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ABSTRACT 

 The main factor influencing an electric vehicle’s range is its battery. Battery electric 

vehicles experience driving range reduction in low temperatures. This range reduction 

results from the heating demand for the cabin and recuperation limits by the braking 

system. Due to the lack of an internal combustion engine-style heat source, electric 

vehicles' heating system demands a significant amount of energy. This energy is supplied 

by the battery and results in driving range reduction. Moreover, Due to the battery's low 

temperature in cold weather, the charging process through recuperation is limited. This 

limitation of recuperation is caused by the low reaction rate in low temperatures. 

Technology developments for battery electric vehicles are mostly focused on maintaining 

the vehicle battery package temperature and state of charge. For battery management 

systems, state of charge and battery temperature estimations are important since they 

prevent over charge, over discharge, and thermal runaway. Estimation and controlling 

battery temperature and the state of charge guarantees safety, it will also increase the 

vehicle's life cycle. This study analyzes the effects of ambient and battery temperature on 

heating system energy demand and regenerative braking parameters. Moreover, different 

machine learning methods for estimating the battery temperature and its state of charge 

are compared and presented. The analysis is based on the BMW i3 winter trips dataset 

which includes data for 38 different drive cycles. Results show that every 3 degrees of 

ambient temperature drop results in a 1% increase in the heating energy share. 

Furthermore, the ability of machine learning methods such as LSTM and GRU has been 

demonstrated to successfully forecast battery temperature and state of charge. 
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CHAPTER 1  

INTRODUCTION 

Global warming and greenhouse gas management are controversial issues in the 

contemporary world and the Transportation industry which mostly relies on internal 

combustion (IC) engines play a major role in the production of greenhouse gases [1]. IC 

engines are the main propulsion systems for ground transport, and they are facing serious 

and increasing challenges due to environmental regulations. It has been reported that 

more than 15% of CO2 emissions are caused by the transportation industry [2]. 

Therefore, some policies have been introduced in recent years in order to reduce 

greenhouse gas emissions [3]. During these years and due to the problems mentioned 

electric vehicles have become the main alternative for vehicles with traditional IC 

engines.  

The increasing number of electric vehicles in today’s market shows that automobile 

manufacturers are focusing on the production of electric cars, but it should be considered 

that electric vehicles have not been popular yet among people in comparison to 

traditional internal combustion engine vehicles mainly because of the short driving range 

and fear of leaving stranded without energy before reaching the destination [4-8]. 

A battery electric vehicle range is mainly determined by 3 elements. 

• the amount of electrical energy preserved in the electric vehicle's battery pack 

•  the electric vehicle's efficiency 

• the supplementary power usage, in addition to travel parameters and driving 

behavior [9]. 
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The first generation of battery electric vehicles which were introduced in the 2010s had 

ranged from 100 to 150 kilometers per charge, developments that occurred in electric 

propulsion systems and energy storage systems increased ranges up to 500 kilometers 

[10, 11]. In this paper, the BMW i3 data are analyzed and estimation models for the 

battery pack of the BMW i3 are developed. 

1.1 BMW i3 Architecture And Driving Data  

1.1.1 Heater  

Internal combustion engine vehicles can use engine waste heat to warm up the cabin, 

but electric motors do not produce much heat, so battery electric vehicles need heaters at 

cooler temperatures to warm up the cabin [12].In cold temperatures, two primary 

elements will have a strong effect on electric vehicles' range, heating energy demand, and 

Li-ion batteries' temperature sensitivity [10, 13]. Once the heater is applied to the system, 

more energy is discharged from the battery which limits the range of the electric vehicles. 

Heating energy share is a vital factor that should be analyzed by evaluating the heating 

energy consumption relative to the total power usage of the vehicle.  According to 

Horrein et al. [14], the driving range decreases by 30% at an ambient temperature of 

12°C compared to the same drive cycle at 24°C. moreover, Reyes et al. found a range 

reduction of 70% at an ambient temperature of 15°C in comparison to the same drive 

cycle at 25°C [15]. 

 

1.1.2 Heat Pump 

The usage of heat pumps is one way to extend the driving range. Heat pumps use 

waste heat from the vehicle and ambient heat to warm up the refrigerant, which then 
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transfers the heat to the cabin. It removes the load on the electric heater and less energy 

will be consumed. As a result, energy consumption can be reduced by up to 30% [16]. 

In cold temperatures, the COP of heat pump drops drastically and when the ambient 

temperature falls below the coolant’s freezing point there is a risk of the heat pump 

freezing, in order to avoid this problem, heat pumps are used in conjunction with an 

electric heater. 

1.1.3 Battery 

Battery electric vehicles (BEVs) traveling range is also impacted by the battery’s 

performance. The property of electrolytes is affected by cold temperatures. At low 

temperatures, the viscosity of the electrolyte increases which will reduce the ionic 

conductivity. Subsequently, the increase in the impedance of chemical ion transfer will 

raise the internal resistance of the battery [15-18]. In this regard, Nagasubramanian et 

al.[19] demonstrated that a Li-ion battery can lose up to 95 percent of its energy and more 

than 98 percent of its power capacity when exposed to extremely cold temperatures (-40 

°C) as opposed to performance levels at 25 °C According to a similar study, a cell's 

capacity can reduce by up to 23 percent at 20 degrees compared to 25 degrees [20]. Cold 

temperatures encourage Li-plating, which can cause an irreversible loss of cell 

performance in addition to these transitory losses.  

According to Steinstraeter et al. the capacity of the BEV (Battery Electric Vehicle) to 

recover braking energy is highly influenced by the temperature of the battery  [21]. When 

a lithium battery is charged at low temperatures a chemical reaction known as lithium 

plating happens, which is created by the charge flow. It forces the lithium ions to transfer 

and react at a quicker reaction rate than typical and lithium accumulates on the anode 
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plate [22]. In comparison to Steinstraeter et al. study that analyzed the recuperation of an 

electric vehicle, this major paper summarizes and analyzes the contribution of 

recuperation only in the winter condition [12]. This summarization is c needed since the 

operation of the electric vehicle systems and potential threats to the battery life are 

different in winter conditions. Lithium plating and slow charge transfer are the 

consequences of using BEVs in winter conditions. Moreover, thermal runaway and low 

resistance of the battery are mostly common in summer driving conditions. In addition to 

the issues related to the battery during winter and summer conditions, the Electric motor's 

performance will be different because of the ambient temperature effect on the motor’s 

internal resistance [23].  

1.2 Machine Learning Definition 

Machine learning (ML) is a type of Artificial Intelligence (AI) that permits computer 

programs to forecast outcomes more accurately without being explicitly programmed to 

do so. To predict new output values, machine learning methods use previously extracted 

data.  As well as supporting the development of new products, machine learning provides 

enterprises with insights into electric vehicle operations [24]. Estimation of the battery 

characteristics is essential to avoid failure and damage to the battery. This estimation 

would be more complex since the Heating system drains batteries' energy in the winter 

when the cold weather influences electric vehicles. In winter conditions, the number of 

parameters influencing electric vehicle systems will increase, Components such as 

battery and regenerative braking systems will lose their efficiency and the heating system 

will require lots of energy to keep the vehicle in operating mode. For improving the 

driving range, battery life, and battery operational safety, the accurate estimation of the 
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state of charge (SOC) is necessary [25]. Machine learning methods can be used for the 

estimation of these complex datasets. They can be used in time series and sequence 

estimation tasks. Recurrent Neural Networks (RNNs) are a type of machine learning 

which has several qualities that make it suitable for sequence modeling [26].  The RNNs 

method can use data from previous events to generate a diverse variety of sequence-to-

sequence mappings. RNNs include sets of algorithms for modeling time series data by 

considering time as a first-class component. Gated architectures in RNN [27] are meant 

to address the constraints of RNNs by incorporating gating units that are taught to 

regulate information flow across the network and learn to store data for a long time. In 

practical uses, both Long Short-Term Memory (LSTM) and Gated Recurrent Unit [28] 

networks have demonstrated benefits [28-31].  

