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Abstract: Vision-based object detection plays a crucial role for the complete functionality of many
engineering systems. Typically, detectors or classifiers are used to detect objects or to distinguish
different targets. This contribution presents a new evaluation of CNN classifiers in image detection
using a modified Probability of Detection reliability measure. The proposed method allows the
evaluation of further image parameters affecting the classification results. The proposed evaluation
method is implemented on images and comparisons made on parameters with the best detection
capability. A typical certification standard (90/95) denoting a 90% probability of detection at 95%
reliability level is adapted and successfully applied. Using the 90/95 standard, comparisons are
made between different image parameters. A noise analysis procedure is introduced, permitting
the trade-off between the detection rate, false alarms, and process parameters. The advantage of the
novel approach is experimentally evaluated for vision-based classification results of CNN considering
different image parameters. With this new POD evaluation, classifiers will become a trustworthy
part of vision systems.

Keywords: classification; convolutional neural network; performance evaluation; probability of
detection

1. Introduction

In classification, performance measurement is an essential task. Performance eval-
uation approaches are commonly based on either a numerical measure or a graphical
representation. The numerical measures are based on the calculation of true positives (TPs),
false positives (FPs), false negatives (FNs), and true negatives (TNs). The relations are
shown using a confusion matrix [1]. The selection of a suitable numeric measure normally
depends on the classification purpose. The authors in [2] used 24 performance measures,
namely: accuracy, precision, sensitivity, recall, fscore, and exact match ratio, among others,
for binary, multi-class, multi-labeled, and hierarchical classifiers based on the values of the
confusion matrix. The accuracy measure is the most common performance measure for
evaluating classification algorithms. In [3], the accuracy measure is used in the evaluation of
a group of collaborative representation model for face recognition and object categorization
tasks. In [4,5], classification accuracy is also used to evaluate classifier performance. In [6],
average precision (AP) and mean AP (mAP) are used in the evaluation of collaborative
linear coding approaches with the purpose of eliminating the negative influence regarding
noisy features in classifying images.

Graphical assessment methods provide a visual interpretation of the classification
performance. The Receiver Operating Characteristic (ROC) is a popular graphical perfor-
mance measure for binary classifiers [7]. The approach is based on the illustration of a
true positive rate against a false positive rate. The ROC is not suitable in the case of data
sets with large class imbalances. An alternative visualization is the precision–recall (PR)
curve represented by the relationship between recall and precision. The area under the
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ROC curve (AUC) and the PR curve (AUPRC) are also used as performance measures with
the same limitations as single performance measures. The Detection Error Trade-off (DET)
curve [1] is an example of graphical assessment approach, showing the relation between
false acceptance rate (FAR) and false rejection/recognition rate (FRR). A set of methods is
presented for finding a suitable threshold for reducing the sensitivity of the assessment to
imbalanced data [8].

Deep learning approaches are widely used in vision systems for recognition and
tracking and also in highly automated driving [9,10]. Deep Convolutional Neural Networks
(CNN) are suitable classifiers for large-scale image classification. The aforementioned
evaluation approaches can be used to evaluate the classification results of CNN in machine
vision field [11]. The most commonly used performance measure is AP considering both
precision and recall [9].

In vision-based systems, image parameters such as brightness, contrast, and sharpness,
among others, are used to describe the quality of a classification approach and therefore
serve as features to the classification process [12]. Image attributes such as brightness,
contrast, sharpness, and chroma are manipulated in [13] to generate adversarial examples
for the imaging process. Different fusion techniques have been implemented to enhance
image parameters and classification results [14]. It is worth mentioning that the effects of
these image parameters or varying problem details are not directly considered by known
numerical and graphical evaluation metrics. A newly introduced performance evaluation
is proposed in this contribution based on the Probability of Detection (POD) evaluation
metric directly considering these process (image) parameters. A process parameter in this
context refers to a variable affecting the classification results. To better understand the effect
of process parameters, the ROC curve metric is examined. The ROC plots the detection rate
against the false alarm rate and was developed in the early 1940s to assess the capabilities
of allied radio receivers in identifying opposition aircraft/objects correctly. No effort was
made to relate detectability with size quantitatively because aircraft size was irrelevant.
Contemporary applications, as demonstrated in the areas of nondestructive testing [15,16]
and structural health monitoring [17], are concerned with how the characteristics of the
target influence the probability of detecting it. The PR curve has been proposed as an
alternative and more effective in dealing with highly skewed datasets [18,19]. This is
because the ROC curve computes the performance of the model with no knowledge of the
class imbalance, while the PR curve uses estimated class imbalance baseline to compute
the model performance. However, the fundamental concern of investigating the effect
of process parameters on classification results has received little attention. The ROC is
useful for situations with two outcomes, such as diagnosing the presence or absence of
disease, because there are only two possible conditions: the disease is either present or
not. However, in applications which require detectability to be related to a target severity,
the POD becomes very useful. In the field of NDT, size is usually used as a surrogate for
severity.

