
University of Arkansas, Fayetteville University of Arkansas, Fayetteville 

ScholarWorks@UARK ScholarWorks@UARK 

Graduate Theses and Dissertations 

8-2022 

Hierarchically Structured Photoelectrodes via Atomic Layer Hierarchically Structured Photoelectrodes via Atomic Layer 

Deposition Deposition 

Justin Rowan Reed DeMoulpied 
University of Arkansas, Fayetteville 

Follow this and additional works at: https://scholarworks.uark.edu/etd 

 Part of the Atomic, Molecular and Optical Physics Commons, Inorganic Chemistry Commons, and the 

Materials Science and Engineering Commons 

Citation Citation 
DeMoulpied, J. R. (2022). Hierarchically Structured Photoelectrodes via Atomic Layer Deposition. 
Graduate Theses and Dissertations Retrieved from https://scholarworks.uark.edu/etd/4672 

This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for 
inclusion in Graduate Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more 
information, please contact scholar@uark.edu. 

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/etd
https://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F4672&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/195?utm_source=scholarworks.uark.edu%2Fetd%2F4672&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/137?utm_source=scholarworks.uark.edu%2Fetd%2F4672&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/285?utm_source=scholarworks.uark.edu%2Fetd%2F4672&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/etd/4672?utm_source=scholarworks.uark.edu%2Fetd%2F4672&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu


 

Hierarchically Structured Photoelectrodes via Atomic Layer Deposition 

 

 

 

 

A dissertation submitted in partial fulfillment  

of the requirements for the degree of  

Doctor of Philosophy in Chemistry 

 

 

 

by 

 

 

 

Justin Rowan Reed DeMoulpied 

University of Arkansas 

Bachelor of Science in Biology and Chemistry/Biochemistry, 2015 

 

 

 

August 2022 

University of Arkansas 

 

 

 

This dissertation is approved for recommendation to the Graduate Council 

 

 

 

________________________________ 

 Robert H. Coridan, Ph.D. 

 Dissertation Director  

 

 

 

________________________________  ________________________________ 

 Jingyi Chen, Ph.D.      Colin Heyes, Ph.D. 

 Committee Member      Committee Member 

 

 

 

________________________________  ________________________________ 

 Stefan Kilyanek, Ph.D.     Julie Stenken, Ph.D.  

 Committee Member      Committee Member 



i 
 

 

Abstract 

In the search for a sustainable method to meet increasing energy needs, solar energy 

emerges as an underutilized, plentiful resource. Solar intermittency and requirements for 

transportation necessitate storing solar energy in the form of chemical bonds via artificial 

photosynthesis. Photoelectrochemical (PEC) water splitting generates hydrogen fuel from 

solar energy and water. A semiconducting material that successfully meets the complex 

requirements for building an industrially scalable PEC device has yet to emerge. This is 

leading to a reevaluation of materials previously overlooked within PEC research, mainly 

materials with limitations such as minimal charge carrier mobility and propensity to corrosion 

under illumination in aqueous environments. Cupric oxide (CuO) is one such candidate 

semiconductor, energetically suitable as a photocathode for PEC water splitting, and 

possesses both limitations mentioned above. Hierarchical three-dimensional structuring can 

circumvent the charge mobility limitations of CuO while maintaining its ability to absorb 

maximal incident solar illumination. Our proposed method of hierarchical structuring is 

coating nanometer-thick layers of CuO across a three-dimensional conductive scaffold of silica 

spheres, which maintains the path length of illumination through the semiconductor. Atomic 

Layer Deposition (ALD) can be used throughout construction of a PEC device based on this 

scaffold. In this work, the transparent conducting oxide (TCO) Al:ZnO (AZO) deposited using 

ALD is proposed as a conductive layer in hierarchical structuring of a PEC device. AZO is 

soluble in the extreme pH environments often present in current PEC water splitting research. 

An ultra-thin film of ALD-TiO2 is evaluated as a protection layer for AZO from chemical 

dissolution. This protection layer work is further applied to intervening in CuO 

photocorrosion. Additionally, we studied the impact the work function of a back contact in 

the PEC performance of protected CuO electrodes. We conclude with a discussion on the 

viability of CuO as a material for three-dimensional structuring in the proposed scaffold. 
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Chapter 1. Introduction 

1.1 Motivations 

The rate of energy consumed by humanity continues to rise, with current models 

predicting the current rate of 19TW will rise to over 24TW by 2040; an increase largely driven 

by the modernization of emerging economies.1,2 Fossil fuel combustion as an energy source 

cannot meet this increased demand due to finite limitations of supply and the environmental 

impact that will cause irreversible damage to the planet.3 The energy of sunlight incident to 

the planet’s surface is nearly 90,000TW; assuming complete collection and conversion into 

consumable energy. Accounting for technical and spatial limitations, primarily collection 

efficiency and land allocation, solar electricity can still theoretically provide over 7,000TW at 

peak production.4  

Barring a world-wide electrical network, solar energy generation is intermittent due to 

earth’s rotation. Peak energy demand (that occurs in the evening and night) does not 

correspond with peak energy generation from sunlight (mid-day).5 Additionally, transportation 

undeniably requires storable energy sources. Batteries are the most familiar modern method 

of storing electrical energy, utilized in small electronics and hybrid cars. However, batteries 

suffer from low energy density both by mass and volume; to utilize them for storage on the 

scale of a commercial electrical grid would require insurmountable quantities of expensive, 

limited, and environmentally harmful materials.6 The conversion of solar energy into chemical 

fuels is not a novel concept; photosynthetic bacteria and plants have arguably mastered the 

process.3 Light absorption excites electrons within complex photosystems which are then 

quickly transported away from the source of the excitation, preventing loss of energy due to 

recombination. The high energy electron catalyzes unfavorable reactions that store energy, 
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eventually leading to the fixation of carbon in the atmosphere into the form of 

carbohydrates.  

Utilizing biomass as a direct fuel source is a carbon-neutral process ideally. Typical 

species of plants convert 3.5-4.3% of incident solar energy into fuel for the organism.7 Much 

of this absorbed light is utilized for plant and root growth. Even when using energy dense 

plants such as sugar cane, processing plant matter into biofuels such as ethanol results in a 

solar-to-fuel conversion efficiency of around 0.3%. Due to the processing necessary to convert 

biomass into ethanol or long-chain carbons for use in vehicles, the carbon cycle becomes far 

from neutral, though the impact on CO2 emissions is less than a comparable quantity of fossil 

fuels.8  

1.2 Proposed Solution 

  Inspired by the biological model of photosynthesis, materials scientist and chemists 

attempt to improve on evolutionary design. Employing photocatalytic semiconductor metal 

oxides to produce directly collectable and usable fuels from sunlight is known as artificial 

photosynthesis (AP).3 Water splitting to generate H2 (HER) and reduction of CO2 (Carbon 

fixation) to methanol are both feasible paths for AP to replace fuels.9-11 Materials that convert 

sunlight to fuels with efficiencies greater than 10% are considered to be the industrially viable 

benchmark, set by the US Department of Energy.12 Engineering the structure and layering of 

materials to reach this benchmark is the driving force behind the research presented in this 

dissertation. Externalities of input must be considered for realistic designs, including material 

cost and abundance, energy consumed in fabrication, and scalability of fabrication. Beyond 

initial manufacture, any device must have a lifetime on the order of years or decades, be 

stable in structure and conversion efficiency, and materials used should have little to no 
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impact upon the environment upon degradation and disposal at the end of the device’s 

lifetime. 

Materials that meet these high demands have yet to emerge, leading to 

reconsideration of metal oxides with limitations that could be avoided by three-dimensional 

structuring. CuO (tenorite, copper(II) oxide, cupric oxide) is an earth abundant 

semiconductor, with the capability to absorb a large portion of the energy of the solar 

spectrum. However, this material faces a unique challenge: the material must be several 

hundred nanometers think to absorb all the incident light possible, but energy from electron 

excitation due to light is lost to recombination within a few nanometers of generation. To use 

this material for AP, it paradoxically needs to simultaneously behave like a thick-film light 

absorber but a thin-film electronic material. 

The proposed solution to the paradox relies on 3-dimensional structuring. A scaffold of 

silica spheres with diameter of 100-300nm is self-assembled in a colloidal crystal with 

polystyrene spheres (PS) with diameter of 1-2μm. Atomic layer deposition (ALD) is employed 

to selectively bind the silica spheres together and upon removal of the PS an ordered guest-

host lattice is formed.13 Thin layers (10-100nm) of a transparent conducting oxide (TCO) is 

coated over the scaffold utilizing ALD, followed by deposition of the semiconducting 

photoabsorber (Figure 1.1). Therefore, an excited charge carrier is required to only travel a 

few nanometers to either the surface, to catalyze chemical reactions, or to the conductive 

backing, to freely move to a counter-electrode. Simultaneously a scaffold of this structure 

ensures the incoming photons travel through the necessary several microns of photoactive 

layer needed to be completely absorbed. Additionally, the scaffold advantageously utilizes 

silica spheres with tunable size for scattering light, the 3-D structure greatly increases surface 

area available for catalysis, and the holes in the lattice left by PS are tunable limit mass-

transfer within the tortuous structure.14-19 These tunable scaffolds hypothetically are 
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promising for storing solar energy as chemical bonds; the focus of this work was to develop 

methods toward the construction of such a device.  

 

 

Figure 1.1 Hierarchical Structuring of Semiconductors.  Scaffold of Silica beads (white) on a 

conductive substrate (grey) allows for deposition of a transparent conducting oxide (red) and 

an ultra-thin layer of a light collector (black). This allows for the decoupling of the absorption 

length and the minority carrier diffusion length. 

1.3 Atomic Layer Deposition 

 Atomic layer deposition is a chemical vapor deposition technique developed in the 

1970’s that is used to create conformal, thin films, even in tortuous structures, with 

predictable and controllable layer thicknesses of the deposited material to the nanometer or 

angstrom scale.20 Two complimentary reactions between an oxidizer, often water vapor, and 

organometallic precursors sequentially pulsed into the reaction chamber builds the film one 

atomic layer at time, in a self-limiting nature due to finite reaction centers on the film 
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(Figure 1.2). The organometallic precursor selectively binds to hydroxide functional groups 

present on the substrate forming covalently bound monolayers. The reaction chambers are 

generally under a light vacuum (0.1-1 Torr) and are temperature controlled, with most ALD 

reactions taking place at 150-250oC, though some precursor can deposit films at significantly 

lower temperatures. Ideally each cycle of the reaction fully coats all active sites, but due to 

the reality of kinetics experimentally fewer than half of the active sites react. The oxidizer 

species in ALD can be adjusted to make oxides, nitrides, sulfides, and metals.20 The library of 

ALD precursors and recipes is constantly expanding, making ALD a powerful tool in deposition 

of thin films within the proposed hierarchical structure. 

 

Figure 1.2. Schematic of Atomic Layer Deposition Reaction Sequence.  A. Organometallic 

precursors pumped into chamber. B. Organometallic precursors react with all exposed 

hydroxylated surfaces, unreacted precursors removed. C. Water vapor pumped into chamber. 

D. Water reacts with exposed metal centers, reforming hydroxylated surface, and excess 

water is removed. This cycle is repeated until the desired thickness is reached.  
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The surface-specific nature of ALD reactions, with organometallic precursors often 

only binding to hydroxide functional groups present on a surface, is advantageous to the 

construction of the proposed scaffold. The deposition will take place on the silica spheres, as 

their surface is terminated with hydroxide functional groups, while not depositing upon the 

polystyrene. In this manner, ALD is utilized to bind the silica scaffold before the removal of 

polystyrene and subsequent functionalization.  

1.4 Solid-State Physics of Semiconductors   

 In a solid crystal, the electronic orbital energy levels that are initially discrete for a 

single atom or molecule interact amongst themselves, to form continuous bands of available 

energy states, as prescribed by band theory. Metals are materials whose highest occupied 

molecular orbitals (HOMO) and lowest unoccupied molecular orbitals (LUMO) overlap, thus the 

frontier valence band is partially filled, and electrons can move freely through the band 

making the material conductive. In both a semiconductor and an insulator, the HOMO band is 

fully filled and is designated the valence band (VB), while the LUMO is empty and designated 

the conduction band (CB). The energy difference between the upper edge of the VB and the 

lower edge of the CV is defined as the band gap (Eg). A semiconductor is a material that is 

only conductive at high temperatures or when a voltage is applied across the material, 

generally defined as a Eg of less the 4.0eV (Figure 1.3).21  

A photon can interact with a semiconductor to form an excited electron and an 

electron hole. These high energy excitons can be used to catalyze chemical reactions once 

the electron is separated from its hole. The band gap of a material defines the minimum 

energy a photon must possess to excite an electron within the crystal. Materials with a 

smaller bandgap will be able to absorb a larger fraction of the solar spectrum; each photon 

with the minimum energy or higher will be converted into one excited, mobile electron. 

Excess energy in the photon beyond necessary Eg is lost to thermal relaxation in a few 
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femtoseconds; to completely transform the solar energy to chemical bonds, the wavelength 

of light would be exactly the band gap and no smaller, though this is entirely impractical. The 

Shockley-Queisser limit defines the maximum energy efficiency of solar conversion, at a band 

gap of 1.34eV, where the device could have a theoretical solar conversion efficiency of 

33.7%.22 The band gap is indicative only of the relative positions of the CB and VB, not their 

absolute energies; which is crucial information that determines its ability to drive reactions 

forward. Additionally, small band gap semiconductors that approach the Shockley-Queisser 

limit are generally less stable in any solution used for photoelectrochemistry, imposing a 

frequent tradeoff between device lifetime and device efficiency.  

 

 

Figure 1.3. Semiconductor and Insulator Bang Gap. In both a semiconductor (a) and an 

insulator (b), the fully filled valence band (VB) and the empty conduction band (CB), are 

separated by an energy gap called the optical band gap (Eg). A band gap of less than 4eV 

makes the material a semiconductor, values much greater than 4eV are insulating materials. 

Semiconductors can have electrons excited to the CB at high temperatures or an applied 

voltage.  
Reproduced with permission from Rajeshwar, K., Fundamentals of semiconductor electrochemistry and 

photoelectrochemistry. Encyclopedia of electrochemistry 2007, 6, 1-53; copywrite Wiley Books 
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The Fermi level of a material is an intrinsic thermodynamic quantity (often 

abbreviated as Ef or εf). It is the electrochemical potential of electrons in the material. In a 

metallic material, it is more commonly referred to as the work function of the metal. A 

semiconductor has a Fermi energy level within the band gap of the semiconductor, between 

the valence band and conduction band. Should the Fermi energy be directly in the middle of 

the conduction band edge and the valence band edge, the semiconductor is intrinsically  

 

Figure 1.4 Semiconductor-Solution Interface. An n-type semiconductor working electrode in 

solution. The electrochemical potential of the solution is lower than the fermi energy of the 

semiconductor. Because of charge transfer equilibration, an electric field is generated in the 

semiconductor, in a phenomenon known as band bending. Photoexcited electron-hole pairs 

are separated, with holes going to the surface to oxidize water, while electrons are 

transported to the counter electrode to reduce hydrogen. A p-type semiconductor behaves in 

an analogous manner, with a reverse electric field pushing electrons to the surface and holes 

to the counter electrode.  
Adapted with permission from Grätzel, M., Photoelectrochemical Cells. Nature 2001, 414, 338-344; copyright 

Springer Nature 
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undoped. Through the addition of electron-poor atoms or through intrinsic electron 

deficiencies in the crystal structure of the solid, the Fermi level will be closer to the valence 

band edge, and the semiconductor is considered p-type. A Fermi energy level that is closer to 

the conduction band edge due to excess electrons is considered n-type. 