Long short-term memory (LSTM) units or blocks are parts of a Recurrent Neural 

Networks (RNNs) structure. Artificial memory techniques are created to be used by 

Recurrent Neural Networks, which can aid these artificial intelligence systems, more 

accurately mimicking human reasoning. The long short-term memory cell has several 

parts, including weighted inputs, activation functions, inputs from earlier units, and 

ultimate results [32]. Long short-term memory is created by combining short-term 

memory processes with a structure the program calls a long-term memory unit. Recurrent 

Neural Networks examine specific phonemes within data, where long short-term memory 

can help sort and categorize these types of input. LSTM is a widely acknowledged and 

utilized principle in the development of pioneering Recurrent Neural Networks. In 

comparison to long short-term memory, the Gated Recurrent Unit [28] is a form of 

Recurrent Neural Networks (RNNs) which is quicker and requires less memory than 
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LSTM, however, LSTM is much more precise when working with datasets that contain 

lengthy time series data. Long short-term memory networks have been frequently 

employed to solve time series prediction problems. Some of these include categorization 

of multi-sensor anomaly detection [33], forecasting of short-term voltage oscillations in 

an electric power network [34], estimation of battery state of charge (SOC) [35, 36], 

diagnosis of charging malfunctions [37] , and forecast of short-term load [38]. GRU, like 

LSTM, has been effectively used for time series issues. Some of these are wind velocity 

prediction[39-41], short-term load forecasting in power systems [42], and forecast of Li-

ion battery effective life [43]. Two-time time series forecasting models, LSTM and GRU, 

were utilized in this research to estimate the SOC and Battery temperature for the winter 

data of the BMW i3 vehicle. The electric vehicle must properly forecast the battery's 

State of Charge (SOC), which is a major requirement. When a large variety of factors are 

collected in real-world situations and assessed on the road, predicting SOC is difficult. 

This study proposes an approach to estimate battery SOC accurately. Some studies have 

used machine learning methods for battery SOC estimation, for instance, a study used 

recurrent neural network types and works on 3 battery measures as voltages, current, and 

temperature to estimate the SOC of Li-ion batteries [36]. The neural network designs 

utilized in the study are comparable to the ones we investigated in this article [28]. 

Moreover, the features of the data employed were mainly current, voltage, and 

temperature. The necessity to evaluate additional sorts of characteristics such as ambient 

data, driving behavior, vehicle attributes, and the heating system, as well as analyzing 

their influence on the ability to properly estimate SOC, should be taken to account. In the 

publication [44], a combination of five ANNs is used to study a mixed estimation of the 
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SOC and State of Health (SOH): four regression networks focused on SOC prediction 

and one classifying networks for the state of health recognition. The state of 

health classification result is employed to choose the optimal SOC prediction from the 4 

regression ANNs' findings. In the neural network study, the SOC prediction is employed 

as an input for the state of health classifier, and the task is only focused on battery 

characteristics (voltage and current). Recurrent neural network (RNN) types have also 

been investigated in this study. It also considers the impact of other factors such as the 

battery, vehicle, and driving behavior. 

Despite Li-ion's numerous advantages, the Li-ion battery has one unusual but serious 

failure scenario for electric vehicles, Lithium plating. This safety issue must be addressed 

for the Li-ion battery industry to continue to thrive. The majority of Li-ion battery failure 

scenarios are linked to temperature. Low temperature causes a slow reaction in the cell 

that decreases ion conductivity and forced ion movement, leading to lithium depositing 

on the anode. Therefore, it is critical to keep the temperature at a specified threshold to 

avoid battery failure caused by temperature deviations. As a result, checking battery 

temperature is critical for avoiding battery malfunction.  Several temperature sensors are 

now used to check the temperature of the battery cells in electric vehicles (EVs). The 

quantity of temperature sensors used to check the battery pack rises as the capacity of the 

battery pack increases and the cells are densely packed to achieve higher energy density 

[45]. Furthermore, having more sensors increases the likelihood of sensor failure, which 

inhibits accurate temperature measurement and increases maintenance costs and customer 

concerns. There are multiple studies that focused on battery temperature estimation using 

different methods. The following study proposed replacing thermal sensors with a 
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temperature estimating algorithm while keeping accurate temperature monitoring 

performance. Temperature estimates may be done in a variety of methods. Ralph E. 

White et al. and Chee Burm Shin et al. have also developed a theoretical temperature 

with respect to battery chemistry [46, 47]. However, simulation and theoretical modeling 

provide a decent temperature estimate, direct usage of simulation outcomes for 

continuous temperature tracking is nearly impossible, and developing theoretical models 

for a variety of batteries is complex. Additionally, computer simulation provides far more 

detail than is necessary. 

The Artificial Neural Network model was developed by Ala Hussein et al. to predict 

the temperature of different types of batteries including Li-ion, NiCd, and NiMH [48].  

To forecast battery temperature and battery voltage, Feng et al. [49] employed a lumped 

thermal analysis. To improve the results of the selected models, a neural network was 

added, resulting in an electrochemical-thermal-neural-network (ETNN) model. This 

study mixed lumped analysis with a machine learning approach. In contrast with this 

study, electric vehicle battery temperature is subjected to the effects of different 

parameters such as cabin temperature, heating circuit, and driving behavior. Due to the 

importance of mentioned parameters, our study considers all of them.   A study presents 

the temperature estimation approach for electric vehicle Li-ion batteries in a semi-

transient case study [45]. The study used the extreme learning machine technique and 

multi-lumped-state thermal model for battery temperature estimation and compares both 

methods. 
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1.3 Objective Of The Research 

Over the years electric vehicles have become a popular type of transportation but they 

have faced many difficulties in different environmental situations. It is evident that 

electric vehicles are not as reliable as internal combustion engine vehicles. Maintaining 

battery packages of electric vehicles can be a solution going forward for overcoming 

environmental situations such as extreme cold. Despite numerous works on sole analyses 

of the electric vehicle’s battery packages from various points of view, there haven’t been 

enough studies focused on heating and recuperation analysis in vehicles to discover the 

effects of ambient and battery temperature in winter conditions. The further aspect of this 

work is the development of recurrent neural networks to estimate battery state of charge 

and temperature, by the utilization of python programming language and google colab as 

an integrated development environment for python programming. The analysis in this 

major paper attempts contributing to the missing work. The main objectives of the 

current study are included below: 

 

1. To analyze the effects of ambient temperature on heating energy demand 

2. To analyze the effects of battery temperature on recuperation  

3. To develop & compare battery state of charge estimation models 

4. To develop & compare battery temperature estimation models 
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CHAPTER 2  

BMW I3 ARCHITECTURE AND DRIVING DATA 

The battery and heating data in real driving cycles dataset is used in this study [50]. In 

order to parameterize and verify the model for this research, a driving dataset from the 

BMW i3 was acquired [50]. The vehicle data was measured and recorded using CAN bus 

system signals and Information was collected by Vector CANoe software. The electrical 

system which makes communication within the different electrical parts of the vehicle is 

called Controller Area Network (CAN bus) [51]. The CAN bus connects "nodes" or 

"Electronic Control Units" (ECUs). Each electrical part of the vehicle in the CAN bus 

system is considered to be a node or an ECU. In modern vehicles, the word "ECU" refers 

to the equipment that controls the electrical systems and transmits commanding messages 

to the nodes and then nodes will act accordingly. which are similar to organs in the body. 

One component transmits messages and the other one receives those messages. ECUs 

include the engine control unit, airbags, stereo system, and other components in an 

automobile CAN bus system. Approximately 70 ECUs may be present in a contemporary 

automobile, and each one of them may have data that has to be exchanged with other 

devices in the network [51].  

With the test vehicle, 72 travels (= 1514 km) were documented in two parts. 

• Part A: data is documented during summer in warm weather.  

• Part B: data was recorded in a cold environment during the winter season.  
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The same driver who had consistent driving habits drove on all trips. Before driving, the 

car was left outdoors to confirm that the coolant fluid and battery temperatures were 

roughly equal to the outside temperature.in addition, The interior ventilation was always 

in automatic mode and set at 21 °C. 

For each trip the following data was employed: 

• Environmental data (temperature, elevation, etc.) 

• Vehicle data (speed, throttle, etc.) 

• Battery data (voltage, current, temperature, SOC) 

• Heating circuit data (cabin temperature, heating power, etc.) 

The battery temperature ranged from -1.5 °C to 32 °C during winter and summer trips. 

The SOC fluctuated from 15.4% to 88.5% at the beginning of the trips and the driver saw 

the upper limit as being completely charged. This dataset came from road tests related to 

BEV studies at the Technical University of Munich (TUM)'s Institute of Automotive 

Technology (FTM). Nine of the trips were recorded on FTM route and they are quite 

similar to each other. Table 2.1 shows the different properties such as cell chemistry and 

weight of the BMW i3 [50, 52]. 
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Table 2.1  Properties of BMW i3 

 

BMW i3 uses a single Permanent Magnet Synchronous Motor (PMSM) on its rear 

axle. The Permanent Magnet Synchronous Motor (PMSM) is an AC synchronous motor 

that is a hybrid of an induction motor and a brushless DC motor which consumes energy 

up to 125 kW [25]. According to table 1, this vehicle is a relatively light and super 

compact vehicle with a high power 125 kW traction motor Table 2.2 summarizes the 

distance, duration, battery state of charge changes, and battery temperature variation in 

each trip.  

