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Abstract
The  formulation  of  steady-state  initialization 
problems for  fluid  systems is  a non-trivial  task.  If 
steady-state  equations  are  specified  at  the 
component level, the corresponding system of initial 
equations  at  the  system level  might  be  overdeter-
mined, if index reduction eliminates some states. On 
the other hand, steady-state equations are not suffi-
cient  to  uniquely identify  one equilibrium state  in 
the case of closed systems, so additional  equations 
are required.  The paper shows how these problems 
might be  solved in an elegant  way by formulating 
overdetermined initialization  problems, which have 
more  equations  than  unknowns  and  a  unique 
solution,  then  solving  them  using  a  least-squares 
minimization algorithm. The concept  is tested on a 
representative  test  case  using  the  OpenModelica 
compiler.

1 Introduction

The  Modelica  language  is  finding  more and  more 
applications  in  the  field  of  thermo-fluid  system 
modeling, due to the many advantages of the declar-
ative, object-oriented approach. In this context, it is 
very often the case that steady-state initialization  is 
required. 

Specifying  a  well-posed  steady  state  initialization 
problem  in  an  object-oriented  language  is  a  non-
trivial task for some fundamental reasons.  From an 
end-user point of view, the ideal situation is to select 
a  “steady-state  initialization”  option  on the system 
components,  without  worrying too much about  the 
actual internal implementation. This means that each 
component model should contain an initial equation 
section, with conditionally activated initial equations 
that  express  the  steady  state  condition  for  that 
model.  In  this  way,  initial  equations  are  specified 
locally  within  each  model.  Unfortunately,  a  well-
posed initialization  problem can only be formalized 
at the aggregate system level, i. e., on the system of 
DAEs describing the complete system. On one hand, 
index  reduction  can  lead  to  a  reduced  number  of 
states, if ideal pipes with zero pressure loss are used 
or ideal  controllers  are  employed,  so that  some of 
the locally specified initial conditions are redundant. 
On  the  other  hand,  some  model  structures  (e.  g., 
closed  systems)  may  be  such  that  the  locally 
specified steady-state conditions are not sufficient to 
completely determine the initial state. 
The  actual  type  and number  of  independent  initial 
equations  required  to  uniquely  determine  a 
consistent steady-state initialization  thus depends in 
a non-trivial way on the connection topology of the 
system.  It  is  therefore  impossible  for  the  library 
designer to write local steady-state initial  equations 
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which  are  always  good,  because  that  depends  on 
how the specific  model will  be connected  to other 
ones. Furthermore, it is exceedingly hard for the end 
user to determine the exact structure of the required 
initial  equations, because this would require a deep 
knowledge of the inner mathematical details  of the 
single  models,  and  of  the  mathematical  properties 
arising from the interconnection of the models. The 
former requirement is against the principle of encap-
sulation: one should not necessarily be aware of the 
implementation details of an object in order to use it; 
the  latter  can  be  even  more  difficult  for  large 
systems.
The  aim  of  this  paper  is  to  demonstrate  how  an 
elegant  and  user-friendly  solution  to  this  problem 
can  be  obtained  by  formulating  overdetermined 
initialization  problems,  with particular  reference  to 
fluid  systems.  No  extension  to  the  Modelica 
language is  needed.  Three  representative  examples 
will  be  presented,  then  solved  using  the  Open 
Modelica compiler and the methods presented in [1].

2 A Simple Circuit Model

The approach proposed in this paper will be demon-
strated on a small case study: the simplified model 
of a heating circuit. The system includes an accumu-
lator to pressurize the circuit, a pump, a heater (pipe 
with  prescribed  heat  flow),  a  valve and a  radiator 
(pipe with convective heat transfer to a fixed temper-
ature sink), connected in a closed loop configuration 
(Fig. 1). 

Figure 1. Flow diagram of the test case

The original model was built using components from 
the Modelica_Fluid library [2]. In order to overcome 
the  current  limitations  of  the  OpenModelica 
compiler,  the  SimpleFluid  library  has  been 
developed. The aim of this small library is to capture 
the essential  mathematical structure of fluid system 
models, while avoiding advanced language features, 
such as the semiLinear operator and the replaceable 
packages  of  the  Modelica.Media  library,  currently 
not supported by the compiler. These simpler models 
are more than adequate to demonstrate the proposed 
approach;  the  library  will  be  updated  with  more 
complex models and test cases as the OpenModelica 
compiler is improved.

