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ABSTRACT 
 

Within the last four decades, phylogenetic comparative methods have become the defacto 

method of analysis for comparative biologists. The availability of high-quality comparative 

datasets has been matched by an explosion of possible phylogenetic models. In large part, the 

efforts to increase the realism of phylogenetic comparative methods has been successful as 

evidenced by their widespread use. To this extensive literature, my contributions are modest. I 

have focused my dissertation work on two main themes. First, most phenotypic evolution is not 

independent of other phenotypes. Changes in a particular character may influence changes in 

another and modeling these characters in isolation can mislead our inferences. Second, 

evolutionary change is heterogeneous. Not all species are going to change in the same way at all 

times and failing to account for that will mislead our inferences. The intersection of these two 

themes, character dependence and rate heterogeneity, is more natural than it may first appear. 

This dissertation has four chapters addressing various issues in current phylogenetic comparative 

methods. In Chapter I, I extend discrete character models to allow for any number of characters 

with any number of observed or hidden states. In Chapter II, I apply hidden Markov models to 

the issue of false correlation between discrete character evolution. I demonstrate that allowing 

for character independent rate heterogeneity through the application of hidden Markov models, is 

one way to account for this statistical bias. In Chapter III, I develop a new model called hOUwie 

which detects correlation between discrete and continuous characters and estimates their joint 

evolution. In Chapter IV, I apply the hOUwie model to 33 clades of angiosperms and attempt to 

understand the evolutionary patterns of plant life history as it relates to climatic variation.  
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INTRODUCTION 

 

It is abundantly evident that rates of evolution vary. They vary greatly from group to group, and 

even among closely related lineages there may be strikingly different rates. Differences in rates 

of evolution [...] are among the reasons for the great diversity of organisms on the earth.  

- Simpson (1953) 

 

Within the last four decades, phylogenetic comparative methods have transitioned from a simple, 

but arguably infeasible tool for correcting non-independence (Felsenstein 1985, 2004; Huey et al. 

2019) to the defacto method of analysis for comparative biologists (O’Meara 2012; Cooper et al. 

2016; Huey et al. 2019). The issue of infeasibility, due to a lack of access to well resolved 

phylogenies, was quickly overcome by the flood of new molecular data and techniques for 

inferring phylogenies. In fact, so well resolved is this issue, that the amount and quality of 

molecular data is producing phylogenetic trees of such large size that new algorithms for 

calculating the likelihood of complex models are consistently being developed (e.g., (Pupko et 

al. 2000; Freckleton 2012; Ho and Ané 2014; Irvahn and Minin 2014; Hiscott et al. 2016; Louca 

and Pennell 2020; Mitov et al. 2020). The availability of high-quality phylogenies and 

comparative datasets have been matched by an explosion of possible phylogenetic models, often 

being developed with the hope of inferring details of the macroevolutionary process rather than 

only correcting statistical non-independence (e.g., Hansen 1997; Galtier 2001; Butler and King 

2004; Housworth et al. 2004; Pagel and Meade 2006; Bokma 2008; Hansen et al. 2008; Hadfield 

and Nakagawa 2010; Eastman et al. 2011, 2013; Bartoszek et al. 2012; Freckleton 2012; Hansen 

and Bartoszek 2012; O’Meara 2012; Revell and Reynolds 2012; Slater et al. 2012; Thomas and 
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Freckleton 2012; Beaulieu et al. 2013; Ingram and Mahler 2013; Höhna et al. 2014, 2016; Revell 

2014, 2021; Cybis et al. 2015; Beaulieu and O’Meara 2016; Bastide et al. 2017, 2018; Caetano 

and Harmon 2017, 2019; Mitov et al. 2019, 2020; Blomberg et al. 2020; Nürk et al. 2020; Boyko 

and Beaulieu 2021, 2022; Jhwueng 2021). In large part, the efforts to increase the realism of 

phylogenetic comparative methods has been successful as evidenced by their widespread use.  

