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Reinforcement learning depends upon the integrity of emotional circuitry to

establish associations between environmental cues, decisions, and positive

or negative outcomes in order to guide behavior through experience.

The emotional dysregulation characteristic of major depressive disorder

(MDD) may alter activity in frontal and limbic structures that are key to

learning. Although reward and decision-making have been examined in MDD,

the effects of depression on associative learning is less well studied. We

investigated whether depressive symptoms would be related to abnormalities

in learning-related brain activity as measured by functional magnetic

resonance imaging (fMRI). Also, we explored whether melancholic and

atypical features were associated with altered brain activity. We conducted

MRI scans on a 4T Varian MRI system in 10 individuals with MDD and 10 healthy

subjects. We examined event-related brain activation during feedback-based

learning task using Analysis of Functional NeuroImages (AFNI) for image

processing and statistical analysis. We observed that MDD patients exhibited

reduced activation in visual cortex but increased activation in cingulate and

insular regions compared to healthy participants. Also, in relation to features

of depressive subtypes, we observed that levels of activation in striatal,

thalamic, and precuneus regions were negatively correlated with atypical

characteristics. These results suggest that the effects of MDD change the

neural circuitry underlying associative learning, and these effects may depend

upon subtype features of MDD.
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Introduction

Major Depression Disorder is characterized by persistent,
dysphoric emotions along with disturbances in motivated and
psychomotor behavior, all of which interfere with activities of
daily living. Depressive symptoms often accompany learning
disabilities, but the evidence for the mechanisms of impaired
learning in major depressive disorder (MDD) remains less
certain (Hans, 1997; Bender et al., 1999). Learning yields
behavioral adaptation to environmental changes by enabling
individuals to associate positive and negative outcomes
with prior behaviors. Learning disabilities may result from
executive function deficits or emotion and reward processing
abnormalities (Snyder, 2013; Knight and Baune, 2018; Wang
et al., 2021). Empirical studies have reported impaired cognitive
performance in MDD with attention and memory tasks related
to hippocampal function (Weingartner et al., 1981; Dolan et al.,
1992; Austin et al., 1999; Lin et al., 2014). Neuroimaging
studies have identified brain dysfunction in patients with MDD
during a variety of cognitive processes (Johnstone et al., 2007;
Broyd et al., 2009; Smoski et al., 2009; Clark and Beck, 2010;
Linden et al., 2012). Executive function deficits associated
with altered prefrontal function and anterior cingulate cortex
(ACC) activation have been described in several studies (Elliott
et al., 1997, 1998; Austin et al., 2001). Impairments in emotion
regulation related to prefrontal-subcortical abnormalities also
contribute to depression vulnerability (Beauregard et al., 2006;
Johnstone et al., 2007; Linden et al., 2012). A growing number
of studies focusing on MDD symptom of anhedonia have
demonstrated abnormalities in reward processing (Smoski et al.,
2009, 2011; Zhang et al., 2013). The findings of altered
reward processing are somewhat inconsistent. Hyposensitivity
of striatal regions to reward feedback and reduced activation
in the middle frontal gyrus and ACC have been reported
in several studies (Schaefer et al., 2006; Forbes et al., 2009;
Smoski et al., 2009). A meta-analysis of functional magnetic
resonance imaging (fMRI) studies of reward processing in MDD
supports the hypothesis of decreased subcortical and limbic
activity in MDD patients (Zhang et al., 2013). However, other
studies have reported hypersensitivity in the anterior insula to
punishment and in the putamen to reward (Kumari et al., 2003;
Remijnse et al., 2009), or no changes in reward areas during
gain anticipation (Knutson et al., 2008). In these studies, the
direction of effects to reward may depend on several factors
including illness severity, medication history, and experimental
task parameters. Impaired reward processing may underlie
learning problems and behavioral adaptation (Chen et al., 2015).
Reinforcement learning based on feedback is a more complex
task which integrates sensory perception, reward processing,
and motor action. Consequently, trial-and-error reinforcement
learning may activate the different brain circuitry in comparison
to simple reward processing. For instance, Gerraty et al. (2018)
describe dynamical changes in brain networks and coupling

