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Who Produces the Peaks? Household Variation in Peak Energy 

Demand for Space Heating and Domestic Hot Water 

Anders Rhiger Hansen *, Daniel Leiria, Hicham Johra and Anna Marszal-Pomianowska 

Department of the Built Environment, Aalborg University, 2450 Copenhagen SV, Denmark 

* Correspondence: arhansen@build.aau.dk  

Abstract: Extensive research demonstrates the importance of user practices in understanding 

variations in residential heating demand. Whereas previous studies have investigated variations in 

aggregated data, e.g., yearly heating consumption, the recent deployment of smart heat meters 

enables the analysis of households’ energy use with a higher temporal resolution. Such analysis 

might provide knowledge crucial for managing peak demand in district heating systems with 

decentralized production units and increased shares of intermittent energy sources, such as wind 

and solar. This study exploits smart meter heating consumption data from a district heating network 

combined with socio-economic information for 803 Danish households. To perform this study, a 

multiple regression analysis was employed to understand the correlations between heat 

consumption and socio-economical characteristics. Furthermore, this study analyzed the various 

households’ daily profiles to quantify the differences between the groups. During an average day, 

the higher-income households consume more energy, especially during the evening peak (17:00–

20:00). Blue-collar and unemployed households use less during the morning peak (5:00–9:00). 

Despite minor differences, household groups have similar temporal patterns that follow 

institutional rhythms, like working hours. We therefore suggest that attempts to control the timing 

of heating demand do not rely on individual households’ ability to time-shift energy practices, but 

instead address the embeddedness in stable socio-temporal structures.  

Keywords: peak energy usage; energy demand; energy flexibility; district heating; occupant  

behavior; energy practices; smart heat meters 

 

1. Introduction 

The building sector is responsible for nearly 45% of global CO2 emissions, and the 

energy used for domestic hot water (DHW) production and the heating of spaces 

constitutes the largest share of these emissions [1]. Individual heat pumps and collective 

heating systems, also known as district heating (DH) systems, are sustainable, cost- and 

energy-effective methods for supplying heat to buildings, especially in densely populated 

areas [2]. However, the foundation of the decarbonization process of electrical grids and 

DH systems is the growing use of intermittent renewable energy (RE), such as solar 

energy and wind [3,4]. Increasing the share of RE challenges the operation of energy 

systems and requires greater insight into fluctuations in production as well as demand. 

Where energy production previously tended to follow energy demand [5,6], for example, 

by activating fossil-fuel boilers during peak-load periods, the demand side now needs to 

offer more temporal flexibility to match the variability in RE production [7]. This new 

approach to controlling and operating energy systems calls for in-depth insight into the 

patterns and mechanisms of energy demand. Demand response tools such as price 

incentives [8] and energy scheduling [9,10] depend on an understanding of the energy 

practices of users in order to reduce uncertainties as well as align comfort expectations 

and demand patterns. Knowing how energy peaks are constituted, and which occupant 
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practices contribute the most to creating peaks, becomes increasingly important for 

energy system operators seeking to balance energy supply and demand [11–13]. As the 

building envelope becomes more energy efficient (a result of stricter requirements in 

national building regulations), the share of DHW in total household energy demand is 

increasing [14–16]. Furthermore, the timing of DHW usage can cause significant peak 

demand at very specific periods, especially in the morning or in the evening when 

households use a significant quantity of hot water for baths and showers [17,18]. This may 

impair the stability and reliability of energy grids. The metered heat data reflect practices 

related to space heating, such as heating and comfort practices [19,20], as well as DHW 

usage, such as showering and personal hygiene [18], where the shower and kitchen taps 

are found to constitute around 90% of the total DHW usage [21]. Thus, the data result 

from a complex interaction between occupants, building physics, and heating systems, 

particularly the components responsible for the indoor temperature adjustment and the 

use of DHW (see Figure 1). 

 

Figure 1. Conceptual representation of interactions between various factors influencing residential 

heat demand. One should note that the share of DHW and space heating in the total building heat 

demand varies significantly from buildings to buildings, depending on the occupants’ habits and 

the energy performance of the building envelope [14,16,21]. 

Recent studies estimate that explanations for variation in residential heating demand 

can be found more or less equally in buildings and occupants [16,22]. Household 

characteristics, such as income, demographics, and family composition, are found to 

explain some of the energy use variations related to occupants [23–29]. The deployment 

of smart meters and the collection of hourly energy use data provide a unique opportunity 

to gain a deeper understanding of energy consumption dynamics during the day. Several 

studies have shown the potential of such high-temporal-resolution energy consumption 

data for better understanding temporal patterns in energy demand. For example, various 

clustering techniques have been applied to identify typical groups of load patterns [30–

35] and to investigate heterogeneity regarding building and occupant characteristics in 

daily load patterns [17,36–39]. An effort was also made to make the smart heat data 

accessible to the research environment [40] and thereby foster an interest in this dynamic 

heat data, which from 2027 will be available for all buildings connected to DH networks 
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[41]. However, to the authors’ knowledge, no previous studies have investigated daily 

residential heating consumption together with socio-economic characteristics. This paper 

taps into the potential of the hourly smart heat meter data correlated with the socio-

economic data of the households, delivering an in-depth understanding of how heat 

consumption is shaped by household characteristics.  