To this extensive literature, my contributions are modest. I have focused my dissertation 

work on two main themes. First, most phenotypic evolution is not independent of other 

phenotypes. Changes in a particular character may influence changes in another and modeling 

these characters in isolation can mislead our inferences. Second, evolutionary change is 

heterogeneous. Not all species are going to always change in the same way and failing to account 

for that will mislead our inferences. The intersection of these two themes, character dependence 

and rate heterogeneity, is more natural than it may first appear. This claim is particularly true in 

the context of phylogenetic comparative methods (PCMs), the primary subject of this 

manuscript.  

Consider how we can infer one event influencing another. We may expect that the 

outcome or observation of event X (whether the outcome is X=0 or X=1) changes the probability 

of event Y (the chances of Y=0 or Y=1 occurring). For example, the probability of crossing a 

busy street may differ substantially from crossing a street with no traffic. There is a correlation 

or dependence between crossing a street (X = 0 = not crossing) and the amount of traffic (Y = 1 

= a lot of traffic). For evolutionary biologists, dependencies are of particular interest since they 

often represent repeated outcomes of evolution and can give insights into the underlying 

evolutionary process. For example, repeatedly observing and quantifying a correlation between 

habitat type and morphology may indicate convergent evolution and give insights into the 



 3 

processes which underly bursts of speciation when lineages are exposed to novel environments 

(Schluter 2000). In PCMs, we test for correlation by examining differences in rates – 

specifically, the difference of a rate in the presence of one background state versus another. Are 

the speciation rates of lineages with red flowers greater than those with blue flowers? Does a 

transition from annual to perennial occur more quickly in lineages which are already woody? Do 

rates of evolution depend on an animal’s body size? Each of these questions poses that a 

character’s particular state correlates not necessarily with the state of a second character, but 

with the rates of change within that second character. This is a subtle, but crucially important 

difference, because evolutionary change is heterogeneous as a rule (Gould 1989). 

Of course, rates are not data. Rather, they follow from data when combined with a model 

of how phenotypes evolve (Bookstein 1987; Cooper and Purvis 2009). This makes choosing a 

reasonable evolutionary model, or set of models, important. The macroevolutionary models dealt 

with in this dissertation are some of the most common used in the field today. The models 

require as input an ultrametric and time calibrated phylogeny as well as a matrix of discrete or 

continuous characters measured at the species level. For example, a dataset could comprise a set 

of average limb lengths of individual Anolis species as well as their discretized ecomorph 

categorization (Losos 1990, 1992; Losos et al. 2006; Ingram and Mahler 2013). This dataset, in 

combination with a phylogenetic depiction of the relationships between species, are the 

foundation of making inferences about macroevolutionary patterns. However, any inference 

made from the data will only be as good as the model set being evaluated.  

Our goal in phylogenetic comparative modeling is to describe the distribution of 

characters that we see along the tips of the phylogeny. There are two main classes of character 

that we will be discussing: discrete and continuous. To model the evolution of a single 
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continuous character, one common model is the Ornstein-Uhlenbeck (OU) model (Hansen 1997; 

Butler and King 2004; Hansen et al. 2008; Beaulieu et al. 2012; Ho and Ané 2014). 

Conceptually, this model combines the stochastic evolution of a trait through time with a 

deterministic component that models the tendency for a trait to evolve towards an “optimum.” 

The optimum can represent the set of “selective regimes”, “regimes”, or Simpson’s “adaptive 

zones” (Cressler et al. 2015), though it is consistent with a variety of true underlying 

microevolutionary models (Hansen 2014). An early attempt to model discrete character evolution 

was a stochastic model of correlated trait evolution (Pagel 1994). The model Pagel (1994) 

proposed was based on continuous-time Markov models of nucleic acid substitution (e.g. 

Felsenstein, 1981; Jukes and Cantor, 1969; Kimura, 1980), but applied to estimate transition 

rates in pairs of binary characters. Finally, phylogenetic models can often be distinguished by the 

number of discrete traits and characters being analyzed. For example, BiSSE (Maddison et al. 