 

 

 

 

 

 

Property BMW i3 
Vehicle mass in kg 1195 

Drag coefficient 0.29 

Rolling resistance coefficient 0.008 

Cross-sectional front area in m2 2.38 

Max. power in kW 125 

Drive topology Rear Axle—Single Motor 

Machine type PMSM 

Gearbox type Two-Stage Spur 

Total gear ratio 9.7 

Tire size 175/60 R19 

Dynamic tire radius in m 0.336 

Powertrain moment of inertia in kg·m2 10.42 

Battery size (gross/net) in kWh 22/18.8 

Cell chemistry NMC 

Heater Layer 
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Table 2.2  Winter Trips Summarized Information 

Trips Battery 

temperature start-

end °C 

Battery state of 

charge change % 

Ambient 

temperature 
°C 

Distance 

km 

Duration 

min 

B01 7-15 28.7% 8.5 38.79 54.20 

B02 13-15 14.8% 6.5 18.93 26.85 

B03 9-12 17.0% 3.5 19.40 26.32 

B04 12-20 -24.1% 9.0 16.60 49.25 

B05 10-11 12.4% 7.0 14.82 16.99 

B06 11-13 13.9% 6.0 16.58 22.53 

B07 5-8 17.0% 2.5 30.38 38.16 

B08 7-10 23.3% 3.5 32.22 48.57 

B09 0-14 24.0% 5.5 54.18 93.50 

B10 2-14 45.8% 2.5 47.84 33.72 

B11 14-15 8.1% 4.0 10.21 12.56 

B12 22-20 22.1% 7.5 37.06 53.76 

B13 20-20 1.9% 6.0 2.78 5.91 

B14 3-13 50.9% 3.0 60.97 63.70 

B15 9-11 17.6% 2.0 19.24 30.37 

B16 11-13 14.7% 3.0 19.23 25.48 

B17 13-15 15.6% 3.5 19.25 26.02 

B18 3-6 14.7% 2.5 15.81 18.49 

B19 6-8 14.2% 3.0 16.43 19.85 

B20 10-12 10.7% 5.0 12.34 23.38 

B21 7-9 14.6% 1.5 15.84 17.33 

B22 11-13 13.9% 7.5 16.86 19.99 

B23 6-10 18.6% 5.0 18.71 18.55 

B24 10-11 7.9% 6.5 9.33 16.30 

B25 10-12 11.8% 5.5 13.50 17.03 

B26 12-15 12.2% 5.5 14.70 13.42 

B27 1-5 18.4% 1.0 19.23 24.48 

B28 5-10 14.4% 3.5 17.53 22.77 

B29 11-14 16.1% 3.5 15.83 16.14 

B30 4-6 13.8% 0.0 14.86 15.35 

B31 6-8 14.3% 3.5 15.24 18.28 

B32 4-7 14.5% 2.0 14.24 13.26 

B33 11-12 5.8% 4.0 7.03 9.13 

B34 11-11 2.6% 5.5 9.14 12.23 

B35 11-13 13.9% 4.0 15.42 22.71 

B36 6-10 27.6% 4.0 38.72 47.54 

B37 8-10 15.8% -3.0 17.46 23.62 

B38 -1- 3 16.2% -1.5 18.90 27.38 
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In all of the drive cycles, the battery has lost energy but in drive cycle 4 the vehicle 

charged up by 24%. This driving cycle includes the driving and charging process which 

is shown in figure 2.1. 

 
Figure 2.1 Displayed SOC & Velocity Chart of Drive Cycle B04 

In drive cycle 4 battery charges up by the fast charging. The driver drove the car for 

about 1000 seconds and starts charging the car for about 1500 seconds. Figure 2.1 

illustrates the velocity profile of Trip B04 with a mean velocity of 20.21 km/h. Table 2.3 

shows the number of recorded trips in the winter and their total traveled distance. 

Moreover, two major factors such as the ambient temperature range of the winter drive 

cycles and the battery temperature range are included. 

Table 2.3 General Winter Data Summarized 

Property BMW i3 

Number of trips in winter  38 

Distance in km  780.81 

Ambient temperature range in °C  -3.0   -   9.0 

Battery temperature range in °C  -1.5   -   22 

 

Based on the table, winter trips have the ambient temperature range between -3.0 °C to 

9.0 °C. This temperature range shows that the tests were recorded in a mild winter 

temperature. 
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2.1 Heater 

The resistive heater in the BMW i3 is a layer heater with a nominal power usage of 7 

kW. Figure 2.2 shows a layer heater.  

 

 

Figure 2.2 Layer Heater[53] 

The heater is responsible for warming up the coolant and letting the hot coolant 

transfer the heat to different sections of the vehicle. In the winter, the heater starts 

working when the vehicle turns on, and it will reach its maximum power consumption 

very fast, this behavior will unfreeze the heat pump heat exchanger and increase its COP, 

and after a while, the electric heater energy consumption will be reduced and stabilized. 

An analysis of heater usage at a low temperature is included below. Table 2.4 presents 

the key parameters of the resistive heater used in the BMW i3 vehicle.  
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Table 2.4 Key Parameters of Heater [54] 

Heater Parameters Value 

Nominal power 7 kW 

Peak power (overload) 

Mass 

20 kW 

1.89 Kg 

Specific heat capacity  866 J/ (Kg K) 

Heat transfer coefficient  190 W/K 

 

The nominal power, Peak power, mass, heat transfer coefficient, and specific heat 

capacity of the heater are included. 

• Heating analysis: 

To find the effect of heating on the vehicle’s range, the power consumption of the 

BMW i3 was examined. Heating share is a coefficient that can show the effect of 

heating energy on electric vehicles. The heating energy share (HS) is the energy 

consumption of the heater over the total battery consumption [25]. Heat share was 

calculated by current and voltage which are recorded inside the electric heater and 

battery packs. 

The thermal assessment is covered in the heater part, while the regenerative braking 

evaluation is covered in the battery. An assessment in one stage is carried out in both 

parts. A broad, theoretical approach to the relevant topic is done at the start of each part. 

This part analyses the power fractions of heating and battery part analyzes regenerative 

braking recovery for all trips in the dataset and draws conclusions about ranges from the 

results. The battery pack temperature depends on regenerative braking energy limits were 

also discovered as part of the overall recuperation assessment. 
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2.1.1 Heating Energy Share 

                 Equation 1 shows the consumed energy in each trip without considering the 

effect of regenerative braking.  

𝑯𝒆𝒂𝒕 𝑺𝒉𝒂𝒓𝒆 =
∫ 𝑰𝑯𝒆𝒂𝒕 ∗ 𝑽𝑯𝒆𝒂𝒕  𝒅𝒕

𝒕

𝟎

∫ 𝑰 𝑩𝒂𝒕𝒕𝒆𝒓𝒚 𝒅𝒊𝒔𝒄𝒉𝒂𝒓𝒈𝒆 ∗ 𝑽𝑩𝒂𝒕𝒕𝒆𝒓𝒚   
𝒕

𝟎
𝒅𝒕

 

 

(1) 

 The battery power usage is shown by the integration of battery discharge current and 

voltage. The heating share equation uses the heater energy usage only in order to separate 

the effects of heating from the effect of regenerative braking on the vehicle energy usage 

and vehicle range. The calculated share immediately correlates with the large 

reductions in the vehicle's range caused by heating throughout the trip since it represents 

the relationship between a trip's total energy consumption and the energy share needed 

for heating and ventilation in each of the trips. 

2.2 Heat Pump  

Using a heat pump can extend the electric vehicle range. Unlike resistive heaters, heat 

pump’s coefficient of performance is higher than 1 [4]. The heat from ambient and excess 

heat in the vehicle is absorbed by the refrigerant and it will evaporate then the refrigerant 

will be heated by compression. The heat will be directed to the condenser by the heated 

refrigerant and heat will be transferred to the cabin or the coolant. The heat pump system 

can reduce energy consumption by 30% [55]. The heat pumps are used in combination 

with a resistive heater in order to avoid heat pumps freezing and having low COP due to 

low temperature. 
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The studied vehicle (BMW i3) has three types of circuits that will allow vehicle heating 

and ventilation to be suitable for every environmental condition. Heating, cooling and 

mixing circuits of the thermal model. 