When an interface between a semiconductor and solution is formed, the fermi energy 

of the semiconductor at the surface equilibrates with the electrochemical potential of the 

solution. This causes a collection of excess charge near the surface of the semiconductor, 

effecting the position of the VB and CB edge; a phenomenon known as band bending (Figure 

1.4).23  Band bending in a semiconductor induces charge separation of photogenerated high 

energy electron-hole pairs, due to the resulting electric field. When electrons are accelerated 

toward the surface, in the case of a p-type semiconductor, the electrode is a photocathode; 

an n-type semiconductor forms a photoanode in a similar manner. An analogous junction can 

form between solid metal and a semiconductor if there is a difference between their Fermi 

energies. Again, the fermi energy of the semiconductor equilibrates with the work function of 

the metal by charge transfer, which induces band bending in the resulting electric field. Both 

interfaces are referred to as a Schottky junctions. If the electrochemical difference between 

the materials is small, the contact is considered Ohmic: electrons and holes can flow 

unimpeded through the junction regardless of direction.  

The work function of the metal in a back contact defines the electrical potential the 

semiconductor will equilibrate to. The depth of the workfunction for the back contact is just 

as important to consider when constructing photoelectrodes as the choice of semiconductor. 

Workfunctions are generally reported as negative values based the energy needed to remove 

an electron from the material to vacuum. A shallow or more positive workfunction metal 

when in contact with an n-type semiconductor will induce band bending that pulls electrons 

to the back contact, while pushing holes to toward the solution-semiconductor interface, 



10 
 

which is advantageous for a photoanode (Figure 1.5a). Similar band bending is detrimental to 

a p-type semiconductor, as hole are trapped in the semiconductor, which will greatly increase 

recombination (Figure 1.5b). High energy electrons used for reduction on the semiconductor 

surface are pulled away from the reaction center and energetically lost to recombination 

from excess holes.  

 

Figure 1.5 Back Contact Workfunction Effect on Electric Field in a Semiconductor. 

Schematic of band bending at a semiconductor-back contact interface. The workfunction of 

the metal is denoted by Φ, the valence band edge by EV, the conduction band edge by EC, and 

electrons and holes represented as negative and positive charges, respectively. A back 

contact current collector with a shallow or more positive workfunction is advantageous to the 

anodic potential of a n-type semiconductor (a). The same current collector will be 

detrimental to a p-type semiconductor’s performance as a photocathode (b) by creating a 

hole-trapping electric field, increasing recombination events. A deep or more negative 

workfunction current collector creates analogous electron trap states in n-type 

semiconductors (c), while advantageously encouraging charge separation in a p-type 

semiconductor (d).  

Inversely, a deep or more negative workfunction metal is detrimental to n-type 

semiconductor photoanodes by creating an electron trapping electric field, again increasing 

recombination (Figure 1.5c). The same deep workfunction is advantageous to a p-type 
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photocathode, forming a charge-separating electric field, encouraging electrons to travel 

toward the surface while pulling holes through to the counter electrode (Figure 1.5d). Based 

on these principles, for the innate p-type semiconductor CuO, deeper back contact 

workfunctions increase the solar conversion efficiency of a constructed photocathode by 

reducing the rate of recombination events. This is especially crucial in a Mott Insulator such a 

CuO. Without an appropriate electric field, charge carriers will not travel far by diffusion. 

1.5 Overview 

Chapter 2 begins with providing literature evidence for the viability and necessary 

considerations when constructing a PEC device for water splitting. A brief history of ALD is 

reviewed, followed by some applications and current direction in the field. The use ALD in 

protection layers, specifically for PEC devices, is also addressed. In chapter 3, work on ALD 

protection layers begins. A study of ALD-TiO2 and its efficacy as a protection layer of Al:ZnO, 

a transparent conducting oxide typically unstable outside of near-neutral pH. Mechanisms of 

failure were observed in pinhole aberrations in TiO2 deposition.  

An extensive study of CuO as a photocathode is shown in Chapter 4, examining 

photocorrosion and the choice of back contact influencing device performance. Protection 

layers via ALD are examined as a potential solution for the problem of photocorrosion. In a 

CuO photocathode, various conductive back contacts are compared, based on the hypothesis 

the work function of the current collector will influence the performance of a CuO 

photocathode. The common transparent conducting oxide F:SnO2 (FTO), was compared to 

silver and nickel as the back contact via cyclic voltammetry under illumination. FTO and 

silver, both metallic materials with workfunctions significantly above the fermi energy of 

CuO, caused a CuO photocathode to demonstrate significantly lower photoeffects in current 

density than electrodes upon a Ni substrate, a metal with a workfunction nearly equal to the 
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fermi energy of CuO. Chapter 5 serves as a conclusion and outlook on future directions of this 

research. 
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Chapter 2. Literature Review 

2.1 Photoelectrochemical Water Splitting 

 Solar energy conversion is motivated by the desire to mitigate intermittency of 

incident solar energy and to provide a sustainable alternative to fossil fuels. Hydrogen 

evolution from water is one of the proposed alternatives to fossil fuels, utilizing abundant 

sunlight and water.24 First demonstrated by Fujishima and Honda in 1972 using TiO2, PEC 

water splitting has emerged as a method for storing solar energy in chemical bonds.25,26 To 

compete financially with hydrogen generation from natural gas, a minimum solar-to-hydrogen 

(STH) conversion efficiency of a PEC device needs to be maintained for several years.27,28 

Arguably more importantly, the energy output of a PEC device needs to significantly exceed 

the energy needed to construct it.29,30  

 Splitting a single molecule of water to H2 and O2 requires four electrons to be excited 

by photon absorption, each with enough energy to overcome thermodynamic losses and 

catalyze OER and HER.31 A single light collection material to reasonably drive water splitting 

would need to have a minimum gap of 1.8eV, with appropriate band edge positions, to reach 

a theoretical STH of 23%.32 Inspired by the Z-scheme of photosynthesis, which uses two 

photosystems to successively excite charge carriers, a tandem PEC system is needed to 

achieve water splitting with high STH conversion efficiencies.7,33 An example two light 

collector system composed of materials with band gaps of 0.9eV and 1.6eV increases the STH 

efficiency to 32%; when using earth abundant catalysts is considered the STH drops to 28.7% 

(Figure 2.1).32,33 The Hu et al. computational study additionally found there is no significant 

effect on STH when choosing between a separate photocathode and photoanode system or a 

tandem stacked absorber system (Figure 2.2).33,34 
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Figure 2.1 Solar-to-Hydrogen Efficiency of a Tandem PEC Device as a Function of Band 
Gap. The band gap of the semiconductor on top in a tandem should be wider that the band 
gap of the semiconductor beneath it. Maximal STH efficiency is theoretically found at a 1.6eV 
band gap for the top semiconductor and 0.95eV for the bottom when accounting for state-of-
the-art catalysts for HER and OER (Pt and RuO2). When using earth abundant catalysts, the 
maximal band gap is slightly higher for both layers, because of needing higher overpotentials 
to catalyze HER and OER.  

Adapted with permission from Hu, S., et al., An analysis of the optimal band gaps of light absorbers in integrated 
tandem photoelectrochemical water-splitting systems. Energy & Environmental Science 2013, 6, 2984-2993; 
copyright RSC Publishing 

A benchmark tandem photocathode of GaInP/GaInAs (with band gaps of 1.8eV and 

1.2eV) in a PEC device reached a STH efficiency of 16%, up to 19% with the addition of several 

protection, separation, and catalytic layers.35,36 These materials, though able to reach some 

of the highest STH efficiencies for a PEC device to date, are prohibitively expensive both 

monetarily and energetically to acquire and manufacture. Other III-V semiconductors such as 

GaN, GaP, GaAs, InP share similar drawbacks as the scarcity of indium and gallium make 

scaling these materials to industrial scale infeasible.34 No photoanode system or material has 

emerged to meet the requirements of being high efficiency, low cost fabrication, and intrinsic 

stability.26 Most n-type metal oxides have 2.5eV or larger band gaps that make efficient 
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Figure 2.2 Structuring a Photoelectrochemical Device. A single photocathode (a) with a 

separate counter anode catalyst. A separated tandem PEC device (b) with a photoanode (red) 

and a photocathode (blue) connected by wiring. A type layered tandem PEC device (c) with a 

photoanode (red) and a photocathode (blue) layered in one electrode. Another type of 

layered device would have two light absorbers on a photoanode, with a catalyst on the 

cathode. Inversely, the two light absorbers would be on the photocathode, with only a 

catalyst on the anode. In all the tandem models, the illumination path passes through the two 

light absorbers sequentially. Thus, the large band gap semiconductor must be placed before 

the small band gap semiconductor in the illumination path. 

Adapted from Moon, C., and Shin, B., Review on light absorbing materials for unassisted photoelectrochemical 
water splitting and systematic classifications of device architectures. Discover Materials 2022, 2, Article 5; 
Copyright Springer 

capture of incident solar energy.37 Hematite (α-Fe2O3) has been evaluated as an n-type 

candidate for PEC, with its band gap of 2.0eV, but is a Mott insulator: electron transport 

takes place via polaron hopping, resulting in photoexcited holes being lost to recombination 

within a few nm of generation.38-40 The importance of band gap and band edge position in STH 

efficiency and limited earth abundant materials that meet those requirements, has resulted 

in a need for methods of enhancing the stability of semiconductors in aqueous solution.37,41 

Atomic Layer Deposition has emerged as a method for achieving this goal.42  
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2.2 Atomic Layer Deposition 

 Atomic layer deposition was first described in the west in 1980 under the name of 

atomic layer epitaxy, reporting the deposition of a ZnTe film.43 The technique was also 

developed independently in the 1960s in the Soviet Union under the name molecular layering,  

though this history is less well known, primarily due to geopolitical isolation and a lack of 

translation. A concerted effort within the ALD research committee is underway to shed light 

on both origins of ALD.44 The technique was renamed ALD as most films deposited were not 

epitaxial to their substrates and frequently amorphous films are desired in some electronic 

applications of ALD.20  

Deposition of Al2O3 was documented as early as 1983 in patents describing ALD 

reaction chambers, though this chemistry relied on AlCl3 as a precursor.45 Additional reactions 

proposed in the patent included deposition of ZnS, SnO2, GaP, and Ta2O5.  Halide based 

precursors are the oldest ALD reactants, however they have the distinct disadvantage of 

forming gaseous strong acid as a byproduct, which can etch the reaction chamber and even 

etch the substrate of the film deposition. One instance of this etching phenomenon is seen in 

ALD of Ta2O5 films using TaCl5 or TaI5, especially when the dose of the precursor is not tightly 

controlled.46,47  

Alkyl precursors are now primarily used as reactants, especially for aluminum and zinc 

films deposited from trimethylaluminum (TMA) and diethylzinc (DEZ).48,49 These alkyl 

precursors are extremely reactive with water to form oxides, but have also been reported to 

form nitride, sulfide, and phosphide films with the appropriate oxidizing precursor.49 The high 

reactivity of TMA and DEZ allow for deposition of films at low temperatures, necessary for 

applications on thermally fragile samples, such as organics, polymers, biologics, and 

perovskite solar cells, without significant decreases in deposition rates.50-54  
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The transparent conducting oxide Al:ZnO can be manufactured with ALD to provide a 

conductive film in tortuous structures. We can deposit AZO at temperatures below the 

melting point of the PS, present in the structural scaffold proposed previously, using TMA and 

DEZ.55 It is well documented that there is a non-linear relationship between cycle ratio and 

final atomic ratio of dopants in ternary oxides deposited with ALD, due largely in part to the 

unequal binding energies of precursors to the surface.54,56 Through adjusting recipe 

construction, the atomic ratio of dopants can be measured in relation to cycle ratio, which 

can be used to reliably predict future film composition.54,57,58 Generally the Al doping 

percentage in ALD studies is reported based on the ratio of cycles of DEZ and TMA, not 

elemental analysis.48 Nonetheless, doping ZnO ALD films with Al for 2-5% of cycles provides 

the lowest resistance in AZO films. Upon annealing of ALD AZO films in air at 350oC the film 

becomes resistive; annealing under Ar and N2 at the same temperature still dramatically 

increases the resistivity of the film.59 Annealing of AZO films DC sputtering annealed at the 

same temperature in air decreases resistivity of the film, as expected.60 The cause of 

annealing negatively affecting AZO only when deposited with ALD is unknown.  

ALD can also be used for the deposition of light absorbing semiconductors. CuO has 

been deposited at traditional ALD temperatures using copper (II) acetylacetonate and 

ozone.61  Further research has shown bis-(dimethyl-2-propoxide) copper and ozone can be 

used to deposit CuO at 80oC.62  Fe2O3 can also be deposited via ALD: traditionally ferrocene 

and ozone are used as precursors, but other amine-based iron precursors have been 

developed to varying success.63,64 ALD films of Al2O3, TiO2, and Ta2O5 have been deployed as 

protection layers for various applications, which will be discussed further below.42  ALD has 

also been used to deposit other metal oxides including: SnO2,
65-67 WO3,

68-71 Co2O3,
72-74 and 

various vanadium oxides.75-78 ALD can also be used to deposit unoxidized metals, often with 

the aid of plasma, including deposition of sporadic Pt nanoclusters.79-81 The materials 
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mentioned here are by no means an exhaustive list of possible film depositions via ALD, with a 

plethora of new research developing precursors continuing at present.  

2.3 Protection Layers for PEC with ALD 

 Thin protection layers are necessary to prevent dissolution of PEC materials from air or 

aqueous environments, while not impeding the photoactive properties of the protected 

material. Thus, materials used for protection layers in PEC need to have very wide band gaps 

to minimize parasitic absorption. Hematite has been protected with ALD-Ta2O5 to increase 

stability is extremely basic (pH=13) conditions, but depositing more than 2nm of the 

protection layer was found to decrease the conductivity of a PEC device.82 Researchers 

protected a silicon photoanode from self-oxidation by the addition of ultra-thin layers of TiO2, 

but thicknesses greater than 2nm of TiO2 linearly increased the overpotential needed for 

water oxidation.83 Stability of the silicon anodes was increased during CV sweeping, but no 

long-term stability experiment was performed during the study.  

Parachhino et al. in 2011 revitalized interest in Cu2O in PEC by significantly increasing 

device lifetime and limiting photocorrosion with ALD protection layers.84 A film of 11nm of 

TiO2 did not increase stability of electrodes unless 20nm buffer layer of ZnO was first 

deposited. The ZnO had to be doped with Al to increase stability without drastically reducing 

the conductivity of the electrode. At this point Cu2O device lifetimes had been increases from 

a few seconds to about an hour before complete failure.  Further work with this system 

determined increasing the deposition temperature of the TiO2 layer to 200oC, improving the 

stability of the protection layer, increased device lifetimes to 10-12 hours.85  

The trend of protection layer thickness having a positive correlation with device 

lifetimes and a negative correlation with device conductivity and photocurrent density 

becomes apparent from the previously mentioned studies and across the literature. 
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Protection layers are often electronically insulating, the charge carriers generated in the 

semiconductor must tunnel through to catalytic sites at the solution interface. The likelihood 

of such tunneling events decreases as insulator thickness is increased past a few nanometers. 

Conversely, the likelihood of pinhole defects leading to device failure decreases as film 

thickness is increased into the 100nm range. Few studies have been done to identify the 

cause of ALD pinhole defects, though some methods for combating defects have been 

suggested.  