between the striatum, visual, orbitofrontal, and ventromedial
prefrontal cortex related to learning rate. Moreover, studies of
reinforcement learning have been extended to computational
models for outcome prediction (Daw et al., 2011) and its
application to diagnostic and treatment methods (Brown
et al., 2021; Heo et al., 2021). Therefore, it is important to
understand the mechanism of reinforcement learning and how
depressive symptoms such as emotion dysregulation and reward
sensitivity affect the brain activation during learning. Also,
positive and negative feedback itself may induce an emotional
state corresponding to the valence of feedback (Kustubayeva
et al., 2012). Previous learning research shows that healthy
subjects exhibit prominent activation to the first trial feedback
that diminishes on the next trial in a one-trial learning task
(Eliassen et al., 2012). Feedback guides future behavior and the
brain response to novel early feedback subsides dramatically as
outcomes become predictable. It is important to learn how the
integration of feedback and stimulus perception is changed in
patients with MDD.

Our study evaluated the brain response to feedback-based
visual-motor associative learning in healthy participants
and MDD patients. We hypothesized that in comparison to
healthy subjects MDD patients would show limbic-cortical
dysregulation. We predicted that the presence of depression
would lead to reduced activation during learning, suggesting less
efficient information processing in MDD patients. Additionally,
evidence from a number of studies suggests that depression is
a heterogeneous disorder, with variations in phenomenology
reflecting underlying neuropathophysiological differences
(Fountoulakis et al., 2004; Baumeister and Parker, 2011; Foti
et al., 2014; Day et al., 2015). This study recruited MDD patients
who met criteria for a major depressive episode with either
melancholic or atypical characteristics. Some studies show
that atypical depression is distinguished from melancholia by
increased right hemispheric processing and the right frontal
perfusion (Fountoulakis et al., 2004). Because these subtypes
differ with regard to neurovegetative symptoms and emotional
reactivity, and sensitivity to reward, we also hypothesized
that an altered response to learning would be associated with
subtype characteristics. We present preliminary findings on
these effects as well.

Materials and methods

Subjects

Twelve patients with MDD who met criteria for either
atypical or melancholic subtypes of MDD (Mean Age = 40.5;
SD = 7.92; 5 males, 7 females) and 10 healthy control subjects
(Mean Age = 30.2; SD = 8.34; 5 males, 5 females) were
recruited for this study via advertisement from outpatient and
community populations. Inclusion criteria for both groups
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included age from 18 to 55, fluent in English and able
to understand and provide written informed consent. MDD
participants had to meet the following criteria: score on the
Inventory of Depressive Symptomatology (IDS) scale higher
than 20. Diagnosis of major depression was determined using
the Structured Clinical Interview for DSM-IV (SCID), American
Psychiatric Association [APA] (2000) and the presence of
melancholic or atypical subtype was determined using the SCID
supplements for these categories (Spitzer et al., 1990; First et al.,
2002). Melancholic and atypical symptom score was based on
sum of corresponding IDS items. Patients were unmedicated at
the time of study participation and were excluded for use of
any psychotropic medication in the past week, antidepressant
medication, including herbal or natural substances purported
to have antidepressant properties (e.g., St. John’s Wort, SAM-
e, etc.) within the past 2 weeks, or the use of fluoxetine within
the past 4 weeks. Two patients data were excluded due to the
fMRI artifacts. To avoid the potential confounding effects of
medication on blood oxygen level dependent (BOLD) signal
changes, patients were included only if they had taken no
antidepressant medications within 2 weeks of the scanning
session. Also, participants were excluded if they had an unstable
medical condition or and substance use disorder with the past
3 months.

Healthy subjects were included based on: (1) no history
of DSM-IV Axis I disorder by history or by SCID interview;
(2) no first-degree relative with a known history of a mood,
anxiety, or substance use disorder. The study was approved
by the Institutional Review Board (IRB) of the University
of Cincinnati, and all subjects participated in the experiment
after first providing written informed consent. Demographic,
clinical and education information are summarized in Table 1.
Education level was estimated by using the categories: some
high school (0); graduated high school or Graduate Equivalency
Degree (GED) (1); part college (2); completed 2 years of college
(3); graduated 4 year college (4) and; graduate/professional
school (5).

Behavioral testing

Neuroimaging paradigm
Following clinical and behavioral testing, patients

participated in a functional neuroimaging session at the
University of Cincinnati’s Center for Imaging Research (CIR).
After arriving at the CIR each participant was given oral and
written instructions and performed a brief practice of the
task with pictures different from those used during scanning.
Subjects were provided with video goggles to view the computer
screen during scanning, and a button box held in the right
hand was used to record participants’ responses to the task.
MRI-compatible headphones and a microphone enabled
communication with the patient during the scan.

