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ABSTRACT
In most practical applications, for the sake of information integrity
not only it is useful to detect whether a multimedia content has
been modified or not, but also to identify which kind of attack has
been carried out. In the case of audio streams, for example, it
may be useful to localize the tamper in the time and/or frequency
domain. In this paper we devise a hash-based tampering detection
and localization system exploiting compressive sensing principles.
The multimedia content provider produces a small hash signature
using a limited number of random projections of a time-frequency
representation of the original audio stream. At the content user
side, the hash signature is used to estimate the distortion between
the original and the received stream and, provided that the tamper
is sufficiently sparse or sparsifiable in some orthonormal basis ex-
pansion or redundant dictionary (e.g. DCT or wavelet), to identify
the time-frequency portion of the stream that has been manipu-
lated. In order to keep the hash length small, the algorithm exploits
distributed source coding techniques.

1. INTRODUCTION

The delivery of multimedia contents in peer-to-peer networks might
give rise to different versions of the same multimedia object at dif-
ferent nodes. In the case of audio files, some versions might dif-
fer from the original because of processing due, for instance, to
transcoding or bitstream truncation. In other cases, malicious at-
tacks might occur by tampering part of the audio stream and pos-
sibly affecting its semantic content. In this paper we propose to
add a small hash to the audio stream to detect and identify audio
tampers. At the content user side, the information contained in the
hash enables to estimate the distortion of the received audio stream
with respect to the original version, and to localize the tampering,
if the attack is sparse in one of the analyzed basis expansion.

In the past few years, hashes have been used for the protection
of multimedia contents, especially in the field of image authen-
tication. In [1], the authors propose a system that performs im-
age authentication using distributed source codes. The hash con-
sists of syndrome bits applied to quantized random projections of
the original image. To perform authentication, a Slepian-Wolf de-
coder receives an input the hash and the (possibly tampered) im-
age, which serves as side information. If decoding succeeds, the

image is declared authentic. The work has been extended in [2] to
perform tampering localization, at the cost of extra syndrome bits.
The authors of [3] present an interesting algorithm that produces
hashes robust to some legitimate image manipulations (like crop-
ping, scaling, rotation) and sensitive to illegal manipulations (like
image tampering).

Watermarking has been used to solve the problem of tamper-
ing localization [4][5]. A fragile watermark is inserted into the
image when it is created, and extracted during the authentication
phase. Tampering can be localized by identifying the damage to
the watermark. Watermarking techniques have also been used to
solve the problem of content authentication and tampering local-
ization in audio data. In [6] two complementary watermarks are
embedded in audio signals to achieve audio protection and tamper-
ing localization. However, to the authors’ knowledge, in the litera-
ture there are no previous works addressing the problem of identi-
fying tampering in audio streams. In general, watermarking based
schemes suffer from the following disadvantages: 1) watermark-
ing authentication is not backward compatible with previously en-
coded contents (unmarked contents cannot be authenticated later
by just retrieving the corresponding hash); 2) the original content
is distorted by the watermark; 3) the bit-rate required to compress
a multimedia content might increase due to the embedded water-
mark. Conversely, content hashing embeds a signature of the origi-
nal content as part of the header information, or can provide a hash
separately from the content upon a user’s request. In order to limit
the rate overhead, the size of the hash needs to be as small as possi-
ble. At the same time, the goal of tampering localization calls for
increasing the hash size, in order to capture as much as possible
about the original multimedia object. In this paper we explicitly
target these conflicting requirements by proposing a hashing tech-
nique based on compressive sensing principles. The key tenet is
that, if the tampering is sparse enough (or it can be sparsified in
some orthonormal basis or redundant dictionary), it can be iden-
tified by means of a limited number of random projections of the
original signal. In addition, in order to keep the size of the hash
as small as possible, the hash information is encoded by exploiting
distributed source coding tools.

