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Abstract

In the last few years a Modelica library for spacecraft
modelling and simulation has been developed, on the
basis of the Modelica Multibody Library. The aim of
this paper is to demonstrate improvements in terms of
simulation accuracy and efficiency which can be ob-
tained by using Keplerian or Equinoctial parameters
instead of Cartesian coordinates as state variables in
the spacecraft model. The rigid body model of the
standard MultiBody library is extended by adding the
equations defining a transformation of the body center-
of-mass coodinates from Keplerian and Equinoctial
parameters to Cartesian coordinates, and by setting the
former as preferred states, instead of the latter. The re-
maining parts of the model, including the model of the
gravitational field, are left untouched, thus ensuring
maximum re-usability of third-party code. The results
shown in the paper demonstrate the superior accuracy
and speed of computation in the reference case of a
point-mass gravity field.

Keywords: Spacecraft dynamics; Orbit dynamics; Nu-
merical integration; State selection.

1 Introduction

The Modelica Spacecraft Dynamics Library ([6, 7,
10]) is a set of models (based on the already existing
and well known Multibody Library, see [9]) which is
currently being developed with the aim of providing
an advanced modelling and simulation tool capable of
supporting control system analysis and design activ-
ities for both spacecraft attitude and orbit dynamics.
The main motivation for the development of the library
is given by the significant benefits that the adoption
of a systematic approach to modelling and simulation,
based on modern a-causal object-oriented languages
such as Modelica, can give to the design process of
such advanced control systems.

At the present stage, the library encompasses all the
necessary utilities in order to ready a reliable and
quick-to-use scenario for a generic space mission, pro-
viding a wide choice of most commonly used mod-
els for AOCS sensors, actuators and controls. The
library’s model reusability is such that, as new mis-
sions are conceived, the library can be used as a base
upon which readily and easily build a simulator. This
goal can be achieved simply by interconnecting the
standard library objects, possibly with new compo-
nents purposely designed to cope with specific mis-
sion requirements, regardless of space mission sce-
nario in terms of either mission environment (e.g.,
planet Earth, Mars, solar system), spacecraft config-
uration or embarked on-board systems (e.g., sensors,
actuators, control algorithms).

More precisely, the generic spacecraft simulator con-
sists of an Extended World model and one or more
Spacecraft models. The Extended World model is an
extension of Modelica.MultiBody.World which pro-
vides all the functions needed for a complete repre-
sentation of the space environment as seen by a space-
craft: gravitational and geomagnetic field models, at-
mospheric models, solar radiation models. Such an
extension to the basic World model as originally pro-
vided in the MultiBody library plays a major role in
the realistic simulation of the dynamics of a space-
craft as the linear and angular motion of a satellite
are significantly influenced by its interaction with the
space environment. The Spacecraft model, on the
other hand, is a completely reconfigurable spacecraft
including components to describe the actual space-
craft dynamics, the attitude/orbit control sensors and
actuators and the relevant control laws. In this pa-
per we are specifically concerned with the Space-
craft model; this component has been defined by ex-
tending the already available standard model Model-
ica.Mechanics.MultiBody.Parts.Body. The main mod-
ifications reside in the selectable evaluation of the in-
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teractions between the spacecraft and the space envi-
ronment and on the additional initialization option for
the simulation via selection of a specific orbit for the
spacecraft. The main drawback associated with the
adoption of the standard Body model as the core of
the Spacecraft model is related to the intrinsic use this
component makes of the Cartesian coordinates in the
World reference frame for the state variables associ-
ated with the motion of the Body’s center of mass. In-
deed, for spacecraft work it is well known that signifi-
cant benefits, both in terms of simulation accuracy and
computational performance, can be obtained by using
different choices of state variables, such as Keplerian
and Equinoctial parameters (see, e.g., [11, 8]).
Therefore, the aims of this paper, which extends pre-
liminary results presented in [2] are the following:

e to demonstrate improvements in terms of simu-
lation accuracy and efficiency which can be ob-
tained by using Keplerian and Equinoctial pa-
rameters instead of Cartesian coordinates as state
variables in the spacecraft model;

o to illustrate how Keplerian and Equinoctial pa-
rameters can be included in the existing multi-
body spacecraft model by exploiting the object-
oriented features of the Modelica language and
the symbolic manipulation capability of Model-
ica tools.