2007) and HiSSE (Beaulieu and O’Meara 2016) can be distinguished from MuHiSSE (Nakov et 

al. 2019) and SecSSE (Herrera-Alsina et al. 2019) by the former two models allowing only 

binary character data and the latter two allowing for both multiple traits and more than two 

characters per trait. Once the traits have been chosen and codified into character states, the 

observations are seen by the model as a sequence of data values associated with the tips of a 

phylogeny. These data values and the position in the phylogeny are all we know about the 

species. In fact, most of our information for inferring rates lies in explaining the distribution of 

these traits as they relate to other species in the phylogeny. 

So, if we know that testing for correlation is done by comparing rates, then the natural 

rate heterogeneity of the evolutionary process may become an issue for our macroevolutionary 

models (Maddison and FitzJohn 2015; Rabosky and Goldberg 2015). Decoupling rate variation 
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due to some focal character of interest will always need to be contrasted against rate 

heterogeneity due to some unobserved variable (Beaulieu and O’Meara 2016; Caetano et al. 

2018; Boyko and Beaulieu 2022). Furthermore, in the opinion of the author, declaring a 

correlation between a background state and a heterogenous process is a very old and 

consequential error. Take something heterogenous, for example human personality, and attempt 

to explain it (Allport 1962; Lamiell 1987; Silvia 2006). One of the most common explanations of 

differences in personality is to relate individual idiosyncrasies with the position of stars and 

moons – a field known as astrology (Zarka 2009). If our only explanations for human behavior 

was planetary positions, then one would have no choice but to embrace the explanation because 

it is a given that human personalities differ. A lack of alternative explanations can mislead our 

understanding because one may view any explanation as better than none. Furthermore, if an 

explanation includes differences, it will, at some point, correctly predict and describe the 

heterogenous process. This is particularly true if alternative explanations rely on an assumption 

that human personality does not differ. Returning to the field of comparative biology, this 

problem has been encountered and described in two of the most commonly used phylogenetic 

comparative models: state-dependent speciation and extinction (SSE) models and Markov 

models testing for correlation between discrete characters (Maddison and FitzJohn 2015; 

Rabosky and Goldberg 2015). In both cases, the issue lies in null explanations requiring a non-

heterogenous process to explain the data and then being contrasted to a model in which a focal 

character is the source of rate variation.  

The way I have attempted to address this problem, and account for character independent 

rate heterogeneity, is through the use of Hidden Markov models (HMMs). HMMs are a 

simplified way that we can bring realism to our modeling while also making statistically 
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consistent and unbiased estimates of evolutionary parameters. Hidden Markov models (HMMs) 

are models in which the distribution that generates an observation depends on the state of an 

underlying and unobserved Markov process (Zucchini et al. 2017). In phylogenetic comparative 

methods, HMMs are often discussed as unknown characters whose presence causes 

heterogeneity in the observed transition rates, diversification rates, or both (Beaulieu et al. 2013; 

Pennell et al. 2014; Revell 2014; Maddison and FitzJohn 2015; Rabosky and Goldberg 2015; 

Beaulieu and O’Meara 2016; Brown and Thomson 2018; Caetano et al. 2018; Folk et al. 2018; 

Ng and Smith 2018; Uyeda et al. 2018; Otero et al. 2019). When a Markov model is said to be 

hidden, it describes states which are not the same as the observations. Instead, an HMM is a way 

to link different processes that can help explain heterogeneity in the distribution of observations. 

HMMs are appropriate when a single transition rate matrix or diversification rate are not the 

same for all lineages. To address this, hidden Markov models link two or more processes. They 

will only be favored if there is signal in the data for these two or more separate processes.  

This dissertation has four chapters addressing various issues in current phylogenetic 

comparative methods. In Chapter I, I extend discrete character models to allow for any number 

of characters with any number of observed or hidden states. This addresses the issue that 

phenotypic evolution, even when simplified to a discrete character, is better understood as the 

confluence of several characters evolving together, rather than a single character evolving 

independently. Furthermore, I demonstrate the some of the advantages of increasing state space 

from an information theoretic view. In Chapter II, I apply hidden Markov models to the issue of 

false correlation between discrete character evolution. As we have discussed, comparative 

biologists are often interested in whether to discrete characters are correlated with each other as a 