In [18], the idea of classifier evaluation using POD was applied to driving behavior
prediction. In addition to the previous publication, here:

i. The focus is different: The approach is applied to vision-based image detection.
ii. A new certification standard for image classification approaches is clearly defined.
iii. A new procedure fully illustrating the visualization and trade off between the image

parameters, decision threshold, true positive, and false positive rates is presented.

Two image parameters (brightness and contrast) are evaluated. These parameters are not
exhaustive or exclusive; however, they are selected for illustrative purposes and also to
demonstrate that different parameters will result in distinct POD results.

The contribution is organized as follows: In Section 1.1, the classification approaches
are explained. In Section 2, the POD is briefly introduced. The classification results are
discussed in Section 3. In Section 4, a newly proposed approach based on the POD measure
is briefly introduced, applied, and the results are presented. A new noise analysis procedure
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is presented in Section 5. Comparison is made between different classifiers in Section 6
using the Hit/Miss approach, and subsequently, the conclusion is presented in Section 7.

1.1. Deep Convolutional Neural Network (CNN) for Object Classification

Convolutional Neural Network (CNN), a class of deep Neural Networks, is widely
used in computer vision as an approach for image recognition and classification. The most
common advantage of using CNN compared to other image classification algorithms is the
pre-processing filter that can be learned by the network. The structure of CNN consists of
convolutional layers, ReLU layers (activation function), pooling layers, and fully connected
layer. Each layer involves linear and/or nonlinear operators.

Convolutional layers extract features from the input image by applying a convolution
operation to the input image. The convolutional layer is the first filter layer that builds a
convolved feature map for the next layer. The pooling layers are applied to avoid over-
fitting and to preserve the desired features. The last pooling layer is followed by one (or
more) fully-connected layer(s) according to the architecture of the multilayer perceptron to
be used for the classification. The number of neurons in the last layer usually corresponds
to the number of (object) classes to be distinguished.

With each filter layer, the abstraction level of the network increases. The abstraction
which finally leads to the activation of the subsequent layers is determined by characteristic
features of the given classes.

1.2. Network Architecture

In this contribution, two architectures are used for classification: (1) ResNet18 [20] and
(2) MobileNet V2 [21]. In the ResNet18 structure, a Convolutional Neural Network with
18 layers deep is built based on a deep residual learning framework shown in Figure 1.

Figure 1. Architecture of ResNet18 (according to [20]).

The learning approach eliminates accuracy degradation while the depth of the network
increases. In the MobileNet V2 structure, an inverted residual and linear bottleneck layer
is proposed to increase the accuracy in mobile and computer vision applications. This
structure is an improved version of MobileNet V1 which uses the depth-wise separable
convolution to decrease the size of the model and, correspondingly, the complexity of
the network. The overall architecture of MobileNet V2 is shown in Table 1, and the basic
building block shown in Figure 2.
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Table 1. Overall architecture of MobileNet V2.

Input Operator t c n s

2242 × 3 conv2d - 32 1 2
1122 × 32 bottleneck 1 16 1 1
1122 × 16 bottleneck 6 24 2 2
562 × 24 bottleneck 6 32 3 2
282 × 32 bottleneck 6 64 4 2
142 × 64 bottleneck 6 96 3 1
142 × 96 bottleneck 6 160 3 2
72 × 160 bottleneck 6 320 1 1
72 × 320 conv2d 1 × 1 - 1280 1 1
72 × 1280 avgpool 7 × 7 - - 1 -
1 × 1 × 1280 conv2d 1 × 1 - k - -

Figure 2. Network architecture of MobileNet V2 with a basic building block as inverted residual
block (according to [21]).

