereas anexecutionof H
is a hybrid trajectory(τ,q,x) admissible by the hybrid
automatonH.
Note in passing that the exploitation of the invariant
set definition, allowable within the hybrid automa-
ton formalism, could be used to efficiently simulate
a broad variety ofunconventionalengineering appli-
cations, such as, for instance, the suitability of the
designed safety procedures for continuous dynamical
systems. This could be achieved simply by modelling
the safety critical conditions for the system via unde-
sirable regions for the continuous state (by defining the
automaton domain accordingly). As a consequence,
if the recovery procedures fail, the automaton will vi-
olate the invariant set and the simulation will be ter-
minated with a warning message specifying the safety

T. Pulecchi, F. Casella

The Modelica Association 240 Modelica 2008, March 3rd − 4th, 2008



critical condition violated, leading to a procedure re-
design. Many other useful controls of this kind, such
as for exampleZeno behaviordetection, can be easily
incorporated into the Modelica HyAuLib.
Another interesting field of application for the
HyAuLib could be in the framework of simulation of
systems undergoing failures. Let’s focus on a simple
example, where a relief valve is used to control the
pipeline pressure in an hydraulic plant. During nomi-
nal operational regime, the valve remains closed while
pressure at the valve inlet is lower than the valve pre-
set pressure. When the preset pressure is reached, the
valve is opened and the pressure at the inlet reduced.
Now, if the valve experiences a failure and got stuck in
the open position, and for some operational reason the
pressure in the pipeline crosses the valve preset pres-
sure and keeps rising, either the valve’s backup (if any)
will be activated, or the system will suffer damage and
loose functionality. If no backup is activated, or it re-
sults ineffective, the pressure will utterly increase to
the point of exceeding a new threshold value (defining
when the system is no more operative), specified via
the invariant set. The simulation will be either termi-
nated if the experienced failure is classified as safety
significant or safety critical (the system architecture
needs a redesign), or kept running with the system in
failure. Note that our simple example requires that the
transition between the operational modes of the pres-
sure relief valve (open and close) is triggered either by
an opening (resp. closing) command or as a conse-
quence of a failure experienced by the equipment and
associated to a probability of occurrence. Relevant
data both in terms of failure modes and failure rates
can be obtained from the equipment’s Failure Mode
Effect and Criticality Analysis document, and the nec-
essary hybrid models easily implemented exploiting
the HyAuLib models, described in the following Sec-
tion 3.

3 The Modelica HyAuLib

The Modelica HyAuLib addresses the problem of sup-
porting the designers working with hybrid systems, by
providing them with an efficient and intuitive mod-
elling and simulation tool for hybrid automata. The
library has been derived by extending the free Mod-
elica StateGraph library by Otter and Dressler (see
[10]), which is based on the JGraphChart method and
provides components to model finite state machines.
The HyAuLib allows for the modelling of complex
hybrid systems that can be represented throughout the

hybrid automata paradigm in a natural fashion. Al-
though such models could of course be obtained by
writing explicitly the relevant Modelica code, this task
is likely to turn out to be burdensome and error prone
even for very simple models. The HyAuLib, by au-
tomatically managing all state transitions and the dis-
crete/continuous domains interaction, seeks to mini-
mize all possible sources of wrong modelling behav-
ior. An expanded view of the HyAuLib tree is given in
Figure 1.

Figure 1: The Modelica HyAuLib library’s tree.

The Modelica HyAuLib encompasses two basic com-
ponents, theFiniteStateandTransitionmodels, which
are briefly summarized in the following:

• ComponentFiniteState: defines each finite state
(or mode) for the generic automaton. Embed-
ded in this model are the definitions of the vec-
tor field and of the invariant set associated to the
present state of the hybrid automaton. Compo-
nentFiniteStateextends StateGraph’sStepcom-

HyAuLib: Modelling Hybrid Automata in Modelica

The Modelica Association 241 Modelica 2008, March 3rd − 4th, 2008



ponent, which is used to define which state is
presently active. (See Figure 2, where the Mod-
elica code used to generate theFiniteStatecom-
ponent is shown.)
The FiniteStateoptions selection mask is shown
in Figure 3. For everyFiniteStatecomponent
instantiated in the hybrid automaton model, the
number of input and output connections needs
to be specified, jointly with the selection be-
tween StateGraph’s InitialStep and Step compo-
nents (for further information on StateGraph, see
[10]). Finally, notice that a given time continu-
ous dynamics and invariant set must necessarily
be specified. These models can be elementar-
ily defined by extending suitable interfaces pro-
vided within the HyAuLib library. Several of
such examples are provided in the library’sEx-
amplefolder.

• ComponentTransition: defines the generic tran-
sition between modes. The model, extending
StateGraph’sTransition component, comprises
the definition of the guard and the reset condi-
tions. Notice that all transitions are triggered ac-
cording to a deterministic mechanism,i.e., at the
moment no provision is given within the library
in order to assign a probability to the transition.
Two possible reset conditions are available: the
standard option guarantees the continuity of the
continuous state variable throughout the transi-
tion, whereas the second option allows for the
definition of a specified reset. The Modelica code
for theTransitionmodel is provided in Figure 4.
Also, Figure 5 shows the options selection mask
for the HyAuLibTransitioncomponent.