Novelty and Contribution of the Present Study 

This paper contributes in the following three ways: 

Development of the unique hourly-based dataset combining the household’s 

dynamic energy use for heating (readings from smart heat meters) with data from 

administrative registers, including building characteristics and socio-economic 

characteristics of the household occupants, such as occupation (blue- and white-collar, 

pensioner, unemployed); age of the youngest child (no child, pre-school child (0 to 6 years), 

young child (7 to 12 years), teenager (13 to 19 years)); age of the oldest adult (18 to 40 

years, 41 to 50 years, 51 to 60 years, 61 to 70 years, 71 years or older); household income 

(DKK <300,000, DKK 300,000 to 399,999, DKK 400,000 to DKK 499,999 500,000 to 599,999, 

DKK 600,000 to 699,999, DKK <700,000). 

Application of a novel methodological approach to investigate the correlation of 

hourly and daily variations in residential heating use for space heating and DHW with 

the novel dataset (including smart heat meters readings and detailed information on 

household and building characteristics from administrative registers) for each month of 

the Danish heating season (i.e., from October to March).  

Delivery of new knowledge on what contributes to domestic heating peaks and to 

what degree peaks can be explained by household characteristics, specifically the four 

features of occupation, household composition, age, and income. 

This study builds on the assumption that household categories related to, for 

example, occupation and income, reflect variations in household energy practices. This 

assumption is supported by previous studies on the temporality of energy practices 

[42,43], which describe social-temporal rhythms of showering [18], space heating [44], and 

family practices [45]. 

The paper is structured as follows: Section 2 presents a review of relevant studies 

previously conducted on the topic. Section 3 continues with a description of the dataset 

and methodology used. Section 4 presents the results, with four subsections dedicated to 

the socio-economic parameters and a final subsection focusing on morning and evening 

peaks. Finally, the results are discussed and related to future policy and research. 

2. Background 

To what extent variations in residential heating are explained by building 

characteristics versus occupants’ behavior is a well-established discussion in energy 

research [19,46]. A recent study replicating the method of a former study suggests that 

occupants and buildings are equally important [16,47]. Other studies support the 

importance of occupant behavior and practices in residential heating demand 

[22,25,27,48–50]. This is especially useful in attempts to explain the discrepancy between 

predicted and actual energy use [51–53]. Although the division between occupants and 

buildings appears simplified, it makes one point clear: what occupants do and how they 

interact with the built environment in everyday household practices are crucial for 

understanding household energy consumption patterns [25,46]. 

Numerous studies have sought to understand how occupant characteristics and their 

variations affect the amount of energy used for heating in residential buildings [54]. 

Several studies show how energy consumption relates to activities such as opening 

windows or regulating thermostats [55–58], and how residential heating consumption is 

correlated with socio-economic characteristics, such as income, education, and occupation 

[23,25,27–29,59], as well as with household characteristics, such as age, children, and 

gender [24,60]. The importance of household characteristics in combination with 
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contextual factors, such as the impact of energy prices, price subsidies, and weather, is 

also well-established empirically [61–66]. Analysis of a national survey conducted among 

English homes also suggests variation in the timing of heating among households [67].  

Where the studies mentioned above rely primarily on quantitative methods, there is 

a rich social science literature applying qualitative methods to describe how social 

conventions of thermal comfort shape heating practices in everyday life [19,20,67–73], or 

what could be referred to as home comfort [20,74]. It is also in line with these studies that 

the existing primary knowledge on the link between (temporality of) everyday practices 

and (timing of) energy consumption is found, for example, related to showering and 

DHW use [18,75], laundry routines, and energy use [76–79] or smart home control [69]. In 

addition, a range of studies directly addresses the relationship between everyday energy 

practices and peak demand [12], for example, by referring to ‘family peak periods’ [45] or 

flexibility of everyday activities [80,81]. Together, these studies suggest that temporal 

patterns of energy demand reflect what could be referred to as socio-temporal rhythms 

[42], which are closely linked to societal or institutional rhythms [11,82]. 

This paper builds on these qualitative studies’ understanding of energy consumption 

as reflective of energy practices and combines this understanding with quantitative 

measures of timing and intensity of energy demand. 

With smart meter data, it is possible to get closer to the actual actions of the 

occupants, for example, their daily energy patterns. Several studies have used such high 

temporal-resolution data, primarily for studying electricity demand [35,37,83,84] and 

even in combination with time-use data [85]. Recent studies also analyze hourly data on 

heating consumption using smart meter registrations [31,86,87]. One study uses smart 

meter data from district heating systems to investigate the correlation between temporal 

clusters and household characteristics (e.g., the presence of multiple adults, teenagers, and 

children) and indicates fairly constant load profiles across the different groups [38]. In 

combination, these studies underline the usefulness of exploiting high-resolution data to 

investigate temporal patterns in energy demand.  

To gain further knowledge on which types of households contribute the most to 

heating demand peaks, we use detailed information on households to identify groups 

according to occupation, family composition, and income. Moreover, we focus directly on 

daily load profiles and peak demand. 

3. Data and Methods 

This paper consists of (1) descriptive analysis of hourly data, where average hourly 

heating consumption is used to create daily profiles for various household types, and (2) 

multivariable analysis of morning and evening peak heating consumption, where 

correlations in use during the two peak periods and household types were modeled using 

regression techniques. These two steps were intended to exploit the available data and 

communicate the patterns in the best way according to the aim of the study.  

The energy monitoring data used in this study have been collected for previous 

research projects [30,31]. The data consisted of information on heat usage for 1665 

buildings connected to the DH network in a small town in the northern region of 

Denmark. The data were provided by the DH utility company. All installed smart meters 

gathered the cumulative heat (combined space heating and domestic hot water) usage. 