 

2.2.1 Heating Circuit 

The vehicle circuit model is developed by Wagner et al. [56]. Figure 2.3 illustrates the 

heating circuit of the BMW i3 with all its components and flow directions. The arrow in 

the schematic shows the direction and the red and blue colors show the warm and cold 

fluids accordingly. Closed or non-operating parts are colored gray. The Circuit schematic 

comprises several main components. Heat pump heat exchanger (HP-HX), Coolant 

expansion tank, resistant heater, expansion valve, one-way valve, compressor, shut off 

valve, fan, heater core, pump, Battery, heat pump evaporator, and heat pump condenser. 

Figure 2.4 shows the symbols of each component in the schematics. 
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Figure 2.3 Heating Circuit[57] 

 

Figure 2.4 Symbols and Components 

 

In the heating circuit, the coolant is heated by the resistive heater and heat pump heat 

exchanger and then transfers heat to the heater core. The fan will create forced 

convection and transfers heat from the heater core to the heat pump condenser and 

passenger cabin. The heat pump heat exchanger is a component with 2- sides, a coolant 
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and refrigerant side which will heat the coolant and reduce the load on the resistive 

heater. The refrigerant shut-off valves direct the refrigerant flow to the heat pump heat 

exchanger. Grey-colored shut-off valves are the closed valves that allow the refrigerant to 

flow through the heat pump heat exchanger. The refrigerant pressure increases by the 

electrically controlled expansion valve after the heat pump heat exchanger aim to heat the 

refrigerant. The evaporator is also a component that has an electrically controlled 

expansion valve before it. The expansion valve builds up pressure and raises the heat in 

the refrigerant before reaching the evaporator. Table 2.5 presents information about the 

BMW i3 heat pump system. Table 2-5 includes the tube length of the electric heater to 

the heater core and vice versa, tube diameter, air mass flow inlet, and coolant and cabin 

data. 
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Table 2.5 Heat Pump Data [54] 

COMPONENT/FLUID  PARAMETER  VALUE  

TUBES Length Tube 1 (EH-HC) 

Length Tube 2 (HC-EH) 

Inner diameter 

Specific heat capacity 

0.5m  

2m  

20mm  

2100 J/ (kg K)  

AIR  Max. Mass flow (Entering 

vehicle)  

 

300 kg/h  

COOLANT  Mass flow  

Max Temperature  

522 kg/h  

70°C  

 

CABIN   Total surface  

Heat capacity  

15.23 m2 

 65 kJ/kg  

 

2.2.2 Mix Circuit 

Figure 2.5 shows the mix circuit and the components.  
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Figure 2.5 Mix Circuit [57] 

In the mix circuit, the heated refrigerant after the compressor will be divided and 

enter the heat pump heat exchanger and heat pump condenser. The roles of heat 

exchangers swap in the mix circuit, the heat pump condenser act as a heat pump 

evaporator and vice versa. This switch between the condenser and evaporator, which 

enables the dehumidification of the vehicle interior, is the main difference between the 

mix circuit and the heating circuit. Passenger cabin cooling and dehumidification are 

done by the evaporator. The battery cooling is controlled by an expansion valve. A 

resistant electric heater is responsible for heating the battery [58]. 
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2.2.3 Cooling Circuit 

Figure 2.6 shows the cooling circuit. The cooling circuit does not include the coolant 

side and it is a simple heat pump system. The battery is cooled with the help of the 

expansion valve located before the battery circuit. 

 

Figure 2.6 Cooling Circuit[57] 
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2.2.4 Battery Heating/Cooling 

Figure 2.7 shows the battery heating cooling system. The heating/cooling system of 

the battery has a complicated structure. It consists of a grid that has eight flat aluminum 

tubes of 2mm thickness. These tubes control 8 modules’ temperatures. There is a high-

voltage heating strip that is fixed on each flat tube, and the duty of this strip is to heat the 

battery. The electric vehicle’s body is constructed of lightweight materials and the Li-ion 

battery is located at the bottom of the vehicle. Due to the carefully considered and 

planned design, there was a possibility of placing an HVB with a capacity of 22 kW * h 

with a voltage of 360 V, which allows the vehicle to travel 130-150 km with a fully 

charged battery [58].  

 
Figure 2.7 Battery Heating/Cooling System [58] 
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2.3 Battery  

The Li-ion battery used in the BMW i3 is made of a mixture of lithium manganese 

oxide and nickel manganese cobalt (NMC) and this nickel manganese cobalt mixture is 

used in the cathode  [2]. The battery package is in the 96s1p (96 cells in series and 1 in 

parallel) layout which provides about 403 volts at max and a nominal voltage of 360 

volts. The battery package has a capacity of 60 Ah and a gross battery capacity of 21.8 

kWh. The operating range of the battery package SOC is between 8% to 88.6% of the 

total battery capacity [25]. Li-ion batteries have a standard operational temperature, these 

batteries should not work in low temperatures because the viscosity of electrolytes 

increases, and the charge transfer rate will be slower than usual. This low charge transfer 

rate damages and reduces the energy and power capabilities of the battery package. One 

of the effects of low temperature on the battery is the lithium plating. Lithium plating is a 

phenomenon occurring under the charging process in low temperatures. Lithium particles 

move and deposit on the anode of the Li-ion battery and will cause damage to the battery. 

In the charging cycle, lithium ions from the cathode are diffused into mixtures within the 

anode. Lithium plating happens in this process, which is called intercalation. There are 

two main reasons for lithium plating. The first one is the high charging current which 

forces ions to travel at a higher speed and deposit on the anode surface. The second 

reason is the low-temperature charging which slows down the reaction process and 

affects the intercalation process. Figure 2.8 shows the lithium plating phenomenon with 

positive lithium ions accumulating on the anode of the battery. 
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Figure 2.8 Lithium Plating [59] 

According to figure 2.9, the BMW i3 battery temperature wasn’t in the suitable range 

of 15-35 C most of the time [60]. This figure shows the battery temperature distribution 

of all trips in the winter which shows the high chance of lithium plating and the lack of an 

efficient battery thermal management system in the BMW i3. The regeneration of energy 

using the braking system is a charging method that can heavily affect the battery. high 

charging currents will damage the battery when the vehicle is decelerating. Moreover, the 

slow charge transfer is affecting the charging and performance of the regenerative 

braking, thus an analysis regarding the recuperation and the effect of battery temperature 

on the recuperation should be done [59].  

 



27 

 

 

Figure 2.9 Battery Temperature Density 

Based on figure 2.9, the vehicle’s battery is mostly operating in the temperature range of 

5 to 15 C. Figure 2-10 shows the powertrain structure of the BMW i3. This low 

temperature causes an internal resistance increase in the battery. 

 

Figure 2.10 Battery Temperature Density 
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According to figure 2.10, a high voltage battery powers the electrical machine 

electronics and the machine electronics feed the electrical machine with 3 phase 

electricity. The power generated by the machine will be transferred to the transmission 

and then to the wheels. Charging using regenerative braking is carried out by creating 

negative torque in vehicle movement direction. This negative torque or resistance to 

movement is created by the electrical machine. By negative torque, an Electrical machine 

produces electricity and then this electricity is regulated and then charges the battery [57]. 

 

 

 

• Recuperation analysis:  

The energy demand for each trip was examined in order to determine how 

recuperation might affect the BMW i3 energy usage and range. Recuperation 

energy share (RS) is the energy generated by regenerative braking over the 

overall energy consumption excluding heating energy consumption [25]. 