The paper is organised as follows: first an overview
of the available choices for the state representation of
satellite orbits is given in Section 2; subsequently, the
use of Keplerian and Equinoctial orbital elements for
the simulation of orbit dynamics will be described in
Section 3, while the corresponding Modelica imple-
mentation will be outlined in Section 4 and the re-
sults obtained in the implementation and application
of the proposed approach to the simulation of a Low
Earth and Geostationary orbits will be presented and
discussed in Section 5.

2 Satellite State Representations

The state of the center of mass of a satellite in space
needs six quantities to be defined. These quantities
may take on many equivalent forms. Whatever the
form, we call the collection of these quantities either a
state vector (usually associated with position and ve-
locity vectors) or a set of elements called orbital ele-
ments (typically used with scalar magnitude and angu-
lar representations of the orbit). Either set of quanti-
ties is referenced to a particular reference frame and

completely specifies the two-body orbit from a com-
plete set of initial conditions for solving an initial value
problem class of differential equations.

In the following subsections, we will deal with space-
craft subject only to the gravitational attraction of the
Earth considered as a point mass (unperturbed Keple-
rian conditions) and we will refer mainly to the Earth
Centered Inertial reference axes (ECI), defined as fol-
lows. The origin of these axes is in the Earth’s centre.
The X-axis is parallel to the line of nodes. The Z-axis
is parallel to the Earth’s geographic north-south axis
and pointing north. The Y-axis completes the right-
handed orthogonal triad.

2.1 Position and Velocity Coordinates

In the ECI reference frame, the position and velocity
vectors of a spacecraft influenced only by the gravita-
tional attraction of the Earth considered with puncti-
form mass will be denotated as follows

)
2

T
r= [x y z] ,

_dr
Cdt’
The acceleration of such a spacecraft satisfies the
equation of two-body motion

v="[v v vl

d*r r
e _GMa——
a2~ Mo ®)

where 1 = GM, is the gravitational coefficient of the
Earth. A particular solution of this second order vector
differential equation is called an orbit that can be ellip-
tic or parabolic or hyperbolic, depending on the initial
values of the spacecraft position and velocity vectors
r(tp) and v(1p). Only circular and elliptic trajectories
are considered in this study.

The state representation by position and velocity of a
spacecraft in unperturbed Keplerian conditions is
T VT] T (4)
at a given time ¢. Time ¢ is always associated with a
state vector and it is often considered as a seventh com-
ponent. A time used as reference for the state vector
or orbital elements is called the epoch.

Xgcr = |r

2.2 Classical Orbital Elements

The most common element set used to describe ellip-
tical orbits (including circular orbits) are the classical
orbital elements (COEs), also called the Keplerian pa-
rameters, which are described in the sequel of this Sec-
tion. The COEs are defined as follows:
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e g :semi-major axis, [m];

e n :mean motion, [rad/s]

e ¢ :eccentricity, [dimensionless];

e | :inclination, [rad];

e QO : right ascension of the ascending node,
[rad];

e @ :argument of perigee, [rad];

e Vv :true anomaly, [rad];

e E :eccentric anomaly, [rad];

e M : mean anomaly, [rad];

(see Figures 1 and 2). The definitions of the COEs are

referenced to the ECI frame. The semi-major axis a

specifies the size of the orbit. Alternatively, the mean

motion

GM¢,
PE

&)

n—

can be used to specify the size.

The eccentricity e specifies the shape of the ellipse.
It is the magnitude of the eccentricity vector, which
points toward the perigee along the line of apsis.

The inclination i specifies the tilt of the orbit plane. It
is defined as the angle between the angular momentum
vector h = r X v and the unit vector Z.

The right ascension of the ascending node € is the an-
gle from the positive X axis to the node vector n point-
ing toward the ascending node, that is the point on the
equatorial plane where the orbit crosses from south to
north. The argument of perigee @ is measured from
the ascending node to the perigee, i.e., to the eccen-
tricity vector e pointing towards the perigee.

The eccentric anomaly E is defined on the auxiliary
circle of radius a, that can be drawn around the ellip-
tical orbit, as shown in Figure 2. Finally, the mean
anomaly M is defined as M = n(t —t,), where 1, de-
notes the time of perigee passage, i.e., the instant at
which the eccentric anomaly vanishes. As is apparent
from its definition, the mean anomaly for an ideal Ke-
plerian orbit increases uniformly over time. E and M
are related by the well known Kepler equation

E —esin(E) =M. (6)

In this work, satellite state representation in terms of
classical orbital elements (Keplerian parameters) will
be denoted as

Xep=|a e i Q o M]T

(7)

with the implicit choice of adopting M as a parame-
ter to represent the spacecraft anomaly; the advantages
and disadvantages of this choice will be discussed in
the following.