To decrease pinhole defects in 2-10nm layers of Al2O3 on Ni substrates, Zhang et al. 

first deposited a 15nm ALD tungsten seed layer.86 This approach encouraged effective 

nucleation to decrease the density of defects by 1000-fold. Instead of adding additional 

layers, Gertsch et al. used atomic layer etching to reduce defects in Al2O3. A 24nm of ALD 

Al2O3 was grown to allow holes to be filled as the film thickness increased, afterwhich the 

layer was etched back to the desired 5nm.87 This approach halved the failure rate of the 

devices the researchers constructed, which were Ag/Al2O3/Al capacitors. An investigation of 

TiO2 protection layers on GaAs anodes showed a reduction in pinhole density if the entire 

deposition was performed in a cleanroom. However even 45nm ALD-TiO2 films made in a 

cleanroom were not good enough to eliminate pinholes entirely, the thickness had to be 

increased to greater than 112nm.88 Even with cleanroom conditions, there was still uneven 

deposition of the film, indicating that contamination is not the sole cause of defects in ALD.  
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3.1 Abstract 

Transparent, conductive coatings on porous, three-dimensional materials are often 

used as the current collector for photoelectrode designs in photoelectrochemical 

applications. These structures allow for improved light trapping and absorption in chemically-

synthesized, photoactive overlayers while minimizing parasitic absorption in the current 

collecting layer.  Atomic layer deposition (ALD) is particularly useful for fabricating 

transparent conducting oxides (TCOs) like Sn-doped In2O3 (ITO) and Al-doped ZnO (AZO) for 

structured materials because the deposition is specific to exposed surfaces. Unlike line-of-site 

deposition methods (evaporation, spray pyrolysis, sputtering), ALD can access the entire 

complex interface to make a conformal transparent conductive layer. While ITO and AZO can 

be grown by ALD, they are intrinsically soluble in the acidic and basic environments common 

for electrochemical applications like water splitting.  To take advantage of the unique 

characteristics of ALD in these applications, is important to develop strategies for fabricating 

TCO layers with enhanced chemical stability. Ultra-thin coatings of stable materials can be 

used to protect otherwise unstable electrochemical interfaces while maintaining the desired 

function.  Here, we describe experiments to characterize the chemical and electrochemical 

stability of ALD-deposited AZO TCO thin films protected by a 10nm TiO2 overlayer. The 

addition of a TiO2 protection layer is demonstrated to improve the chemical stability of AZO 

by orders of magnitude compared to unprotected, yet otherwise identically prepared AZO 

films.  The electrochemical stability is enhanced accordingly in both acidic and basic 

environments.  We demonstrate that TiO2-protected AZO can be used as a TCO for both the 

cathodic hydrogen evolution (HER) and anodic water oxidation (OER) half-reactions of 

electrochemical water splitting in base and for HER in acid when the appropriate 

electrocatalysts are added.  As a result, we show that ALD can be used to synthesize a 
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chemically stable TCO heterostructure, expanding the range of materials and electrochemical 

environments available for building complex photoelectrode architectures.  

3.2 Introduction 

Transparent conductive oxides (TCO) are wide band gap semiconductors that can be 

extrinsically doped to induce low resistivity while maintaining high optical transmissivity.  

They are important components for a wide range of optoelectronic technologies, including 

photovoltaics, photodiodes, touch screen interfaces, and light emitting diodes.89,90 TCOs can 

also be used as a transparent electron or hole collection layer in complex, three-dimensional 

structured electrodes for water splitting electrolysis, CO2 reduction, or other 

photoelectrochemical (PEC) applications. Hierarchically structured materials are often used 

for these applications to increase surface area, to generate dielectric contrast in structures 

engineered to improve light absorption via increased light trapping or optical resonances, or 

to decouple disparate functional length scales of the material in order to improve the 

effective properties of semiconductor photoelectrodes.14-19  The use of a TCO in these 

structures minimizes efficiency losses due to parasitic absorption in the non-photoactive 

current collector layers.  Common TCOs such as Sn-doped In2O3 (ITO), F-doped SnO2 (FTO), 

and Al-doped ZnO (AZO) are used widely as conductive back contacts for chemically 

synthesized electrodes for use in dye-sensitized solar cells, chemically-synthesized 

photovoltaics, electrocatalysts, and multijunction semiconductor architectures.91  

Atomic layer deposition (ALD) is a powerful method to synthesize conformal thin films 

in high-aspect ratio or complex, three-dimensional substrates.20 The gas-phase precursors can 

diffuse through nanoscale porosity to react over the entire surface.  Additionally, the self-

limiting nature of ALD allows for precise film thickness and composition even in tortuous 

electrodes.  In principle, ALD should be nearly ideal for depositing the TCO current collector 
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in a hierarchically structured photoelectrode.  However, issues with each of the common TCO 

materials have prevented the ALD-derived films from general adoption for PEC applications. 

ALD precursors and recipes for the depositing ITO and AZO are readily available, but these 

oxides dissolve in the acidic or basic solutions that are desirable for many PEC applications.16  

FTO is generally more stable but is prepared by non-surface specific, line-of-sight methods 

like chemical vapor deposition or ultrasonic spray pyrolysis.  To this point, we are not aware 

of any ALD routes for the synthesis of FTO, likely due to the corrosive and poisonous nature of 

fluorine precursors like HF or NH3F.92  Therefore, identifying a new strategy for preparing an 

ALD-derived, chemically stable TCO will improve the range of materials that can be 

integrated into hierarchically structured photoelectrodes and electrolyte conditions for their 

use.  

One approach for protecting an electrochemical interface from corrosion is to coat it 

with an ultra-thin layer of a material that is chemically stable under the conditions of 

interest.93  If the protection layer is sufficiently thin, it can still maintain the conductivity of 

the interface even if the coating material is nominally insulating as a bulk material. This is 

especially useful for protection of photoelectrodes from dissolving or passivating in the 

extremely acidic or basic electrolytes common for PEC water splitting applications. The 

strategy has been effective for protecting a variety of semiconductors with ALD-derived 

protection layers of MnOx,94,95 TiO2,
96-98 and Al2O3.

99-101 Ta2O5 thin films have been used to 

protect ZnO photoanodes for several hours in 0.1 M KOH.102  ALD-derived ultra-thin (< 5 nm) 

layers of AZO/TiO2 have been used as a protection layer for Cu2O photocathodes.84,85 The 

addition of ALD-derived TiO2 layers have been identified as a useful protection for 

conventionally deposited FTO TCO electrodes in harsh electrochemical conditions.103,104  

Here, we characterize the chemical and electrochemical stability of TiO2-protected, 

ALD-deposited AZO TCO thin films. The addition of a TiO2 protection layer can improve the 
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stability of ALD synthesized AZO thin films for virtually the entire pH range of interest for 

aqueous PEC applications.  Specifically, we show that a 10 nm TiO2 protection layer is capable 

of increasing the chemical stability of AZO by orders of magnitude compared to unprotected, 

yet otherwise identically prepared AZO films while maintaining low resistivity. We 

demonstrate that TiO2-protected AZO is accordingly stable as a TCO for both the cathodic 

hydrogen evolution (HER) and anodic water oxidation (OER) half-reactions of electrochemical 

water splitting in 1 M NaOH and for HER in 1 N H2SO4 when decorated with the appropriate 

electrocatalysts.  The result of this strategy is that a conformal and chemically stable TCO 

can be deposited via surface-specific chemical reactions rather than line-of-sight physical 

deposition methods.  This expands the possible combinations of synthetic methods, materials, 

and electrochemical environments available for fabricating electrodes with complex, three-

dimensional structures.       

3.3 Experimental 

3.3.1 Materials 

Acetone (99.5%; EMD Millipore Corp), methanol (high-performance liquid 

chromatography (HPLC) grade; VWR Analytical), isopropanol (HPLC grade; VWR Analytical), 

and water (HPLC grade; VWR Analytical) were used as received. Sodium hydroxide (50%w/w; 

VWR Analytical) was diluted to 1 N aqueous solutions (pH 13.5), sulfuric acid (95-98%; VWR 

Analytical) was also diluted to 1 N (pH 0.5).   A 1 N stock solution of aqueous hydrochloric 

acid was used as received (VWR Chemicals). Potassium hexachloroplatinate (IV) (≥99.99%, 

Sigma-Aldrich) was used as received.    

n+-Si wafers (As-doped, single-side polished, <0.001 Ω cm; Silicon Materials Inc.) were 

used as electrode substrates for electrochemical experiments.  p-Si wafers with an insulating 

300 nm wet thermal oxide (p-type, 0.01-0.02 Ω cm; University Wafer) were used for 
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measuring resistivity for ALD-deposited films. Si wafers were diced into 2 cm × 2 cm square 

substrates, then used as received. Plain, soda lime glass microscope slides (25 mm x 75 mm; 

VWR International LLC) were used as received.  

3.3.2 Characterization Methods 

Scanning electron microscopy (SEM) images were taken with a FEI Nova Nanolab SEM 

equipped with an energy-dispersive x-ray (EDX) spectrometer (Bruker XFlash 5010). X-ray 

photoelectron spectroscopy (XPS) measurements were performed on a PHI Versaprobe 

instrument with a monochromated Al Kα source (1486.6 eV). X-ray diffraction (XRD) 

measurements were taken using a Mini-Flex II by Rigaku using Cu-Kα radiation (λ = 1.54 Å). 

Resistivity measurements were performed using a Veeco 4-Point Resistivity Meter equipped 

with tungsten carbide tips (50 µm radius).  Transmission UV-Vis spectroscopy was performed 

on a Jasco V-780 spectrometer equipped with an integrating sphere. All electrochemical 

measurements and electrodeposition procedures were performed using a potentiostat 

(BioLogic SP-50).  

3.3.3 ALD Growth of Thin Films 

ALD films were deposited on whole glass slides (25 mm x 75 mm), n+-Si substrates, and 

thermal-oxide coated p-Si substrates. Prior to the ALD process, each substrate was cleaned by 

rinsing sequentially in acetone, methanol, and isopropanol followed by 30 minutes in UV-

ozone cleaner.  The underside of each glass slide substrate was masked from ALD growth by a 

layer of Kapton tape.  Substrates were transferred into the ALD reaction chamber 

immediately after cleaning.  

AZO thin films were synthesized from diethylzinc (abbreviated DEZ, 95%; Strem, Inc.), 

trimethylaluminum (TMA, 98%; Strem, Inc), and H2O (HPLC grade; VWR Analytical) precursors 

in an atomic layer deposition reactor (GEMStar XT; Arradience, Inc.). Ultra-high purity N2 
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(99.999%; Airgas) was used as the carrier gas in the reactor and controlled by an automated 

mass flow controller. Each AZO film described here was synthesized with the following ALD 

procedure. The substrate of interest was placed in the reaction chamber and held at 175 °C. 

Each cycle of the AZO process included sequential exposures to DEZ and H2O precursors from 

room-temperature cylinders. Each DEZ exposure consisted of a precursor pulse (22 ms under 

40 sccm N2 carrier gas flow), a precursor soaking step to maximize the exposure of the high-

aspect ratio substrates to the reactants (1 s, 40 sccm N2 with the pump valve closed), and a 

purge step to evacuate the chamber of precursor (15 s, 100 sccm N2). Each H2O exposure 

consisted of a precursor pulse (22 ms, 40 sccm N2), a soaking step (1 s, 40 sccm N2 with the 

pump valve closed), and a purge step (15 s, 90 sccm N2). After the deposition of 24 cycles of 

DEZ and H2O, a single doping cycle was run following the same recipe, though replacing DEZ 

with TMA in the process. This sequence (24 cycles with DEZ, one cycle with TMA) was 

continued until the desired number of cycles was achieved.   

The ALD synthesis of a protective layer of TiO2 was at a reactor temperature of 150 oC. 

TiO2 was synthesized using tetrakis(dimethylamido)titanium (TDMAT, 99%; Strem, Inc) and 

H2O. The TDMAT precursor cylinder was heated to 80 oC during the process. The H2O precursor 

cylinder was kept at room temperature.  The mass flow control of the nitrogen carrier gas 

was set to 20 sccm for the entire deposition. Each cycle consisted of a precursor pulse of 

TDMAT (100 ms), a purge of 15 s, a H2O exposure of 15 ms, and a second purge of 25 s. This 

sequence was repeated until desired number of cycles was reached.  

3.3.4 Electrode Fabrication for Electrochemical Stability Experiments 

Electrocatalytic cathodes for the hydrogen evolution reaction (HER) were prepared by 

the electrodeposition of Pt on ALD films prepared on n+-Si substrates. The electrodeposition 

solution was a 1.0 mM potassium hexachloroplatinate (IV) in 0.1 M hydrochloric acid.105  Each 
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electrodeposition was run for 10 minutes at a current density of 100 μA cm-2 in a three-

electrode electrochemical cell with a platinum wire counter electrode and a Ag/AgCl 

(saturated KCl) reference electrode (Bioanalytical Systems, Inc.).  Each electrodeposition was 

carried out in an electrochemical cell with the active area of the working electrode (1 cm2) 

defined by a viton o-ring.  n+-Si wafers coated with ALD films were prepared for 

electrodeposition of platinum or electrochemical stability measurements by scribing the back 

of the substrate and applying a layer of conductive gallium-indium (Ga-In) eutectic (≥99.99%; 

Sigma-Aldrich).   

Electrocatalytic anodes for the oxygen evolution reaction (OER) in 1 M NaOH were 

prepared by the electron-beam evaporation of Ni (99.995%; Kurt J. Lesker Co.) onto ALD films 

prepared on n+-Si substrates.  The deposition rate (0.1 Å s-1) and total thickness were 

measured by a quartz crystal monitor in the evaporation chamber.  

3.3.5 Chemical and Electrochemical Stability Characterization 

Samples for stability experiments were cut from whole glass slides (15 mm x 25 mm).  

Each sample was submerged in the solution of interest and removed periodically for UV-vis 

transmission measurements.  The solution was left still and covered for the period of each 

exposure.  The noted times denote cumulative exposure.  

All electrochemical measurements were performed in an HDPE electrochemical cell 

with the active area of the working electrode (0.5 cm2) defined by a viton o-ring. The 

electrodes were oriented in the cell so that the entire working area was uniformly coated 

with the electrocatalyst of interest.  All cyclic voltammetry (CV) measurements were 

performed at a scan rate of 20 mV s-1 using a three-electrode configuration with a Pt wire 

counter electrode and an Ag/AgCl (sat. KCl) reference electrode.  We additionally observed 

that the Vycor frit on the reference electrode dissolved when left in 1 M NaOH for 24 hours. 
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To avoid this deterioration of the reference electrode, chronopotentiometery (CP) 

measurements of electrochemical stability in 1 M NaOH were performed in a two-electrode 

configuration with a Pt wire counter electrode.  

3.4. Results 

3.4.1 Structural and Electrical Characterization of ALD-deposited Thin Films:  

1000 cycles of ALD-deposited AZO (abbreviated 1000c AZO) grown on n+-Si resulted in 

a film thickness of 170 nm, as measured by cross-sectional SEM (Figure 3.1a).  The observed 

growth rate was consistent with previous measurements (0.17 nm cycle-1) for ZnO ALD under 

similar conditions.106,107  A 300c TiO2 film on 1000c AZO was roughly 10 nm thick from an EDX 

line scan measurement (Figure 3.1b).  XRD measurements showed that the as-deposited ZnO 

was crystalline (Figure 3.1c).  No significant change to the diffraction pattern was observed 

after the addition of TiO2, indicating that the TiO2 deposition was either too thin to generate 

Bragg reflections or that the as-deposited TiO2 was amorphous.  Measurements of the Zn 2p3/2 

(Figure 3.2a) and Ti 2p (Figure 3.2b) confirmed the TiO2 chemical state of the deposited 

overlayer and that the deposition was conformal.108  ZnO XPS features were not observed on 

samples with 100c or 300c TiO2, indicating that the deposited TiO2 was conformal and thicker 

than the sampling depth of the XPS measurement.  

We measured the sheet resistance of ALD-deposited films with a four-point probe 

station.  To isolate the electrical properties of the AZO-based films, they were deposited 

either on glass microscope slides or on polished Si substrates prepared with a 300 nm thermal 

oxide layer (Table 3.1).  The as-deposited, 1000c AZO film had a sheet resistance of 83 Ω sq-1 

on the thermal oxide substrate and 85 Ω sq-1 on the glass substrate.  The roughness of the 

glass slide did not have a significant effect on the sheet resistance of AZO.  Measurements of 

100c and 300c TiO2 films were out of range of the instrument, indicating a sheet high lateral 
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resistance. 1000c AZO+300c TiO2 layered films had sheet resistances of 79 Ω sq-1 and 71 Ω sq-1 

on glass and thermal oxide, respectively, which was slightly lower than the AZO alone. 

 

 

Figure 3.1 - (a) A cross-sectional SEM image of an ALD-deposited 1000c AZO+300c TiO2 film on 

an n+-Si substrate.  (b) An EDX line scan (along red arrow) of the edge of the electrode shown 

in (a).  (c) Powder x-ray diffraction spectra of as-deposited 1000c AZO and 1000c AZO+300c 

TiO2 grown on glass substrates. 
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Figure 3.2 – (a) Zn 2p3/2 and (b) Ti 2p XPS spectra for ALD-grown 1000c AZO, 1000c AZO+100c 

TiO2, and 1000c AZO+300c TiO2 films on n+-Si substrates.   