Measurements were recorded at an hourly rate. The recording period was from 00:00—5 

November 2018 to 00:00—7 October 2019. The months from 1 October 2018 to 1 March 

2019, which constitute the Danish heating season, were selected for this study. To focus 

on everyday patterns in energy consumption, weekends and Danish holidays were 

removed from the data (see also Figure 3 in Section 4). 

The smart heat data were combined with data on household characteristics from 

Danish administrative registers provided by Statistics Denmark (Description 

(https://www.dst.dk/en/TilSalg/Forskningsservice) and overview (https://econ.au.dk/the-

national-centre-for-register-based-research/danish-registers)). Merging these datasets 
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was possible using address codes, which were anonymized by Statistics Denmark on a 

secure server to which the authors have access. This enables statistical analysis of micro-

level data on a range of personal and household information, for example, from the Civil 

Registration Register (CPR) [88] and the Building and Housing Register (BBR) [89], which 

are provided in an anonymized form under a range of restrictions for the researchers 

[90,91]. 

After merging the different datasets and selecting only households living in single-

family dwellings, the final dataset comprised 803 units. Figure 2 is a flow chart illustrating 

the data structure and the analysis process with the different data resolution levels. The 

daily profiles (Sections 4.1–4.4) were based on data from 803 households (n) with 2497 

time points (T) each, which resulted in a total of 2,005,091 observations (N). The models 

on peak energy demand (Section 4.5) were based on 803 households (n) with an average 

of 103.8 time points (T), which resulted in a total of 83,338 observations (N). Finally, the 

comparison of the sample of 803 households with the full Danish population of 1,140,419 

households was based on information for the year 2019 (the full population used for 

comparison was restricted to single-family homes and townhouses and other minor 

corrections similar to the sample). 

 

Figure 2. Overview of data structure and the applied analysis process. 
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The household variables were based on data from the Danish administrative 

registers, which contain rich information about household occupants, e.g., income, 

occupation, and family composition. The household variables were divided into three 

groups. 

First, the households were categorized according to occupation. The variables are 

presented in Table 1. Based on the socio-economic classification in the Danish registers 

(SOCIO13) (https://www.dst.dk/en/Statistik/dokumentation/nomenklaturer/socio) and 

the classification of professions or jobs (DISCO-08 

(https://www.dst.dk/en/Statistik/dokumentation/nomenklaturer/disco)), which refers to 

the International Standard Classification of Occupations (ISCO-08) [92], the occupation 

categories were intended to indicate household variations in morning and evening 

routines, for example by indicating showering practices and other practices related to 

space heating and DHW (see, for example, [18,75] on the temporality of DHW demand 

practices). 

Table 1. Presentation and description of occupational variables with share (%) of the total sample. 

Each household can have several characteristics, so the percentages do not sum to 100%. 

Variable Name Description Examples Reference 1 Sample (%) Population (%) 

Blue-collar 

(physical job) 

At least one person in the 

household has a job requiring 

physical work or other sorts of 

manual or routine labor.  

Working with machinery, 

maintenance, construction, 

crafts, transport, 

manufacturing, agriculture, or 

fishery. 

DISCO major groups: 

6, 7, 8, 9. 
19.7% 24.3% 

White-collar 

(office job) 

At least one member of the 

household has a job in clerical 

or another type of office work.  

Working with administrative 

tasks, specialized services, 

engineering, and technicians.  

DISCO major groups: 

1, 2, 3, 4. 
66.6% 56.1% 

Pensioner 

At least one member of the 

household receives retirement 

benefits. 

Includes senior pension and 

early retirement benefits.  

Socio-Economic 

Classification 

(SOCIO13) 2: 321, 322, 

323. 

32.3% 38.7% 

Unemployed 

At least one member of the 

household receives 

unemployment benefits. 

Includes unemployed receiving 

sick pay or social security. 

Socio-Economic 

Classification 

(SOCIO13): 210, 220, 

330. 

4.6% 7.2% 

Number of households 803   1,140,419  
1 See https://en.wikipedia.org/wiki/International_Standard_Classification_of_Occupations for an 

overview of ISCO major groups. 2 

https://www.dst.dk/en/Statistik/dokumentation/nomenklaturer/socio. 

Second, households were categorized according to family composition, i.e., age and 

presence of children in the household. The intention was to reflect variations in everyday 

practices and temporal rhythms related, e.g., related to ‘family peaks’ [45] and ‘busy spots’ 

during the day [42,43]. Therefore, the categories were rather detailed, with four types of 

households according to the presence of children, and five categories of age based on the 

oldest member of the household. Table 2 presents these categories with descriptions. 

Table 2. Presentation and description of household composition variables with share (%) of the total 

sample. Each household can have several characteristics, so the percentages do not sum to 100%. 

Variable Name Description Categories Sample (%) Population (%) 

Child 
Child in the household, based 

on age of the youngest child 

1 No child (Ref.) 54.6 66.7 

2 Pre-school child (0 to 6 years) 20.9 10.9 

3 Young child (7 to 12 years) 14.1 10.6 

4 Teenager (13 to 19 years) 10.5 11.8 

Age  1 18 to 40 years (Ref.) 20.4 13.0 
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Age of oldest adult in the 

household 

2 41 to 50 years 23.4 19.6 

3 51 to 60 years 18.3 22.2 

4 61 to 70 years 15.3 19.4 

5 71 years or older 22.5 25.8 

Number of households 803 1,140,419 

Third, households were categorized according to income. The variable consists of six 

groups representing different degrees of household financial resources (see Table 3). It 

was constructed by summing the individual annual disposable incomes of each adult 

household member. Disposable income refers to income after taxes for each adult 

household member. 