2.3 Equinoctial Orbital Elements

COEs suffer from two main singularities. The first is
when the orbit is circular, i.e., when the eccentricity is
zero (e = 0). In this case the line of apsis is undefined
and also the argument of perigee @. The second occurs
when the orbit is equatorial, i.e., when the inclination
is zero (i = 0). In this case the ascending node is un-
defined and also the right ascension of the ascending
node Q. See Figure 1.

It is nevertheless possible to define the true, eccentric
and mean longitude (L, K and /, respectively) as

L=0+Q+vV, (8)
K=0+Q+E, ©)
l=0+Q+M; (10)

these quantities remain well-defined also in the singu-
lar cases of circular and/or equatorial orbits.

The equinoctial orbital elements (EOEs) avoid the sin-
gularities encountered when using the classical orbital
elements. EOEs were originally developed by La-
grange in 1774. Their definitions in terms of Kep-
lerian elements are given by the following equations

<" EQUATORIAL
.. PLANE

'
I ORBITAL
' PLANE -7

equatorial plane
and orbifal plane

Figure 1: Classical Orbital Elements (COEs).
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AUXILIARY
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ORBIT

a cos(E) T
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ae

Figure 2: True and eccentric anomalies for elliptic mo-
tion.

(see, e.g., [1, 5, 8] for details)

a, (11)
P, = esin(@+19Q), (12)
P, =ecos(w+1Q), (13)
Q) =tan(i/2)sinQ, (14)
0, =tan(i/2)cosQ, (15)

I=Q+0+M. (16)

True retrograde equatorial orbits (i = 180°) cause
problems because Q; and @, are undefined. This
problem is solved by introducing a retrograde factor
I which is 41 for direct orbits and —1 for retrograde
orbits. In this work, dealing with geostationary satel-
lites, I is equal to +1 and the mean longitude net of
the Greenwich Hour Angle ©(r)

lo=1—0(t) a7
will be used instead of the mean longitude / given by
equation (16). GEO satellite state representation in
terms of equinoctial orbital elements will be denoted
as follows

T

xpoe=1la Pp P, Q1 Q2 o (18)

The definitions of the EOEs are referenced to the
equinoctial reference frame, which can be obtained

the same direction as the £ vector). In the equinoc-
tial frame the elements P; and P, represent the pro-
jection of the eccentricity vector onto the Q and E di-
rections, respectively (see Figure 3). The elements Q;
and Q» represent the projection of the vector oriented
in the direction of the ascending node with magnitude
tan(i/2), onto the Q and E directions, respectively.
Note that in the singular cases of circular (or equa-
torial) orbits, the vector P (or Q) becomes zero; the
indetermination in the two components of each vector
is thus not a problem.

LINE
OF APSIS

2

LINE

OF NODES i=tan(i/2)n/n

(4 Q
E

ORBITAL
PLANE

ORBITAL
PLANE

3 SPACECRAFT

Figure 3: Eccentricity and inclination equinoctial
components and true longitude.

2.4 Conversion formulae: COEs to Cartesian

The position coordinates in the orbital plane, centered
in the Earth (Figure 2) are related to the COEs by the
following equations

o]~ e

while the corresponding velocities can be computed as

(19)

— St sin(E)

|:Vx,orb:| _ R
Vy,orb an, /1 _e? COS(E)

Ir]

; (20)

with [r| = /X2, 4+, = VrTr. As depicted in Fig-
ure 1, the orthogonal basis RTN of the Gaussian co-
ordinate system can be obtained from the orthogonal
basis XY Z of the ECI frame by means of three succes-

sive rotations

from the ECI reference frame by a rotation through Xorb X

the angle Q about the Z axis, followed by a rotation Yorb | = Zzxz (Xcor) | V] 5 2D
through the angle i about the new X axis (which points 0 Z

in the same direction as the node vector n pointing with

the ascending node), followed by a rotation through

the angle —IQ about the new Z axis (which points in RHzx7 Xppw) = B7(0)Xx (1) X 7(Q) (22)
The Modelica Association 508 Modelica 2008, March 3¢ — 4t 2008