 

The thermal assessment is covered in the initial part, while the regenerative braking 

evaluation is covered in the second. An assessment is carried out in both parts. A broad, 

theoretical approach to the relevant topic is done at the start of each part. This section 

analyses the power fractions of heating and regenerative braking recovery for all trips in 

the dataset and draws conclusions about ranges from the results. regenerative braking 

energy generation depends on the battery pack temperature. Which was also discovered 

as part of the overall recuperation assessment. 
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2.3.1 Regenerative Braking Energy Share (RS) 

𝑹𝑺 =
∫ 𝑰𝑩𝒂𝒕𝒕𝒆𝒓𝒚 𝑪𝒉𝒂𝒓𝒈𝒊𝒏𝒈 ∗ 𝑽𝑩𝒂𝒕𝒕𝒆𝒓𝒚

𝒕

𝟎
 𝒅𝒕

∫ 𝑰𝑩𝒂𝒕𝒕𝒆𝒓𝒚 𝑫𝒊𝒔𝒄𝒉𝒂𝒓𝒈𝒆 ∗ 𝑽𝑩𝒂𝒕𝒕𝒆𝒓𝒚     −      𝑰𝑯𝒆𝒂𝒕𝒆𝒓 ∗ 𝑽𝑯𝒆𝒂𝒕𝒆𝒓     𝒅𝒕
𝒕

𝟎

 

 

(2) 

 

Like the heating share formula, the influence of regenerative braking on the BMW i3 

driving range and power usage is calculated by studying each trip's power demand and 

energy regeneration. Unlike the heat share formula, the traction system power was used 

instead of total energy consumption. Since the effect of heating energy is not involved, 

the equation will be able to isolate and evaluate the effect of regenerative braking on the 

total vehicle traction power consumption and vehicle range. Regenerative braking share 

shows the energy regeneration of braking over the total power usage of the traction 

system for each trip. Recuperation share presents the contribution to range increase 

through regenerative braking in a trip. Due to the low temperature, the regenerative 

braking effect will deteriorate. The range gain will be reduced in low temperatures 

compared to the same trip in a warmer climate. Since the Heating effect is not taken into 

account, this calculated range reduction will be an isolated theoretical approach. 
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CHAPTER 3  

MACHINE LEARNING 

 

Machine learning is a growing field in computer science that is developed to imitate 

human intelligence and learning from nature. Machine learning is considered as a 

practical and useful tool in the field of data science. Machine learning methods are being 

applied successfully in a variety of fields such as computer vision, finance, engineering, 

entertainment, mechanical engineering, and automotive applications [24]. The 

complexity of machine learning methods differs from each other and each of them 

includes multiple levels of sophisticated human-machine interactions. Machine learning 

methods have the ability to optimize and automate processes. Machine learning methods 

have the potential to learn from available data and implement learned knowledge on 

unseen tasks in order to solve problems. A machine learning method is a computational 

process that employs some data as input and also it tries to finish a duty without being 

instructed by programming (hard coded). The machine learning methods change and 

adapt their architecture with repetition in order to improve themselves in performing the 

required duty. The adaptation process is called the training process. The sampled input 

data is supplied along with the preferred output. The machine learning method forms 

itself optimally in order to produce the desired results not only when it is operating with 

training inputs but also when it receives unseen input data. Training is the learning 

process in machine learning. Training is not restricted to the initial adaptation of the 

model in a finite iterating period. A decent algorithm can learn in the lifelong process 

Like humans. The input data can be chosen and weighted to deliver accurate outcomes. 

The machine learning method has variable parameters which are altered by optimizing 
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iterations. It can define probability distributions using inputs and employ them to 

estimate the output. Ideal machine learning is to mimic the human learning process by 

receiving inputs in order to reach a goal. The aim of machine learning can be pattern 

recognition to distinguish bananas from strawberries. Every fruit is distinctive, and it can 

be identified easily. Instead of hard code software with lots of definite representations of 

each fruit, a Machine learning algorithm can learn to distinguish them by using repeated 

learning iteration with actual strawberries and bananas. This process is a decent example 

of supervised learning. Supervised machine learning uses paired known inputs and 

known outputs, for instance, input features such as color, and shape is paired with known 

classified labels such as strawberries and bananas. This learning method permits the 

algorithm to use similarities and differences with known input-output pairs to classify 

unknown outputs [61]. Unsupervised learning is the other variety of machine 

learning.   Unsupervised learning, also known as unsupervised machine learning, uses 

machine learning algorithms to analyze and classify unlabeled data. The users don't have 

to supervise the model. Instead, it allows the model to work on its own and discover new 

information and patterns. It mostly addresses unlabeled data. Without the intervention of 

a supervisor, these algorithms discover hidden patterns or information clusters. It is the 

best option for data exploration, and image identification because it can highlight patterns 

and contrasts in information [62]. Semi-supervised learning, in which some of the data is 

labeled and some of it is not, is the third form of machine learning. In this case, the 

labeled portion can be utilized as the unmarked portion learn [63]. This sort of 

environment lends itself to the majority of natural processes and more closely resembles 

how humans learn new abilities. New insights into comprehending the behavior of 
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complex systems have been provided by neural network-based system modeling and 

identification tools. Artificial neural networks are created in an effort to replicate the 

functionalities that a human neural network can perform, such as learning adaptation, 

generalization, massive parallelism, robustness, associative storage of information, and 

spatiotemporal information processing, based on the anatomy of the human nervous 

system and the mechanism of its operation. There are two key problems that need to be 

resolved similar to those in many systems identification models. 

• The proper selection of neural network architecture (such as model parameters, 

activation functions, and connection types) 

• The choice of model training algorithms  

The artificial neural network is designed to emulate the structure of the human brain's 

neural network and to simulate how it functions. The human brain is a vast and extremely 

sophisticated neural network. Figure 3.1 shows a biological neuron network with a single 

neuron cell as an example. The biological sensory organs may be of different sorts, the 

input signals are all captured by the cell dendrites then the neurochemical impulse (also 

called stimulus) is transmitted through axons to the axon terminals (in a unilateral 

pattern). The axons of each neuron are connected to their dendrites and exchange nerve 

information in a synapse. A human brain contains 100 billion neurons on average. The 

neural network can handle more sophisticated information as more neurons participate in 

the process. 
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Figure 3.1 Structure of a Biological Neuron [64] 

 

A mathematical model of a synthetic neuron node can be created using the same 

concept, as shown in figure 3.2. Data is received and conveyed through the input and 

output ports which represent the dendrites and axon terminals of the biologic neural cell. 

Only one input port and one output port are shown in the figure for the sake of simplicity, 

a bias term is also provided into the neuron node in order to compare random noises and 

any other unidentified factors that might have influenced the neuron cell’s overall input. 

There is a function in the cell body which is called the activation function and as a result 

of the activation function, the cell body mimics the decision-making process of neurons. 

Output is the result of the processed information which is then sent to the next neuron in 

the chain. 

 
Figure 3.2 Mathematical Abstraction of a Single Neuron[65] 

 

By connecting more neurons, a single-layer perceptron can be produced in the 

appropriate way. Figure 3.3 shows that each pink circle in the diagram stands for an input 
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neuron cell and each blue circle stands for an output neuron cell. The pink circles 

represent information sensory elements like dendrites, the axons which convey 

information are represented by the connection between the pink and blue circles and the 

axon terminals are shown by the blue circle. Each path’s weight reflects the importance 

the cell assigns to that input path. The result in this illustration is the weighted sum of the 

inputs [65]. 

 
Figure 3.3  Structure of a Single-Layer Artificial Neural Network [65] 

The mathematical equation of this model is: 

�̂�𝑖 = 𝑤1𝑥1+𝑤2𝑥2+…+𝑤𝑑𝑥𝑑 

 

(3) 

3.1 Activation Functions 

There are different types of mathematical functions including sigmoid, arctangent, 

rectified linear unit, etc. which can be used as activation functions. A few well-known 

activation functions are briefly explained [66, 67]. 

3.1.1 Binary step function 

One of the basic activation functions is the binary step function. It can act as an 

illustration of a trigger threshold that controls whether a neuron should activate or not. 

Figure 3.4 shows that the binary step function behaves much like a transistor the neuron 

is dormant if the input is below a particular threshold. The neuron gets triggered if the 
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input exceeds a particular threshold. However, the output is constant and has an 

unchanging range [67]. The mathematical expression of the binary step function is: 

 

y=1   if x>0 

y=0 if x=<0 

(4) 

 

 
Figure 3.4  Binary Step Activation Function 

 

3.1.2 Sigmoid function  

The Sigmoid function is extensively employed as the activation function in 

many neural network projects. The Sigmoidal function is both nonlinear and 

steady. As seen in figure 3.5  it has a restricted output range between 0 and 1 and 

because of this feature, it is a strong choice for probability estimation [67]. 

Additionally the bell-shaped curve of its first -order derivative is similar to the 

normal distribution curve. It has various statistical merits over other activation 

functions as a result of this characteristic. The mathematical expression of the 

Sigmoid function is written below: 
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y = 1/(1+𝑒−𝑥) (5) 

 

 

Figure 3.5 Sigmoid Function 

3.1.3 Tangent hyperbolic function 

Figure 3.6 represents the tangent hyperbolic activation functionwhich  maps 

the input to the range (-1 , 1) [67]. When x is far from 0 it represents a steady 

increase and when x is close to 0 it switches to a fast growth stage. All x ranges 

are symmetric for a tangent hyperbolic function. Tangent’s hyperbolic  

mathematical expression is: 

y = tanh(x) (6) 
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Figure 3.6 Tangent Hyperbolic Equation 

3.1.4 The rectified linear unit function 

Rectified linear unit function (ReLU) is a common non-linear activation 

function, particularly for deep learning projects. As demonstrated in figure 3.7 the 

function only responds to a specific range of inputs. If the input is negative, the 

output remains 0 and when the input is positive, the output is equal to the input 

value. Due to this feature, it can be used as a gate in neural networks to block 

unnecessary paths without physically altering the network architecture [67].  