2. POD Assessment of Binary Classifiers

An introduction of the adapted POD [18] and its implementation in classifier evalua-
tion is briefly repeated in this section. Probability of Detection is a certification tool used to
assess the reliability of nondestructive testing (NDT) measurement procedures [15,22]. The
MIL-HDBK-1823A is the state-of-the-art and contemporary guide for POD studies [23,24].
The evaluation process use the so-called POD curve [15,22]. Data used in producing POD
curves are categorized by the main POD controlling parameters. These parameters are
either discrete or continuous and can be classified as follows:

1. Target response: data which provide quantitative measure of target;
2. Hit/miss: produce a binary statement or qualitative information about the existence

of a target.

Both approaches are adapted, extended, and implemented as a new performance
evaluation metric for vision-based systems.
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2.1. Target Response Approach to POD

The target response approach is used when a relationship between a dependent
function and an independent variable exists [15]. In the derivation of the POD curve, a
predictive modeling technique is required. Regression analysis is one of this statistical
regression approaches [15,25,26]. In the derivation of the target response POD curve, a
regression analysis of the data gathered has to be realized [25,26]. The regression equation
for a line of best fit to a given data set is given by:

y = b + mx, (1)

where m is the slope and b the intercept. The Wald confidence bounds are constructed to
define a confidence interval that contains 95% of the observed data. Here, the 95% Wald
confidence bounds on y is constructed by [27]:

y(a=0.95) = y + 1.645τy, (2)

where 1.645 is the z-score of 0.95 for a one-tailed standard normal distribution, and τy is the
standard deviation of the regression line. The Delta method is a statistical technique used to
transition from a regression line to a POD curve [15]. The confidence bounds are computed
using the covariance matrix for the mean and standard deviation POD parameters µ and
σ, respectively [28]. To estimate the entries, the covariance matrix for parameters and
distribution around the regression line needs to be determined. This is performed using
Fisher’s information matrix I [28]. The information matrix is derived by computing the
maximum likelihood function f of the standardized deviation z of the regression line
values. The entries of the information matrix are calculated by the partial differential of the
logarithm of the function f using the parameters of Θ(m, b, τ) of the regression line. From

zi =
(yi − (b + mxi))

τ
(3)

and

fi =
n

∏
i=1

1
2π

e−
1
2 (zi)

2
(4)

the information matrix I can be computed as:

Iij = −E(
∂2

∂Θi∂Θj
log( f )). (5)

The inverse of the information matrix yields φ as:

φ = I−1 =

 σ2
b σbσm σbστ

σmσb σ2
m σmστ

στσb στσm σ2
τ

. (6)

The mean µ and standard deviation σ of the POD curve are calculated by µ = c−b
m , where c

is the decision threshold and σ = τ
m . The cumulative distribution Φ is calculated as:

Φ(µ, σ) =
1
2

[
1 + er f ( x−µ

σ
√

2
)
]
, (7)

where er f denotes the error function. The POD function is derived as:

POD(a) = Φ
[

a−µ
σ

]
. (8)
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Using Equation (8), the POD curve can be set up for varying parameters. In this contribution,
the varying parameters (as process parameters) are the contrast and brightness of the image.
The intercept and slope are represented by the variables β̂0 and β̂1, respectively, and are
statistically estimated from the observations using the maximum likelihood estimation, as
it is better suited for censored regression.

2.2. Hit/Miss Approach to POD

An efficient implementation of the binary data is to posit an underlying mathematical
relation between POD and parameter to model the probability distribution [15]. The use
of ordinary linear regression is inaccurate due to the fact that the data are not continues
but discrete and bounded. Generalized Linear Models (GLM) overcome this challenge by
linking the binary response to the explanatory variables through the probability of either
outcome, which continuously vary from 0 to 1 [15,27]. The GLM attains this through:

1. A random component specifying the conditional distribution of the response variables,
Yi (for the i-th of n independently sample observations);

2. A linear predictor that is a function of regressors;
3. A smooth and invertible linearizing link function g(y), which transforms the expecta-

tion of the response variables Pi ≡ E(Yi) to the linear predictor.