High-Accuracy Orbital Dynamics Simulation through Keplerian and Equinoctial Parameters

where matrix

cosQ sinQ 0
Hz(Q) = |—sinQ cosQ 0 (23)
0 0 1

describes the first rotation around the Z axis of an an-
gle Q, matrix

1 0 0
Fx(Q)= [0 cosi sini (24)
0 —sini cosi

describes the second rotation around the X of an angle
i, matrix

cos(w) sin(®w) O
Hz(®) = | —sin(w) cos(w) 0O (25)
0 0 1

describes the third rotation around the Z axis of an an-
gle ®. Thanks to the orthonormal property of rotation
matrices, equation (21) can be easily inverted, giving

X Xorb
y| =%5(Q) %% ()% (®) |Yors | 5 (26)
Z 0

following the same reasoning, the Cartesian velocity
vector can be expressed as

Vx Vx,orb
Vy| = ‘@5 (Q‘)‘-@;(l)%g(w) Vy,orb 27)
Vv, 0

Further details can be found, e.g., in [11]. Summariz-
ing, it is possible to compute xcog, given xgcy, by first
solving the scalar implicit equation (6) for E, and then
the explicit vector equations (19)-(20), (26)-(27).

2.5 Conversion formulae: EOEs to Cartesian

The conversion formulae from EOEs to Cartesian co-
ordinates in ECI are slightly more involved. The
results are summarised here; for further details, the
reader is referred to, e.g., [1, 5, 8].

The eccentric longitude K can be computed by solving
the implicit equation

b ‘xﬂ%_‘rc (1+Q% Qz)dws +2Q Q dm1
Vy| =n ‘)7‘% +0 (1 +Q2 Qz)dSm +2Q1Q dcos
vV d|r dsin dcos
: o +20 |0, 50 — g, 4l |
(30)
where
|r| = a(l — Py sin(K) — Pycos(K)),
R
1+07+05
_ a
140+ 05
y=1+4/1-P}—P}
sin(L) = ﬁ [(y— P3)sin(K) + Py Pycos(K) — yP|]
cos(L) = %r\ [(}/—P]Z)cos(K) + P Pysin(K) — }/P2] .

3 COEs and EOEs for simulation of
orbit dynamics

When orbital control problems are studied, it is usually
necessary to integrate the equations of motion of the
satellite under the action of gravity (due to the Earth or
any other celestial body), of the space environment and
of the actuators’ thrust. The usual approach, known as
Cowell’s method (see [3]), is to integrate the equations
of motion in cartesian coordinates

(31
F

v:ag(r)—l-%

(32)

where a, is the acceleration of gravity, F' is the sum of
all the other forces, and m is the satellite mass. applied
by the actuators. First-cut models assume a point-mass
model

ag =—GMr/|r|’, (33)

while accurate simulations require more detailed mod-
els of the gravitational field, usually in the form of a
series expansion (see, e.g., [12]). In both cases, the
differential equations are strongly non-linear; there-
fore, despite the use of high-order integration algo-

linera +©(1) = K + Py cos(K) — Pasin(K). (28) rithm, tight tolerances end up in a fairly high number
The ECI coordinates are then given by of 51mulat10p step s.p et _Orblt' . .

If the satellite motion is described in terms of COEs

X (1 +Q% — Q%)cos(L) +201Q>sin(L) or EOEs, it is easy to observe that the variability of

y| =p (1 + Q% — Q%) sin( L) +2010> cos(L) , the six orbit elements is much smaller than that of the

z 20, sin(L) —2Q; cos(L) Cartesian coordinates. In particular, it is well-known

(29) that in case of a point-mass gravity field with no other
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applied forces, the first five parameters are constant,
while the mean anomaly and the mean longitude in-
crease linearly with time. All existing high-order in-
tegration methods have error bounds which depend on
Taylor expansions of the state trajectory. One can then
conjecture that if the COEs/EOEs are used as state
variables, instead of the Cartesian vectors r and v, the
state trajectories will be smoother, and therefore the in-
tegration algorithm will be able to estimate them with
with a higher relative precision using much larger time
steps, compared to the Cartesian coordinates case.
Recalling the definition of vector xgcy in (4), letting
7 = xcoe or z = xgor depending on the choice for
the new state variables and denoting by g(-) the trans-
formation relating z and x, equations (31)-(32) can be
written in compact form as

X = f(x)
x = g(2).