The rest of the paper is organized as follows. Section 2 pro-
vides background information about compressive sensing and dis-
tributed source coding; Section 3 gives a detailed description of
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the system. The results of tampering estimation are depicted in
Section 4. Finally, Section 5 gives some concluding remarks.

2. BACKGROUND

2.1. Compressive sensing

In our system, compressive sensing principles are used to build the
hash signature of the audio stream. Compressive sensing allows to
capture and represent signals at rates below the Nyquist frequency
[7]. In fact, it has been proved that it is possible to reconstruct a
signal using a limited number of non-adaptive linear random pro-
jections that preserve the original structure of the signal, by solv-
ing a specific optimization problem. The main constraint which
must be satisfied is that the signal has to be sparse or, at least,
compressible, i.e. the signal can be represented in some basis ex-
pansion using only a few large magnitude coefficients. A more
detailed discussion about compressive sensing can be found in [7].

2.2. Distributed source coding

As mentioned in previous sections, in our system we use a dis-
tributed source coding technique to reconstruct the hash signature
of the audio stream at the content user side. Distributed source
coding has been widely applied to video coding [8] in order to
move the computational complexity from the encoder to the de-
coder side. According to distributed source coding principles stated
by the Wyner-Ziv theorem, it is possible to perform lossy encoding
with side information at the decoder. The side information repre-
sents a distorted version of the source, which is made available at
the decoder side only. In our approach, the original information is
the hash computed from the content provider, and the side informa-
tion consists of the hash signature computed from the audio stream
received at the user side (which may be modified with respect to
the original). By requesting syndrome bits from the encoder, the
decoder is able to correct the possibly distorted side information
and to finally reconstruct the original hash signature. The more the
side information is distorted, the more syndrome bits are needed
to reconstruct the original hash; if the number of requested bits ex-
ceeds some pre-specified threshold, we may consider the received
stream too distorted and completely unauthentic. Under normal
conditions, the number of requested syndrome bits is significantly
less than the number of bits of the original information, so, the
hash reconstruction approach based on distributed source coding
technique allows to save bits with respect to the direct transmis-
sion of the original hash from the content provider to the user.

3. DESCRIPTION OF THE SYSTEM

The proposed tampering detection and localization scheme is de-
picted in Figure 1. The producer of the original audio stream builds
a small hash signature of the audio signal X ∈ RN , where N is
the total number of audio samples of the signal. The audio content
can be distributed over a network through untrusted nodes where
a modification of the signal may occur. The user receives the au-
dio stream X̃. In order to perform content authentication, the user
sends a request for the hash signature to the content provider. By
exploiting the hash, the user can estimate the distortion of the re-
ceived content X̃ with respect to the original X. Furthermore, if
the tampering is sparse in some basis expansion, the system pro-
duces a tamper estimation ê which identifies the attack in the time-

frequency domain. At the content producer side, the encoder gen-
erates the hash signatureH(X, S) as follows:

1. Frame based subband log-energy extraction: the original
single-channel audio stream X is partitioned into non-over-
lapping frames of size F . The power spectrum of each
frame is subdivided into U Mel frequency subbands, and
for each subband the related spectral log-energy is extracted.
Let denote hf,u the energy value for the u-th band at frame
f . The corresponding log-energy value is computed as fol-
lows:

xf,u = log (1 + hf,u) (1)
The log-energy values are stored in a vector x ∈ Rn, where
n = UN/F is the number of log-energy values extracted
from the audio stream. Note that using Mel frequency sub-
bands and log-energy values gives an immediate perceptual
semantics to tamper detection and identification.

2. Random projections: A number of linear random projec-
tions y ∈ Rm, m < n, is produced as y = Ax. The
entries of the matrix A ∈ Rm×n are sampled from a Gaus-
sian distribution N (0, 1/n), using some random seed S,
which will be sent as part of the hash to the user.