 

Table 3.1 – Sheet resistance measurements of ALD-deposited AZO, TiO2, and layered 

films. ‘OOR’ signifies measurements that out of the range of the four-point probe 

measurement (> 5 kΩ sq-1). Variance in measurements on the same film was roughly ±1 Ω 

sq-1.  The slight reduction of resistivity of the 1000c AZO after adding a 300c TiO2 layer 

may be related to improved contact resistance between the interface and the probe tips. 

Film Composition Rs on Glass (Ω sq-1) Rs on Thermal Oxide (Ω sq-1) 

250c ZnO (undoped) 1200 - 

250c AZO 648 - 

1000c AZO 85 83 

100c TiO2 OOR - 

300c TiO2 OOR OOR 

1000c AZO+100c TiO2 89 - 

1000c AZO+300c TiO2 79 71 
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3.4.2 Chemical Stability of TiO2-protected AZO:  

We measured the acid- and base-stability of AZO as a function of the thickness of the 

TiO2 protection layer by transmission UV-Vis spectroscopy. The spectra clearly show the 

difference between slides coated with the ALD ZnO layer and ones where the ALD layer had 

dissolved, based on the fact that the ZnO has a pronounced and well-defined band gap at 

lower energy than the glass substrate.  This transformation can be used to monitor the 

dynamics of the dissolution of the ALD-deposited film. Figure 3 shows the UV-vis transmission 

spectra for AZO+TiO2 films on glass slides under increasing cumulative exposure to 1 M NaOH 

solution (pH 13.5).  Each series of measurements was performed in triplicate on identically 

prepared slides, though only one series for each electrode construction is shown in Figure 3.3.  

The others are shown for comparison in Figure A1. Transmission measurements on an 

unprotected 1000c AZO-coated substrate (Figure 3.3a) showed that the AZO film had 

noticeably dissolved within 5 min.  The spectrum was virtually identical to the transmission 

spectrum of an uncoated glass substrate within 15 min, indicating that the AZO film had 

completely dissolved within that period.  The transmission measurements for a 1000c 

AZO+100c TiO2 film began to change significantly between 15 min and 30 min (Figure 3.3b), 

and the film was completely dissolved within 60 min. Measured spectra for a 1000c AZO+300c 

TiO2 film showed almost no change even after 24 hours of submersion (Figure 3.3c). The 300c 

TiO2-protected films survived more than 288 times longer than the unprotected AZO in the 

NaOH solution.  Photographs of 1000c AZO+300c TiO2 protected films after a 24 hour NaOH 

exposure is shown in Figure A2, where the films appear to etch from the edges of the sample.  

This suggests that the slight dissolution observed in the transmission measurements could be 

caused by underetching of the glass substrate rather than failure of the protection layer.  

 Figure 3.4 shows the UV-vis transmission spectra time series for 1000c AZO films with 

varying thickness of TiO2 protection layers on glass slides under increasing cumulative 
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exposure to aqueous 1 N H2SO4 (pH 0.5).  Each film construction was measured in triplicate, 

and additional series are shown in Figure A3.  Each unprotected 1000c AZO film dissolved 

within 30 s of acid exposure (Figure 3.4a).  The transmission spectrum for a 1000c AZO+100c 

TiO2 film (Figure 3.4b) shows that the dissolution is slightly slowed but complete within 60 s.  

The transmission spectra for 1000c AZO+300c TiO2 films (Figure 3.4c) began to show slight 

changes indicating some dissolution after 120 minutes. The 1000c AZO+300c TiO2 films were 

dissolved after 240 minutes (not shown). However, the 300c TiO2-protected films survived 

more than 240 times longer than the unprotected AZO at pH 0.5.  

Figure 3.3 – Series of UV-Vis transmission spectra of (a) 1000c AZO, (b) 1000c AZO+100c TiO2, 

and (c) 1000c AZO+300c TiO2 as a function of total exposure to 1 M NaOH (pH 13.5). The 

dissolution of the film is evident by the convergence of the measured spectrum to the 

substrate spectrum (a glass slide without ALD coating). Duplicates for the spectral series for 

each film construction are shown in Figure A1. 

 

Figure 3.4 – Series of UV-Vis transmission spectra of (a) 1000c AZO, (b) 1000c AZO+100c TiO2, 

and (c) 1000c AZO+300c TiO2 as a function of total exposure to 1 N H2SO4 (pH 0.5). The 

dissolution of the film is evident by the convergence of the measured spectrum to the 

substrate spectrum (a glass slide without ALD coating). Duplicates for the spectral series for 

each film construction are shown in Figure A1. 
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Figure 3.5 – (a) Wide-field and (b) high-magnification SEM images of electrodeposited Pt 

nanoparticles on a 1000c AZO+300c TiO2 electrode.   



34 
 

 

Figure 3.6 – (a) Two-electrode chronopotentiometry measurements of the applied potential 

(Eapp) of a Pt nanoparticle-coated, 1000c AZO+300c TiO2 cathode, run at -2 mA cm-2 in 1 M 

NaOH. After 24 hours, the electrode was still operational and showed no significant 

dissolution of the ALD-deposited layers. Inset: as grown electrode (left), after Pt 

electrodeposition and run for 24 hours (right). (b) Cyclic voltammograms of 1000c AZO+300c 

TiO2 with electrodeposited Pt at the beginning (orange) and end of the cathodic CP 

measurements in (a) (purple). For comparison, the current passed by an identical electrode 

without added Pt (blue) was indistinguishable from zero at this scale. 
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3.4.3 Electrochemical Stability of TiO2-Protected AZO:  

Chemical stability tests showed that the addition of a 300c TiO2 protection layer 

improved the passive chemical stability of the AZO films. The film must also be stable under 

active, electrochemical conditions to be used as a TCO. To demonstrate that these films can 

be used in the applications of interest, we fabricated cathodes and anodes based on 1000c 

AZO films with varying degrees of TiO2 protection.  The ALD film acted as the conducting 

electrode layer and an added co-catalyst for the appropriate half-reaction for electrolytic 

water splitting. These experiments are intended to demonstrate the facile electron transfer 

from electrode to catalyst required for the ALD films to operate as a current collector. 

 

Figure 3.7 – Three-electrode chronopotentiometry measurements of a Pt nanoparticle-

coated, 1000c AZO+300c TiO2 cathode run at -2 mA cm-2 in 1 N H2SO4 (Ag/AgCl in saturated 

KCl reference electrode).  After roughly 105 minutes, the TiO2 protection layer failed and the 

ALD-deposited film dissolved (inset), as noted by the rapid cathodic shift in the working 

electrode potential.  After this point, cathodic current is driven by HER on the exposed Si 

substrate. 
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Cathode electrodes for the hydrogen evolution reaction (HER) were prepared by 

electrodepositing Pt onto n+-Si electrodes coated with a 1000c AZO+300c TiO2 TCO layer as a 

current collector.  The electrodeposition resulted in a sparse distribution of nanoparticles 

with an average diameter of roughly 800 nm (Figure 3.5).  AZO films without the 300c TiO2 

layer dissolved immediately in the acidic electrodeposition solution.  CP measurements of a 

Pt-coated cathode were run for longer than 24 hours at -2 mA cm-2 in a two-electrode 

configuration with a platinum counter electrode in 1 M NaOH (pH 13.5) electrolyte (Figure 

3.6a). CV measurements (Figure 3.6b) for the protected cathode and related constructions 

were measured in the same electrolyte.  The CVs for the as-prepared protected cathode 

showed Tafel kinetics for hydrogen evolution as expected for low electrocatalyst mass loading 

(-4 mA cm-2 at -400 mV vs. RHE, normalized to the geometric area of the electrode).109 The 

current was significantly reduced after 24 hours (-0.4 mA cm-2 at -400 mV vs. RHE), though 

without significant visible loss of the AZO+TiO2 coating (Figure 3.6a, inset).  The reduction is 

likely due to the loss of Pt over time.  Negligible current was observed for CV measurements 

of a 1000c AZO+300c TiO2 electrode without electrodeposited Pt or for a Pt-coated n+-Si 

electrode without TCO layer over the range of measured potentials. A three-electrode CP of a 

Pt-coated 1000c AZO+300c TiO2 cathode in 1 N H2SO4 (pH 0.5) showed that the electrode 

maintained -2 mA cm-2 for nearly two hours before the AZO and protection layer failed (Figure 

3.7). The ALD-deposited film was completely dissolved after two hours (Figure 3.7, inset).  

These measurements of cathodic electrochemical stability are consistent with the chemical 

stability enhancement provided by the TiO2 protection layer as observed in Figure 3.3. 

Anode electrodes for water oxidation in 1 M NaOH were prepared by electron-beam 

evaporation of 1 nm or 3 nm of Ni onto electrodes coated with 1000c AZO with various 

degrees of TiO2 protection.  CV measurements (Figure 3.8a) of the j-E behavior for electrodes 

with 1000c AZO without a protection layer, with a 100c TiO2 protection layer, or with a 300c 
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TiO2 protection layer each showed significant current densities for water oxidation compared 

to a bare n+-Si electrode when coated with a 1 nm Ni electrocatalyst layer.  At these 

potentials, Si in contact with the electrolyte forms an insulating anodic oxide layer.110  The 

unprotected AZO-coated electrode had the highest current densities of all of the anodes (42 

mA cm-2 at 1.5 V vs. Ag/AgCl).  An unprotected AZO electrode generated less than 0.1 mA cm-

2 at 1.5 V vs. Ag/AgCl without the addition of the Ni electrocatalyst.  TiO2-protected AZO 

anodes passed virtually no current without the addition of the Ni electrocatalyst, even at 

significantly more anodic potentials than those measured in Figure 3.8a.  This has been 

observed elsewhere for ALD-deposited TiO2 protection layers.96 To characterize the anodic 

stability of each electrode, CP measurements of each anode construction were performed in a 

two-electrode configuration at 2 mA cm-2 with a Pt wire counter electrode (Figure 3.8b).  The 

1000c AZO anode initially required 1.9 V to reach 2 mA cm-2, but failed after 125 minutes. 

The 1000c AZO+100c TiO2 anode stabilized at 4.6 V to reach 2 mA cm-2 within 15 minutes, 

though the potential monotonically increased before failing within 270 minutes.  The 1000c 

AZO+300c TiO2 anode initially needed 2.4 V to reach 2 mA cm-2, though Eapp slowly increased 

for the first 12 hours of operation to 3.3 V.  After 12 hours, the bias began to increase more 

rapidly, though had still not failed completely after 20 hours. A 1000c AZO+300c TiO2 anode 

and uniformity to protect the underlying layers from dissolution, negating the with a 3 nm 

layer of evaporated Ni showed significantly improved anodic stability for 24 hours.  This 

anode construction had higher current densities (55-70 mA cm-2 at 1.5 V vs. Ag/AgCl) 

(Figure3.8c) that increased after 24 hours, which suggests that the oxidation of the Ni metal 

catalyst layer roughens the surface over the duration of the experiment.  The enhanced 

stability of the electrode indicates that the 3 nm Ni layer is of sufficient thickness usefulness 

of the TiO2 protection layer. 
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Figure 3.8 – (a) CV measurements of water oxidation on anodes prepared via the electron-

beam evaporation of a 1 nm Ni layer on 1000c AZO (green), 1000c AZO+100c TiO2 (red), 1000c 

AZO+300c TiO2 (blue), and n+-Si substrate (black) electrodes. (b) Two-electrode CP 

measurements of the ALD-deposited electrodes from (a) and a 1000c AZO+300c TiO2 electrode 

with a 3 nm Ni electrocatalyst layer.  Each electrode was run at 2 mA cm-2 in 1M NaOH until 

failure, as designated by the rapid increase in applied bias (Eapp) required to maintain the 

targeted current density.  (c) CV measurements of the 1000c AZO+300c TiO2 electrode with 3 

nm Ni as-prepared (orange) and after 24 hour anodic CP experiment in (b). 

In the described experiments, the effect of the protection layer resulted in longer 

operation for electrodes in alkaline conditions compared to ones in acid. We imaged the 300c 

TiO2-protected electrodes by post-operando SEM to understand the failure modes for 

electrodes run in the 1 M NaOH electrolyte. Pitting was observed in the ALD film for a Pt-

coated cathode after running for 24 hours at -2 mA cm-2.  The pits were characteristically 

square and limited in size to less than 100 µm in diameter (Figure 3.9a).  For the anode, the 

films were nearly completely etched under through pinholes in the TiO2 film (Figure 3.9b).  In 

some areas, the TiO2 overlayer remains intact, suspended or laying on the Si substrate where 

the AZO had been etched from underneath (Figure 3.9c).  A small fraction of the surface area 

remained intact and was able continue to pass anodic current during the run. 

3.5 Discussion 

The experiments described here show that the chemical and electrochemical stability 

of ALD-deposited AZO films can be significantly improved through the addition of a thin TiO2 

overlayer.  The AZO remains conductive and functional as a TCO with the protection layer.  As 
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Figure 3.9 – Post operando SEM images of electrode failure in (a) 0.5 M H2SO4 (run for 

24 hours at -2 mA cm-2) and in (b,c) 1 M NaOH.  In both cases, etching appeared to occur 

through pinholes in the protection layer.  The film formed characteristically square pits in the 

acidic solution (a).  The alkaline solutions etched AZO from underneath the TiO2 layers (b) 

leaving TiO2 suspended or laying on the Si surface.  The composition of the AZO/TiO2 film 

(blue) and TiO2 only regions of the film (red) in the false-color SEM image (c) were confirmed 

by EDX. 
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ALD is a self-limiting and surface-specific method for growing thin films, this strategy can be 

extended to fabricate conductive layers on tortuous, hierarchically structured, or other high-

aspect ratio substrates where a TCO cannot be deposited by line-of-sight deposition methods. 

As a result, visible light-absorbing, ultra-thin film semiconductors (Fe2O3, CuO) can be 

integrated into cost-effective hierarchical electrode designs that allow for solar energy 

conversion with potentially high power conversion efficiency.13,19  

The results here are also not specific to the chemistry of AZO, as thin TiO2 layers have 

been used to protect other substrates in similar environments.  The longevity of the 

underlying films will require further improvement in order to be considered generalizable to a 

wide range of electrochemical applications.  The failure of the layered AZO/TiO2 TCO was the 

result of the dissolution of the AZO layer through pinholes or other defects that form in ultra-

thin, ALD-deposited TiO2 layers.111  The most straightforward solution to this problem is to 

increase the thickness of the TiO2 layer.  Photoelectrode designs have been demonstrated for 

hundreds of hours of stable operation with protection layers of 100 nm or greater, roughly ten 

times the thickness used in this work.96,112,113  This may improve the stability of AZO, though it 

could also increase the resistivity of the film and the efficiency of the resulting 

electrocatalytic reaction.114 Identifying chemical methods to passivate pinholes in the TiO2 

layer can also solve this problem.   

In some cases, the stability improvements shown here will be sufficient to prepare 

conformal, functional layers that will mitigate the negative effects of the pinholes.  For 

example, a 10 nm TiO2 layer provides sufficient protection for an AZO TCO to allow for the 

electrodeposition of a semiconductor like WO3 or Fe2O3 from an acidic bath.  The acidic Pt 

electrodeposition bath dissolved an unprotected AZO layer, yet was useful for fabricating a 

cathode for driving HER in a basic solution for more than 24 hours. Electrodeposited WO3 or 

Fe2O3 films generally require a post-deposition annealing step to form the desired photoactive 
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phase. The high-temperature stability of the TCO must also be considered.  Air annealing has 

been shown to increase the resistivity of ALD-deposited AZO films.59,84  The relatively low 

sheet resistance of undoped, ALD-grown ZnO (Table 1) and the effects of annealing suggest 

that oxygen deficiencies or other intrinsic doping is responsible for the electrical conductivity 

of the films.  The anisotropic, layered distribution of Al through the ZnO film has been 

proposed as the cause of the low Al doping efficiency in ALD-derived AZO.115  Even if the 

chemical stability of ALD-derived AZO can be improved, a better understanding of the solid-

state chemistry of the doping process is necessary to enable its general application as a TCO.   