(34)
(35)

If a state variable change from x to z is now performed,
the following equations are obtained

%89, — 1(s(2)

(36)

which can be solved for z provided that the new state
variables z are uniquely defined

-1
2= (‘%@) f(g(2)) (37)
x=g(2). (38)

The Jacobian for gcog is generically well defined and
becomes singular only in the case of a circular and/or
equatorial orbit. In this case the EOEs are needed, as
the Jacobian for ggor is well defined in this case.

The model (37)-(38), which is now in standard state-
space form, has two very important features:

o the right-hand side of (37) is much less variable
than the right-hand side of (34), so it will be eas-
ier to integrate the equations with a higher accu-
racy;

e in case an accurate model of the gravity field is
used, it is not necessary to reformulate it in terms
of the COES/EOEs, as the right-hand side of (37)
uses the compound function f(g(z)).

Remark 1 The accurate computation of long-term so-
lutions for dynamical problems associated with pure
orbital motion has been a subject of extensive research

for decades. In particular, the so-called class of sym-
plectic integration methods (see, e.g., [4] and the ref-
erences therein) provides an effective and reliable so-
lution to the problem. In the framework of the present
study, however, the aim is to improve accuracy in the
computation of orbital motion while retaining the ad-
vantages associated with the use of a general-purpose
object-oriented modelling environment, in which not
only orbital dynamics can be simulated, but also the
coupled attitude motion, as well as the associated
mathematical models of sensors, actuators and con-
trollers for orbital and attitude control. This more gen-
eral framework requires the use of general-purpose in-
tegration algorithms for ODEs/DAE: .

4 Modelica implementation

The concepts outlined in Section 3 are easily im-
plemented with the Modelica language. The start-
ing point is the Body model of the standard Mod-
elica.Mechanics.MultiBody library [9]: this is a 6
degrees-of-freedom model of a rigid body, which can
be connected to other components to form a multi-
body system model. The original model has six de-
grees of freedom, corresponding to 12 state variables:
the three cartesian coordinates and the three velocity
components of the center of mass, plus three suitable
variables describing the body orientation and the three
components of the angular velocity vector. Assuming
that the gravitational field is applied exactly at the cen-
ter of mass (the gravity gradient effect is computed in a
separate model and thus not included here), the trans-
lational and rotational equations are completely de-
coupled, so it is possible to focus on the former ones,
leaving the latter ones untouched.

First of all, the equations to compute the gravity ac-
celeration as a function of the cartesian coordinates
using accurate field models are added by inheritance
to the standard World model of the MultiBody library,
which only offers the most basic options of no gravity,
constant gravity and point mass gravity (see [7, 10]).
Then, the standard Body model must be enhanced by:

1. adding the COEs aq, e, i, ®, Q, M or the EOEs a,
P, P, O1, O, lg as new model variables;

2. adding the equations relating COES/EOE:s to the
cartesian coordinates;

3. switching the stateSelect attribute for the r and v
vectors of the Body model to StateSelect.avoid,
and for the COEs/EOEs to StateSelect.prefer.
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The Modelica compiler tool will then perform the
transformation from (34)-(35) to (37)-(38) automati-
cally, using symbolic manipulation algorithms.

A first implementation option is to extend the Body
model by inheritance, adding the above-mentioned
features, and thus deriving two enhanced models
BodyKepler and BodyEquinoctial; this approach is
documented in [2].

A second option is to put the additional variables and
equations in a separate model with a multibody flange
interface, and then connect it to the unmodified Body
model within a wrapper model that also sets the pre-
ferred state variables. This option perfectly fits the ar-
chitecture of the Spacecraft Dynamics library, where
such a structure was already used in order to include
the models of the interaction of the satellite with the
space environment: gravity gradient torque, aerody-
namic drag, solar radiation, etc. (see [10], Fig. 3). In
fact, the library described in [10] already contained a
similar model to compute the orbital parmeters; that
model, however, contained explicit inverse conversion
formulae (from cartesian coordinates to COEs), and
was designed to be used with cartesian coordinates as
states. Since either the COEs or the EOEs can be used,
the wrapper model must actually contain two condi-
tionally declared, mutually exclusive models (one for
each choice of coordinates), which are both connected
to the standard Body model; a flag in the wrapper
model decides which of the two will actually be ac-
tivated in the simulation model.