Table 3. Presentation and description of household composition variables with share (%) of the total 

sample. Each household can have several characteristics, so the percentages do not sum to 100%. 

Variable 

Name 
Description Categories Sample (%) 

Population 

(%) 

Income 

Six groups categorized by total 

annual disposable household 

income (income after taxes).  

1 Less than DKK 300,000 (app. EUR 40,000)  11.5 21.7 

2 DKK 300,000 to 399,999 (app. EUR 54,000) 15.1 14.6 

3 DKK 400,000 to 499,999 (app. EUR 67,000) 14.1 13.5 

4 DKK 500,000 to 599,999 (app. EUR 81,000) 19.3 13.3 

5 DKK 600,000 to 699,999 (app. EUR 94,000) 16.2 11.5 

6 DKK 700,000 or higher 23.9 25.4 

Number of households 803 1,140,419 

Finally, the physical attributes of houses, including construction year and house size, 

were used to control for the correlations with the household variables in the models in 

Section 4.5. The full list can be found in Appendix A. Previous studies have used similar 

control variables based on Danish registers [25,37,93]. 

The last part of the analysis (Section 4.5) aimed to model household variation in the 

morning (5:00–9:00) and evening (17:00–20:00) peak heating demand. The models were 

based on time-series data, where each household had multiple observations according to 

the number of hours. These multiple observations are assumed to cluster and correlate 

within households (units) over time, thereby being strongly interdependent and having 

serially correlated errors [94]. To account for this serial correlation, a panel regression 

model was applied, and as we were in the variation between households, we used the 

‘between estimator’, which refers to an ordinary least square estimator applied to 

averaged estimates over time within households [95] (we used the Stata function xtreg 

with the specification of between effects (be)). 

The data enforced some limitations on the analysis. For example, the sample included 

only households with district heating. Therefore, some bias related to the correlation 

between the type of primary energy source used for heating and socio-economic groups 

might exist. Around half of the Danish households living in single-family homes or 

townhouses are supplied with DH (Statistics Denmark, table BOL105), and compared 

with the full Danish population, Tables 1–3 show that the sample appears relatively 

representative according to occupation, household composition, and income. 

4. Results 

We start the analysis by looking at how heating load patterns vary according to 

various aspects of temporal rhythms. Figure 3 displays daily energy loads based on 

average values for each hour across different categories. Thus, it highlights important 

differences between weekends versus weekdays (Monday to Friday), working days 

versus holidays (Danish school holidays), and heating season (October to April) versus 

all-year data. 
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As seen in Figure 3, the morning peak occurs much later on the weekend than on 

workdays, and the same pattern is found for holidays. Moreover, the general heating load 

is lower outside the heating season. 

 

Figure 3. Daily heating load profiles for all week, weekdays, and weekends based on average hourly 

consumption. N = 6,475,392, n = 803. 

We chose to focus on the most regular heating patterns. Therefore, we limited the 

rest of the analysis to the periods when it is expected that the household practices are the 

most regular, which we assume to be on working weekdays during the heating season. 

This means we choose to analyze weekdays (Monday to Friday) in the heating season 

(October to April) exclusive of Danish school holidays. 

The rest of the result section is divided into five parts. Sections 4.1–4.4 use data on an 

hourly resolution to describe variations in daily heat profiles across various household 

groups. Tables with selected data used for the figures can be found in Appendix B. Section 

4.5 presents the results of panel models on average hourly consumption during morning 

and evening peaks to estimate differences in heating use. 

4.1. Occupation 

The first household groups that we compare relate to occupation. Figure 4 shows that 

households with white-collar workers tend to have a higher morning peak, whereas 

households with pensioners have the latest morning peak and, in general, the flattest daily 

profile. Households with unemployment almost have the same morning peak as 

households with blue-collar workers, but the profile during the day is slightly higher. 

There seems to be a negligible difference during the evening peak. 
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Figure 4. Heat usage profile for an average day for occupational groups based on average hourly 

consumption. N = 2,005,091; n = 803. 

4.2. Age 

The second household category we compare is based on the age of the household. In 

Figure 5, we compare the daily heat profiles according to the categorizations of the oldest 

occupant represented in the household. The comparison shows that the group aged 41 to 

50 years has the most substantial morning peak with 4.5 kWh at 7 h. The younger group 

(aged 18 to 40) and the slightly older group (aged 51 to 60) follow with an average peak 

demand of just below 4 kWh. As with the pensioner group in Figure 4, the oldest group 

(aged 71 or older) has the latest morning peak and highest load during the day, whereas 

the group aged 61 to 70 has the flattest and generally lowest load profile. 

 

Figure 5. Heat usage profile for an average day for age groups based on the oldest occupant in the 

household based on average hourly consumption. N = 2,005,091; n = 803. 
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4.3. Children 

The third occupant group we compare reflects the presence of children in the 

household. Here, we compare households based on the youngest child in the household. 