Functional magnetic resonance imaging
behavioral task

The associative learning task included both control and
associative learning trials and was programmed in E-Prime1 to
allow acquisition of behavioral performance (Figure 1; Eliassen
et al., 2003, 2012). Two runs of the task were conducted during
fMRI scanning. The control task consisted of 16 trials, and the
learning task included 32 trials. During control trials the digit
“1” or “2” was presented on the screen and participants pressed
button 1 or 2 on the response box. During the learning trials,
participants viewed easily named color pictures and learned to
associate each picture with button 1 or 2 by trial-and-error using
feedback (Rossion and Pourtois, 2004). A different set of four
pictures was used for each run. Each picture was presented eight
times pseudorandomized according to Latin Squares. A trial
began with the presentation of a fixation cross (“X”). Following
a brief variable delay a picture or digit appeared on screen, and
subjects responded. After 2 s the screen went blank for a brief
variable delay followed by feedback. Participants were instructed

1 https://www.pstnet.com/

TABLE 1 Demographic and symptom severity of the participants.

Depressed
subjects

mean (SD)

Control
subjects

mean (SD)

Differences
between
groups

N 10 10 –

Female: Male 5:5 5:5 –

Age 41.6 (6.47) 30.2 (8.34) F = 8.79,
p = 0.008

Ethnicity

African
American

20% 20% –

Caucasian 70% 60% –

Asian 10% 10% –

Hispanic
ethnicity

10% –

Education level 3.09 (1.27) 3.14 (1.44) F = 0.005
p = 0.94

Years since first
depressive
episode

13.2 (9.08) n/a n/a

Number of
depressive
episodes

3.2 (3.22) n/a n/a

Inventory of
depressive
symptomatology

37.8 (5.82) 0.80 (1.48) F = 378.87
P < 0.001

Melancholic
symptom scorea

12.7 (5.06) n/a n/a

Atypical
symptom scoreb

5.6 (4.86) n/a n/a

aScore based on sum of IDS items 4, 8, 12, 14, 29, and 30.
bScore based on sum of IDS items 3, 8, 9, 10, 11, 13, 21, 23, 24, and 31.
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FIGURE 1

Schematic view of Associative Learning Task. The task included
both control (N = 16) and learning trials (N = 32) in each run.
The task was repeated twice during MRI scanning.

to make their responses during stimulus presentation. Positive
feedback was indicated by a “+,” errors were indicated by “0,”
and a lack of response resulted in a “?” Unlike our previous work
with associative learning (Eliassen et al., 2012), the current task
did not involve monetary rewards. For statistical analysis of the
fMRI data we characterized learning by the number of correct
responses to a picture. Learning or “experience” was divided
into three levels, control, early learning (including the 1st trials,
and the 2nd and 3rd correct trials) and late learning (all correct
trials from 4th to 8th). Experience was then used as a factor in
statistical analyses.

Functional magnetic resonance
imaging experiment

Image acquisition
Participants were scanned in a 4T Varian INOVA MRI

system. A high-resolution T1-weighted 3-dimensional
anatomical image was acquired using a Modified Driven
Equilibrium Fourier Transform (MDEFT) acquisition22

(TMD = 1.1 s, TR/TE = 13/6 ms, FOV = 256 × 192 × 192 mm,
matrix 256 × 192 × 96 mm, voxel resolution 1 × 1 × 2 mm3,
flip angle = 20◦), zero-filled to 1 × 1 × 1 mm during
reconstruction (Lee et al., 1995). For fMRI measurements we
acquired two runs of T2∗-weighted gradient-echo echoplanar
images (EPI) consisting of 35 contiguous 5 mm-thick coronal
slices covering the entire brain (TR/TE = 3,000/29 ms,
FOV = 208 × 208 mm, matrix 64 × 64, flip angle = 75◦, voxel
resolution 3.25 × 3.25 × 5 mm) tuned to BOLD contrast and
a multi-echo reference scan to correct geometric distortion

and Nyquist ghost (Kwong et al., 1992; Ogawa et al., 1992;
Schmithorst et al., 2001). Two 2-min runs were administered,
and 146 volumes were acquired in each run. Two volumes
at the beginning of each run were discarded to account for
magnetization equilibrium effects.