significant and repeated dependent relationship may give insight into the underlying evolutionary 
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process. However, it has been thrown that several commonly used comparative methods are 

susceptible to false correlations. In this Chapter, I demonstrate that allowing for character 

independent rate heterogeneity through the application of hidden Markov models, is one way to 

account for this statistical bias. In Chapter III, I develop a new model for linking discrete and 

continuous character evolution. The model called hOUwie, attempts to detect correlation 

between discrete and continuous characters and estimates their joint evolution. Furthermore, this 

model is developed with the issues of the previous chapter in mind and therefore allows for 

character independent rate heterogeneity as an alternative explanation. In Chapter IV, I apply the 

hOUwie model to 33 clades of angiosperms and attempt to understand the evolutionary patterns 

of plant life history. It has been theorized that certain climatic variables, such as precipitation and 

temperature, can explain the distribution of annuals and perennials globally. However, previous 

studies have been contradictory with results depending on the specific clade or climatic variable 

being analyzed. Here we demonstrate that a consistent driver of annual life history is the 

maximum temperature of the hottest month. Furthermore, we show that some of the most 

commonly used model systems for life history evolution have biased our perceptions of the 

evolutionary process and in our analyses were more often the exception than the rule.   
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CHAPTER I 

Generalized hidden Markov models for phylogenetic comparative datasets 

James Boyko and Jeremy Beaulieu 

 

Abstract 

Hidden Markov models (HMM) have emerged as an important tool for understanding the 

evolution of characters that take on discrete states. Their flexibility and biological sensibility 

make them appealing for many phylogenetic comparative applications. Previously available 

packages placed unnecessary limits on the number of observed and hidden states that can be 

considered when estimating transition rates and inferring ancestral states on a phylogeny. To 

address these issues, we expanded the capabilities of the R package corHMM to handle n-state 

and n-character problems and provide users with a streamlined set of functions to create custom 

HMMs for any biological question of arbitrary complexity. We show that increasing the number 

of observed states increases the accuracy of ancestral state reconstruction. We also explore the 

conditions for when an HMM is most effective, finding that an HMM is an appropriate model 

when the degree of rate heterogeneity is moderate to high. Finally, we demonstrate the 

importance of these generalizations by reconstructing the phyllotaxy of the ancestral angiosperm 

flower. Partially contradicting previous results, we find the most likely state to be a whorled 

perianth, whorled androecium, whorled gynoecium. The difference between our analysis and 

previous studies was that our modeling explicitly allowed for the correlated evolution of several 

flower characters. 
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Introduction 

Hidden Markov models (HMMs) are important centerpieces in many biological applications 

(Eddy, 2004; Yang Lou, 2017). They provide a natural framework for comparative biologists, 

particularly for relaxing assumptions about homogeneous evolution through time and across taxa 

without vastly increasing the number of parameters (e.g., Felsenstein & Churchill, 1996; Galtier, 

2001; Penny, McComish, Charleston, & Hendy, 2001; Beaulieu, O’Meara, & Donoghue, 2013; 

Beaulieu & O’Meara, 2016). For instance, simple models of binary character evolution make 

sense for small, young clades, because a single set of transition rates seems like a reasonable 

assumption. However, homogeneous rates are unlikely to explain the evolution of the same 

character across a much larger and older clade in which transition rates may differ dramatically 

among subclades, perhaps due to correlations with traits that were not included in the model. 

This observation was the motivation for the development of the hidden rate model (HRM) of 

Beaulieu et al. (2013), which uses a hidden Markov approach to objectively locate regions of a 

phylogeny where hidden factors have either promoted or constrained the evolutionary process for 

a binary character. 

Within comparative biology, HMMs have been applied as both standalone models 

(Beaulieu et al., 2013) and in combination with other phylogenetic models (e.g., hidden state-

dependent speciation and extinction models, Beaulieu & O'Meara, 2016). Hidden Markov 

models can be used to address many problems in comparative biology (Siepel & Haussler, 2005) 

and their flexibility allows biologists to create models tailored to their specific hypotheses. 