2.1 Connectors

The fluid connectors of the library are similar to the 
connectors of the ThermoPower library [3]-[4]:

connector FlangeA "Type-A connector" 
 Types.Pressure p "Pressure";
 flow SI.MassFlowRate w "Mass flowrate";
 output Types.SpecificEnthalpy hAB 
    "Specific enthalpy of fluid flowing A->B";
 input Types.SpecificEnthalpy hBA 
    "Specific enthalpy of fluid flowing B->A";
end FlangeA;
connector FlangeB "Type-B connector" 
  Types.Pressure p "Pressure";
  flow SI.MassFlowRate w "Mass flowrate";
  input Types.SpecificEnthalpy hAB 
    "Specific enthalpy of fluid flowing A->B";
  output Types.SpecificEnthalpy hBA 
    "Specific enthalpy of fluid flowing B->A";
end FlangeB;

Locally  re-defined  types  are  used  in  order  to  set 
reasonable  non-zero  default  start  values  for  the 
thermodynamic properties. The reader is referred to 
[3] for details about the connector design. 
Thermal  transfer  is  described  by standard  Modeli-
ca.Thermal.HeatTransfer  connectors  and  compo-
nents.

2.2 Medium models

Medium properties  are  computed  by a  replaceable 
medium model, similar to the BaseProperties model 
of  the  Modelica.Media  standard  library.  The  base 
model  contains  the  pressure  p,  temperature  T, 
density ρ, specific enthalpy h, and specific energy u 
of the fluid,  as  well  as the partial  derivatives with 
respect  to pressure  and enthalpy which are needed 
for the mass and energy balance equations.
The test cases described in this paper use a model of 
a compressible liquid with constant specific  heat at 
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constant  pressure,  constant  compressibility  and 
constant thermal expansion coefficient.

2.3 Pump

Currently,  a trivial  pump model is  employed,  with 
prescribed  flow  rate:  this  could  represent  a  pump 
equipped  with  an  ideal  mass  flow  rate  controller. 
The prescribed flow rate is given by an input signal 
connector. The enthalpy increase due to the specific 
work added to the fluid is not taken into account, as 
it  is  negligible  compared to the heat  tranfer  in the 
heater and radiator models. 

2.4 Accumulator

Accumulators  are  usually  employed  to  pressurize 
liquid-filled circuit and accommodate the expansion 
and  contraction  of  the  fluid  due  to  the  thermal 
expansion  effect.  Typical  accumulators  are  built 
using  a  tank  partially  filled  with  air,  so  that  the 
amount  of  water  contained  depends  on  the  air 
pressure.  The  model  includes  the  three-way  T 
junction  to  the  circuit,  so  that  it  has  two  fluid 
connectors. 
A simple linear model has been used to compute the 
amount of liquid contained in the accumulator:
M=Cp ; (1)

where  C  is  the  hydraulic  capacitance;  since  the 
pressure  has  been  selected  as  a  state,  the  mass 
balance equation of the model
dM
dt

=w1−w2 , (2)

is written as

C dp
dt
=w1−w2 , (3)

w1 and w2 being the inlet and outlet mass flow rates. 
Since the flow rate of fluid going into and out of the 
accumulator is usually much smaller  than the flow 
rate  in the circuit,  trivial  energy balance  equations 
are assumed, where the specific enthalpy of the fluid 
going out  of the T junction  is  always equal  to the 
enthalpy of the incoming fluid.
The steady-state equation for this component, which 
contains a dynamic mass balance, should be
dM
dt

=0 ; (4)

given the choice of states, the initial equation in the 
model is written as:
dp
dt

=0 . (5)

2.5 Lumped volume

Mass  and  energy  storage  are  represented  by  the 
classical lumped-parameter mass and energy balance 
equations.  Pressure  and  temperature  are  used  as 
states.
M= V (6)
U=M u (7)

dM
dt

=V [d 
dp T

dp
dt

 d 
dT p

dT
dt ] (8)

dh
dt

= dh
dpT

dp
dt

c p
dT
dt

(9)

dU
dt

=M dh
dt


dM
dt

h−V dp
dt

(10)