The Modelica code defining the new models is very
compact and easy to check, which is an important fea-
ture to ensure the correctness of the resulting model.
As already noted, the accurate models of the gravity
field, previously implemented in [7, 10], can still use
the Cartesian coordinates as inputs, and are thus left
unchanged.

As to the computational efficiency, the workload at
each time step is increased, compared to the standard
ECI formulation, by the conversion formulae, the Ja-
cobian computation and the solution of the linear sys-
tem (37). However, as will be demonstrated in the next
section, this additional overhead is more than com-
pensated by the fact that the differential equations are
much easier to integrate in the new state variables, re-
sulting in a faster simulation time and in a much tighter
accuracy.

5 Simulation examples

In this Section, the results obtained in comparing the
accuracy obtained by simulating the orbit dynamics
for two Low Earth orbiting (LEO) spacecraft and a
GEO one will be presented. As previously mentioned,
for the purpose of the present study we focus on the
simulation of the unperturbed dynamics, i.e., only the
gravitational acceleration computed from a point-mass
model for the Earth is considered. In this case, the
orbit is an ellipse (closed curve), having well-defined
features. Therefore, this assumption allows us to in-
troduce two simple criteria in order to evaluate the ac-
curacy of the performed simulations, namely:

e The period of an unperturbed elliptical orbit can

be computed a priori and is given by T =27 \/‘Lj ,
so a first measure of simulation accuracy can be
given by the precision with which the orbit actu-
ally closes during the simulation. To this purpose,
the following stopping criterion has been defined
for the simulation: the integration is stopped
when the position vector crosses a plane orthogo-
nal to the initial velocity and passing through the
initial position. Then, the final time is compared
with the orbit period and the final position is com-
pared with the initial one.

e Furthermore, for an unperturbed orbit the angular
momentum /& = r X v should remain constant, so
a second measure of accuracy for the simulation
is given by the relative error in the value of 4, i.e.,
the quantity

1A= n(0)]

39
14(0)] 9

ey —=

The considered orbits have been simulated us-
ing the Dymola tool, using Cartesian and Keple-
rian/Equinoctial coordinates, in order to evaluate the
above-defined precision indicators. The DASSL inte-
gration algorithm has been used, with the smallest fea-
sible relative tolerance 10~!2. The RADAU algorithm
has also been tried with the same relative tolerance,
yielding similar results which are not reported here for
the sake of conciseness.

5.1 A near-circular, LEO orbit

The first considered orbit is a LEO, near circular one
(see Figure 4), characterised by the following initial
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state, in Cartesian coordinates:

[6828.140 x 10
r(0) = 0 ,
i 0
[ 0
v(0) = |5.40258602956241 x 103
5.40258602956241 x 103

The results obtained in the comparison of Cartesian
and Keplerian coordinates are summarised in Table 1.
As can be seen from the Table, the precision achieved
in the actual closure of the orbit improves significantly
when using Keplerian coordinates as states: the sim-
ulated period is very close to the actual one and both
the period error and the position error are significantly
smaller.

x10° ™~

Figure 4: The considered LEO, near circular orbit.

Similarly, in Figure 5 the time histories of the relative
error on the value of the orbital angular momentum
are illustrated, for a simulation of about one day: the
results are clearly very satisfactory in both cases, how-
ever while in the case of Cartesian states the relative
error is significantly larger than machine precision and
is slowly increasing, in the case of Keplerian states the
relative error is much smaller and appears to be more
stable as a function of time (see also the mean value of
the relative angular momentum error, given in Table
1). Finally, note that the use of Keplerian parameters
also gives significant benefits in terms of simulation
efficiency, as can be seen from the last column of Ta-
ble 1.

5.2 A highly elliptical, LEO orbit

The second considered orbit is again a LEO one, but
it is characterised by a high value of the eccentricity

Cartesian coordinates
N
1
i

Keplerian coordinates
=

Time [s] x10

Figure 5: Relative errors on the orbit angular momen-
tum - near circular orbit: Cartesian (top) and Keplerian
(bottom) coordinates.