However, previous implementations of HMMs for comparative methods have placed limitations 

on the number of observed and hidden states. For instance, the implementation of the HRM 

model of Beaulieu et al. (2013) is restricted only to the analysis of binary characters. There is no 
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mathematical basis for limiting the number of observed states or hidden states in an HMM, and 

such constraints necessitate a simplification of datasets and candidate models.  

Here we describe a new version of corHMM that implements n-state HMMs. This does 

not require new algorithms or a different likelihood function. Instead, we optimized and 

generalized existing code so users can create custom HMMs for any biological question of 

arbitrary complexity. We have also added a number of “quality of life” improvements that make 

corHMM much easier to use and interpret, including an implementation of stochastic character 

mapping (simmap; Bollback, 2006). Additionally, we demonstrate the effectiveness of HMMs to 

identify rate heterogeneity when it is present, and we outline the informational advantages of 

increasing the number of observed and hidden states in discrete character data sets. Finally, to 

demonstrate the importance of this generalization, we apply corHMM to reconstruct the 

phyllotaxy of the ancestral angiosperm flower.  

 

Methods 

Generalizing HMMs  

From a technical standpoint, hidden Markov models have a hierarchical structure that can be 

broken down into two components: a “state-dependent process” (Fig. 1a,b) and an unobserved 

“parameter process” (Fig. 1c)(Zucchini, MacDonald, & Langrock, 2017). In comparative 

biology, for characters that take on discrete states the standard “state-dependent process” is a 

continuous-time Markov chain with finite state-space (CTMC-FS). The benefit of a Markov 

model is its simplicity — to calculate the probabilities of observed discrete states at the tips of a 

phylogeny all that is required is a tree, a transition model describing transitions among a set of 

observed states, and frequencies at the root (O’Meara, 2012; Fig. 1a,b). The observed states 
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could be any discretized trait such as presence or absence of extrafloral nectaries (Marazzi et al., 

2012), woody or herbaceous growth habit (Beaulieu et al., 2013), or diet state across all animals 

(Román-Palacios, Scholl, & Wiens, 2019). However, a simple Markov process that assumes 

homogeneity through time and across taxa is often not adequate to capture the variation of real 

datasets (e.g. Beaulieu et al., 2013). Under an HMM, observations are generated by a given 

state-dependent process, which in turn depends on the state of the parameter process. In other 

words, the observed data are the product of several processes occurring in different parts of a 

phylogeny and the parameter process is way of linking them. It is initially unknown what the 

parameter process corresponds to biologically, hence the moniker “hidden” state. Nevertheless, 

the information for detecting hidden states comes from the differences in how the observed states 

change. As long as the transitions between observed states of different lineages are more 

adequately described by several Markov processes rather than a single process, there will be 

information to detect hidden states (see 3.1 Performance in Simulations). 

The likelihood of any HMM is obtained by maximizing the standard likelihood formula, 

𝐿 = 𝑃(𝐷|𝐐, 𝑇), for observing character states , 𝐷, across a set of extant taxa, given the 

continuous-time Markov model Q, and a fixed topology with a set of branch lengths (denoted by 

T). For a binary character, Q is a 2×2 transition matrix representing the transition rates, whose 

entries define transitions between the character states, 0 and 1. To form an HMM, we expand Q 

to accommodate both observed and hidden states. Formally, the HMM can be generalized to 

include any number of observed states (e.g., 0, 1, 2), and hidden states (e.g., A, B, C). Following 

Beaulieu and O'Meara (2016), the state space is defined as o being the index of the observed 

state, 𝑜 ∈ 0,1, … , 𝛼, and h as the index of the hidden state, ℎ ∈ 𝐴, 𝐵,… , 𝛽. Thus, a given model 

will have, in general, |𝑜| × |ℎ| states. In corHMM, the model Q is defined by amalgamating each 
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of the state-dependent processes and the parameter process specified in the model. For example, 

if we have state-dependent matrices, R,  

𝑹! = 7
− 1 2
1 − 3
2 3 −

; , 𝑹" =	7
− 5 0
4 − 7
0 6 −

;, 

that are related by a parameter-process P, 

𝑷 =	B− 9
8 −E = 	 B

− 𝑟#!→#"
𝑟#"→#! − E, 

where entries 𝑟#!→#"	and	𝑟#"→#! define transition rates between the state-dependent processes, 