The mass and energy balance equations
dM
dt

=w1−w2 (11)

dU
dt =w1 h1−w2h2Q (12)

are thus written  using the results  of equations (8)-
(10). Here, M and U are the mass and energy of the 
fluid contained in the model,  V is the volume,  cp is 
the specific heat at constant pressure,  h1 and  h2 are 
the  specific  enthalpies  of  the  fluid  entering  and 
exiting the volume, and  Q is the heat flow entering 
the volume. 
The steady-state equations for this component are:
dM
dt

=0 (13)

dU
dt

=0 . (14)

Given the  choice  of  states,  these  equations  can be 
more conveniently reformulated as 
dp
dt

=0 (15)

dT
dt

=0 . (16)

2.6 Pressure loss model

In order to avoid trouble with hard nonlinearities at 
this  stage,  a  simple  linear  pressure  loss  has  been 
assumed:
w=K  p , (17)
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where ∆p is the pressure drop across the component, 
w is  the  mass  flow  rate  through  it,  and  K is  a 
constant  flow  coefficient.  Future  version  of  the 
model  wil  consider  a  density-dependent,  quadratic 
pressure loss.
The energy balance  is  an isentalpic  transformation 
between the inlet and the outlet.

2.7 Valve

The  valve  model  is  similar  to  the  pressure  loss, 
except that the flow coefficient can be modulated by 
varying the valve opening input signal u from 0 to 1.
w=K u p . (18)

2.8 Pipe

Each  pipe  is  described  by  a  simple  symmetric 
lumped-parameter  model,  with  one  volume 
describing  mass  and  energy  storage,  and  two 
adjacent  pressure  loss  models  describing  the 
momentum balance.

2.9 Choice of physical parameters

The nominal operating point of the circuit assumes a 
flow rate of 1 kg/s, a thermal power of 84 kW, and a 
convective heat transfer to the environment such that 
the  temperature  of  the  radiator  is  10  K above the 
ambient  value  of  300  K,  while  the  heater  temper-
ature is 330 K. The pressure loss in the valve is 1 
bar, as well as the pressure loss in the pipes, which 
is equally divided between the two half-pressure-loss 
models.  The  hydraulic  capacitance  of  the  accumu-
lator is 3 kg/bar.

3 Initialization problems

3.1 Steady-state initialization of a closed circuit

The  components  of  the  circuit  model  have  5 
potential  state  variables:  the  pressure  and  temper-
ature  of  the  two volumes,  and the  pressure  of  the 
accumulator. 
Since the circuit is closed, the total mass of the fluid 
in the circuit  must be constant,  because there is no 
mass  flow  rate  entering  or  leaving  the  system. 
Therefore,  the  system  equations,  by  their  very 
nature, imply that

∑ j

dM j

dt
=0 (19)

where  Mj are the masses of the fluid in the compo-
nents with storage, i.e., the accumulator and the two 
pipe volumes. If one now sums the initial equations 
(4) and (13) for the accumulator and volume compo-
nents,  the  same  equation  is  obtained.  This  means 
that  the  simulation  equations  and  the  steady-state 
equations for a closed system will always be linearly 
dependent. The corresponding initialization problem 
is therefore  singular,  and has an infinite  number of 
solutions,  corresponding  to  different  amounts  of 
liquid  in  the  circuit  or,  equivalently,  to  different 
levels of pressure in the circuit. 
It is important to note that no single component has 
singular initialization equations: the singularity only 
arises at the system level. It is therefore convenient 
to leave all  the steady-state equations in the single 
components, and add one more initial equation at the 
system level, e. g. by specifying the pressure at one 
point  of  the  circuit  or,  alternatively, by specifying 
the total mass of liquid in the circuit.  This leads to 
an  overdetermined  system  of  initial  conditions, 
which  has  one  more equation  than  unknowns,  but 
now has one unique solution.