The transformed probability can then be modeled as an ordinary polynomial function,
linear in the explanatory variables. The commonly used GLM in POD are the Log, Logit,
Probit, Loglog, and Weibull link functions. Depending on the data distribution, a model
may be more appropriate compared to another. One criterion used is to select the GLM
with the least deviance.

The target response and the Hit/Miss approaches are adapted as a new performance
evaluation for vision-based classifiers. The classical POD approach utilized in the field of
NDT is shown in Figure 3.

Data
Statistical

model

POD

model

NDT POD

Figure 3. Classical POD approach.

The POD approach is adapted, modified, and extended to the field of vision-based
systems as shown in Figure 4. This article adapts the method; however, unlike classical
POD applications, for the first time, the method is applied to process-parameter-affected
vision-systems. Here, raw sensor/probe data are not used, but a prefilter in the form of
a classifier is used. The classifier is evaluated based on the processed data. Additionally,
a noise analysis procedure is introduced, fully illustrating the visualization and trade-
off between the decision thresholds, image parameters, detection probabilities, and false
positive rates.

Data
Statistical

model

Proposed approach

Classifier
POD

model

Noise
analysis

TPR - FPR
tradeoff

Figure 4. Proposed POD approach for classifier evaluation.

3. Classification Results

In this contribution, a custom dataset proposed by [29] is used for the experiments.
The dataset contains 43,956 images, of which 38,456 are used for training and 5500 for
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validation. The dataset contains 11 classes (apple, atm-card, cat, banana, bangle, battery,
bottle, broom, bulb, calendar, camera). Considering 11 different classes, the ground-truth is
a one-hot vector of size 11. At each parameter intensity, the assignment is 1 (Hit) for correctly
classified image and 0 (Miss) for a wrong classification. Both ResNet and MobileNet V2 are
trained for 10 epochs on the customized dataset using the transfer learning approach [30].
The pre-trained version of ResNet and MobileNet V2 on the ImageNet dataset [31] is used
in the experiment. Achieving high classification accuracy on the customized dataset is
faster using pre-trained models trained on similar datasets. The classification results are
detailed in Table 2.

Table 2. Classification results.

Model Training Accuracy Validation Accuracy

ResNet18 0.995 0.9878
MobileNet V2 0.9621 0.976

To elaborate the benefits of proposed method the ROC curve and the accuracy curve
are considered (Figures 5 and 6). The generated ROC curve is shown in Figure 6. The graph
shows the true positive rate against the false positive rate, while the decision threshold is
varied. The ROC curve indicates relative compromises between true positives (benefits)
and false positives (costs) and is not able to show the effects from the process parameter.
For contemporary applications, the influence of the process parameter is critical, so the
detection probability should be related to severity. In this instance, the process parameter
is a surrogate for severity. Currently, there are no alternatives to incorporating the process
parameter, hence the need for the POD approach.
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Brightness
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Figure 5. Classification accuracy considering MobileNet V2 classifier for changing of brightness and
contrast.
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Figure 6. ROC curve considering MobileNet V2 classifier for constant contrast and brightness.
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4. New Evaluation of Object Classification by the Target Response Approach

The classifiers are used to classify/identify apples from an image. Two image parame-
ters are considered as the varying parameters: contrast and brightness (Figure 7).

The target response approach is adapted and implemented as a new performance
assessment for classification approaches. In this section, the MobileNet V2 classifier is
implemented. The contrast is varied from 0 (min) to 1 (max). Beyond a contrast value of
0.2, the algorithm is able to detect the image with a probability of 99.94% (see Table 3).

Figure 7. Input images with varying levels of brightness and contrast provided to the classifying
networks.

Table 3. Probability of Detection considering different image contrasts.

Contrast Probability

0 0.31452537
0.1 0.72617805
0.2 0.9944179
0.3 0.9994198
0.4 0.99984
0.5 0.9999324
0.6 0.99995387
0.7 0.99997306
0.8 0.99997616
0.9 0.9999759
1 0.9999771

Therefore, the analysis is made for the range of 0 to 0.2. Beyond 0.2, the algorithm
reaches a saturation threshold and has no effect on POD characterization. We examine
100 contrast values between 0 and 0.2 and the corresponding probability values.