Y= max (0, x) (7) 

 

 

Figure 3.7 Rectified Linear Unit Function 
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3.2 Recurrent Neural Network (RNN) 

Recurrent cell in RNN receives their output or permit connections between neurons in 

different layers [68]. Consequently, consecutive data can be recorded. There are several 

distinct varieties of RNNs based on various activation functions and link modalities such 

as long short-term memories and gated recurrent units. RNNs typically need more 

training time because the neuron’s input value may depend on the number of neurons in 

the lower layers. In a real-world application, RNN is frequently used in statistics, speech 

recognition, and mobility pattern prediction. This study used one hidden layer containing 

50 units and the optimization is carried out by ADAM optimizer [69]. The training was 

carried out on the google colab platform. Figure 3.8 shows the architecture of Recurrent 

neural networks. Neurons in the hidden layer receive their previous timestep output as the 

current time step input. The output of each timestep will be used as the input for the next 

time steps. the inner architecture of neurons in LSTM and GRU models is discussed in 

the next section. 

 

Figure 3.8 Schematic Diagram of Recurrent Neural Network [68] 

 



39 

 

3.3 LSTM 

A type of recurrent neural network is called Long Short-Term Memory (LSTM) 

network. LSTM could master order dependency in sequence prediction problems. The 

RNN uses the outputs of the previous time steps as input to the next time step.The LSTM 

was developed by Hochreiter & Schmidhuber . By definition, the LSTM may hold data 

for a very long time [70]. It is employed in the analysis, forecasting, and classification of 

time-series data. LSTM includes feedback connections as opposed to typical feed-

forward neural networks [71]. Along with managing individual data points, it can also 

handle whole data streams. Unsegmented, connected handwriting identification and 

speech recognition are two applications of LSTM. As seen in figure 3.9, the LSTM is 

composed of three sections, each of which has a distinct purpose. 

 

 

Figure 3.9 LSTM Cell Architecture 

The forget section determines whether the data from the preceding time step has to be 

preserved or can be ignored. The cell attempts to learn new knowledge from the input to 

this cell in the input section. The cell finally transmits the revised data from the current 

time step to the next time step in the output section.  LSTM cell sections are called gates. 

The Forget gate, Input gate, and Output gate are the names of the gates, respectively. 
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 The LSTM also includes a hidden state, where H(t-1) stands for the hidden state of the 

previous timestep and Ht for the current timestep. Additionally, LSTMs contain a cell 

state. Cell state is denoted by C(t-1) and C(t), which stand for the prior and current cell 

state timesteps, respectively. The cell state is responsible for keeping data from earlier 

times inside the LSTM cell. The forget gate and input gate modify the cell state. The 

hidden state is the output of the LSTM cell. Figure 3.10 shows the cell state and hidden 

state flow in the LSTM cell. In this case, the cell state is referred to the long-term 

memory and the hidden state is the short-term memory [70].  

 

 

Figure 3.10 LSTM Information Flow 

 

3.3.1 Forget Gate 

The first step in an LSTM network cell is to decide whether to preserve or discard the 

data from the preceding timestep [70]. The forget gate formula is shown below. 

𝐹𝑡 = 𝜎(𝑊𝑓 . [𝑋𝑡 ∗ ℎ𝑡−1] + 𝑏𝑓) (8) 

 

𝑋𝑡: current timestep input   

𝑈𝑓: input weight 

ℎ𝑡−1: the previous timestep hidden state   
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𝑊𝑓: hidden state weight 

A Sigmoid function is then added to it later as a result Ft will be a number between 0 and 

1. As seen below this Ft is then multiplied by the cell state of the prior timestamp. 

 

𝐶𝑡−1 ∗ 𝐹𝑡 = 0 … if  𝐹𝑡 = 0 (forget everything) 

𝐶𝑡−1 ∗ 𝐹𝑡 = 𝐶𝑡−1 … I 

if  𝐹𝑡 = 1  

(Forget nothing) 

The network will forget everything if  𝐹𝑡 is set to 0, but nothing if  𝐹𝑡 is set to 1. 

3.3.2 Input Gate 

Input gates are employed to evaluate the significance of the fresh information carried 

by the input. The input gate selects the relevant data which can be added from the current 

step [70]. The equation of the input gate is shown below: 

 

𝑖𝑡 =  𝜎(𝑋𝑡 ∗ 𝑈𝑖 + 𝐻𝑡−1 ∗ 𝑊𝑖) (9) 

 

𝑋𝑡: current timestep Input 

𝑈𝑖: input weight 

𝐻𝑡−1: the previous timestep hidden state   

 𝑊𝑖: hidden state weight 

The sigmoid function is applied to the results. The final value of the input gate is a value 

between 0 and 1 at timestep t. 
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3.3.3 Output Gate 

𝑁𝑡 = 𝑡𝑎𝑛ℎ(𝑋𝑡 ∗ 𝑈𝑐 + 𝐻𝑡−1 ∗ 𝑊𝑐) (10) 

 

A hidden state at timestep t-1 and input x at timestep t is now required in order to 

send the new information to the cell state. tanh is the activation function. The tanh 

function regulates new data and puts them in a range of -1 to 1. If the value of N is 

negative, the information is subtracted from the cell state, and if it is positive, the 

information is added to the cell state at the current timestep [70]. However, 𝑁𝑡￼ will not 

be added directly to the cell state. The revised equation is seen below: 

𝐶𝑡 =  𝐹𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝑁𝑡 (Updating cell state) (11) 

In this case 𝐶𝑡−1 represents the cell state at the previous time step, and the other variables 

are those we previously computed. The output gate’s equation, which is quite identical to 

the formulas for the first two gates, is shown below: 

𝑂𝑡 =  𝜎(𝑋𝑡 ∗ 𝑈𝑜 + 𝐻𝑡−1 ∗ 𝑊𝑜) (12) 

Due to the effect of the Sigmoid function, the output will have a value between 0 and 1. 

To calculate the current hidden state, we will now utilize Ot and tanh of the updated cell 

state as displayed below: 

𝐻𝑡 =  𝑂𝑡 ∗ tanh (𝐶𝑡) (13) 

 

It turns out that the hidden state relies on both the present output and long-term memory 

(𝐶𝑡) [70]. Figure 3-11 shows the structure of LSTM. 
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Figure 3.11  LSTM Structure[64] 

The LSTM cell contains 3 sigmoid functions and 2 tanh functions. 

3.4 GRU 

GRU is very similar to Long Short-Term Memory. Both use gates to control the flow 

of information. GRU in contrast with LSTM does not have a separate cell (𝐶𝑡). It only 

has a hidden state (𝐻𝑡) [72, 73]. Figure 3.12 shows the architecture of the GRU cell.  
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         Figure 3.12 GRU Structure     

3.4.1 The Architecture Of The Gated Recurrent Unit  

Here we have a GRU cell that resembles an LSTM or RNN cell more or less. The 

GRU cell gives the new hidden state, which is passed on to following cells, after 

receiving the previous hidden state and the current inputs. In contrast with LSTM, GRU 

has only two gates. The GRU gates are reset gate and update gate [73]. 

3.4.2 Reset Gate (Short term memory) 

The network’s short-term memory is handled by the reset gate. The reset gate 

specifies the amount of information from the past that should be forgotten[73]. The reset 

gate’s equation is given below: 

𝑟𝑡 =  𝜎(𝑋𝑡 ∗ 𝑈𝑟 + 𝐻𝑡−1 ∗ 𝑊𝑟) (14) 
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The 𝑟𝑡 will have a value between 0 and 1 as a result of the Sigmoid function. The weight 

matrices for the reset gate are 𝑈𝑟 and 𝑊𝑟 [73]. 

3.4.3 Update Gate (Long Term memory) 

Update gate filters previous data and allows some of it to pass along to the future[73]. 

The equation of the update gate for long-term memory is: 

𝑢𝑡 =  𝜎(𝑋𝑡 ∗ 𝑈𝑢 + 𝐻𝑡−1 ∗ 𝑊𝑢) (15) 

 

3.4.4 How GRU Works 

Two steps are taken to obtain the hidden state (𝐻𝑡) In GRU. The first step is the creation 

of the candidate's hidden state. 