3.2 Steady-state  initialization  with  zero- 
pressure-loss flow components

Suppose that the pressure loss due to friction in the 
radiator is small, compared to other pressure losses 
in the circuit. In order to avoid highly nonlinear stiff 
equations, and to reduce the number of states in the 
system, a possible modelling option is to neglect the 
pressure loss entirely, i. e. use the equation:
 p=0 (20)

in place of equation (17) for the two pressure loss 
models of the radiator. This might be an interesting 
option for control-oriented models, where a reduced 
number of states is often sought. 
As a consequence,  the pressure  within  the radiator 
volume and the pressure within the accumulator are 
bound to be equal,  so that the resulting system has 
index 2. The index reduction  algorithm gets rid  of 
one of the two pressure states,  so that there now is 
one more redundant initial equation, compared to the 
previous  case,  even  though  the  overdetermined 
system of equation still has one unique solution. 
As  in  the  previous  case,  this  situation  does  not 
depend on equations which are local to a single sub-
model,  but  rather  depends  on  the  system-level 
structure  of  the overall  model,  due to the way the 
sub-model are connected. It is therefore very conve-
nient  if  the  user  doesn't  have  to  change  the  local 
initialization option for any sub-model, and still get 
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the unique steady-state solution for the initialization 
problem.

3.3 Steady-state  initialization  with  idealized 
controllers (inverse simulation)

So  far,  open-loop  simulation  problems  have  been 
considered, in which the three inputs corresponding 
to the three  actuators  (pump speed,  valve opening, 
burner power) are prescribed functions of time. One 
could then study a closed-loop control  problem, in 
which, e. g., the burner power is used to control the 
radiator temperature to a given set point, using a PI 
controller.  In  this  case,  one  more  steady-state 
equation  would  be needed  for  the  controller  state, 
but  this  would  not  cause  any  further  imbalance 
between  the  initial  states  and the  initial  equations. 
However, it would be necessary to tune the param-
eters of the PI controller in order to obtain a stable 
and satisfactory performance.
In some cases, one could be interested in evaluating 
the  transient  of  the  control  variable  (the  burner 
power) corresponding to some external disturbance, 
assuming  a  very  tight  control,  without  worrying 
about the actual tuning of the controller itself.  This 
kind  of  study  is  carried  out  easily  in  an  a-causal 
context, by just removing the equation which assigns 
the  prescribed  value  to  the  control  variable,  and 
adding an equation which prescribes the value of the 
controlled variable to be equal to the set point. This 
kind of approach is also know as inverse simulation 
problem  (see,  e.g.,  [5]).  The  prescribed  set-point 
must  be  smooth  enough  in  order  for  the  inverse 
simulation problem to have a well-defined solution, 
but  this  is  outside  the  scope  of  the  initialization 
problem.
In  the  specific  case  considered  in  this  paper,  one 
could prescribe the value of the radiator temperature, 
in  order  to  obtain  the  corresponding  value  of  the 
heater power input. This can be done both with the 
system described  in  Sect.  3.1,  as  well  as  with  the 
system described in Sect. 3.2.  In both cases, since 
the radiator temperature is one of the system states, 
the  connection  of the plant  model  to  the idealized 
controller will  enforce  an algebraic  constraint  on a 
differentiated variable; index reduction will have to 
be applied in order to get an index-1 DAE, and thus 
one more state will be eliminated. Once again, since 
this is a system-level issue, it would be nice not to be 
obliged  to  change  the  initialization  options  inside 
any specific sub-model of the plant, but rather keep 
the resulting overdetermined initial equation system, 
which still has one unique solution.

4 Numerical results

The three test cases described in Sect. 3 have been 
set up in the SimpleFluid library, described in Sect. 
2.  The  problems  have  then  been  solved  using  the 
OpenModelica  Compiler  (OMC) version  1.4.3  [6]. 
The current solution algorithm is summarized here:

● The  Modelica  code  is  flattened,  obtaining 
the declarations of all  variables,  parameters 
and  constants,  as  well  as  the  full  set  of 
equations and initial equations.

● Index  reduction  is  applied,  in  order  to 
obtained a reduced-order, index-1 system.

● The initialization  problem  f(z) = 0 is built, 
by adding the initial  equations to the set of 
index-1 DAEs of the system;  z is the vector 
including  the  algebraic  variables,  the  state 
variables, and the state derivatives, while f is 
the  vector  of  the  residual  functions.  Note 
that, in general, dim(f) ≥ dim(z).