MRI analysis
Functional images were reconstructed using in-house

software written in Interactive Data Language (IDL)2 and
included a 2D Hamming filter in the XY plane, which smoothed
the resulting images. All further image processing including
co-registration, motion correction, normalization, re-sampling,
and event-related analysis were conducted in Analysis of
Functional NeuroImages (AFNI) software (Cox, 1996; Cox and
Hyde, 1997; Cox and Jesmanowicz, 1999). Fourier interpolation
using a six-parameter rigid-body transformation was used
for motion correction (Cox and Jesmanowicz, 1999). Each
subject’s MDEFT image was normalized to Talairach space by
alignment to the international consortium for brain mapping
(ICBM) 452 brain template in AFNI.3 A 6 mm Gaussian
smoothing was applied to the EPI data. EPI data sets were then
normalized by adopting the MDEFT transform and resampled
to 3 × 3 × 3 mm. Smoothing plus Hamming filtering resulted
in 9 mm blurring in the XY (coronal) plane and 6 mm in the Z
plane. The Monte Carlo simulations used to estimate statistical
significance took this smoothing into account. Two subjects
were excluded due to shim power supply hardware problems.

In order to estimate brain activation, a reference waveform
was created for each subject by convolving specific task event
times with a canonical hemodynamic response function (HRF)
in AFNI. The canonical function incorporated a delay time
of 2 s, a rise time of 4 s, and a fall time 4 s as we have
used previously (Eliassen et al., 2012) and based on the
timing of observed hemodynamic responses in our previous
work (Eliassen et al., 2003). Signal drift was accounted for in
each run by including polynomial regressors up to the third
order (average, linear, quadratic, and cubic) and six motion
correction parameters as regressors of no interest. Using AFNI’s
3dREMLfit, which accounts for serial auto correlations in the
fMRI time series, we calculated fit coefficients to the polynomial
regressors, the motion correction parameters and the reference
waveforms representing the task events, stimulus, and feedback
presentation for early learning, late learning, and control trials.

Statistical analyses

Behavioral analyses were conducted using a mixed
effects analysis approach in Statistical Analysis Software
(SAS Institute Inc., SAS 9.1.3 Help and Documentation,

2 http://www.exelisvis.com/

3 https://www.loni.usc.edu
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FIGURE 2

(A) Reaction time as a function of experience, Early learning, Late learning, Control (Ctrl) in major depressive disorder (MDD) patients, and
Healthy participants in the first and second runs. Learning is evident as RT decreases from Early to Late trials (Mean ± SD). (B) Total errors across
groups (Mean ± SD) in MDD and Healthy groups in the first and second runs.

Cary, NC, United States: SAS Institute Inc., 2002–2004).
Reaction time data was calculated by evaluating the
change in response times across all levels of experience
[Early: 1st trials (correct or incorrect), Correct 2nd,
and Correct 3rd trials; Late: Correct 4th–8th trials; and
Control Trials].

Analysis of Functional NeuroImages’ 3dMVM program,
utilizing R for statistical computing, was used to examine
the group fMRI data, accounting for repeated measures and
subjects as a random factor. For fMRI the dependent measures
were the fit coefficient maps representing control, early, and
late learning for both stimulus and feedback events. Several
analyses were conducted with the fMRI data. Two analyses
compared depression patients to healthy comparison subjects:
one examined stimulus processing and the other examined
feedback. Factors in the analyses included group (patients vs.
healthy), experience (early vs. late learning trials), and event
types (stimulus vs. feedback). We included an interaction term
for group by experience. We examined the correlation between
atypical score and stimulus or feedback activation for learning
trials. Because age was significantly lower in the healthy group
(p < 0.01) we included age as a covariate in the statistical

examination of behavioral and fMRI data. Functional Regions-
of-interest (ROI) were obtained from the activation maps and
average signal intensity was extracted for each individual for
different task events. Significant thresholds were determined
for all brain imaging comparisons according to the Monte
Carlo simulation tools used in AFNI (Friston et al., 1993;
Forman et al., 1995; Xiong et al., 1995). A significant cluster
was defined as a corrected p-value of 0.01, using a voxel-
level p-value ≤0.005 and a minimum cluster size of 37 voxels.
Talairach daemon (Lancaster et al., 2000) was used in order
to identify the locations of activation clusters as well as the
Montreal Neurological Institutes (Tzourio-Mazoyer et al., 2002)
automated anatomical labels of single-subject high resolution T1
volumes as implemented in AFNI.