3.4.5 Candidate Hidden State 

�̂�𝑡 = 𝑡𝑎𝑛ℎ(𝑋𝑡 ∗ 𝑈𝑔 + (𝑟𝑡°𝐻𝑡−1) ∗ 𝑊𝑐 (16) 

It receives the preceding timestep’s input and hidden state, t-1, and multiplies those 

values by the reset gate output, 𝑟𝑡. Later passed this whole data to the tanh function, and 

the outcome value is the candidate’s hidden state [72, 73]. The most crucial aspect of this 

equation is how we are able to regulate how much impact the previous hidden state can 

have on the candidate state by adjusting the reset gate’s value. The whole information 

from the previous hidden state 𝐻𝑡−1 is taken into account if the value of  𝑟𝑡 equals 1. The 

information from the preceding hidden state is completely ignored if the value of 𝑟𝑡 is 0. 
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3.4.6 Hidden State 

Once we have the candidate state, it is utilized to create the current hidden state. An 

update gate is used in determining the hidden state. Unlike LSTM, GRU uses only one 

gate to regulate previous and current data entering from the current timestep [39, 72, 73].  

𝐻𝑡 = 𝑢𝑡°𝐻𝑡−1 + (1 − 𝑢𝑡)° �̂�𝑡 (17) 

Assuming that 𝑢𝑡 is close to 0 then the first term which is shown by the red color in the 

equation will vanish which means that a little information from the previous hidden state 

will be carried over to the current hidden state. However, if u nearly approach one, which 

basically indicates that the candidate state will be the only source of information for the 

hidden state at this timestep. 

𝐻𝑡 = 𝑢𝑡°𝐻𝑡−1 + (1 − 𝑢𝑡)° �̂�𝑡 (18) 

 

If the value of second term or 1 − 𝑢𝑡 which is shown by red color, has become entirely 0 

then the information from the hidden state at the previous timestep t-1, will be the only 

factor that influences the first term, or the present hidden state.  

𝐻𝑡 = 𝑢𝑡°𝐻𝑡−1 + (1 − 𝑢𝑡)° �̂�𝑡 (19) 

As a result, we may infer that the value of 𝑢𝑡  , which ranges from 0 to 1, is quite 

important in this formula. The training process steps in the recurrent neural networks are 

briefly described below.  The network is initialized by assigning the number of units to 

the layers, creating the layering structure, defining the activation functions, and setting 

the number of iterations. The training process is started by inputting the corresponding 

data at time to the model. First, RNN units in the layers compute gate results and pass the 

final output through the output gate, having the outputs, the difference between the actual 
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and predicted value is calculated and the weights of the models are adjusted on a 

continuous basis of error calculation. Finally, the corresponding data at time t+1 is fed to 

the model and the above steps are repeated. This training process continues till the end 

condition which is obtaining the constant error met. 

3.5 Root Mean Square Error 

The root means square error formula for checking the accuracy of models is shown 

below. N is the number of parameters, 𝑥𝑖 is the estimation and �̂�𝑖 is the actual data [74]. 

𝑅𝑀𝑆𝐸 = √
∑ (𝑥𝑖 − �̂�𝑖)2𝑁

𝑖=1

𝑁
 

(20) 

 

3.6 Correlation Between Parameters 

The Least Absolute Shrinkage and Selection Operator (LASSO) is a well know statistical 

regularization method for feature selection [75, 76]. For a more accurate forecast, lasso 

regression is preferred over regression techniques. The Lasso model uses shrinkage and 

shrink data values to central points. This method is mostly used for models with high 

correlations or model selections such as parameter selection. Regularization adds a 

penalty term to the fitted line on the training data and decreases the variance between the 

test data and the fitted line. Regularization reduces the effect of predictor parameters over 

output by compressing their coefficients [75, 76]. The cost function mathematical 

equation for lasso regression is  

Residual Sum of Squares + λ * (Sum of the absolute value of the 
magnitude of coefficients) 
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∑(𝑦𝑖 − ∑ 𝑥𝑖𝑗𝛽𝑗

𝑗

)2 + 𝜆 ∑|𝛽𝑗|

𝑝

𝑗=1

𝑛

𝑖=1

 
(21) 

 

• λ (lambda) is the amount of penalty(shrinkage). 

• λ = 0 includes all features and it is equal to the normal regression 

• λ = ∞ excludes all features and all feature coefficients are zero. 

• 𝛽𝑗   is the coefficient of parameters. 

This model fits a line to the output by adding a penalty (𝝀) term. The penalty term 

eliminates unnecessary parameters by reducing the coefficients. A high penalty 

excludes the effects of all features, and no penalty will include all parameters in the 

regression. The penalty term (Lambda) is determined by cross-validation. In cross-

validation, the dataset is divided into multiple divisions and one of the divisions is 

used for the test while the other divisions are used for training. Training divisions are 

used to fit data with different penalties and the fitted line is tested with test data. 

These divisions change their roles iteratively and the lambda with the lowest error 

will be calculated in each of these setups. The penalty with the lowest cost function 

will be found. The suitable penalty will be used in the cost function and the sum of 

coefficients will decrease to find the lowest error point while decreasing coefficients. 

The coefficients which tend to be zero indicate the non-important parameters. Figure 

3.13 shows important parameters for the state of charge prediction. All 16 features 

used in the models are shown in the figure 3.13.  
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Figure 3.13 Feature Importance for Battery SOC 

The Lasso model eliminated about 10 features by reducing their coefficients. Battery 

voltage and current, Velocity, Battery temperature, and heating power are the most 

important parameters for estimating the Battery state of charge. Parameters such as 

heater current, voltage, and air conditioning power have a weak correlation with the 

battery SOC. In environmental features, Elevation has the highest correlation with the 

battery state of charge. Figure 3.14 shows the important parameters for Battery 

temperature prediction. All 16 features included in the training are shown in the 

figure. 
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Figure 3.14 Feature Importance for Battery Temperature 

In contrast with the Lasso technique employed for battery SOC, Lasso couldn’t 

reduce the coefficients of parameters in battery temperature correlation computation. 

Battery voltage and current, velocity, battery state of charge, and cabin temperature 

are the most important parameters for estimating battery temperature. The battery 

voltage has the highest correlation with the battery temperature. In terms of 

environmental factors, the correlation between ambient temperature and battery 

temperature is the strongest. 
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CHAPTER 4  

RESULT AND DISCUSSION 

 

4.1 Recuperation & Heating Share Response 

 

Figure 4.1 shows the heating share based on the ambient temperature at the beginning 

of each drive cycle. Each drive cycle is represented by a point in the figure. Moreover, all 

winter driving trips are included in this analysis. There is a negative correlation between 

ambient temperature and heating share. When the ambient temperature drops, the heating 

energy share will be increased.  

 
Figure 4.1 Heat Share of Drive Cycles in Different Ambient Temperatures 

Every 3 degrees of ambient temperature drop results in a 1% increase in the heating 

energy share. Based on the figure, 20% of the total energy in a drive cycle consumption is 

consumed by the heating system at -3 °C. Figure 4.2 compares the energy recovered 

during a trip to the energy needed to fulfill the traction energy requirements for all winter 
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trips in the database. Instead of total energy usage which includes heating energy, the 

traction energy demand is taken into account. This is an isolated approach to determining 

the influence of temperature on recuperation with respect to the vehicle’s energy 

consumption.  

 
Figure 4.2 Recuperation Energy Share% 

 

Based on the figure 4-2, Recuperation energy share and battery temperature have a 

positive correlation. Recuperation energy will decrease as the battery temperature drops. 

On average each 5-degree increase in battery temperature will lead to a 2% increase in 

the recuperation energy share. 

4.2 Vehicle Data Distribution  

Battery temperature variations, ambient temperature variations, voltage, SOC, Heat 

exchanger temperature, and cabin temperature data points densities are included in figure 

4.3. Data points in all winter trips are summarized. The range of winter ambient 

temperature range is provided along with the vehicle heating system data distribution. 
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This chart will not only provide details about the distribution of data points but will 

describe the behavior of the heating system. 

 

Figure 4.3 Distribution of Data in All Winter Trips; A) Battery Temperature Data 

Distribution, B) Ambient Temperature Data Distribution, C) Displayed SOC Data 

Distribution, D) Battery Voltage Data Distribution, D) Heat Exchanger Temperature 

Data Distribution, F) Cabin Temperature Data Distribution 

Based on the figure, heat exchanger and cabin temperatures are correlated. The coolant 

warms up fast and heats the cabin, this behavior changes the density of data points on the 
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upper limits of the cabin and heat exchanger temperatures. The battery voltage and 

battery SOC are correlated, the voltage of the battery varies from 320 to 400 V based on 

the Figure. Part e shows that the heat exchanger outlet is mostly between 30 – 50 C. 