Figure 6 shows that households with no children seem to have a flatter daily profile than 

other households. In particular, the morning peak appears much lower, at 3.4, compared 

to a peak of 4.6 for the group with young children (aged 7 to 12). The morning peaks of 

households with teenagers (aged 13 to 19) and households with pre-school children (aged 

0 to 6) as the youngest in the household are similar. However, the evening peak for 

households with teenagers appears slightly different, with a slightly lower peak at 3.1 

kWh at 20 h, compared to 3.3 kWh at 19 h for households with younger children. 

 

Figure 6. Heat usage profile for an average day for groups comparing the age of children based on 

the youngest child in households based on average hourly consumption. N = 2,005,091; n = 803. 

4.4. Income 

The fourth and final comparison uses five total household disposable income groups 

to identify differences in heating use profiles related to financial consumption capacity. 

Figure 7 clearly shows that the higher-income groups tend to consume more during the 

morning and evening peaks. The highest income groups (above DKK 500k) have morning 

peaks of around 4 kWh at 7 h and evening peaks of around 3.3 at 19 h. The lowest income 

groups (less than DKK 400k) tend to have flatter daily profiles with smaller and somewhat 

later morning peaks. 
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Figure 7. Heat usage profile for an average day for groups comparing income groups based on total 

annual household disposable income based on average hourly consumption. N = 2,005,091; n = 803. 

4.5. Modeling Variation Morning and Evening Peak 

In the presentation of the differences in load profiles in Sections 4.1–4.5, the 

comparison of one variable does not take a variation on another characteristic into 

account. In other words, the average load profiles do not control for other socio-economic 

or building variables. Therefore, profiles of lower-income households resemble those of 

unemployed and pensioners, which indicates that these categories contain some of the 

same households. To distinguish the importance of each of the characteristics, we employ 

a multiple regression analysis, which includes multiple variables at the same time and, in 

addition, controls for building characteristics. 

Table 4 presents the estimates of the regression model. It shows that before 

controlling for building variables, blue-collar households tended to consume less during 

the morning peak (5:00–9:00), whereas households tended to consume more as their 

income was higher (M1). When controlling for building characteristics (M2), the blue-

collar estimate was no longer significant, but the correlation with income persisted, 

although the impact became less significant. Instead, the unemployed households now 

seemed to consume less during the morning peak at a lower significance level. 

Table 4. Between-effect panel regression model for morning peak (5:00–9:00). Complete table found 

in Appendix C. *** p < 0.01, ** p < 0.05, * p < 0.1; standard error in parentheses. 

 M1 M2 

Blue-collar (1 = Yes) −0.191 ** (0.081) −0.092 (0.064) 

White-collar (1 = Yes) −0.075 (0.111) 0.020 (0.088) 

Pensioner (1 = Yes) −0.132 (0.149) −0.081 (0.119) 

Unemployed (1 = Yes) −0.172 (0.144) −0.204 * (0.116) 

Child (youngest)     

No child Ref. Ref. 

Pre-school child (0–6 years) −0.036 (0.124) −0.070 (0.098) 

Young child (7–12 years) 0.096 (0.120) −0.037 (0.095) 

Teenager (13–19 years) −0.161 (0.118) −0.108 (0.094) 
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Age (oldest)     

18 to 40 years Ref. Ref. 

41 to 50 years 0.105 (0.110) 0.118 (0.088) 

51 to 60 years −0.050 (0.130) −0.056 (0.104) 

61 to 70 years 0.105 (0.157) 0.068 (0.126) 

71 years or older 0.349 * (0.185) 0.116 (0.149) 

Total income     

Less than DKK 300,000  Ref. Ref. 

DKK 300,000 to 399,999  −0.014 (0.115) −0.036 (0.093) 

DKK 400,000 to 499,999  0.339 *** (0.123) 0.144 (0.101) 

DKK 500,000 to 599,999  0.624 *** (0.134) 0.347 *** (0.110) 

DKK 600,000 to 699,999  0.599 *** (0.142) 0.274 ** (0.118) 

DKK 700,000 or higher 0.741 *** (0.137) 0.395 *** (0.117) 

Building control variables included   Yes 

Constant 2.924 *** (0.170) 3.382 *** (0.186) 

R2 (between variance) 0.10 0.45 

N (observations) 83,338 83,338 

n (households)  803 803 

T (avg. observations per household) 103.8 103.8 

Table 5 presents the correlations between household characteristics and heating 

consumption during the evening peak (17:00–20:00). Before controlling for building 

characteristics (E1), the oldest age group (71 years or older) seemed to consume more, and 

the higher-income households again also tended to consume more. When taking variation 

due to the building into account (E2), only the correlation with the highest income groups 

(above DKK 500,000) remained significant and positive. 

Table 5. Between-effect panel regression model for evening peak (17:00–20:00). Complete table 

found in Appendix D. *** p < 0.01, ** p < 0.05, * p < 0.1; standard error in parentheses. 

 E1 E2 

Blue-collar (1 = Yes) −0.063 (0.085) 0.018 (0.062) 

White-collar (1 = Yes) −0.089 (0.118) 0.017 (0.084) 

Pensioner (1 = Yes) −0.119 (0.158) −0.022 (0.114) 

Unemployed (1 = Yes) −0.153 (0.153) −0.102 (0.111) 

Child (youngest)     

No child Ref. Ref. 

Pre-school child (0–6 years) 0.049 (0.131) 0.020 (0.094) 

Young child (7–12 years) 0.058 (0.127) −0.084 (0.092) 

Teenager (13–19 years) −0.141 (0.125) −0.095 (0.090) 

Age (oldest)     

18 to 40 years Ref. Ref. 