3.6 Conclusion 

In conclusion, we have shown that the chemical stability of ALD-deposited AZO thin 

films can be enhanced by the addition of a 10 nm TiO2 protection layer.  The lateral 

conductivity of the film remains unchanged between as-prepared AZO and TiO2-protected AZO 

films. Moreover, the thin protection layer increases the lifetime of AZO-based electrodes by 

more than a factor of 120.  We showed that these films can be used as conductive substrates 

for catalysts driving the hydrogen evolution and water oxidation reactions at pH values of 0.5 

and 13.5. Based on the stability of TiO2 as inferred from its Pourbaix diagram, it is likely that 

the protected AZO layers are also stable for the range of pH values in between our measured 

extremes.116 The general mode of failure on these electrodes was electrolyte penetration 

through pinholes in the substrate.  The generality of the protection layer strategy and ALD as 

a thin-film coating technology suggests that this approach will be useful for preparing a 

unique range of hierarchically structured electrodes for electrochemical energy conversion 

applications.  
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Chapter 4. Building a CuO Photocathode for Photoelectrochemistry 

4.1 Abstract  

 Cupric oxide (CuO) is a potentially desirable photocatalyst for industrial scale 

photoelectrochemistry (PEC): an earth abundant p-type semiconductor with a band gap of 

1.2-1.7eV, enabling absorbing a large portion of the solar spectrum. Additionally, the position 

of the conduction band edge is appropriate for driving the hydrogen evolution half-reaction 

(HER) component of water splitting. However, like the other common oxidation state of 

copper, cuprous oxide (Cu2O), a film of CuO dissolves during catalytic operation under 

illumination in water in the process of photocorrosion. We used Atomic Layer Deposition (ALD) 

to protect CuO with a layer of 20nm Al:ZnO (AZO) and 10nm TiO2 in an attempt to mitigate 

photocorrosion. Additionally, the solid-state energetics of the back contact, or hole collecting 

layer, of a CuO photoelectrode is evaluated in the context of a photocathode. We hypothesize 

a work function difference between a semiconductor, specifically CuO, and the current 

collecting back contact, will affect the performance of the photoelectrode. Nickel (Φ = 

5.35eV) consistently outperforms F:SnO2 (FTO; Φ = 4.3eV) as a back contact for CuO during 

photoelectrochemical measurements. A thorough discussion of the viability of CuO as a 

photocathode material now, and in the future, was completed based on the results of this 

work as well as current literature.  
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4.2 Introduction 

In the search for semiconducting materials for solar-to-photoexcited electron energy 

conversion (for PEC or photovoltaics), materials that are earth abundant and have inexpensive 

manufacturing methods, copper (II) oxide, or cupric oxide, emerges as a promising material. 

For a semiconductor material to convert solar energy with maximal efficiency into chemical 

bonds, several metrics must be met. The bandgap of the semiconductor should approach the 

Shockley-Queisser limit of 1.1eV for maximum energy collection in photovoltaic devices.22 

However, in solar energy driven hydrogen generation, an absolute minimum band gap of a 

single semiconducting material, 1.23eV, is set by the thermodynamic potential for water 

splitting. Kinetic and transport losses in a device further increase the minimum band gap 

needed for a single PEC device to split water.32,117 Additionally, the ideal semiconducting 

material for the hydrogen evolution reaction (HER), would have a conduction band (CB) edge 

potential positive of the water reduction potential, while an ideal material for the oxygen 

evolution reaction (OER) would similarly have a valence band (VB) edge that is below the 

water oxidation potential.118 Furthermore, the photoelectrode must be physically stable 

during operation; resistant to photocorrosion and environmental degradation. Lastly, 

availability of the light absorber and energy input of synthesizing a PEC device is a necessary 

externality for scaling to an industrial level.41 

Copper (II) oxide is an intrinsically p-type semiconductor with a band gap of 1.2eV-

1.7eV, varying upon method of preparation. The band gap approaches the ideal of the 

Shockley-Queisser limit.119 The innate p-type nature of CuO lends itself to driving reduction 

reactions. The conduction band edge is just above the voltage of the hydrogen evolution half-

reaction; making CuO a promising candidate as a semiconductor photocathode material for 

water splitting.120 The absorption spectrum of CuO has been used to predict the max 

theoretical photocurrent density of a CuO photoelectode as 35 mA cm-2, 121,122 which is well 
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above the minimum 5-10 mA cm-2 benchmark for commercial adoption estimated by the US 

Department of Energy.12,28 

Several recent publications demonstrate a rising interest in CuO as a photocathode 

while repeatedly exposing the need for two improvements of high operational importance to 

a CuO based photocathode. Some publications address the inherent issue of photocorrosion; a 

process where CuO electrodes, when under a potential bias and illumination, quickly dissolve 

and no longer produce photocurrent. The exact mechanism of photocorrosion is unknown, 

with several proposed reaction pathways, while protection layers to isolate CuO from aqueous 

solution during photocatalysis mitigates this issue.123-125 Other studies have highlighted the 

need for a majority carrier back contact that is Ohmic to CuO or have propensity for selecting 

holes in order to combat reductions in efficiency from recombination of excited electron-hole 

pairs.126,127 A majority of laboratory solid-state electrochemical research is performed on the 

transparent conducting oxides of FTO or ITO; however these materials have a work function 

that does not provide such an Ohmic interface to a p-type semiconductor, while they are 

Ohmic to n-type semiconductors such as iron (III) oxide and tungsten (VI) oxide. However, 

publications that address corrosion rarely address energetics of the back contact for their 

device, and vice versa. The current work aims to marry these two concepts utilizing ALD 

protection layers, and in future, 3-dimensional structuring.  

 The disconnect may be in part to the standard methodologies used to evaluate PEC 

devices, mainly referencing the shortcomings of linear sweep voltammetry (LSV). The 

photocorrosion of CuO, in solution, occurs at applied potentials just positive of 0.0V vs RHE; 

the thermodynamic HER potential. The absorption of light provides energy in a p-type 

semiconductor such as CuO and shifts the onset potential of catalyzed reduction reactions in 

a positive direction. Since the corrosion of the CuO is drastically accelerated by illumination, 

this can result in a situation where an observer is expecting to see photoelectrochemical 
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effects, but instead, could easily be observing photocorrosion; the two are not easily resolved 

in LSV.  However, a complete cyclic voltammogram, or long-form stability study, in the form 

of chronopotentiometry or chronoamperometery does reveal the difference. The anodic 

sweep of a CV, while a CuO photocathode is being tested as a PEC device, can be evaluated 

to determine whether corrosion or hydrogen evolution is dominate.  An oxidation peak 

characteristic of hydrogen desorption is often present while HER is dominate. If 

photocorrosion is present, some oxidation peak will occur as part of the mechanism of 

dissolution, and in the case of the presence of protection layer, the current will increase in 

successive sweeps of a CV. To combat this issue, protection layers have been utilized on CuO, 

including TiO2,
123 WO3,

128 ZnO,124,129 and Al2O3.
130 

 For a back contact to maintain an Ohmic contact (or even one that generates a back 

surface field to reject the minority carriers) to a p-type semiconductor, the work function of 

the conductor must be lower than the fermi energy of the semiconductor. The initial work 

aimed to directly compare FTO, with a workfunction of 4.7eV, and nickel, with a 

workfunction of 5.35eV (Figure 4.1).131-134 Cupric oxide has a reported fermi energy, and 

therefore, a workfunction of 5.3 eV, making nickel theoretically an Ohmic backing.135 Another 

substrate was chosen to further compare the effect of the workfunction upon device 

performance: Ag, with a workfunction of 4.6eV, providing an unfavorably biased back 

contact.133  

In this work, we fabricated electrodes using electrodeposition of cuprous oxide onto 

the substrate in a press cell which are then annealed to CuO. The cupric oxide layer was 

subsequently protected with 20nm of AZO, and 10nm of TiO2, modelled after previous work 

protecting cuprous oxide and work presented in Chapter 3.84 Finally, a sparse catalytic 

deposition of Pt was applied to assist in direct comparisons of the photoelectrical properties 

of the electrodes (Figure 4.2). Three methods of deposition for the Pt sites were considered 
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and compared: galvanic replacement of Cu+ with Pt, electrodeposition, and use of a benchtop 

sputter coater. Photoelectrochemical analysis using cyclic voltammetry was used to compare 

electrodes constructed on FTO, Ni, and Ag. An investigation into failure points in the ALD 

protection layers lead to a discussion in limitations of current technical knowledge necessary 

in the construction of a hierarchically structured CuO photocathode.  

 

 

Figure 4.1 Energetics of Copper Oxides and the Choice of a Back Contact. Both cuprous 

oxide (Cu2O) and cupric oxide (CuO) have a conduction band edge above potential of 

hydrogen reduction, making them capable of HER. The larger band gap and position of the 

conduction band of Cu2O lowers the maximum theoretical solar conversion efficiency for HER 

when compared to CuO. The fermi energy of CuO (εf,CuO) is -5.3eV vs vacuum, as shown in 

green. Shown in blue are the work functions of several common back contacts. FTO and Ag, 

both substrates utilized in this work, possess work functions significantly above the fermi 

energy of CuO. Ni has a work function of 5.35eV, near equivalent to the fermi energy of CuO, 

theoretically forming an Ohmic contact.   
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Figure 4.2 Schematic of CuO Photocathode construction. A 300-400nm layer of Cu2O is 

electrodeposited on the back contact, either FTO, Ni, or Ag, and subsequently annealed to 

CuO in air. ALD is used to deposit 20nm of Al:ZnO and 10nm of TiO2 as a protection layer to 

mitigate photocorrossion. Sites of Pt deposition are sparsely distributed across the surface to 

facilitate hydrogen reduction used for direct comparison of electrode constructions, while not 

interfering with light absorption of the photoactive layer.  

4.3 Experimental 

Acetone (99.5%; EMD Millipore Corp), methanol (high-performance liquid 

chromatography (HPLC) grade; VWR Analytical), isopropanol (HPLC grade; VWR Analytical), 

water (HPLC grade; VWR Analytical), Copper(II) sulfate hydrate (98%; Sigma-Aldrich), lactic 

acid solution (reagent grade, 85%; Sigma-Aldrich), sodium hydroxide solution (50% w/w; VWR) 
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were used as received. Potassium hexachloroplatinate(IV) (≥99.99%, Sigma-Aldrich) was used 

as received. Fluorine-doped tin oxide (FTO)-coated substrates (TEC-15, 12–14 U sq; MTI Corp) 

were diced and rinsed in acetone, methanol, and isopropanol. Nickel foil (0.5mm, 99.5%; 

BTC) and silver foil are diced, polished with 400 grit, 800 grit, 1000 grit, and 1500 grit 

sandpaper, rinsed in DI H2O, and dried in nitrogen.  

4.3.1 Characterization  

X-ray diffraction (XRD) measurements (Mini-Flex II, Rigaku) were performed using Cu-

Ka radiation (l ¼ 1.54 A). Scanning electron microscopy (SEM) images were taken with a FEI 

Nova Nanolab SEM equipped with an energy-dispersive X-ray (EDX) spectrometer (Bruker 

XFlash 5010). X-ray photoelectron spectroscopy (XPS) measurements (Phi Versaprobe) were 

performed with a monochromated Al Ka source (1486.6 eV). Transmission UV−vis spectroscopy 

was performed on a Jasco V-780 spectrometer equipped with an integrating sphere. 

Electrodeposition, and photoelectrochemical characterization, were performed using a 

BioLogic SP-50 potentiostat, while electrochemical impedance spectroscopy measurements 

were completed using a Biologic SP-240. 

4.3.2 Preparation of CuO 

The electrodeposition solution was prepared by dissolving CuSO4 in a 3.0 M lactic acid 

solution to a final CuSO4 concentration of 400.0 mM.136-138  The pH of the electrodeposition 

solution was adjusted to 10.0 by the slow addition of NaOH solution. Electrodeposition onto 

conductive substrates was carried out in a three-electrode configuration with a graphite rod 

counter electrode and an Ag/AgCl (saturated KCl) reference electrode (Bioanalytical Systems) 

with a potentiostat (Bio-Logic SP-50). Each electrodeposition was carried out in an 

electrochemical cell made of High-density polyethylene with the active area of the working 

electrode (1.77 cm2) defined by a Viton O-ring.  The films were synthesized by potentiostatic 
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electrodeposition at -0.4 V vs. Ag/AgCl while a circulator maintained a deposition solution 

temperature of 60oC until a set charge density had passed (100mC/cm2-400mC/cm2). The 

films were then annealed at 500oC for 3 hours in air. 

 

Figure 4.3 Electrodeposition of Cu2O in a Press Cell. A HDPE cell with a vyton O-ring defined 

a consistent deposition area upon the substrate as the working electrode. A graphite rod 

counter and Ag/AgCl (sat’d) reference are used to complete the 3-electrode circuit for 

electrodeposition. To accelerate the deposition, a reservoir of CuSO4 electrodeposition 

solution is circulated in a 60oC water bath using a peristaltic pump to and from the reaction 

vessel.  

To prevent electronic shunting through the ALD layer, Kapton tape was applied around 

the perimeter of the CuO deposition before samples were placed in the ALD. The ALD Growth 

of films is described previously, a copy of which can be found in chapter 3, but in summary, a 

reactor (GEMStar XT; Arradience, Inc.) was used to deposit 20nm of Al:ZnO [5x(20c ZnO, 1c 
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Al2O3)] and then 300-600 cycles (10-20nm) of TiO2, both utilizing recipes presented 

previously.139  

4.3.3 Deposition of Platinum Catalytic Sites 

Platinum was deposited atop the protection layer to provide catalytic sites for HER. 

Three methods were used to deposit Pt and we compared their relevant PEC effects. The first 

method we used was galvanic replacement reaction of platinum for copper in the form of 

Cu2O. The GR was performed after the deposition of the ALD layers onto Cu2O, to try to use 

pinholes to our advantage, by submerging the sample in a 50mM potassium 

tetrachloroplatinate in 50mM sulfosalycilic acid (pH 1.36) for 1min-5mins. The sample was 

rinsed in DI H2O, and dried in N2 rapidly after the allotted submerging time was met. Samples 

were then annealed to oxidize to CuO. 

 The second method employed electrodeposition in a 1mM potassium 

hexachloroplatinate, and 1mM hydrochloric acid, using three-electrode configuration with a 

graphite rod counter electrode and a Ag/AgCl (saturated KCl) reference with a potentiostat 

(BioLogic SP-50) which applied a constant current of -8.5µA/cm2 for 15mins.105,140 Platinum 

electrodeposition was done after annealing of copper to CuO and deposition of the ALD 

protection layer. The electrodeposition was performed in an electrochemical cell made of 

High-density polyethylene with the active area of the working electrode (1.00 cm2) defined 

by a Viton O-ring.  

The third method, used in most photoelectrochemical measurements, utilized a 

benchtop sputter coater (Quorum SC7620) with a platinum sputtering target cathode (99.99%; 

VWR). Platinum was sputtered on CuO electrodes after ALD layers were deposited, using a 

deposition time of 60s, 120s, or 300s, with 120s being employed for most 

photoelectrochemical measurements.  
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4.3.4 Photoelectrochemical analysis  

Measurements were made using a three-electrode configuration with a graphite rod 

counter electrode and an Ag/AgCl (saturated KCl) reference electrode (Bioanalytical Systems) 

with a potentiostat (Bio-Logic SP-50). All experiments were performed in an HDPE 

electrochemical cell with the active area of the working electrode (0.5 cm2) defined by a 

Viton O-ring. The cell contained 60mL of 0.1M Na2SO4 (pH=5.8) during measurements. All 

cyclic voltammetry (CV) measurements were performed at a scan rate of 20 mV s−1. PEC 

measurements were performed with an LED with a collimating lens (Thorlabs), either 565nm, 

455nm, or 365nm, each with intensity adjusted to ~1.4E17 photons/sec, each calibrated with 

a photodiode (Thorlabs FDS101).   