Battery, cabin, and ambient temperatures are correlated as they influence the battery 

package temperature. Moreover, The battery temperature distribution range is mostly 

between 5 - 15 C which is not an efficient and safe battery temperature to operate. 

4.3 Battery SOC Prediction 

The unavoidable variations in SOC and battery temperature data are estimated with 

the help of machine learning. This precise pattern recognition is one of the strength points 

of machine learning methods.  The data from the previous timesteps are used by the 

LSTM and GRU models to anticipate SOC, and battery temperature for the 

upcoming timesteps, enabling an accurate SOC and battery temperature forecast to 

improve electric vehicle control schemes and evaluate the effects of additional 

equipment.  The models used Time [s],Velocity [km/h],Elevation [m],Motor Torque 

[Nm],Longitudinal Acceleration [m/s^2],Battery Voltage [V],Battery Current [A],Battery 

Temperature [°C],Heating Power CAN [kW],Air conditioner Power [kW],Heater Voltage 

[V],Heater Current [A],Ambient Temperature [°C],Coolant Volume Flow +500 [l/h],Heat 

Exchanger Temperature [°C] and Cabin Temperature Sensor [°C] data as inputs of the 

model. LSTM and GRU models have been trained with about 80% of data and 20% for 

validation of models. 32 drive cycles were used for training and 6 drive cycles were used 

for validation out of 38 datasets. In most of the driving cycle charts, LSTM outperforms 

GRU. Both models are similar to each other since they have pretty much similar 

architecture. LSTM has one gate more than GRU which allows it to process data more, 
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but it is more complex. However, GRU is fast compared to LSTM, and it has less 

complexity. Figure 4.4 shows LSTM, GRU estimations, and actual SOC of the electric 

vehicle data for drive cycles 33 to 38.  
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Figure 4.4 LSTM, GRU   SOC Estimations; A) Trip 33 Results, B) Trip 34 Results, C) 

Trip 35 Results, D) Trip 36 Results, E) Trip 37 Results, F) Trip 38 Results, 
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LSTM converges to the actual value of SOC, faster and it has less noise compared to  

GRU. LSTM has outperformed GRU on all the trips. GRU estimations are noisier than 

LSTM results. This noise reduction is the result of the additional activation functions in 

the LSTM, such as the sigmoid and tanh. In addition to preventing linearity in LSTM cell 

results, these functions also filter out unnecessary information. This extra data filtration 

might be the reason for noise reduction. 

 

4.4 Battery Temperature Prediction 

The battery pack of the BMW i3 is mostly in a non-efficient temperature range. Same 

as SOC, 80% or 32 drive cycles are used for training and 20% are used for validation of 

battery temperature estimation models. The models used Time [s],Velocity 

[km/h],Elevation [m],Motor Torque [Nm],Longitudinal Acceleration [m/s^2],Battery 

Voltage [V],Battery Current [A], displayed SOC [%],Heating Power CAN [kW],Air 

conditioner Power [kW],Heater Voltage [V],Heater Current [A],Ambient Temperature 

[°C],Coolant Volume Flow +500 [l/h],Heat Exchanger Temperature [°C] and Cabin 

Temperature Sensor [°C] data  as inputs of the model. Since the battery in the battery 

pack temperature is influenced by lots of factors such as current variation, velocity, 

heating /cooling effects of air conditioning, etc., estimations fluctuate. Irreversible heat 

generation is influenced by the internal resistance of the battery and current, these factors 

are influenced by ambient temperature, energy consumption, and heating/cooling system. 

Reversible heat generation results in entropy change and it changes by temperature. 

Furthermore, Energy transfer through convection is majorly influenced by the ambient 
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temperature and velocity. Instead of using the theoretical approach for calculating battery 

temperature; machine learning models have been developed in order to identify patterns 

of temperature estimation. Figure 4.5 shows the LSTM and GRU estimation and 

compares them with the actual battery temperature in different drive cycles. These 

estimations can be used to eliminate temperature sensors and increase battery pack space.  
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Figure 4.5 LSTM, GRU Battery Temperature Estimations A) Trip 33 Results, B) Trip 34 

Results, C) Trip 35 Results, D) Trip 36 Results, E) Trip 37 Results, F) Trip 38 Results, 

In all of the trips, LSTM had better convergence toward actual data. Based on the 

achieved results in trip 35, the estimation error of the GRU model worsened as time 
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passed, but the LSTM model got better. This result proves that complex datasets such as 

the dataset used in this study need more data processing gates. The LSTM handled the 

data processing better since it is more complicated and has an additional gate. The 

obtained results in trip 38, show that GRU model predictions are closer to the actual 

value and LSTM estimations have a bias which caused more error. 

LSTM and GRU models are compared in terms of efficiency in estimating battery 

temperature and battery state of charge. The root means square error (RMSE) of each 

model is included to show the accuracy of each model. Table 4.1 shows the RMSE of 

each model in SOC and battery temperature estimations. 

Table 4.1 RMSE Comparison Between LSTM and GRU  

RMSE Battery Temperature °C State Of Charge % 

LSTM 0.29 °C 2.23% 

GRU 0.70 °C  2.52% 

 

According to the table, LSTM is superior to the GRU in both states of charge and 

battery temperature estimation. This superiority is the result of having one extra gate 

compared to GRU, but the accuracy difference is not much in the state of charge 

estimations. So GRU might be a practical and better model for estimating the state of 

charge since it is less complex. Figure 4.6 shows the effect of training percentage on the 

RMSE. By increasing the training percentage, the error decreases. The error doesn’t 

change a lot when at least 70 % of the data is used for the training. 
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Figure 4.6 Training Percentage Variations and The Resulting RMSE; A) Training Data 

Percentage vs SOC B) Training Data Percentage vs Battery Temperature 

 

In the correlation section of this study, important features for each of the estimations 

are shown. For battery temperature forecast the six most important features are battery 

voltage, battery state of charge, battery current, cabin temperature, velocity, and heating 

power. Battery voltage, battery current, velocity, battery temperature, heating power, and 

cabin temperature parameters are the important features for state of charge estimation. 

These features are used for estimations to determine the effect of the number of 

parameters on the performance of estimation models. Figure 4.7 shows the performance 

variation of models while trained with a different number of parameters.  
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Figure 4.7 RMSE Comparison of 7 Feature and 16 Feature Models; A) LSTM Models 

Comparison, B) GRU Models Comparison 

 

Based on the comparison chart, using 7 features doesn’t have a strong effect on the 

performance of the battery temperature models. In the state of charge prediction, the 

RMSE difference between the 7-feature model and the 16-feature model is about 1%. 
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CHAPTER 5  

CONCLUSION 

The low driving range is one of the weak points of electric vehicles. Particularly, low 

temperatures have a significant negative effect on its range which is resulted from heating 

energy consumption. Moreover, in low temperatures, the regenerative braking system is 

not capable of generating a significant amount of energy due to an increase in impedance. 

This study covered the effects of low temperatures on heating energy demand. On 

average 20% of BMW i3 energy consumption is for heating at the ambient temperature of 

-3 °C. In addition, a detailed analysis of regenerative braking behavior was determined 

theoretically. On average each 5 degree increase in battery temperature will lead to a 2% 

increase in the recuperation energy share. 

The second part of the study covered the machine learning approach to determine 

important parameters such as SOC and battery temperature. These parameters which are 

correlated with different parts of the electric vehicle have been estimated to prevent 

overcharge and discharge, thermal runaway, and cold damage to the battery. LSTM and 

GRU models have been compared in terms of estimation accuracy. In battery temperature 

estimation and SOC estimations, LSTM has achieved RMSE of 0.29 °C and 2.23% 

respectively. In battery temperature estimation and SOC estimations, GRU has achieved 

RMSE of 0.70 °C and 2.52% respectively. In both SOC and battery temperature 

estimation, LSTM was more accurate based on the root mean square error. The effect of 

train percentage over RMSE shows that using about 70 % of the data for training could 

be sufficient. Moreover, the effects of reducing the number of parameters on the model 

accuracy are determined. The battery temperature models using 7 features are performing 



64 

 

relatively well compared to the models using 16 features. But the error between 7 and 16 

feature models in SOC estimation is high. 

The results and the models of this study could be further developed and implemented on 

the BMW i3 electronics. Future research can focus on control strategies based on these 

machine learning models in order to increase electric vehicles driving range. These 

control strategies can work on the thermal sensor replacements in battery, charging, and 

discharging control with respect to the battery temperature and state of charge forecast 

using different parameters. 
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