Both models take full advantage of the Modelicare-
declareconstruct feature, which makes it possible to
create general classes which are defined only when the
model is instantiated. It is then possible, once suitable
models for the hybrid automaton’s dynamics, invariant
sets, guards and reset conditions have been defined, to
simply drag and drop in the automaton model the base
FiniteStateandTransitionmodels, select the relevant
features from the graphical user interface, and connect
them to reproduce the automaton scheme.
The HyAuLib supports multiple edges connection be-
tween different modes (the number of input and out-
put connections being a parameter of themodecompo-
nent). The transition mechanism adopted is determin-
istic. The transition is triggered as soon as the guard
condition is satisfied, or with a delay that can be spec-
ified as a function of the hybrid automaton state and

current time. Future development will comprise the
implementation of a probabilistic approach in the def-
inition of the transition occurrence.
Notice that no care needs to be taken in the HyAuLib
with respect to the definition of an hybrid time set for
the automaton execution. Modelica is indeed capable
of dealing with this issue, requiring no further mod-
elling endeavor.

4 Case studies

In the following, two classic applications, which have
been extensively discussed in the hybrid systems con-
trol literature, are presented to illustrate the HyAuLib
capability when modelling hybrid automata.

4.1 Bouncing ball

A bouncing ball is a very effective example of an
highly nonlinear dynamical system, which can be con-
veniently represented as a simple hybrid automaton
with a single discrete state, describing the ball being
above the ground. Here, all the system nonlinearities
are easily modelled by introducing a hybrid compo-
nent in the model.
The system state is a two dimensional vector compris-
ing the ball’s center of gravity height from ground and
its derivative, the vertical velocity. The state continu-
ous time evolution is then described by

{
ẋ1 = x2

ẋ2 =−9.81

wherex1, x2 are the vertical position and velocity re-
spectively, and the associated invariant is given by the
conditionx1 ≥ 0 (ball in the air).
The only transition possible occurs from the state to it-
self when the ball hits the ground: the associated guard
condition is then

x1 = 0 and x2 ≤ 0 .

A nonconservative description of the phenomenon
may be easily accounted for by acting upon the reset
condition. Proceeding like that, we could easily force
an energy loss due to the deformation of the system
simply by setting

x2 :=−cx2

with c non negative and less than unity.

T. Pulecchi, F. Casella

The Modelica Association 242 Modelica 2008, March 3rd − 4th, 2008



Figure 2: Modelica code of theFiniteStatecomponent.

Figure 3: User’s selection mask for the HyAuLib library’sFiniteStatecomponent.

HyAuLib: Modelling Hybrid Automata in Modelica

The Modelica Association 243 Modelica 2008, March 3rd − 4th, 2008



Figure 4: Modelica code of theTransitioncomponent.

Figure 5: User’s selection mask for the HyAuLib library’sTransitioncomponent.

T. Pulecchi, F. Casella

The Modelica Association 244 Modelica 2008, March 3rd − 4th, 2008



Figure 6: Vertical position of the bouncing ball vs.
time. HyAuLib model.

Figure 6 shows the evolution in time of the ball posi-
tion, given an initial height of 2 meters, a null initial
velocity and a damping coefficientc = 0.8.

Both a Simulink/Stateflow and a Modelica flat model
for the bouncing ball were realized, to serve as a refer-
ence for a discussion about the HyAuLib modelling
performance. Both models (provided that the zero-
crossing block is used in Simulink) provide good ac-
curacy as long as the ball’s energy is sufficiently large.
Anyway, theZeno behaviortypical of this example,
cause a severe impair of performance when the ball’s
vertical positionx1 gets very small. Due to numer-
ical errors,x1 will eventually become negative and,
since the equations used to describe the model are
still satisfied, the ball position will keep decreasing.
This behavior, depicted in Figure 7, corresponds to the
ball passing through the floor and keep falling, and is
of course not admissible. This problem is naturally
avoided if the HyAuLib’s components are used, since
the specification of the hybrid automaton invariant set
clearly marks negative values forx1 as unfeasible.

4.2 Air conditioning system

Let’s now consider the problem of designing a room
air conditioning system. We want to keep the room
temperature within a specified range by acting upon a
heating device. Assume that the desired temperature
is 19 degrees centigrade, and the thermostat policy is
to turn the heater on whenever the room temperature
drops below 17◦C, and turn it off when is passes 21◦C.
For simplicity’s sake let the room temperature evolu-
tion in time be subjected to the simplified law

Ṫ =−0.05T + 1.5δ ,

Figure 7: Vertical position of the bouncing ball vs.
time. Modelica flat code.

whereδ = 0 if the heater is turned off andδ = 1 if the
heater is on. The hybrid automaton will then comprise
two modes and two transitions, which can be defined
as follows:

1. Hybrid Automata modes:

a) heating on (q = ON)
The continuous state evolves according to

Ṫ =−0.05T + 1.5 (1)

whereas the invariant set isT ≤ 21.

b) heating off (q = OFF )
The continuous state evolution is given by

Ṫ =−0.05T (2)

whereas the invariant set isT ≥ 17.