A graph of the data is illustrated in Figure 8. The inspection threshold (least de-
tectable target), saturation threshold (maximum detectable target), and decision threshold
(threshold below which the observed data are characterized as noise) are constructed.
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To establish a POD characterization illustrating the effect of the process parameter,
contrast values are examined. A regression analysis is carried out for the dataset. The 95%
confidence bounds and the prediction bounds are also constructed (see Figure 9).

Figure 9. Regression analysis.

The confidence bounds are constructed for certification purposes while the prediction
bounds serve as boundaries so that for every new 100 observations, 95 should fall within.
The cumulative density functions (CDF) for the data distribution are also constructed. The
POD curve is generated using area of the cumulative density function above the decision
threshold (Figure 10).
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Figure 10. POD generation approach.
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The confidence bounds about the regression line are used in constructing the 95%
bounds around the POD curve.

The 90/95 certification criteria representing a 90% probability of detecting the image
with a reliability of 95% is utilized in this contribution. The 90/95 (o in Figure 11) value for
this concrete example is 0.02167. This implies that, in varying the contrast values at 0.02167,
the algorithm is able to detect the image with 90% probability at 95% reliability. This
developed approach provides a new evaluation and performance assessment for classifiers
incorporating the effect of image property on the classification results. From Figure 10, it
is evident that the probability density for the classifier changes with the parameter (here:
contrast). This visualization is not possible using the ROC or PR curve. However, the POD
curve does not give any indication of the false call for any selected decision threshold. To
compute the false call, noise will be analyzed in the next section.

Contrast
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0.4
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0.7

0.8
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POD a( )= F
æ
ç

log a( )- m

s

ö
÷

m̂ =−4.841

ŝ =0.59349

POD covariance matrix

æ
ç

0.006165 −0.001175

−0.001175 0.00187

ö
÷

n total =124

ö æ

ö æ

10
-3

10
-2

10
-1 10

0
2 3 4 6 8 2 3 4 6 8 2 3 4 6 8

Figure 11. POD curve, o: 90/95 POD value.

5. False Call Analysis

The observed data aggregate the characteristics of the targets signature corrupted by
aberrant signals generally referred to as noise. Classical POD methods usually measure
noise as part of planned experimental measurements, however, that is absent in the current
work. Noise, therefore, will be inferred from the observed data. Noise in this context refers
to observed signals with no useful target characterization information. Therefore, observed
data outside the prediction bounds will be interpreted as noise because the corresponding
POD is zero. Still using data from Figure 10, the noisy data refer to the red circled data
in Figure 10. The extracted noise and the corresponding noise parameters are shown
in Figure 12.

The false call or probability of false positive (PFP) can be calculated as the noise
distribution above the selected threshold. The PFP is computed as:

PFP = P(ynoise > yth) (9)

A statistical χ2 (Chi-squared) hypothesis test is undertaken to identify the nature of noise
distribution. Various distributions are tested. The Gaussian distribution emerges as the
most plausible. An analysis is carried out on the noisy data, and the mean µnoise and
standard deviation σnoise are calculated.
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ŝ noise=2.26
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â 0.95 =33.98
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For a Gaussian distribution, the probability of false call is computed as:

PFP =
∫ ∞

yth

1√
2πσ̂noise

e
− (y−µ̂noise)

2

2σ̂2
noise dy. (10)

The distribution with regards to PFP is illustrated in Figure 13 (shaded red area relative to
the selected decision threshold).
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Figure 13. PFP relative to decision threshold.

From Figure 13, it becomes evident that for a selected decision threshold (DT), a
corresponding unique FAR value exists; however, the detection probability varies relative
to a parameter (here: contrast). This implies that the premise for the construction of
the ROC/PR curve for applications requiring the incorporation of process parameter is
deficient. This is because for a selected cut-off point there is not one FAR to one DR value
but one FAR to many DR values. This consideration was not factored initially because the
size of opposition objects/planes during WWII was irrelevant, but modern applications
are concerned with how the characteristics of target change the probability of detecting
it. Relative to this specific example, for a selected decision threshold of 3.5, the PFP value
is 0.1606. To evaluate the PFP corresponding to all thresholds and the associated POD, a
trade-off analysis is presented next.
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Trade-Off between PFP and POD

From the developed approach, it is possible to analyze the trade-off between PFP and
POD. To introduce the novel approach, a single probability point is analyzed. Here, the 90%
probability is used and drawn to intercept POD and confidence curves (see Figure 11). At
the point of intersection, the POD, PFP, decision threshold, and the process parameter (here:
contrast values) are known. These values are considered for every point on the drawn
90% probability line. A graph depicting the relationship between the POD, PFP, DT, and
contrast is shown in Figure 14.
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Figure 14. Trade-off between PFP and POD.