● The initialization problem is then solved by 
minimizing the norm of the residual  vector 
F  z =∑ j f j

2 z , by using the Sequential 
Quadratic  Programming  optimization  code 
described  in  [7];  the  start  values  of  all 
variables are used as an initial guess for the 
iterative  algorithm.  If  the  initialization 
problem has  one solution,  the  minimum is 
unique and characterized by a zero residual.

OMC successfully solves all  the three initialization 
problems  described  in  Sect.  3,  finding  the  corre-
sponding initial steady state, provided that:

● all  the thermodynamic variables  (pressures, 
temperature,  densities)  are  given  a 
meaningful,  non-zero  start  value  –  this  is 
accomplished  by extending the standard  SI 
unit  types  with  suitable  default  start 
attributes within SimpleFluid;

● the  pressure  and  temperature  states  of  the 
volumes and of the accumulator are given a 
start  value close enough to the steady-state 
value.

Unfortunately,  convergence  of  the  initialization 
problem  seems  to  be  rather  sensitive  to  the  start 
values  of  the  temperatures  in  the  volumes:  a  start 
value  of  300  K  instead  of  330  K  for  the  heater 
volume is enough to make the algorithm fail. 
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5 Improvements and future work

Several  improvement  actions  are  proposed  in  this 
section,  which will  be  tested  in  future  versions  of 
OMC.
First  of  all,  the  size  of  the  optimization  problem 
corresponding  to  the  initialization  problem can  be 
roughly halved by just removing alias variables from 
the  flattened  model.  Although  this  sounds  like  a 
trivial operation, care must be exercised in order to 
avoid getting rid of user-defined start values, which 
might have been applied to only one of the variables 
in the alias set. For this purpose, it might be useful 
to define a suitable priority indicator for start value 
modifiers,  and  select  the  alias  variable  with  the 
highest priority start value in the set.
In order to further reduce the size of the optimization 
task, BLT partitioning of the initialization equation 
set could be performed, in order to split the original 
problem into smaller problems, to be solved sequen-
tially.  As the incidence matrix has more rows than 
columns,  one  has  more  degrees  of  freedom  in 
selecting  the  row/column  permutation  than  it  is 
possible in the standard square problem. This is an 
open  topic  for  further  research.  Tearing  methods 
could also be very beneficial in this context.
Better  scaling  must  be  ensured  to  improve  the 
robustness of the minimization algorithm. Currently, 
the  state  and  algebraic  variables  z of  the  initial-
ization problem, and the equation residuals  f(z) are 
directly  used  in  the  optimization  problem.  Some 
equations and some variables  thus have a predomi-
nating influence on the optimization problem, due to 
bad scaling. For example, in the test case discussed 
in this  paper, the mass flow rates have an order of 
magnitude of 1, while the pressures are around 106; 
the mass balance equations have residuals (i.e., flow 
rates)  of  the  order  of  1,  while  the  energy balance 
equations might easily give residuals (i.e. powers) of 
the order of 105. This might explain the failure of the 
initialization algorithm even for small changes in the 
start  values  of  the temperatures,  since  they mainly 
affect  the  energy  balances,  which  have  a  larger 
influence  on  the  residual  norm  than  the  mass 
balances. 
To  improve  this  situation,  the  algebraic  and  state 
variables  might  be  normalized  with  their  nominal 
values;  the  state  derivatives  might  be  normalized 
with the nominal values of the corresponding states, 
assuming a typical  time scale  of 1 second.  On the 
equation  side,  residuals  could  be  normalized  with 
scale  factors  obtained by a Monte Carlo approach: 
these could be estimated by computing the residuals 