2. Transitions:

a) from ON to OFF
The guard condition isT ≥ 21,
whereas the reset condition isT := 21.

b) from OFF to ON
The guard condition isT ≤ 17,
whereas the reset condition isT := 17.

Notice how the evolution of the continuous and dis-
crete states of the automaton are tightly coupled.
Wheneverq = ON, the temperature rises according
to (1), whereas it decays according to (2) whenq =
OFF . Likewise, the evolution in time of the discrete
state is constrained by the continuous state value: it
cannot jump from ON to OFF or viceversa unless the
guard condition is triggered.

HyAuLib: Modelling Hybrid Automata in Modelica

The Modelica Association 245 Modelica 2008, March 3rd − 4th, 2008



Figure 8 shows the evolution in time of the room air
temperature and the periodic switching of the heater
from power on to power off and viceversa. The air con-
ditioning system was initialized in power off, with a
room temperature of 14◦C. Whenever the temperature
upper bound (21◦C) is reached, the heater is powered
off, and the room starts cooling until the lower bound
for the admissible temperature (21◦C) is hit. Then, the
heater is powered off and a new cycle begins.

0 5 10 15 20 25 30 35 40 45 50
14

16

18

20

22

R
oo

m
 te

m
pe

ra
tu

re
 [°

C
]

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

Time [s]

H
ea

te
r 

O
N

 a
ct

iv
e

Figure 8: Room temperature and Heater ON status vs.
time.

5 Concluding Remarks

In this paper the HyAuLib, a Modelica library for
modelling and simulation of autonomous hybrid au-
tomata, extending the free Modelica StateGraph li-
brary for Finite State Machines, has been presented,
and its main features illustrated throughout the simu-
lation of two classic hybrid system textbook case stud-
ies. The HyAuLib allows, even to the most unexpe-
rienced user, to derive in a natural way models for
simulating complex hybrid systems. Future develop-
ments of the HyAuLib will comprise the inclusion of
a probabilistic approach with respect to the transition
occurrence and the exploration of the library’s capabil-
ities and efficiency in modelling complex applications
in the system safety design area.

References

[1] R. Alur, R. Grosu, Y. Hur, V. Kumar, I.
Lee. Modular Specification of Hybrid Sys-
tems in Charon. Technical Memorandum,

http://www.cis.upenn.edu, University of Penn-
sylvania, Philadelphia, PA.

[2] M. Anderson. Object-Oriented Modeling and
Simulation of Hybrid Systems. Ph.D thesis, Lund
Institute of Technology, Lund, Sweden, Decem-
ber 1994.

[3] C. Brooks, A. Cataldo, E. A. Lee, J. Liu, X.
Liu, S. Neuendorffer, H. Zheng. HyVisual:
A Hybrid System Visual Modeler, Tech-
nical Memorandum, UCB/ERL M05/ 24,
http://ptolemy.eecs.berkeley.edu/ publications
/papers/05, University of California, Berkeley,
CA 94720, 2005.

[4] L. Carloni, M. D. Di Benedetto, R. Passerone,
A. Pinto, A. Sangiovanni-Vincentelli. Modeling
Techniques, Programming Languages and De-
sign Toolsets for Hybrid Systems. Technical re-
port, http://www.columbus.gr/documents/ pub-
lic/WPHS, 2002.

[5] A. Deshpande, A. Gollu, and L. Semenzato. The
SHIFT Programming Language for Dynamic
Networks of Hybrid Automata. IEEE Transac-
tions on Automatic Control, 43 (4): 584-587,
April 1998.

[6] P. Fritzson, and P. Bunus, Modelica - a gen-
eral object-oriented language for continuous and
discrete-event system modelling and simulation.
In Proceedings of the 35th IEEE Annual Simula-
tion Symposium, San Diego, CA, 2002.

[7] J. Lygeros. Lecture Notes on Hybrid Systems.
Rio, Patras, Greece: Internal report, Department
of Electrical and Computer Engineering Univer-
sity of Patras, 2004.

[8] S. E. Mattsson, M. Otter, and H. Elmqvist. Mod-
elica Hybrid Modeling and efficient simulation.
In IEEE Conference on Decision and Control,
Phoenix, AZ, 1999.

[9] Modelica Association, Modelica - a unified
object-oriented language for physical systems
modelling. Language specification. Technical re-
port, http://www.modelica.org, 2002.

[10] M. Otter, K.E. Arzen, I. Dressler. StateGraph
- A Modelica Library for Hierarchical State
Machines. In Proceedings of the 4th Interna-
tional Modelica Conference, Hamburg, Ger-
many, pp.569-578, 2005.

T. Pulecchi, F. Casella

The Modelica Association 246 Modelica 2008, March 3rd − 4th, 2008