4.4 Results and Discussion  

4.4.1 Constructing the ‘Ideal’ CuO Photocathode 

An ideal CuO-based photocathode would be able to both produce ~10mA/cm2 of 

photocurrent while reducing hydrogen and completely remain stable in its ability years. In 

practice, we merely want to stabilize a CuO long enough to characterize its operation. 

Overcoming photocorrosion and ensuring photocurrents originate from productive catalysis 

and not self-reduction requires an analysis of the likely mechanism of photocorrosion. 

Evidence shows that there is Cu2O present on the surface as a part of the CuO photocorrosion 

mechanism.123,141 Some have suggested that raising the pH reduces photocorrosion, though 

raising the pH also makes hydrogen reduction more difficult electrochemically.125 The 

photogenerated electron-hole pair can more easily reduce CuO to Cu2O than using that 

excited electron to reduce hydrogen ions, but water must participate in that mechanism in 

some manner at the surface of the electrode in a manner of the reaction below:84,141 

2CuO(s) + H2O(l) + 2e- ⇌ Cu2O(s) + 2OH-(aq)             Eo = +0.6V vs SHE 
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As the photoelectrode is subjected to a voltage sufficient electrochemical bias to drive 

HER, unless isolated from water, CuO will be reduced to Cu2O. If this were the only 

component of photocorrosion, the copper surface would not visibly be removed during 

electrochemical testing and cuprous oxide would not have the same photocorrosion problem. 

Additional steps in the photocorrosion mechanism must be present beyond conversion to 

Cu2O. Examining cyclic voltammetry of corrosion process occurring as a protection layer fails 

points to an answer (Figure 4.4); features that would be impossible to observe in the standard 

LSV utilized to examine photoelectrodes. As the electrode is cycled multiple times in dark 

conditions and under illumination, the cathodic current from photocorrosion increases in 

successive cycles under illumination. An additional feature is present around 0.7V vs RHE at 

pH 5.8; an oxidation when sweeping anodically and a reduction when sweeping cathodically. 

Similar features have been seen on unprotected Cu2O electrodes; XRD after cycling with these 

samples showed both CuO and Cu reflections.84  Once a CuO electrode is reduced to Cu2O 

there are several mechanisms that dissolve Cu2O off of the surface.124,142 All steps of any 

possible mechanism of CuO photodissolution requires the presence of water, thus an 

impenetrable protection layer is a necessity.  

When considering a choice for a back contact of a CuO photocathode, the fermi energy 

of CuO and work function of the back contact must be compared. Cuprous oxide has been a 

material of interest for photocatalysis for significantly longer than CuO, and most work with 

Cu2O utilizes thin layers of Au sputtered on FTO, though this standard did not translate to 

studies of CuO. For example, most CuO photoelectrochemical studies use back contacts 

including Sn:In2O3 (ITO; Φ = 4.7eV),123,143-146 F:SnO2 (FTO; Φ = 4.2eV),124,129,147-154 copper films 

(Cu; Φ = 4.7eV),125,155-157 and silicon wafers (Si; Φ = 4.60-4.85eV).158 All of the back contact 

materials listed above possess a workfunction significantly higher than the fermi energy of 

CuO (εf = -5.3eV vs vacuum), which would create an electron selective, or hole trap state, 
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Figure 4.4. Photocorrosion not Photocatalysis: An electrode with 400nm CuO deposited with 

a 20nm AZO/10nm TiO2 protection layer deposited with ALD. Cyclic voltammetry sweeping 

cathodically first, beginning at open circuit voltage. As the electrode is cycled under 

illumination from a 565nm LED, current increases with successive cycles even without any 

catalytic assistance for performing HER. The protection layer is breaking down as cycles 

continue and the amount of CuO undergoing photocorrosion increases over time. 

 

interface between CuO and the conductor intended to sweep holes to a counter electrode. 

Only one other study to our knowledge focuses on describing the effect of back contact 

workfuncton on photocatalytic performance of CuO, observing a relatively linear relationship 

between conductor work function and current generated, but completely neglects to mention 

the photocorrosion problem; thus it is uncertain if the effect encourages only photocorrosion 

of CuO and not HER.126 A single study attempts to make a more complete approach by 
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utilizing NiO as a back contact hole collector and MoS2 as an electron attracting catalytic and 

protection layer, demonstrating the importance of both in combination.141 

4.4.2 Structural Characterization 

 

Figure 4.5 UV-vis Absorption of Copper Oxides. 400mC/cm2 deposition of Cu2O on FTO 

(orange) subsequently annealed at 500oC in air to CuO (green). Absorbance measurement is a 

combination of transmission spectra and reflectance spectra measured with an integrating 

sphere. CuO, with a smaller band gap of 1.4eV, absorbs more of the visible spectrum than 

Cu2O, with a larger band gap of 2.2eV.  

The UV-vis absorption spectra of Cu2O and CuO on FTO demonstrates the significantly 

smaller band gap of CuO, therefore CuO absorbs a significantly larger portion of the visible 

spectrum (Figure 4.5). To show the layer thickness of CuO electrodes, SEM images of samples 

before (Figure 4.6a), and after (Figure 4.6b), annealing at 500oC were taken. There is an 

increase in thickness as well as roughness after annealing as the CuO unit cell is larger than 

Cu2O; oxygen is forced into the film. 400mC cm-2 of Cu2O deposition correspond to film  
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Figure 4.6. Copper Oxide Deposition Thickness: SEM of Cu2O deposition of 400mC cm-2 on 

FTO before (a) and after annealing at 500oC (b) to CuO with an EDX scanning through the 

layer (c). The film thickness and film roughness increases upon annealing. Cu2O is initially 

around 350nm thick, which increases to around 410nm after annealing. 
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thickness of about 350nm of Cu2O, which when annealed, expands to about 410nm. Thus, in 

future work it is assumed that 1mC cm-2 is roughly equivalent to 1nm of CuO film thickness. 

This is the primary reason for the eventual decision to apply the ALD film after annealing to 

CuO; the ~30nm film is very likely to crack during the expansion process if deposited before 

annealing. 

The need for catalytic sites suited for HER upon the surface of the electrode led us to 

turn to platinum, the champion HER electrocatalyst. Depositing sparse platinum across the 

surface in a uniform manner is necessary to directly compare a variety of electrode 

compositions without interfering with light absorption of the photoactive layer. The first 

method used to try to achieve this was galvanic replacement, which only functions on Cu2O 

and not CuO. We were aware of ALD pinholes and attempted to use them to our advantage. 

Galvanic replacement would only occur in the pinholes and ideally would self-limit the 

reaction once the hole is plugged with platinum. This was not the case as Pt deposited 

sporadically on the surface, and where it was deposited, there were large islands of Pt in 

large etching spots.  

A sample 100mC cm-2 Cu2O protected by 10nm of TiO2 was imaged by using reflection 

microcopy after 1 minute, and 5 minutes of being submerged in the platinum galvanic 

replacement solution.  After 1 minute, sites of platinum deposition were sporadic, small, and 

sparse (Figure 4.7), but after 5 minutes, there were obviously larger sites of extremely 

sporadic deposition around the film (Figure 4.8). Most sites of deposition visually had a center 

speck of platinum, but a noted absence of any copper deposition left around it (Figure 

4.8a&c, Figure 4.9). The galvanic replacement had created islands that were separated from 

any of the cuprous oxide. In particularly egregious cases, especially with thicker Cu2O films, 

the deposition etched and reacted the Cu2O out from under the TiO2 protection layer, causing  
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Figure 4.7. 100nm of Cu2O after 1min of Pt Galvanic Replacement: After electrodeposition 
of 100mC cm-2 of Cu2O on FTO, 10nm of TiO2 was deposited via ALD. The samples were then 
exposed to the platinum galvanic replacement solution for 1minute. A few small, sporadic 
sites of Pt deposition were observed (a), some examples highlighted in red circles, but most 
of the surface remained as it was before Pt deposition (b). 
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Figure 4.8. 100nm of Cu2O after 5min of Pt Galvanic Replacement: After electrodeposition 
of 100mC cm-2 of Cu2O on FTO, 10nm of TiO2 was deposited via ALD. The samples were then 
exposed to the platinum galvanic replacement solution for 5 minutes. Most deposition sites 
increased in size, several highlighted in red circles (a, b). Some deposition sites formed a ring 
pattern with a Pt island in the center and Cu2O being etched away around the island (a, c). In 
a particular case these islands became 10s of µm across and the etching of Cu2O progressed 
significantly. In general the deposition was sporadic across the sample and as seen above the 
Pt sites varied in size significantly across the film’s surface. However, most of the film had 
few to no deposition sites (d, e). 
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Figure 4.9. 200nm of Cu2O after 1 & 5mins of Pt Galvanic Replacement: After 
electrodeposition of 200mC cm-2 of Cu2O on FTO, 10nm of TiO2 was deposited via ALD. The 
samples were then exposed to the platinum galvanic replacement solution for 1 minute (a) or 
5 minutes (b, c). After additional deposition time, Pt sites already present grow and continue 
to etch the Cu2O film, and additional sites appear (a, b). A majority of deposition sites 
formed a ring pattern with a Pt island in the center and Cu2O being etched away around the 
island (c). 
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it to flake, revealing more of the underlayer to etch and react; these created large islands of 

Pt (Figure 4.8c, 4.9). This behavior was similarly observed in the work with protection layers 

in the previous chapter, especially seen in Figure 3.9. Because this method did not create 

uniformly dispersed platinum islands, did not help to close pinholes, and needed to be done 

while a protection layer was on a Cu2O film before annealing, making the protection layer 

more likely to fail, this approach to platinum deposition was discarded.  

The second method used to apply platinum catalytic sites on the surface of the 

electrode was electrodeposition.105,140 The deposition was done after the copper was annealed 

and subsequently protected with 20nm of AZO and 10nm of TiO2. Though able to provide 

appropriately dense platinum depositions, the process still produced somewhat sporadic 

distribution of platinum sites, and the harshly acidic deposition solution increased the chance 

of protection layer failure before the electrode could ever be used to test 

photoelectochemical ability. Additionally, though the current is set to be identical between 

depositions, some electrodes clearly have more platinum sites than others (Figure 4.10). The 

exact cause of this occurrence is unknown. Unfortunately, due to the catalytic sites varying in 

density between samples, direct comparisons could not be drawn between differing 

electrodes. This method too was scrapped after another method became available.   

The final method considered to deposit platinum onto the surface was through 

utilizing a SEM sputter coater; an instrument typically used to increase the image quality of 

unconductive materials in SEM by reducing sample charging. The sputter coater uses a glow 

discharge to bombard the target metal on a sample. In this case, a platinum target was 

placed in the SEM sputterer and the glow discharge was applied between 60s and 300s. A 

study of the elemental composition of electrodes with sputtered platinum was performed 

using EDX and XRD to determine necessary time needed to sputter enough platinum to be 

catalytically active, while avoiding using too much that it coats the surface and interferes  



61 
 

 

Figure 4.10 Electrodeposition of Pt on 400nm CuO Protected with ALD. 400mC cm-2 of 
Cu2O was electrodeposited on either FTO (a) or Ni (b), which was then annealed to CuO, and 
coated with a protection layer of 20nm of AZO and 10nm of TiO2 by ALD. The platinum 
electrodeposition occurred in an acidic solution, where -8.5μA cm-2 of current was applied for 
15 minutes. Some samples had dense but uneven deposition (a), while others had little to no 
deposition at all (b), though both passed the same current during deposition. Though these 
are representative samples on FTO and Ni respectively, there was no pattern to which 
samples had good or bad depositions. 
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Figure 4.11. EDX of Pt Sputtered on FTO-Backed Electrode. FTO with 400nm of deposited 

CuO coated in 20nm of AZO and 10nm of TiO2 was placed in the sputterer in plasma for 60s 

(blue line), 120s (orange line), or 300s (green line). There is a small but clear signal for Pt at 

all sputter times, simultaneously peaks for titanium (TiO2), aluminum, zinc (Al:ZnO), copper 

(CuO), tin (FTO), and silicon (silica glass) are visible and unchanged between various Pt 

sputtering times.  
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Figure 4.12. XPS of Pt Sputtered on ALD-Protected CuO Electrodes: FTO with 400nm of 
deposited CuO coated in 20nm of AZO and 10nm of TiO2 was placed in the sputterer in plasma 
for 60s (red line), 120s (blue line), or 300s (green line). No signal is observed for zinc (c) or 
copper (d) in this surface sensitive technique, though titanium in the form of TiO2 was 
observed, indicating the 10nm TiO2 layer provided complete coverage of the surface. Pt signal 
is present in all time points of sputtering, with a variety of oxidation states of Pt present. As 
Pt sputtering time reaches 300s, the Ti2p3 signal decreases in intensity, indicating there is 
too much sputtered Pt that would interfere with the TiO2-solution interface.  
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with light absorption of the cupric oxide layer. The EDX (Figure 4.11) of a full electrode on 

FTO (FTO/400nmCuO/20nmAZO/10nmTiO2/ sputtered Pt) with varying platinum sputter times 

show that the Pt peak is quite small though visible; the presence of platinum does not 

decrease the strength of the other elemental signals. The same samples were also evaluated 

in XPS; no peaks of Cu of Zn appear in the surface-sensitive technique, demonstrating the 

completeness of the TiO2 protection layer (Figure 4.12 c, d). As the time of sputtering 

increases, the TiO2 signal decreases slightly between 60s and 120s, and greatly between 120s 

and 300s, indicative that the platinum starts to coat the surface (Figure 4.12b). The signal of 

Pt4f orbitals indicate that significant surface platinum is present at all sputtering time points 

with a variety of oxidation states present due to the plasma deposition process (Figure 4.12a). 

Because of a desire to get consistent platinum deposition without interfering with the TiO2-

solution interface, 120s of platinum sputtering was chosen for subsequent sample depositions.  

We performed an investigation on the presence of ALD pinholes, attempting to 

mitigate their presence. We sought to reduce the failure rate of protected CuO electrodes 

during PEC measurements. This experiment adjusted the composition of protection layers and 

employed UV/O3 cleaning the surface of the CuO on the electrode before ALD layers were 

applied. Samples of 300nm of CuO with 20nm of AZO and 10nm of TiO2  or just the 10nm of 

TiO2 were constructed, with half the samples subjected to UV/O3 cleaning for 30 minutes 

between CuO annealing and the deposition of the protection layer. The finished electrodes 

were submerged in 0.5M sulfuric acid for 30s, and immediately rinsed with deionized water. 

This quick exposure was done to image the beginning of pinhole formation. A magnified image 

of a pinhole is shown in Figure 4.13. Figure 4.14 a-d show representative images of the 

surface of each variation in electrode preparation. Each image shows 3-5 points of corrosion 

in the field of view beginning on the surface, and scanning across the surface of these 

electrodes, there is no significant difference in the count or density of corrosion centers,  
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Figure 4.13. Protection Layer Failure Leading to CuO Corrosion. 300mC cm-2 of Cu2O 

deposition on FTO, annealed to CuO, UV/O3 cleaned for 30 minutes before a 20nm AZO and 

10nm TiO2 protection layer was applied via ALD. The sample was exposed to 0.5M sulfuric acid 

for 30 seconds and then imaged in a SEM. As the corrosion begins CuO is carved out beneath 

the protection layer, originating from a pinhole aberration in the protection layer. Image 

taken at 13000x magnification with a 15kV SEM beam.  
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4.14 Protection Layer Failure Regardless of Preparation Method. 300mC cm-2 of Cu2O 

deposition on FTO, annealed to CuO with a protection layer of 20nm of AZO and 10nm of TiO2 

(a & b) or only 10nm of TiO2 (c & d) after exposed to 0.5M sulfuric acid for 30s. Sites where 

CuO corrosion is beginning are highlighted in red. UV/O3 cleaning samples before ALD of 

protection layers (b & d) had no impact on the general number of protection failure sites 

compared to those that were not cleaned before deposition (a & c). Images taken at 2000x 

magnification with a 15kV SEM beam.  
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illustrating that there is no significant effect of the method of preparation we pursued upon 

the presence of pinholes. 