3. Wyner-Ziv encoding: The random projections y are quan-
tized with a uniform scalar quantizer with step size ∆. Bit-
plane extraction is performed on the quantization bin in-
dexes. Each bitplane is encoded by sending syndrome bits
generated by means of a Low-Density Parity-Check Code
(LDPC). The rate allocated to the hash depends on the ex-
pected distortion between the original and the tampered au-
dio stream.

The content user receives the (possibly tampered) audio stream X̃
and requests the syndrome bits and the random seed of the hash
H(X, S) to the authentication server at content producer side. On
each user’s request, a different seed S is used in order to avoid that
a malicious attack could exploit the knowledge of the nullspace of
A.

1. Frame-based subband log-energy extraction: computed on
signal X̃ using the same algorithm described above for the
content producer side. At this step, the vector x̃ is pro-
duced.

2. Random projections: ỹ = Ax̃.
3. Wyner-Ziv decoding: A quantized version ŷ is obtained

using the hash syndrome bits and ỹ as side information.
LDPC decoding is performed starting from the most signif-
icant bitplane. If the actual distortion between the original
and the tampered audio stream is higher than the maximum
distortion expected by the original content producer (deter-
mined by the rate allocated to the hash signature) decoding
might fail. In this case, the audio stream is declared to be
completely unauthentic and no tampering localization can
be provided.

4. Distortion estimation: If Wyner-Ziv decoding succeeds, an
estimate of the distortion in terms of a perceptual SNR mea-
sure is computed using the projections of the subsampled
energy spectrum of the tamper. Let b̂ = ŷ − ỹ the projec-
tions of the subsampled energy spectrum of the tamper; we
compute an estimate of the perceptual SNR of the received
audio stream as

SNRP = 10 log10

‖ŷ‖22
‖b̂‖22

[dB] (2)
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Figure 1: Block diagram of the proposed tampering localization scheme

5. Tampering estimation: An estimate of the tampering e =
x̃ − x can be obtained by solving the following undeter-
mined system of linear equations:

b̂ = ŷ − ỹ =

= A(x− x̃) + z =

= Ae + z (3)

where z is the hash quantization noise.
There exists an infinite number of solutions to (3); how-
ever, in the hypothesis that e is sparse, the optimal way for
recovering e is to seek the sparsest solution of (3), i.e. the
one that minimizes ‖e‖0, where the `0 norm ‖ · ‖0 simply
counts the number of nonzeros entries of e [9]. Unfortu-
nately, such a problem is NP hard and it is difficult to solve
in practice. Nonetheless, recent literature about compres-
sive sensing [9] has shown that, if e is sufficiently sparse,
an approximation of it can be recovered by solving the fol-
lowing `1 minimization problem:

ê = min ‖e‖1 s.t. ‖b̂−Ae‖2 ≤ ε (4)

where ε is chosen such that ‖z‖2 ≤ ε. Problem (4) is a spe-
cial instance of a second order cone program (SOCP) [9]
and can be solved in O(n3) time. Nevertheless, several fast
algorithms have been proposed in the literature that attempt
to find the sparsest e satisfying the constraint ‖b−Ae‖2 ≤
ε. In our experiments, we adopt the SPGL1 algorithm [10],
which is specifically designed for large scale sparse recon-
struction problems. If e is not sparse enough with respect
to the number of projections m, the solution found does
not fulfil the constraint. In such cases, it is not possible to
perform tampering localization in the original log-energy
domain. However, it is possible to perform the analysis in
other domains in which the tamper may be sparse. In our
scheme, we assume that the tamper is sparse in some or-
thonormal basis Φ, so that:

e = Φα (5)

where α are the coefficients of the expansion of e in the
basis Φ. In this case, instead of equation (3) we use the
following one:

b̂ = AΦDα + zD (6)
Due to the missing knowledge of basis Φ, one can try to
sparsify the tamper in different bases ΦD . In our system
we have implemented the expansion of the tamper in the
DCT, DCT 2D and Haar wavelet bases. If the tampering in
the basis ΦD is sufficiently sparse, finding the minimum `1-
norm solution of (6) allows to obtain a tampering estimation
α̂. Then, we can transform back the result to the original
log-energy domain:

ê = ΦDα̂ (7)

4. EXPERIMENTAL RESULTS

We have carried out some experiments on the first 32 seconds of
Etta James’ song “At last”, sampled at 44100 Hz, at 16-bit per
sample. The size of the audio frame has been set to F = 11025
samples (0.25 seconds), and the number of Mel frequency bands
has been set to U = 32, obtaining a total of 128 audio frames
corresponding to n = 4096 log-energy coefficients. The testbed
has been built considering 3 kinds of tampering:

• Time localized tampering (T): a time-limited audio frag-
ment, taken from another portion of the whole song, is mixed
with the original audio stream;

• Frequency localized tampering (F): a low-pass phone-band
filter (cut frequency at 3400 Hz and stop frequency at 4000
Hz) is applied to the entire original audio stream;

• Time-frequency localized tampering (TF): a low-pass and a
band-stop filters are applied to two different portions of the
original audio stream (see Figure 2(b)).

We evaluate the goodness of the tampering estimation by cal-
culating the normalized MSE between the log-energy spectrum of
the original tamper and the log-energy spectrum of the estimated
one:

MSEN =
‖ê− e‖22
‖e‖22

(8)
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(a) Log-energy spectrum of the original audio signal
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(b) Log-energy spectrum of the tamper
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(c) Reconstructed tamper in log-energy domain. In this case
the estimation reaches a Normalized MSE of 6.52 · 10−2
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(d) Reconstructed tamper in Haar wavelet domain. The
Normalized MSE value is 3.01 · 10−3

Figure 2: Example of time-frequency tampering consisting of a
low-pass filter and a stop-band filter. The reconstruction has been
performed using a 200 bps hash signature.

Results related to Normalized MSE obtained with a fixed bit rate
for the hash are shown in Tables 1 (for 200 bps) and 2 (for 400 bps).
From the tables it is clear that, by looking for a sparse tamper in
other bases besides the canonical one (log-energy), better results
can be achieved using the same hash length, as highlighted by the
bold numbers in the tables. More precisely, for the time localized
tampering the basis that gives the lower reconstruction distortion
is the DCT one; for the frequency localized tampering, instead,
the best basis w.r.t. reconstruction distortion is the DCT 2D. The
time-frequency localized tampering is better reconstructed using
the Haar Wavelet basis.

5. CONCLUSIONS

In this paper, a novel algorithm to detect and identify audio tam-
pering by means of the recent compressive sensing framework has
been described. Using the distributed source coding paradigm, we
have shown how to produce very small yet effective hash signa-

Log-energy DCT DCT 2D Haar Wavelet
T 1.78 · 10−2 5.03 · 10−4 2.88 · 10−3 8.22 · 10−4

F 7.80 · 10−2 5.57 · 10−2 2.88 · 10−3 4.95 · 10−3

TF 6.52 · 10−2 4.78 · 10−2 1.09 · 10−2 3.01 · 10−3

Table 1: Distortion of tamper estimation MSEN using a fixed bit
rate for the hash signature of 200 bps.

Log-energy DCT DCT 2D Haar Wavelet
T 1.27 · 10−3 4.27 · 10−5 1.42 · 10−3 5.95 · 10−5

F 6.71 · 10−2 3.23 · 10−2 1.22 · 10−3 1.95 · 10−3

TF 6.47 · 10−3 1.20 · 10−2 4.84 · 10−3 2.19 · 10−4

Table 2: Distortion of tamper estimation MSEN using a fixed bit
rate for the hash signature of 400 bps.

tures which allow to reliably identify tampering with a small infor-
mation overhead; in addition, looking for a sparse representation
of the tampering in some transformed domain enables to perform
the identification with a further gain in hash payload overhead.
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