41 to 50 years 0.106 (0.116) 0.157 * (0.084) 

51 to 60 years 0.155 (0.138) 0.094 (0.100) 

61 to 70 years 0.235 (0.167) 0.094 (0.121) 

71 years or older 0.499 ** (0.196) 0.185 (0.143) 

Total income     

Less than DKK 300,000  Ref. Ref. 

DKK 300,000 to 399,999  0.009 (0.122) 0.008 (0.089) 

DKK 400,000 to 499,999  0.309 ** (0.131) 0.132 (0.096) 

DKK 500,000 to 599,999  0.493 *** (0.142) 0.242 ** (0.106) 

DKK 600,000 to 699,999  0.455 *** (0.151) 0.228 ** (0.114) 

DKK 700,000 or higher 0.417 *** (0.145) 0.235 ** (0.113) 

Building control variables included   Yes 

Constant 2.600 *** (0.180) 3.031* ** (0.179) 
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R2 (between variance) 0.04 0.52 

N (observations) 83,382 83,382 

n (households)  803 803 

T (avg. observations per household) 103.8 103.8 

In both Tables 4 and 5, the building characteristics explained most of the variation in 

heating consumption. For the morning peak, the explained variation between households 

increased from 0.10 to 0.43 after adding building variables, and for the evening peak, the 

explained variation increased from 0.04 to 0.52. Because we chose to use detailed 

occupational categories in this analysis, we also had to accept a few cases of 

multicollinearity. This means that the variance inflation factor (VIF) was above five for 

white-collar and unemployed households, and the highest age group in both the morning 

and evening peak models, as well as the highest income group, were slightly higher than 

five in the morning peak model. 

5. Discussion 

This study investigated the types of households that contribute the most to morning 

and evening peaks of space heating and DHW usage. By combining smart meter data on 

hourly heat consumption for 803 households with household information from 

administrative registers, the analyses indicate that temporal variations in heating demand 

are stable across different types of households. This is in line with previous studies [38], 

and it underlines the importance of socio-temporal rhythms, for example, related to 

working hours and school hours [11,42,82], for structuring the timing of energy demand. 

The results also indicate important variations among household groups. For 

example, white-collar (office jobs) households tend to have higher morning peaks (5:00–

9:00) than blue-collar (physical labor) households and unemployed households, and 

pensioner households tend to have later morning peaks and flatter daily heating load 

profiles. These tendencies might be explained by variations in morning routines, where 

for example, the timing of showering routines relates to the type of work and the need for 

showering in the morning (before office jobs) or in the evening (after physically active 

jobs) [18]. 

Households with children have strong morning peaks, but households with young 

children (7–12 years) seem to have the highest morning peak, compared to households 

with teenagers (13–19 years) or pre-school children (0–6 years). This might be explained 

by strong institutional rhythms, especially for early-school children, and thereby 

reflecting socio-temporal rhythms [11,42,82] or what could be referred to as family peak 

periods [45]. 

However, when controlling for building characteristics, these correlations are 

insignificant, and only the positive correlation with higher income remains significant. 

Additionally, unemployed households now tend to consume less during morning peaks, 

although at a lower significance level. This suggests that although variations in daily 

rhythms across occupation and family composition exist, these seem less important than 

the factors of household income and building characteristics. 

The analysis of evening peak demand for heating supports this. In general, the 

evening heating demand contained less variation than the morning (i.e., the timing and 

size of the peak are remarkably stable across the groups). It should be noted that for all 

household groups, the evening peak occurs at 19 o’clock. The evening meal, therefore, 

seems to occur around the same time in the 803 households analyzed. Still, higher-income 

groups seem to contribute the most to the evening peak, also when controlling for other 

household characteristics and building characteristics. Again, this relates to family peak 

periods [45]. 

Where previous studies suggest that socio-economic household variation related, for 

example, to occupation and family composition, correlates with the amount of energy 

used for heating [23,25,59], our results question whether mechanisms explaining levels of 
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(aggregated) heating consumption also apply to the timing of (hourly) heating 

consumption, with the exception of the correlation with household income. 

6. Conclusions, Policy, and Research Implications 

As the percentage of RE in energy supply increases, energy systems, such as DH 

systems, require a greater understanding of household energy demand dynamics. In 

particular, the timing of household energy demand seems important, and this study used 

high-resolution consumption data to contribute to providing new evidence on the timing 

of energy demand across different household types. 

The results of this study support well-described theories suggesting that the timing 

of household energy demand (i.e., at which time household activities are performed) 

reflects societal rhythms, for example, school hours, opening hours, and working hours. 

This study suggests a strong convergence between societal rhythms and daily load 

patterns of diverse types of households. For example, the different characteristics of 

households did not affect daily patterns of heat demand very much. Based on this, we 

suggest focusing on collective energy practices rather than individual customers. This 

means focusing on what people generally do in their homes (and when) rather than 

relying on specific assumptions about consumers and their behavior. The timing of energy 

demand practices seems largely determined by external factors that the household cannot 

change. These factors could also be referred to as collective norms of energy practices, for 

example, when morning and evening peaks fit regular school and work hours. In other 

words, there might be little room for occupants to change their daily rhythms deliberately 

and thereby time-shift heating demand. 

New evidence on how peak heat demand reflects occupant practices might be 

valuable for utility companies’ energy demand management. In this case, income level 

and job type reflect variations in user practices, which for example, influence energy 

demand patterns and choices made by the households. 