The Figure 14 makes it possible to visualize the relationship between the POD, PFP,
DT, and process parameter, which is not possible using the ROC curve. To analyze other
probabilities required for evaluating the specific points, as is performed for the 90% proba-
bility, the introduced method presents a novel and significant approach to concurrently
examine all properties affecting the classification results.

6. Comparison of Different Neural Network Models by the Hit/Miss Approach

In this section, the Hit/Miss approach is used to evaluate the performance of two Neu-
ral Network algorithms, namely, MobileNet V2 and ResNet. Each model is implemented
on two varying parameters, namely, brightness and contrast. Here, the classes as opposed
to the probabilities are used. The classes are binary in nature, and hence the Hit/Miss
approach will be used. At each parameter intensity, if the algorithm classifies the image
correctly, a value of 1 (Hit) for a correct class and 0 (Miss) for a wrong class is assigned.
Like the former approach, the analysis is made for parameter changes from 0–0.2 at a step
size of 0.002.

For binary data, the log-odds distribution is found to be of good fit [22] by linking the
binary response to the explanatory variables through the probability of either outcome,
which does vary continuously from 0 to 1. The POD function for binary data can be
expressed as:

POD =
e

π√
3
(

ln a−µ
σ )

1 + e
π√

3
(

ln a−µ
σ )

. (11)

To accurately implement the Hit/Miss approach, the appropriate link function to be used
needs to be determined. For illustrative purpose, the classification results of MobileNet V2
considering brightness values are used (Figure 15).
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Figure 15. Models to select link function with least deviance.

Eight of different link functions are constructed to select best fitting model as illus-
trated in Figure 15. The data distribution of the logarithmic model does not support the
construction of a valid POD curve estimate, and hence, the Cartesian models will be more
suitable for this example. A statistical hypothesis testing procedure is undertaken to ascer-
tain the best-fitting link function model. To model the relationship of GLM, deviance is a
measure of goodness of fit: The smaller the deviance, the better the fit. It is attained using a
generalization of the sum of squares of residuals in ordinary least squares to cases where
model-fitting is achieved by maximum likelihood. The Cartesian Weibull link function is
selected for this specific analysis because it has the least data deviance in comparison to the
other link functions. The procedure is repeated for MobileNet V2 contrast parameter, as
well ResNet brightness and contrast parameters. The hypothetical testing procedure show
that Cartesian Weibull is the best link function for all. The Weibull is implemented to map
−∞ < x < ∞ to 0 < y < 1. The Weibull function is expressed as

f (X) = g(y) = log(−log(1− p)),

where f (X) is an algebraic function with linearized parameters and p the probability. The
probability of detection as a function of brightness B for the Weibull model is

POD(B) = 1− exp(−exp( f (X))).

Using Weibull, surface contours are constructed to ascertain the most plausible GLM
(Figures 16–19).

The likelihood ratio test is used to assess the goodness of two competing statistical
models based on the ratio of their likelihoods. The log likelihood ratio contour encloses all
β0, β1 pairs that are plausibly supported by the data. The confidence bounds are constructed
on the surface contours using a method developed by the Cheng & Iles approximation [28].
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Figure 16. Likelihood surface contour for MobileNet V2 brightness.

+

-6 -5 -4 -3 -2

20

30

40

50

60

70
2.996

2.569

1.92

1.35

1

0.5

0.3

0.05

Loglikelihood ratio

Cheng & Iles approx

GLM Parameter correlation

MLE

= -0.957

b
^

0

b
^

1

Figure 17. Likelihood surface contour for MobileNet V2 contrast.
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Using the maximum likelihood estimation (MLE) method, the GLM values for the
intercept and gradient are generated for both classifiers. With these values, a GLM model
and confidence bounds fitting the data are constructed (Figures 20–23).
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Figure 20. GLM with estimated parameters for MobileNet V2 brightness.
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Figure 21. GLM with estimated parameters for MobileNet V2 contrast.
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Figure 23. GLM with estimated parameters for ResNet contrast.