Results

Behavior

Repeated measures analysis of variance showed a significant
main effect of experience (F = 80.167, p < 0.0001), reflecting
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FIGURE 3

Brain regions that showed significant group differences between major depressive disorder (MDD) and Healthy for stimulus presentation during
learning (A), (B, C, D) Plots for ROI that displayed a significant difference between blood oxygen level dependent (BOLD) intensity in two groups.
(B) Right Fusiform Gyrus; (C) Right insula; (D) Right Cingulate (motor area) cortex. Red color: MDD > Healthy; blue color: MDD < Healthy.

slower reaction time in early trials compared to late trials and
control trials for all participants. There was no significant group
difference (Figure 2A), no effect of age nor any significant
interactions. There were no significant effects of group or age
on error rate (Figure 2B).

Imaging data

Brain activation during stimulus and feedback
presentation

We examined brain activation differences between healthy
and depressed patients and changes related to learning.
Several brain regions exhibited the typical decline in activation

with learning that we have observed previously. As with
our previous research (Eliassen et al., 2003, 2012), these
regions included bilateral medial superior frontal gyrus (BA6,
8), bilateral middle frontal gyrus (BA 9), and bilateral
inferior frontal gyrus (anterior insula/frontal operculum; BA
44, 13) as well as parietal, temporal, and frontal polar
regions.

Regions that showed a significant difference between groups
included right fusiform gyrus (BA 38), right insula (BA 21), and
right cingulate motor area (BA 6) (Figure 3) for the stimulus
presentation. Interestingly activation for stimulus presentation
was higher in occipital cortex in healthy participants, but in
depressed patients was higher in insula and cingulate cortex.
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FIGURE 4

Brain regions that showed significant correlations for feedback presentation during learning and Atypical score in major depressive disorder
(MDD) group (A), (B, C, D, E, F, G) Plots for ROI that displayed a significant correlation between blood oxygen level dependent (BOLD) intensity
and Atypical score. (B)–Right Thalamus, (including right hypothalamus, and left ventral caudate); (C)–Bilateral Precuneus (BA31); (D)–Right
Inferior Parietal Lobule; (E)–Left Cerebellum; (F)–Left Superior Temporal Gyrus; (G)–Right Putamen. Red color–positive correlation; blue
color–negative correlation.

TABLE 2 Regions with significant correlations between Melancholic score and feedback.

Cluster# Cluster size (# voxels) Center of mass Peak activation

X Y Z

(Local peak activation)

1 52 −10.5 61.5 32.5 Right precuneus, Right BA7

2 46 13.5 79.5 23.5 Left cuneus, BA18

3 45 37.5 52.5 41.5 Left inferior parietal lobule, BA 40

4 40 −10.5 −4.5 2.5 Right caudate
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Post-hoc analyses of these three active clusters indicated no
significant modulation by age.

Atypical and melancholic scores and brain
activation during learning

Analyses of subtype scores revealed several brain areas
where activation levels during feedback presentation were
correlated with atypical score (Figure 4). BOLD signal intensity
on feedback during learning (early and late trials) negatively
correlated with atypical score in right thalamus (including
right hypothalamus and left ventral caudate) bilateral precuneus
(BA31) right putamen, right inferior parietal, and left superior
temporal gyrus. Activation in left cerebellum showed the
opposite pattern with activation increasing with higher atypical
score. Melancholic scores correlated positively with activation
during late feedback in bilateral precuneus and right caudate
(Table 2). There is no significant correlation for early feedback
or for combined early and late feedback.