In thin (<10nm) layers, pinholes mostly occur because of irregular nucleation to the 

surface, which generally plagues deposition of oxides on metals, so the traditional methods of 

adding nucleation layers to combat the problem do not apply.86 We hypothesized that the 

addition of 20nm of AZO would behave akin to a buffer layer, modeled after work on Cu2O; 

though it increased the chance of the protection layer working for long enough to test the 

electrode, in this test the observed impact on defect formation was slight.84 Additionally, to 

eventually translate this work into 3-dimensional structuring, necessary to overcome CuO’s 

Mott insulator behavior, more layers only increase production costs, manufacturing time, and 

potential points of failure, thus should be eliminated where possible. In thicker (>10nm) 

layers, extrinsic defects are due to substrate particle contamination, which can only be truly 

mitigated in a clean room environment, though never completely eliminated.88,159   Increasing 

the thickness of deposition can eventually encase any contamination, however these 

contaminates can still be displaced later and yield defects.86 The electronic resistance of the 

electrode also increases as the protection layer thickness increases, as most protection layers 

such as TiO2 or Al2O3 are insulating, thus increases the applied voltage needed to generate 

photocurrent and decreasing energetic efficiency. At the moment there is no clear path 

demonstrated by the literature on how to address these critical issues for application on CuO 

photoelectrodes. 

4.4.3 Photoelectrochemistry  

 During initial attempts of photoelectrochemical measurements for CuO 

photocathodes, we observed that direct deposition of protection layers with ALD onto both 

the back contact layer and the CuO layer, forms an electronic shunt path (Figure 4.14). Due 
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to CuO’s behavior as a Mott insulator, and Al:ZnO being a transparent conducting oxide, the 

path of least resistance for electrons avoided CuO entirely, leading to no effect of 

illumination on observed current.  Physical alteration of a Ni electrode by scribing and use of 

epoxy to isolate the ALD layer from contact with the Ni back restored light impacting 

observed current, though this electrode did quickly degrade from the repeated physical 

abrasion.  

 We considered reverting the choice of protection layer to TiO2 alone, though as 

mentioned before, the addition of the 20nm of AZO increased the chance of a constructed 

electrode’s protection layer lasting long enough for a CV measurement to be completed. A 

thicker layer of TiO2 cold have been utilized instead, but this would increase the electronic 

resistance of the protection layer and thus the electrode, increasing necessary applied 

voltage to generate photocurrent. Adding catalytic sites encourages electron tunneling to the 

surface, but that begins to become unlikely and ineffective once the TiO2 gets too thick. The 

solution we pursued was taping the edge of CuO deposition with Kapton tape before the 

deposition of the protection layers, such that the protection layer deposition was isolated to 

only be on top of the CuO layer (Figure 4.15).  

Photoelectrochemical measurements of electrode constructions without CuO 

demonstrate the lack of illumination effects on the ALD layer on Ni or FTO, indicating any 

photoeffects on CuO electrodes is unique to the CuO layer (Figure 4.16). The presence of the 

ALD layer of 20nm of AZO and 10nmTiO2 have minimal effect on the photocatalytic activity of 

FTO, and neither on FTO nor Ni do the ALD layers interact with 565nm light. The addition of 

platinum via 120s of sputtering showed catalytic activity more cathodic of -0.2V vs RHE, with 

similar activity seen on both FTO and Ni and being unaffected by illumination. A large 

oxidative peak is seen as the scan begins to sweep anodically around -0.3V vs RHE, a peak 

similar in position and behavior to hydrogen desorption, the process of adsorbed hydrogen 
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that is not going to be converted to H2 in this cycle being expunged from the platinum similar 

in position and behavior to hydrogen desorption, the process of adsorbed hydrogen that is not 

going to be converted to H2 in this cycle being expunged from the platinum catalytic sites, 

 

 

Figure 4.15 Shunt Path Formed by Protection Layer. ALD deposits the TCO protection layer 

across the entire available surface (purple) (a), allowing a shunt path to form, whereby 

electrons can flow to the surface without any interaction with the light absorption layer (red) 

(b). Limiting the deposition area to just the top of the CuO film with Kapton tape results 

causes only electrons available for reduction to be from the light absorption properties of 

CuO. 
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Figure 4.16 FTO and Ni Electrodes Without CuO.  Cyclic voltammetry sweep at 20mV/sec in 

pH 5.8 0.5M sodium sulfate. Electrodes of 20nm of AZO and 10nm of TiO2 deposited on Ni (a) 

and FTO (b). Those labelled as having Pt were placed in an SEM sputter coater for 120s. Scans 

in light are done under 565nm LED with collimating lens. Note the hydrogen desorption peak 

at -0.3V only present in the samples with Pt, indicative of hydrogen reduction occurring in the 

cathodic sweep. Illumination does not significantly interact with the ALD layers or Pt catalytic 

sites. 
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indicative that the current seen is due to hydrogen ion reduction.160,161 

 Cyclic voltammetry on electrodes prepared with CuO layers were normally scanned 

to -0.6V vs Ag/AgCl (-0.06V vs RHE), or at most -0.8V vs Ag/AgCl (-0.26 V vs RHE) when no 

apparently catalytic activity under illumination was observed initially, if the electrode was 

stable enough to test that aggressively. In Figure 4.17a the only sample condition with 

significant current density is the illuminated, protected CuO electrode deposited on a Ni back 

contact. Additionally, this sample in the cathodic sweep presented the characteristic 

hydrogen desorption peak present when Pt is reducing hydrogen. Figure 4.17b presents an 

inset highlighting the lack of current in other samples of protected CuO, whether on Ni or 

FTO, without or with the presence of sputtered Pt, in illumination and dark. The only 

significant exception being the protected CuO sample of FTO without Pt, which quickly 

dissolved in subsequent cycles of testing, indicating most of the current observed in that 

sample under illumination is photocorrosion.  

 Subsequent cycling of the exemplary electrode from Figure 4.17a is shown in Figure 

4.18, alternating between testing in dark and under illumination. The peak current in at -0.6 

V vs Ag/AgCl increases with each subsequent cycle under illumination. After 3 cycles under 

illumination, the next cycles completed without illumination begin to show signs of a 

comprimised protection layer, thus the increase in current is an effect of a combination of 

HER and CuO photodissolution.  The same sample, upon being subjected to a 

chronoamperometry with a current set to 1mA/cm2, quickly fails (Figure 4.19). Though 

exchanging the back contact for Ni in this case showed marked improvement on the 

temporary photocathodic performance of the electrode, it did little to increase its longeveity. 
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Figure 4.17 Photoelectrochemistry of CuO Electrodes on Ni & FTO.  Cyclic voltammetry 

sweep at 20mV/sec in pH 5.8 0.5M sodium sulfate. ALD protection layers of 20nm of AZO and 

10nm of TiO2 deposited on 300nm of CuO. Those labelled as having Pt were placed in an SEM 

sputter coater for 120s. Scans in light are done under 565nm LED with collimating lens. 

Significant current is only observed when light is shown on protected CuO is deposited on Ni, 

provided with Pt catalytic sites (a). An inset of the same sample set without the illuminated 

Ni/CuO/ALD/Pt electrode shows the analogous FTO electrode had minimal photocurrent at 

these potentials (b). The outlier of FTO/CuO/ALD without catalytic Pt began to show signs of 

CuO photocorrosion; the same sample was used in Figure 4.4 as a clear example of 

dissolution. 
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Figure 4.18 Photoelectrochemistry of a Protected CuO Electrode on Ni.  Cyclic 
voltammetry sweep at 20mV/sec in pH 5.8 0.5M sodium sulfate. ALD protection layers of 
20nm of AZO and 10nm of TiO2 deposited on 300nm of CuO, after which Pt was applied in an 
SEM sputter coater for 120s. Scans in light are done under 565nm LED with collimating lens. 
Increases in maximum current density is observed in each subsequent cycling under 
illumination, indicating the beginnings of protection layer failure. The 7th-9th cycles, done 
without illumination, also begin to demonstrate signs of CuOx red/ox cycling indicative of 
corrosion.  
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Figure 4.19 Photoelectrochemistry of a Protected CuO Electrode on Ni. 

Chronopotentiometry with a set current of 1mA cm-2. ALD protection layers of 20nm of AZO 

and 10nm of TiO2 deposited on 300nm of CuO, after which Pt was applied in an SEM sputter 

coater for 120s. Measured under illumination from 565nm LED with collimating lens. The 

voltage needed to maintain the set current dramatically spiked quickly as the electrode 

began to fail and increased further once the last of the CuO had been dissolved from the Ni 

electrode.  
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 Repeating the same manufacturing methods, electrodes were constructed on silver, 

a metal with a workfunction of 4.7eV. As seen in Figure 4.20, unprotected silver electrodes 

signal large oxidation and reduction peaks around 0.8V vs RHE. Upon ALD protection of silver, 

those peaks disappear as no silver is interacting with the solution. Protected CuO on Ag 

without platinum deposition is only marginally affected by illumination. There is a clear but 

small photoeffect on protected CuO on Ag with sputtered platinum, but the effect is tiny 

when compared to the effect when the same electrode is constructed on nickel (Figure 4.21). 

For direct comparison, the electrode on silver had a current density of -0.14mA/cm2 at -0.6V 

vs Ag/AgCl, while the same electrode on Ni at the same potential had a current density of -

0.45mA/cm2. More importantly, the current of the electrode on silver before illumination is 

much larger than on nickel, the impact of illumination on nickel provides a several fold 

increase in current rather than a meager 40µA cm-2.  

 We have shown that when CuO is able to be isolated from the solution, two back 

contacts, silver and FTO, with workfunctions above the fermi energy of CuO, have minimal 

photocathodic behavior. However, a back contact with a workfunction almost equal to the 

fermi energy, nickel, has significant photoactivity. The sample size of electrodes must be 

large enough during manufacturing to discover exemplary electrodes that are stable long 

enough to go through electrochemical testing. ALD protection layers are promising in many 

applications, but are not adequate enough for use in the unique set of circumstances 

surrounding CuO; specifically, its propensity for self-induced photoreduction, its Mott resistor 

behavior, and the near indistinguishable overlap of photocorrosion and photocathodic 

electrochemical signals.  
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Figure 4.20 Ag Electrodes Without CuO. Cyclic voltammetry sweep at 20mV/sec in pH 5.8 

0.5M sodium sulfate. Electrodes of polished silver sputtered with Pt for 120s in an SEM sputter 

coater. ALD protection layers of 20nm of AZO and 10nm of TiO2 deposited. Scans in light are 

done under 565nm LED with collimating lens. The scans of unprotected Ag show large silver 

oxidation and reduction peaks around 0.8V vs RHE, along with a Pt reduction peak around 

0.3V vs RHE. Once ALD layers were applied, the silver red/ox peaks were suppressed as silver 

was no longer in contact with the solution. The protected electrode with Pt has similar 

current densities and shape to analogous electrodes on Ni and FTO as seen in Figure 4.15. 
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Figure 4.21 Photoelectrochemistry of CuO Electrodes on Ag.  Cyclic voltammetry sweep at 

20mV/sec in pH 5.8 0.5M sodium sulfate. ALD protection layers of 20nm of AZO and 10nm of 

TiO2 deposited on 300nm of CuO. Those labelled as having Pt were placed in an SEM sputter 

coater for 120s. Scans in light are done under 565nm LED with collimating lens. The effect of 

illumination on electrodes with Pt is small, with only increasing current 40µA cm-2 at 0.00V vs 

RHE when comparing dark and illuminated samples.  
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4.5 Conclusion 

We presented cupric oxide as potential semiconductor in a photocathode for PEC 

hydrogen generation from water splitting. The Mott-insulator behavior of CuO was not 

addressed as we proposed it as a candidate for future three-dimensional structuring. 

However, to be utilized in a functional electrode, two important factors must be met; 

separation of CuO from the water in a photoelectrochemical system, and conductor with a 

workfunction at or below 5.3eV. To be in a hierarchically three-dimensional electrode, ideally 

the back contact would be a transparent conducting oxide akin to AZO or ITO; but a p-type 

TCO must be developed for this purpose, and none are readily available for ALD. Atomic layer 

deposition is theoretically ideal for deposition of both the transparent conductor and 

protection layers in a particularly tortuous structure. But as demonstrated here, and 

elsewhere in literature, pinhole defects continue to be a crippling problem plaguing ALD 

protection layers that have no complete solution, only some methods of mitigation. Until both 

a p-type TCO and the problem of pinholes are addressed, CuO has no hope of becoming a 

reasonable photocathode for photoelectrochemical water splitting.  
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Chapter 5. Conclusion 

In this work, we successfully protected AZO from extreme pH environments with ALD-

TiO2. The same protection layer, even after deposition of an AZO buffer layer, did not 

consistently protect CuO from photodissolution, even in relatively pH neutral environments. 

The presence of pinholes in the ALD protection layer, even after surface cleaning, caused us 

to be unable to predict which CuO PEC device replicates would remain stable long enough to 

perform cursory PEC testing. ALD has been lauded for its ability to deposit thin, conformal 

films, and it can do so without defects in certain conditions, albeit those conditions are yet to 

be consistently established. A consistent method for eliminating ALD pinholes has yet to be 

reported in the literature. The propensity of CuO to rapidly photocorrode in reductive 

conditions demands that a protection layer be flawless, an expectation not yet predictable 

with ALD films.  

The effects of the workfunction upon CuO PEC device performance shown in Chapter 4 

were replicable. Due to the nature of pinholes forming in ALD protection layers, exemplary 

electrodes were difficult to produce consistently. Many otherwise identical samples with 

pinholes, the presence of which was impossible to determine until the completed electrode 

corroded under illumination, hampered efforts to proceed forward. Nevertheless, as clearly 

demonstrated here, the impact of back contact energetics cannot be ignored in the 

conceptualization and construction of PEC devices. The relation between the fermi energy of 

the semiconductor and back contact is just as important as band position and chemical 

potential at the semiconductor-liquid interface. In not ensuring Ohmic contact at the solid 

interface, charge separation within the semiconductor can be impeded, which increases 

energy losses to recombination of electron-hole pairs. This is especially detrimental to a Mott 

insulator like CuO which already has a propensity for low charge carrier mobility.  



80 
 

We did not get to construct a working hierarchically structured PEC device, as was the 

intention when this work began. The tortuous nature of the proposed scaffold mentioned in 

Chapter 1 necessitates the deposition of the protection layer for a light absorber in the to be 

done with ALD. As stated previously, the workfunction of the back contact must be equal to 

or lower than the fermi energy of CuO. A current collector within a three-dimensional 

scaffold must be transparent to minimize parasitic absorption losses. No prevalent TCO has 

yet been developed with a workfunction deep enough to maintain Ohmic contact with CuO, 

and for that matter, most p-type semiconductors. A p-type TCO must be developed before a 

photocathode could be constructed within a tortuous scaffold. As a result of the Mott 

insulator behavior of CuO, reasonable solar-to-hydrogen conversion efficiencies cannot be 

reached without three-dimensional structuring.  

The scaffold should not be abandoned however, as hematite (α-Fe2O3) shares the Mott 

insulating properties of CuO, is a n-type semiconductor, and is significantly more stable in 

aqueous environments than CuO. As a photoanode, the band gap of hematite of 2.0eV is 

appropriate for pairing with a much smaller band gap photocathode. ALD-AZO or ITO could be 

viable for making Ohmic contact with hematite and any protection layer theoretically should 

not have to be as uniformly aberration-free. An obstacle to this, likely the subject of future 

work, is the deposition of hematite. ALD α-Fe2O3 cannot yet be directly deposited, and as 

brought up by Wang et al. any annealing in air needed to convert ALD FeOx to hematite would 

cause AZO to become unconductive.162 Alternative ALD chemistry or resolving the cause of 

unpredictable behavior of ALD protection layers could make a hierarchically structured earth 

abundant photoelectrode viable for PEC water splitting.  
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103. Moehl T, Suh J, Sévery L, Wick-Joliat R, Tilley SD. Investigation of (Leaky) ALD TiO2 

Protection Layers for Water-Splitting Photoelectrodes. ACS applied materials & interfaces. 

2017;9(50):43614-43622.  

104. Siddiqi G, Luo Z, Xie Y, et al. Stable water oxidation in acid using manganese-modified 

TiO2 protective coatings. ACS applied materials & interfaces. 2018;10(22):18805-18815.  