From the fitted GLM model, the POD curve is generated using the parameter estimates
(Figures 24–27). The 90/95 criteria is also successfully implemented on the results.
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Figure 24. POD curve for MobileNet V2 brightness.
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Figure 26. POD curve for ResNet brightness.
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Figure 27. POD curve for ResNet contrast.

The 90/95 reliability value for MobileNet V2 is 0.101. This implies at the exact bright-
ness intensity value of 0.101, the MobileNet V2 algorithm is able to detect the image with
90% probability at a 95% reliability level. The procedure is repeated for MobileNet V2
contrast, ResNet brightness, and ResNet contrast parameters. A comparison of the 90/95
POD values for the two classifiers and image parameters are detailed in Table 4.

The smallest 90/95 POD values define the best results because the classification
algorithm is able to detect the image at 90/95 reliability with the least contrast/brightness
changes. The results (see Table 4) indicate Mobile2Net V2 is more sensitive using brightness
values; 0.1010 compared to 0.1214 for ResNet, while ResNet is more sensitive using contrast
values; 0.0851 compared to 0.1297 for MobileNet V2.

This POD approach introduces a new performance evaluation for vision-based classi-
fication models incorporating and assessing directly the effects of image parameters.

The introduced approach makes it possible to check the number of target hits and
missed directly from the POD curve. For the classification results, there are no misses
beyond 90/95 ceiling. The hits beyond 90/95 for the classifiers and different parameters
are detailed in Table 5.

Using this specific example it can be shown that the evaluation and prediction system
is reliable for all classification results because no misses are observed beyond the POD
ceiling (90/95 threshold). For brightness parameters, MobileNet V2 has 50 hits beyond
the 90/95 threshold compared to 40 for ResNet. For the contrast parameter, MobileNet V2



Appl. Sci. 2022, 12, 3251 19 of 21

has 36 hits beyond the 90/95 threshold compared to 58 for ResNet. The classifiers with the
most hits beyond 90/95 represent the best classification approach because the most correct
class predictions beyond 90/95 threshold are generated. This assertion is corroborated
by the POD results in Table 4. However this conclusive statement can only be made for
systems with no misses beyond the 90/95 threshold. The complexity increases if there are
misses beyond 90/95 and requires the performance of noise analysis to conclude on the
best classifier.

Table 4. The 90/95 POD values.

Classifier Brightness Contrast

MobileNet V2 0.1010 0.1297

ResNet 0.1214 0.0851

Table 5. Hits beyond 90/95 POD.

Classifier Brightness Contrast

MobileNet V2 50 36

ResNet 40 58

The introduced approach presents a measure to assess the performance of binary
classifiers incorporating the effects of process variables. The reliability of the classifier
relative to the detection capability can also be analyzed using the proposed approach. The
procedures addressed in this contribution are for brightness and contrast parameters for
the dataset proposed by [29]; however, they can be extended to evaluate object detection
datasets (such as Pascal VOC, Kitti, etc.) and other object detection methods such as a faster
r-CNN and Long Short-Term Memory networks, among others.

7. Conclusions

In this contribution a newly introduced measure is used to propose a performance
evaluation of binary classifiers for object detection in vision systems. This is needed because
often effects of process parameters/processing variables related to image or varying prob-
lem details are not considered in the evaluation process. The proposed approach varies and
extends the POD evaluation measure with respect to incorporating process parameters. The
effectiveness of this approach is experimentally evaluated for vision-based classification
results of CNN considering different image parameters. For illustration, two classification
algorithms (ResNet and MobileNet V2) are trained. The proposed target response approach
is implemented on the MobileNet V2 classifier. The results are compared using the novel
Hit/Miss evaluation approach. The results indicate that Mobile2Net V2 performs better
considering brightness as a parameter while ResNet performs better considering contrast
as varying parameter. Using the newly introduced POD-related evaluation, vision-based
classification approaches can be clearly distinguished with respect to their ability to predict
the correct image as a function of related image parameters. The introduced approach
provides a comprehensive interpretation of the quality of a classification model and there-
fore allows a new evaluation quality. This will allow a more trustworthy consideration of
classifier algorithms in automation due to the definition of operating limits.
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