A recent study comparing temporal aspects of everyday practices in several 

European countries during the COVID-19 lockdown suggests strong similarities across 

cultural contexts [96]. Like this study, we suggest that efforts to promote energy demand 

flexibility should focus on the intersection of everyday practices, institutional time 

structures, and societal temporal rhythms rather than individual behaviors and 

occupants’ ability to change the timing of their everyday practices. 

This study is based on one case in the northern part of Jutland in Denmark. This 

approach needs to be replicated in other contexts to collect better evidence on the relation 

between occupants (characteristics) and peak heat demand (timing). Furthermore, the 

effect of opening hours or office hours could be tested by comparing cases where these 

variables already differ. Further research is needed to better understand the mechanisms 

suggested in this study. 
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CPR  Civil registration register 



Energies 2022, 15, 9505 15 of 22 
 

 

DHW  Domestic hot water  

DH District heating 

RE  Renewable energy 

Appendix A 

Variable Name Description Categories 
Sample 

(%) 

Population 

(%) 

Construction 

year 

Five group categorization of year of construction, 

which partly reflect energy efficiency [93,97] 

1 Built before 1961 (Ref.) 6.6 38.3 

2 Built 1961 to 1972 35.1 24.6 

3 Built 1973 to 1978 33.6 13.9 

4 Built 1979 to 2006 12.2 17.5 

5 Built after 2006 12.5 5.8 

Area 
Three groups of house sizes are based on the 

residential area (m2). 

1 Area less than 130 m2 24.4 39.2 

2 Area 130 m2 to 160 m2 (Ref.) 44.0 30.7 

3 Area more than 160 m2 31.6 30.1 

Rooms Categorization of the number of rooms.  

1 Fewer than 5 rooms  38.4 45.9 

2 5 rooms (Ref.) 40.5 27.9 

3 More than 5 rooms 21.2 26.2 

Townhouse The building is a townhouse (1 = Yes), and not a single-family home 8.1 13.4 

Multiple 

bathrooms 
The building unit has more than one bathroom installed (1 = Yes) 34.3 31.6 

Multiple toilets The building unit has more than one toilet installed (1 = Yes) 68.5 55.9 

Renovation The house has a registered renovation or extension.  

1 
No registered 

renovation/extension (Ref.) 
65.8 64.2 

2 Until 1978 10.5 12.5 

3 After 1978 23.8 23.3 

Attic floor The building unit has a registered attic floor area (1 = Yes).  11.8 36.5 

Basement The building unit has a registered basement area (1 = Yes). 9.2 28.3 

Number of households 803 1,140,419 

Appendix B 

    Blue-Collar White-Collar Pensioner Unemployed 

5–9 

Peak (kW)  3.7 4.1 3.3 3.5 

Energy (kWh) 13.3 14.4 12.4 13.2 

% of daily use 18.6 19.5 17.1 18.0 

17–20 

Peak (kW) 3.2 3.2 3.1 3.1 

Energy (kWh) 9.2 9.3 9.1 9.1 

% of daily use 12.9 12.6 12.4 12.5 

 

    18–40 y 41–50 y 51–60 y  61–70 y 71 y+ 

5–9 

Peak (kW)  3.9 4.5 3.8 3.4 3.4 

Energy (kWh) 13.8 15.3 13.6 12.7 12.7 

% of daily use 19.3 20.4 18.8 17.9 17.0 

17–20 

Peak (kW) 3.2 3.3 3.1 3.1 3.2 

Energy (kWh) 9.1 9.4 9.2 8.9 9.3 

% of daily use 12.7 12.6 12.7 12.5 12.5 

 

    No Child 
Pre-School Child  

(0–6 y)  

Young Child  

(7–12 y) 

Teenager  

(13–19 y) 

5–9 

Peak (kW)  3.4 4.0 4.6 4.2 

Energy (kWh) 13.0 14.2 15.6 13.9 

% of daily use 17.8 19.6 20.3 19.5 

17–20 Peak (kW) 3.1 3.3 3.1 3.1 
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Energy (kWh) 9.1 9.4 9.6 8.9 

% of daily use 12.5 12.9 12.5 12.5 

 

    
Less than  

DKK 300K  

DKK 300K to  

DKK 399.999  

DKK 400K to  

DKK 499.999  

DKK 500K to  

DKK 599.999  

DKK 600K to  

DKK 699.999  

DKK 700.000  

or higher 

5–9 

Peak (kW)  3.1 3.1 3.4 4.6 4.0 4.6 

Energy 

(kWh) 
12.0 11.7 13.0 14.0 11.2 15.5 

% of daily 

use 
17.1 17.2 17.9 18.8 15.0 20.5 

17–20 

Peak (kW) 2.9 2.9 3.1 3.1 3.2 3.3 

Energy 

(kWh) 
8.7 8.6 9.2 9.5 9.4 9.5 

% of daily 

use 
12.4 12.6 12.6 12.7 12.6 12.5 

Appendix C 

 M1 M2 

Blue-collar (1 = Yes) −0.191 ** (0.081) −0.092 (0.064) 

White-collar (1 = Yes) −0.075 (0.111) 0.020 (0.088) 

Pensioner (1 = Yes) −0.132 (0.149) −0.081 (0.119) 

Unemployed (1 = Yes) −0.172 (0.144) −0.204 * (0.116) 

Child (youngest)     

No child Ref. Ref. 