we can extend Eq. 2 of Tarasov (2019) to amalgamate these processes, 

𝐐 = 𝐴(𝑹!, 𝑹", 𝑷) = 	

⎝

⎜⎜
⎛

− 1 2 9 0 0
1 − 3 0 9 0
2 3 − 0 0 9
8 0 0 − 5 0
0 8 0 4 − 7
0 0 8 0 6 −⎠

⎟⎟
⎞
.	 

This matrix can be understood as a block matrix where the diagonal blocks are the state-

dependent processes 𝑹! and 𝑹", and the off-diagonal blocks are the parameter process, P, that 

describe transitions between 𝑹! and 𝑹". It is important to note that although we amalgamate the 

matrices above, it is still possible for users to modify the transitions between hidden states. 

The general formulation of an HMM can easily be extended to examine the correlated 

evolution of multiple characters (Pagel, 1994). For example, consider a case of two binary 

characters where trait 1 defines the presence or absence of fleshiness of fruits, and trait 2 defines 

whether or not the fruits are animal-dispersed. At most there are four binary combinations of 

these characters (i.e., 00, 01, 10, and 11). But, it can also be coded as a single multistate 

character, where 1=dry fruits not dispersed by animals, 2=dry fruits dispersed by animals, 

3=fleshy fruits not dispersed by animals, and 4=fleshy fruits dispersed by animals. Therefore, 

transforming binary combinations to multistate characters also applies for two characters with a 
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different number of observed states. In other words, one character could be binary (e.g., dry vs. 

fleshy fruit) and the other could be multistate (e.g., fruits dispersed mechanically, by wind, or by 

animal).  

Simulation Study 

We conducted a set of simulations to address two broad goals. First we tested whether 

there is an informational advantage to increasing the number of observed states by comparing 

two-state, three-state, and four-state datasets. Our second goal was to test the ability of hidden 

Markov models to detect varying degrees of rate heterogeneity. We then linked these goals 

together by testing whether HMMs can recover some of the informational content of unobserved 

characters through the use of hidden states. These simulations are in no way exhaustive, but 

represent a set of reasonable questions that many beginning users might have about the behavior 

of HMMs. 

Increasing the number of observed characters or states  

To test the behavior of two-state, three-state, and four-state datasets we relied on ancestral state 

reconstruction (ASR) at nodes. ASR is a widely-utilized feature of corHMM, and it is important 

to know the accuracy of multistate ancestral reconstructions. Additionally, using ancestral states 

gives us a direct means to compare models with different datasets. A 250-tip phylogeny was 

simulated (birth rate set to 1 event Myr-1, and death rate of 0.5 events Myr-1) to be used as a fixed 

tree with a root age of 12.46 Myr and mean branch length of 0.89 Myr. Datasets were simulated 

using transition rates sampled from a truncated normal distribution (µ = 1, σ = 0.5), which were 

then scaled to have mean rates of 0.1, 1.0, or 10 transitions Myr-1 by dividing the rate matrix by 

the sum of the diagonal and then multiplying by the desired scalar. This resulted in a range of 

evolutionary rates where the expected number of transitions ranged from ~21, 210, or 2100 
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transitions across the entire tree depending on the mean rate. It should also be noted that 

although these rates are of interest in a theoretical setting, they may not be representative of most 

empirical settings where transition rates can be orders of magnitude lower than we are using (see 

3.2: Case study: reconstructing the ancestral angiosperm flower). For each transition model, 100 

datasets were simulated. The transition rates of each dataset were then estimated and their 

maximum likelihood estimates were used to infer marginal probabilities of each character state 

across the tree. This procedure was repeated 10 times.  