with random small  variations  of the corresponding 
values around their start values.
Convergence of the minimization algorithm might be 
improved by introducing penalty functions which are 
added to the objective function  when the unknown 
variables gets out of their min-max interval. In fact, 
confidence intervals for the initial value are usually 
known,  which  are  much  narrower  than  min-max 
values  during  simulation  −  new  minStart  and 
maxStart attributes  for Real types could be defined 
in  Modelica,  in  order  to  specify  the  range  during 
initialization.
Finally, homotopy methods might be considered  in 
order to improve the robustness of the convergence 
for not too accurate choices of the start values.
In order to be able to evaluate the impact of all these 
actions,  it  is  important  to  be  able  to  monitor  the 
progress  of  the  iterative  minimization  algorithm, 
step  by  step.  Improved  diagnostic  features  (e.g., 
logging of iteration variable values) should then be 
implemented  in  OMC, which could  also  be  useful 
for  the  diagnostics  of  the  nonlinear  solvers  during 
simulation.
As the robustness of the initialization algorithm and 
the diagnostic  capabilities  are  improved, it  will  be 
possible to increase the complexity of the test cases, 
first  by  introducing  density-dependent,  quadratic 
pressure  losses  in flow models,  and then by trying 
more  complex  systems  with  larger  numbers  of 
equations and states.

6 Conclusions

Steady-state initialization problems for fluid systems 
are often naturally specified  in terms of overdeter-
mined  systems  of  initial  equations,  having  more 
equations  than  unknowns,  but  possessing  just  one 
unique solution. These problems can be solved using 
minimization  algorithms.  The  paper  motivates  the 
need  of  such  problems with  reference  to  a  simple 
test  case,  and  presents  results  obtained  with  the 
OpenModelica compiler. Suggestions to improve the 
robustness  of  the  OpenModelica  solver  are  also 
given. The Modelica source code of all the test cases 
is  available  from  the  authors;  contributions  to 
improve  the  algorithms  within  the  OpenModelica 
Compiler are welcome.

F. Casella, F. Donida, B. Bachmann, P. Aronsson

The Modelica Association 316 Modelica 2008, March 3rd − 4th, 2008



7 References

[1] Bachmann  B.,  Aronsson  P.,  Fritzson  P..  “Robust 
Initialization  of  Differential-Algebraic  Equations”, 
Proceedings  of  the  5rd Modelica  Conference, 
Vienna, Austria, 4-5 Sep 2006, pp. 607-614.
http://www.modelica.org/events/modelica2006/
Proceedings/sessions/Session6a2.pdf

[2] Casella  F,  Otter  M.,  Proelss  K.,  Richter  C., 
Tummescheit H., “The Modelica Fluid and Media 
library  for  modeling  of  incompressible  and 
compressible  thermo-fluid  pipe  networks”, 
Proceedings  of  the  5rd Modelica  Conference, 
Vienna, Austria, 4-5 Sep 2006, pp. 631-640.
http://www.modelica.org/events/modelica2006/
Proceedings/sessions/Session6b1.pdf

[3] F.  Casella,  A.  Leva,  “Modelling  of  thermo-
hydraulic power generation processes using Model-
icaModular  Modelling  in  an  Object  Oriented 
Database”, Mathematical and Computer Modelling 
of Dynamical Systems, Modelling of Systems, v. 12, 
n. 1, pp 19-33, 2006.

[4] F.  Casella,  A.  Leva,  “Modelica  open  library  for 
power  plant  simulation:  design  and  experimental 
validation”, Proceedings 3rd International Modelica 
Conference, Linköping, Sweden, Nov 2003, pp. 41-
50. http://www.modelica.org/Conference2003/papers/
h08_Leva.pdf

[5] M.  Thümmel,  G.  Looye,  M.  Kurze,  M.  Otter,  J. 
Bals,  “Nonlinear  Inverse  Models  for  Control”, 
Proc.  5th International  Modelica  Conference,  
Hamburg, Germany, Mar 2005, pp. 267-279.
http://www.modelica.org/events/Conference2005/
online_proceedings/Session3/Session3c3.pdf

[6] Peter  Fritzson, et al.  “The Open Source Modelica 
Project”,  Proc.  2nd International  Modelica 
Conference, 18-19 March, 2002. Munich, Germany 
See also:
http://www.ida.liu.se/labs/pelab/modelica/
OpenModelica.html

[7] M.  J.  D.  Powell,  “The  NEWUOA  software  for 
unconstrained  optimization  without  derivatives”, 
Proc.  40th Workshop  on  Large  Scale  Nonlinear  
Optimization,  Erice,  Italy,  2004,  paper DAMTP 
2004/NA05.

Overdetermined Steady-State Initialization Problems in Object-Oriented Fluid System Models

The Modelica Association 317 Modelica 2008, March 3rd − 4th, 2008