(see Figure 6, where it is also compared with the cir-
cular orbit considered in the previous case) and by the
following initial state, in Cartesian coordinates:

[6828.140 x 103
r(0) = 0 ,
i 0
i 0
v(0) = [5.40258602956241 x 10
7.29349113990925 x 10

As in the previous case, Table 2 shows the precision
achieved in the actual closure of the orbit: as can be
seen, the errors on the simulated period are of the same
order of magnitude for both choices of state variables.
The position errors, on the other hand are significantly
smaller when simulating the orbital motion using Ke-
plerian rather than Cartesian states.

Similarly, in Figure 7 the time histories of the relative
error on the value of the orbital angular momentum are
illustrated, for a simulation of about one day. In this
case, the results show that using Cartesian states the
relative error is again significantly larger than machine
precision and is slowly increasing, while using Keple-
rian states the relative error is of the order of machine
precision.

Finally, the gain in terms of simulation efficiency can
be verified from the last column of Table 2.
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Table 1: Orbit closure errors, relative angular momentum error and number of steps using Cartesian and Kep-

lerian coordinates - near circular orbit.

States AT [s] ||Ar|| [m] Mean ¢;, Number of steps
Cartesian | —1.00332x 107° | 1.69711 x 1073 | 1.5373 x 10~° 959
Keplerian | 2.38369 x 1078 | 2.17863 x 107> | 4.7528 x 10~!3 376

Table 2: Orbit closure errors, relative angular momentum error and number of steps using Cartesian and Kep-

lerian coordinates - highly elliptical orbit.

Yiml

Figure 6: The considered LEO, highly elliptical orbit,
compared with the circular one considered in Section
5.1.

5.3 A GEO orbit

The last considered orbit is a GEO one, characterised
by the following initial state, in Cartesian coordinates:

[4.21641 x 107
r(0) = 0 ;
i 0
[0
v(0) = |3074.66
0

Table 3 shows the accuracy improvement achieved
when simulating the orbital motion using Equinoctial
rather than Cartesian states. As in the previous case,
also for the simulation of GEO orbits it appears from
the inspection of the time histories of the relative error
on the orbital angular momentum (depicted in Figure

States AT [s] ||Ar|| [m] Mean ey, Number of steps
Cartesian | —1.17226 x 107> | 4.39241 x 103 | 1.2927 x 10~ 10 3650
Keplerian | 1.48665 x 107> | 2.67799 x 107 | 2.5223 x 10~16 1120
Y 4x10'
Eliptical g 3 /\ //—
3 /W
g2 e
g ’//‘///
E E‘s /ﬁ‘/_\//— | I

Keplerian coordinates

Time [s] x10*

Figure 7: Relative errors on the orbit angular momen-
tum - highly elliptical orbit: Cartesian (top) and Kep-
lerian (bottom) coordinates.

8) that in the case of Cartesian states the relative er-
ror is slowly increasing over time, while in the case of
Equinoctial states the relative error appears to be more
stable (see also Table 3).

Finally, the advantages provided by the use of
Equinoctial parameters in terms of simulation effi-
ciency are confirmed by the data provided in the last
column of Table 3.

6 Concluding remarks

A method for the accurate simulation of satellite or-
bit dynamics on the basis of the Modelica MultiBody
library has been presented. The proposed approach is
based on the use of Keplerian and Equinoctial parame-
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Table 3: Orbit closure errors, relative angular momentum error and number of steps using Cartesian and

Equinoctial coordinates - GEO orbit.

States AT [s]

|Ar]| [m]

Mean ¢, Number of steps

—2.79186 x 10~
—2.92057 x 1078

Cartesian
Equinoctial

1.88208 x 1072
8.91065 x 1077

1.0323 x 10~ 10 793
6.8574 x 1016 20

Cartesian coordinates
\

Equinoctial coordinates
- @&
/
S

4I'ime [s]5 ¢ 7 & 49

Figure 8: Relative errors on the orbit angular momen-
tum - GEO orbit: Cartesian (top) and Equinoctial (bot-
tom) coordinates.

ters instead of Cartesian coordinates as state variables
in the spacecraft model. This is achieved by adding to
the standard Body model the equations for the trans-
formation from Keplerian and Equinoctial parameters
to Cartesian coordinates and exploiting automatic dif-
ferentiation. The resulting model ensures a significant
improvement in numerical accuracy and a reduction in
the overall simulation time, while keeping the same
interface and multibody structure of the standard com-
ponent. Simulation results with a point-mass gravity
field show the good performance of the proposed ap-
proach. The validation with higher order gravity field
models is currently being performed.
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