Pre-school child (0–6 years) −0.036 (0.124) −0.070 (0.098) 

Young child (7–12 years) 0.096 (0.120) −0.037 (0.095) 

Teenager (13–19 years) −0.161 (0.118) −0.108 (0.094) 

Age (oldest)     

18 to 40 years Ref. Ref. 

41 to 50 years 0.105 (0.110) 0.118 (0.088) 

51 to 60 years −0.050 (0.130) −0.056 (0.104) 

61 to 70 years 0.105 (0.157) 0.068 (0.126) 

71 years or older 0.349 * (0.185) 0.116 (0.149) 

Total income     

Less than DKK 300,000  Ref. Ref. 

DKK 300,000 to 399,999 −0.014 (0.115) −0.036 (0.093) 

DKK 400,000 to 499,999 0.339 *** (0.123) 0.144 (0.101) 

DKK 500,000 to 599,999 0.624 *** (0.134) 0.347 *** (0.110) 

DKK 600,000 to 699,999 0.599 *** (0.142) 0.274 ** (0.118) 

DKK 700,000 or higher 0.741 *** (0.137) 0.395 *** (0.117) 

Construction year    

Before 1961   Ref. 

1961 to 1972   −0.223 * (0.117) 

1973 to 1978   −0.450 *** (0.120) 

1979 to 2006   −0.888 *** (0.132) 

After 2006   −1.096 *** (0.148) 

Area      

Less than 130 m2   −0.243 *** (0.069) 

130 m2 to 160 m2   Ref. 

More than 160 m2   0.335 *** (0.062) 

Rooms     

Fewer than 5    0.020 (0.060) 

5 (Ref.)   Ref. 

More than 5   0.216 *** (0.067) 
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Townhouse (1 = Yes)   −0.508 *** (0.100) 

More bathrooms (1 = Yes)   0.065 (0.063) 

More toilets (1 = Yes)   0.115 * (0.066) 

Renovation     

No registered renovation   Ref. 

Until 1978   0.207 ** (0.087) 

After 1978   0.062 (0.061) 

Attic floor (1 = Yes)   −0.199 ** (0.091) 

Basement (1 = Yes)   0.463 *** (0.084) 

Constant 2.924 *** (0.170) 3.382 *** (0.186) 

R2 (between variance) 0.10 0.45 

N (observations) 83,338 83,338 

n (households)  803 803 

T (avg. observations per household) 103.8 103.8 

Note Between-effect panel regression model for morning peak (5 h to 9). *** p < 0.01, ** p < 0.05, * p 

< 0.1; standard error in parentheses. 

Appendix D 

 E1 E2 

Blue-collar (1 = Yes) −0.063 (0.085) 0.018 (0.062) 

White-collar (1 = Yes) −0.089 (0.118) 0.017 (0.084) 

Pensioner (1 = Yes) −0.119 (0.158) −0.022 (0.114) 

Unemployed (1 = Yes) −0.153 (0.153) −0.102 (0.111) 

Child (youngest)     

No child Ref. Ref. 

Pre-school child (0–6 years) 0.049 (0.131) 0.020 (0.094) 

Young child (7–12 years) 0.058 (0.127) −0.084 (0.092) 

Teenager (13–19 years) −0.141 (0.125) −0.095 (0.090) 

Age (oldest)     

18 to 40 years Ref. Ref. 

41 to 50 years 0.106 (0.116) 0.157 * (0.084) 

51 to 60 years 0.155 (0.138) 0.094 (0.100) 

61 to 70 years 0.235 (0.167) 0.094 (0.121) 

71 years or older 0.499 ** (0.196) 0.185 (0.143) 

Total income     

Less than DKK 300,000 Ref. Ref. 

DKK 300,000 to 399,999  0.009 (0.122) 0.008 (0.089) 

DKK 400,000 to 499,999  0.309 ** (0.131) 0.132 (0.096) 

DKK 500,000 to 599,999  0.493 *** (0.142) 0.242 ** (0.106) 

DKK 600,000 to 699,999  0.455 *** (0.151) 0.228 ** (0.114) 

DKK 700,000 or higher 0.417 *** (0.145) 0.235 ** (0.113) 

Construction year     

Before 1961   Ref. 

1961 to 1972   −0.153 (0.112) 

1973 to 1978   −0.391 *** (0.115) 

1979 to 2006   −0.875 *** (0.126) 

After 2006   −1.609 *** (0.142) 

Area      

Less than 130 m2   −0.220 *** (0.066) 

130 m2 to 160 m2   Ref. 

More than 160 m2   0.340 *** (0.060) 

Rooms     

Fewer than 5    0.052 (0.055) 

5 (Ref.)   Ref. 
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More than 5   0.167 *** (0.065) 

Townhouse (1 = Yes)   −0.575 *** (0.095) 

More bathrooms (1 = Yes)   0.054 (0.060) 

More toilets (1 = Yes)   0.085 (0.064) 

Renovation     

No registered renovation   Ref. 

Until 1978   0.291 *** (0.083) 

After 1978   0.040 (0.059) 

Attic floor (1 = Yes)   −0.135 (0.087) 

Basement (1 = Yes)   0.482 *** (0.080) 

Constant 2.600 *** (0.180) 3.031 *** (0.179) 

R2 (between variance) 0.04 0.52 

N (observations) 83,382 83,382 

n (households)  803 803 

T (avg. observations per household) 103.8 103.8 

Note Between-effect panel regression model for evening peak (17:00–20:00). *** p < 0.01, ** p < 0.05, 

* p < 0.1; standard error in parentheses. 
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