94 
 

105. Penner RM. Mesoscopic metal particles and wires by electrodeposition. The Journal of 

Physical Chemistry B. 2002;106(13):3339-3353.  

106. Dasgupta NP, Neubert S, Lee W, Trejo O, Lee J-R, Prinz FB. Atomic layer deposition of 

Al-doped ZnO films: effect of grain orientation on conductivity. Chemistry of Materials. 

2010;22(16):4769-4775.  

107. Guziewicz E, Godlewski M, Wachnicki L, et al. ALD grown zinc oxide with controllable 

electrical properties. Semiconductor Science and Technology. 2012;27(7):074011.  

108. Moulder JF. Handbook of X-ray photoelectron spectroscopy. Physical electronics. 

1995:230-232.  

109. Sheng W, Gasteiger HA, Shao-Horn Y. Hydrogen oxidation and evolution reaction 

kinetics on platinum: acid vs alkaline electrolytes. Journal of The Electrochemical Society. 

2010;157(11):B1529.  

110. Lehmann V. Electrochemistry of silicon: instrumentation, science, materials and 

applications. 2002. 

111. Kavan L, Tétreault N, Moehl T, Grätzel M. Electrochemical characterization of TiO2 

blocking layers for dye-sensitized solar cells. The Journal of Physical Chemistry C. 

2014;118(30):16408-16418.  

112. Sun K, Saadi FH, Lichterman MF, et al. Stable solar-driven oxidation of water by 

semiconducting photoanodes protected by transparent catalytic nickel oxide films. 

Proceedings of the National Academy of Sciences. 2015;112(12):3612-3617.  



95 
 

113. Sun K, McDowell MT, Nielander AC, et al. Stable solar-driven water oxidation to O2 (g) 

by Ni-oxide-coated silicon photoanodes. The journal of physical chemistry letters. 

2015;6(4):592-598.  

114. Coridan RH, Nielander AC, Francis SA, et al. Methods for comparing the performance 

of energy-conversion systems for use in solar fuels and solar electricity generation. Energy & 

Environmental Science. 2015;8(10):2886-2901.  

115. Wu Y, Giddings AD, Verheijen MA, et al. Dopant distribution in atomic layer deposited 

ZnO: Al films visualized by transmission electron microscopy and atom probe tomography. 

Chemistry of Materials. 2018;30(4):1209-1217.  

116. Pourbaix M. Atlas of electrochemical equilibria in aqueous solution. NACE. 1974;307 

117. Xiang C, Weber AZ, Ardo S, et al. Modeling, simulation, and implementation of solar‐

driven water‐splitting devices. Angewandte Chemie International Edition. 2016;55(42):12974-

12988.  

118. Yang Y, Xu D, Wu Q, Diao P. Cu2O/CuO bilayered composite as a high-efficiency 

photocathode for photoelectrochemical hydrogen evolution reaction. Scientific reports. 

2016;6(1):1-13.  

119. Siavash Moakhar R, Hosseini‐Hosseinabad SM, Masudy‐Panah S, et al. 

Photoelectrochemical Water‐Splitting Using CuO‐Based Electrodes for Hydrogen Production: A 

Review. Advanced Materials. 2021;33(33):2007285.  

120. Huang Q, Kang F, Liu H, Li Q, Xiao X. Highly aligned Cu 2 O/CuO/TiO 2 core/shell 

nanowire arrays as photocathodes for water photoelectrolysis. Journal of Materials Chemistry 

A. 2013;1(7):2418-2425.  



96 
 

121. Zhang Q, Zhang K, Xu D, et al. CuO nanostructures: synthesis, characterization, growth 

mechanisms, fundamental properties, and applications. Progress in Materials Science. 

2014;60:208-337.  

122. Wadia C, Alivisatos AP, Kammen DM. Materials availability expands the opportunity for 

large-scale photovoltaics deployment. Environmental science & technology. 2009;43(6):2072-

2077.  

123. Xing H, Lei E, Guo Z, Zhao D, Li X, Liu Z. Exposing the photocorrosion mechanism and 

control strategies of a CuO photocathode. Inorganic Chemistry Frontiers. 2019;6(9):2488-

2499.  

124. Shaislamov U, Kim H, Yang JM, Yang BL. CuO/ZnO/TiO2 photocathodes for a self-

sustaining photocell: Efficient solar energy conversion without external bias and under visible 

light. International Journal of Hydrogen Energy. 2020;45(11):6148-6158.  

125. Li Y, Luo K. Flexible cupric oxide photocathode with enhanced stability for renewable 

hydrogen energy production from solar water splitting. RSC advances. 2019;9(15):8350-8354.  

126. Tomita R, Pu Z, Kamegawa T, Anpo M, Higashimoto S. Photoelectrochemical properties 

of copper oxide (CuO) influenced by work functions of conductive electrodes. Research on 

Chemical Intermediates. 2019;45(12):5947-5958.  

127. Amrullah A, Gunawan G, Prasetya NBA. The Effect of Cu Ohmic Contact on 

Photoelectrochemical Property of S-CuO Thin Film Photocathodes. Jurnal Kimia Sains dan 

Aplikasi. 22(6):255-262.  

128. Ng KH, Kadir HA, Minggu LJ, Kassim MB. Stability of WO3/CuO heterojunction 

photoelectrodes in PEC system. Trans Tech Publ; 219-224. 



97 
 

129. Shaislamov U, Krishnamoorthy K, Kim SJ, et al. Highly stable hierarchical p-CuO/ZnO 

nanorod/nanobranch photoelectrode for efficient solar energy conversion. international 

journal of hydrogen energy. 2016;41(4):2253-2262.  

130. Ha J-w, Ryu H, Lee W-J, Bae J-S. Efficient photoelectrochemical water splitting using 

CuO nanorod/Al2O3 heterostructure photoelectrodes with different Al layer thicknesses. 

Physica B: Condensed Matter. 2017;519:95-101.  

131. Turrión M, Bisquert J, Salvador P. Flatband potential of F: SnO2 in a TiO2 dye-

sensitized solar cell: an interference reflection study. The Journal of Physical Chemistry B. 

2003;107(35):9397-9403.  

132. Baker BG, Johnson BB, Maire GLC. Photoelectric work function measurements on 

nickel crystals and films. Surface Science. 1971;24(2):572-586.  

133. Michaelson HB. The work function of the elements and its periodicity. Journal of 

applied physics. 1977;48(11):4729-4733.  

134. Wang Y, Lany S, Ghanbaja J, et al. Electronic structures of C u 2 O, C u 4 O 3, and 

CuO: A joint experimental and theoretical study. Physical Review B. 2016;94(24):245418.  

135. Koffyberg FP, Benko FA. A photoelectrochemical determination of the position of the 

conduction and valence band edges of p‐type CuO. Journal of Applied Physics. 

1982;53(2):1173-1177.  

136. Golden TD, Shumsky MG, Zhou Y, VanderWerf RA, Van Leeuwen RA, Switzer JA. 

Electrochemical deposition of copper (I) oxide films. Chemistry of Materials. 1996;8(10):2499-

2504.  



98 
 

137. Lowe JM, Yan Q, Benamara M, Coridan RH. Direct photolithographic patterning of 

cuprous oxide thin films via photoelectrodeposition. Journal of Materials Chemistry A. 

2017;5(41):21765-21772.  

138. Lowe JM, Coridan RH. Mechanistic control of a galvanic replacement reaction on 

cuprous oxide. Nanoscale Advances. 2019;1(4):1343-1350.  

139. Reed PJ, Mehrabi H, Schichtl ZG, Coridan RH. Enhanced Electrochemical Stability of 

TiO2-Protected, Al-doped ZnO Transparent Conducting Oxide Synthesized by Atomic Layer 

Deposition. ACS applied materials & interfaces. 2018;10(50):43691-43698.  

140. Liu H, Favier F, Ng K, Zach MP, Penner RM. Size-selective electrodeposition of meso-

scale metal particles: a general method. Electrochimica Acta. 2001;47(5):671-677.  

141. Xing H, E L, Guo Z, Zhao D, Liu Z. Enhancement in the charge transport and 

photocorrosion stability of CuO photocathode: The synergistic effect of spatially separated 

dual-cocatalysts and p-n heterojunction. Chemical Engineering Journal. 2020/08/15/ 

2020;394:124907. doi:https://doi.org/10.1016/j.cej.2020.124907 

142. Toe CY, Zheng Z, Wu H, Scott J, Amal R, Ng YH. Photocorrosion of Cuprous Oxide in 

Hydrogen Production: Rationalising Self-Oxidation or Self-Reduction. Angewandte Chemie 

International Edition. 2018-10-08 2018;57(41):13613-13617. doi:10.1002/anie.201807647 

143. Zhang X, Luo Y, Lu K, Lu Q, Gong J, Liu R. Tuning Band Gaps and Photoelectrochemical 

Properties of Electrodeposited CuO Films by Annealing in Different Atmospheres. Journal of 

The Electrochemical Society. 2020;167(2):026504.  

https://doi.org/10.1016/j.cej.2020.124907


99 
 

144. Nakaoka K, Ueyama J, Ogura K. Electrochemical/Chemical Deposition and Etching-

Photoelectrochemical Behavior of Electrodeposited CuO and Cu2O Thin Films on Conducting 

Substrates. Journal of the Electrochemical Society. 2004;151(10):C661.  

145. Wang Y, Jiang T, Meng D, et al. Fabrication of nanostructured CuO films by 

electrodeposition and their photocatalytic properties. Applied Surface Science. 2014/10/30/ 

2014;317:414-421. doi:https://doi.org/10.1016/j.apsusc.2014.08.144 

146. Chang T-H, Hsu C-Y, Lin H-C, Chang KH, Li Y-Y. Formation of urchin-like CuO structure 

through thermal oxidation and its field-emission lighting application. Journal of Alloys and 

Compounds. 2015/09/25/ 2015;644:324-333. 

doi:https://doi.org/10.1016/j.jallcom.2015.04.107 

147. Toupin J, Strubb H, Kressman S, Artero V, Krins N, Laberty-Robert C. CuO 

photoelectrodes synthesized by the sol–gel method for water splitting. Journal of Sol-Gel 

Science and Technology. 2019/01/01 2019;89(1):255-263. doi:10.1007/s10971-018-4896-3 

148. Masudy-Panah S, Siavash Moakhar R, Chua CS, et al. Nanocrystal Engineering of 

Sputter-Grown CuO Photocathode for Visible-Light-Driven Electrochemical Water Splitting. 

ACS Applied Materials & Interfaces. 2016/01/20 2016;8(2):1206-1213. 

doi:10.1021/acsami.5b09613 

149. Masudy-Panah S, Moakhar RS, Chua CS, Kushwaha A, Wong TI, Dalapati GK. Rapid 

thermal annealing assisted stability and efficiency enhancement in a sputter deposited CuO 

photocathode. 10.1039/C6RA03383K. RSC Advances. 2016;6(35):29383-29390. 

doi:10.1039/C6RA03383K 

150. Kushwaha A, Moakhar RS, Goh GKL, Dalapati GK. Morphologically tailored CuO 

photocathode using aqueous solution technique for enhanced visible light driven water 

https://doi.org/10.1016/j.apsusc.2014.08.144
https://doi.org/10.1016/j.jallcom.2015.04.107


100 
 

splitting. Journal of Photochemistry and Photobiology A: Chemistry. 2017/03/15/ 

2017;337:54-61. doi:https://doi.org/10.1016/j.jphotochem.2017.01.014 

151. Cots A, Bonete P, Gómez R. Improving the Stability and Efficiency of CuO 

Photocathodes for Solar Hydrogen Production through Modification with Iron. ACS Applied 

Materials & Interfaces. 2018/08/08 2018;10(31):26348-26356. doi:10.1021/acsami.8b09892 

152. Gaulding EA, Liu G, Chen CT, et al. Fabrication and optical characterization of 

polystyrene opal templates for the synthesis of scalable, nanoporous (photo) electrocatalytic 

materials by electrodeposition. Journal of Materials Chemistry A. 2017;5(23):11601-11614.  

153. Masudy-Panah S, Siavash Moakhar R, Chua CS, Kushwaha A, Dalapati GK. Stable and 

efficient CuO based photocathode through oxygen-rich composition and Au–Pd nanostructure 

incorporation for solar-hydrogen production. ACS Applied Materials & Interfaces. 

2017;9(33):27596-27606.  

154. Chauhan D, Satsangi VR, Dass S, Shrivastav R. Preparation and characterization of 

nanostructured CuO thin films for photoelectrochemical splitting of water. Bulletin of 

Materials Science. 2006;29(7) 

155. Chen JT, Zhang F, Wang J, et al. CuO nanowires synthesized by thermal oxidation 

route. Journal of Alloys and Compounds. 2008/04/24/ 2008;454(1):268-273. 

doi:https://doi.org/10.1016/j.jallcom.2006.12.032 

156. Verma M, Kumar V, Katoch A. Sputtering based synthesis of CuO nanoparticles and 

their structural, thermal and optical studies. Materials Science in Semiconductor Processing. 

2018/03/15/ 2018;76:55-60. doi:https://doi.org/10.1016/j.mssp.2017.12.018 

https://doi.org/10.1016/j.jphotochem.2017.01.014
https://doi.org/10.1016/j.jallcom.2006.12.032
https://doi.org/10.1016/j.mssp.2017.12.018


101 
 

157. Li J, Jin X, Li R, et al. Copper oxide nanowires for efficient photoelectrochemical 

water splitting. Applied Catalysis B: Environmental. 2019/01/01/ 2019;240:1-8. 

doi:https://doi.org/10.1016/j.apcatb.2018.08.070 

158. Masudy-Panah S, Radhakrishnan K, Tan HR, Yi R, Wong TI, Dalapati GK. Titanium 

doped cupric oxide for photovoltaic application. Solar Energy Materials and Solar Cells. 

2015;140:266-274.  

159. Yersak AS, Lee Y-C. Probabilistic distributions of pinhole defects in atomic layer 

deposited films on polymeric substrates. Journal of Vacuum Science & Technology A: Vacuum, 

Surfaces, and Films. 2016;34(1):01A149.  

160. Uluc AV, Mol JMC, Terryn H, Böttger AJ. Hydrogen sorption and desorption related 

properties of Pd-alloys determined by cyclic voltammetry. Journal of Electroanalytical 

Chemistry. 2014/11/15/ 2014;734:53-60. 

doi:https://doi.org/10.1016/j.jelechem.2014.09.021 

161. Zhan D, Velmurugan J, Mirkin MV. Adsorption/Desorption of Hydrogen on Pt 

Nanoelectrodes: Evidence of Surface Diffusion and Spillover. Journal of the American 

Chemical Society. 2009/10/21 2009;131(41):14756-14760. doi:10.1021/ja902876v 

162. Wang A, Chen T, Lu S, et al. Effects of doping and annealing on properties of ZnO films 

grown by atomic layer deposition. Nanoscale research letters. 2015;10(1):75.  

 

https://doi.org/10.1016/j.apcatb.2018.08.070
https://doi.org/10.1016/j.jelechem.2014.09.021


102 
 

Appendix  

 

Figure A.1 - Series of transmission UV-Vis measurements for identical (top) 1000c AZO films, 
(middle) 1000c AZO+100c TiO2 films, and (bottom) 1000c AZO+300 TiO2 films exposed to 1 M 
NaOH, performed in triplicate. The data is shown to communicate the reproducibility of the 
experiments shown in Chapter 3 
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Figure A.2 - 1000c AZO+300c TiO2 substrates after a 24-hour exposure to 1 M NaOH. The 
visible etching of the films appears to occur from the edges, where the alkaline conditions 
can potentially etch the glass substrate from under the ALD-deposited film as the mode of 
failure. In spite of the visible etching, a majority of the ALD-deposited film persisted after 24 
hours. 
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Figure A.3 - Series of transmission UV-Vis measurements for identical (top) 1000c AZO films, 
(middle) 1000c AZO+100c TiO2 films, and (bottom) 1000c AZO+300 TiO2 films exposed to 1 N 
H2SO4, performed in triplicate. The data is shown to communicate the reproducibility of the 
experiments shown in Chapter 3. 
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