Discussion

The goal of the study was to identify differences
between healthy individuals and MDD patients during
reinforcement learning. Our results showed a similar
learning effect in the behavioral and fMRI data: slower
reaction time corresponded to increased BOLD intensity
in the early learning trials compared to the late learning
trials for both groups. The previous study (Eliassen et al.,
2012) reported a similar learning effect in the behavioral
and fMRI data in healthy participants. The current study
observed the same effects in patients with MDD as well.
The current study revealed significant differences in signals
between healthy and depressed participants during learning.
Correlations of the depression subtype scores to the BOLD
signal are new findings of the brain activation changes
during learning due to depression symptoms. Both groups
showed decreased activation with learning, a pattern typical
of healthy subjects according to our previous research
(Eliassen et al., 2003, 2012). In comparison to healthy
individuals, depressed patients showed elevated right
insula and cingulate activation on stimulus presentation
suggesting limbic hyperactivity during learning consistent
with previous findings (Beauregard et al., 2006; Zhang et al.,
2013). Elevated cingulate and insula activation may relate
to general increased limbic activity in depression since it
has been observed in the control trials as well. However,
fMRI analyses revealed significant differences between
groups in specific ROIs during the task performance and
deviations became larger during the task performance in
comparison to the already abnormal baseline activity, especially
for decreased BOLD signal intensity in the right fusiform
gyrus, and increased intensity in the right insula. Therefore,

performing the task may provoke abnormal activity in learning
circuits.

Greicius et al. (2007) reported abnormally increased
functional connectivity in subgenual cingulate in depressed
patients. Increased insula activation has been reported
the neuronal basis of depression (Pandya et al., 2012).
Additionally, anatomical studies showed that the gray matter
volume of the insular cortex and the ACC correlated with
depression symptoms (Mayberg, 1997). Electrophysiological
studies on brain lateralization consider that the right
hemisphere is hyperactive and the left hemisphere is hypoactive
in patients with depression (Davidson, 1998; Allen and Reznik,
2015; Bruder et al., 2017). Our previous research confirmed
left hypoactivity during the subsequent decision-making task
in patients (Kustubayeva et al., 2020). FMRI study revealed
changes in the right hemisphere in both directions depending
on the brain structure.

We did not find significant reductions in activation
on feedback presentation in MDD patients compared to
healthy participants as shown in previous studies of reward
hyposensitivity. Nevertheless, we must bear in mind that
feedback during the current learning paradigm included
negative feedback in early learning trials and positive feedback
in the late learning that was predictable due to the easy task.

At the same time, in contrast to limbic regions, visual
cortex activation was reduced in MDD patients compared to
the control group, suggesting a decreased visual response to
stimulus presentation (Schaefer et al., 2006; Knutson et al.,
2008; Forbes et al., 2009; Smoski et al., 2009, 2011). This
overall pattern suggests that limbic regions might activated to
compensate for reduced visual cortical involvement, or that
limbic overactivation disrupts visual cortical engagement. In
either case, the limbic and cortical circuits are dysregulated
in patients with MDD, which supports the characterization of
MDD as a “multidimensional, system-level disorder” related to
limbic-cortical circuit dysfunction (Mayberg, 1997, 2003).

A secondary aim of this study was to identify brain areas
associated with atypical or melancholic features. The negative
correlation with atypical score in thalamus, hypothalamus, and
basal ganglia provides evidence of reward hyposensitivity in
individuals with higher atypical scores. Higher melancholic
scores were associated with higher brain activation in reward
areas during late feedback (positive feedback only).

Interestingly, Foti et al. (2014) observed that event-
related potential feedback negativity and fMRI ventral striatal
responses to reward during guessing did not track melancholic
or atypical features diagnosed by using the SCID. Authors
found that feedback negativity (FN) was blunted in MDD
subgroup with impaired mood reactivity. Therefore, further
examination of the neural signature of depression subtypes
and its diagnostic measurements is warranted to clarify these
discrepant observations.
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In conclusion, we observed differences in brain activation
between MDD patients and healthy participants that provide
evidence of limbic-cortical dysregulation during reinforcement
learning that would not be predicted by reward hyposensitivity.
On the other hand, brain activation in response to feedback
correlated negatively with atypical features which suggests
the presence of reward hyposensitivity in this subtype,
and melancholic features revealed the opposite pattern. The
presence of MDD is associated with dysregulation of neural
circuits related to learning and subtype symptoms may alter the
level of activity in some of these circuits.

Limitations

This study had limitations that bear comment. Due to the
study requirement to include only unmedicated clinical samples
only 10 patients were included to this study. We included age
as covariate in the analysis because of age differences with
the ten healthy volunteers. Our sample comprised of 10 MDD
individuals with a range of subtype features, so we chose to focus
on variation in activation across the continuum of atypical and
melancholic features. Also, because our task was limited to two
runs and learning occurs on the first trial regardless of outcome,
we cannot distinguish activation between positive or negative
feedback in early learning trials.
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