An underappreciated concern with evaluating models that differ in the number of 

observed states is that the probability of guessing the correct state without any additional 

information is simply 1/k states. This could, in theory, inflate the accuracy of datasets with fewer 

states even though the tip states themselves provide no information about the ancestral states 

when the rates are high (Schultz, Cocroft, & Churchill, 1996; Sober & Steel, 2011, 2014). To 

deal with this issue, we also calculated the mutual information, measured in bits, about ancestral 

states from each dataset and model (Cover & Thomas, 1991; Sober & Steel, 2011). Specifically, 

mutual information is a measure of how much ancestral state uncertainty is reduced by knowing 

the tip states (details of our derivation are given in Supplementary materials). The initial 

uncertainty, or unconditional entropy, is set by the model – given a model of evolution and no 

knowledge of the extant tips, how uncertain is the best guess of the ancestral states? The 

remaining uncertainty after ASR, or conditional entropy, is given by the combination of the 

model and the tip states – given the model of evolution and knowledge of the extant tips, how 

uncertain is the best guess of the ancestral states? It is important to note that information, just 

like ancestral state reconstruction, is highly correlated with the model of evolution, and thus any 

results related to information will take on the assumptions of the model.  
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We define information as the difference between the unconditional entropy of the node 

states, 𝐻(𝑋%), and the entropy of the node states conditioned on the data, 𝐻(𝑋%|𝑋& = 𝐷) (Cover 

& Thomas, 1991). The unconditional entropy of node 𝑣 is defined as:  

𝐻(𝑋%) = −T𝜋[𝑋% = 𝑖]𝑙𝑜𝑔"(𝜋[𝑋% = 𝑖])
'

()!

, 

where 𝜋[𝑋% = 𝑖] is the prior probability of a node taking a particular state. For the root, the prior 

depends on user choice, as there are several options (Yang, Kumar, & Nei, 1995; Pagel, 1999; 

FitzJohn, Maddison, & Otto, 2009). Here we assume the prior probability on the root node is the 

expected equilibrium frequency, 𝜋, which is calculated directly from the transition model by 

solving 𝜋𝑸 = 0. This aligns our expectation of the root node with all other internal nodes such 

that, in the absence of information from the tips, the probability of a particular state is assumed 

to be drawn from the equilibrium frequencies. In other words, the information of the tip states 

decreases as rates increase and, ultimately, the probability of a node state becomes completely 

determined by the model. We define the conditional entropy as: 

𝐻(𝑋%|𝑋& = 𝐷) = 	−T𝑃[𝑋% = 𝑖|𝑋& = 𝐷]𝑙𝑜𝑔"(𝑃[𝑋% = 𝑖	|𝑋& = 𝐷]),
'

()!

 

where 𝑃[𝑋% = 𝑖|𝑋& = 𝐷] is the conditional probability that a node is fixed as being in state 𝑖 

given the probability of observing the tip data (which is just the marginal probability of state i). 

In particular, we are interested in the average entropy of a node for all states	𝑖 … 𝑘, given we 

observe a particular dataset, 𝑋& = 𝐷. Thus, the conditional entropy will vary by node, but the 

unconditional entropy is set by the model.  To produce a measure of mutual information between 

the observations at the tips and estimates at internal nodes, we take the difference between the 

conditional entropy and the unconditional entropy and average across all nodes. However, the 
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unconditional entropies will be greater for datasets that include more states because 

unconditional entropy sets the upper limit of what is possible to learn. This alone could 

contribute to large informational differences between models with different numbers of observed 

states. Therefore, we also measure the proportion of maximum information gained 

( *+,+-.	(0123*-,(20
+04205(,(20-.	60,3278

× 100%). 

Evaluating hidden Markov models  

We evaluated the ability to detect rate heterogeneity by simulating data under an HMM. As 

outlined above (see 2.1 Generalizing HMMs), there are two major axes along which an HMM 

differs from standard Markov models. First, we varied the magnitude of the difference in the 

state-dependent process by simulating data under a model where there was: (1) no difference 

between the state-dependent processes (𝑹!=𝑹"), (2) a 2-fold difference in rates between the 

state-dependent processes (e.g. if 𝑹!’s mean rate was 1 Myr-1, 𝑹" mean rate would be 2 Myr-1), 

(3) a 10-fold difference between the state-dependent processes, and (4) a covarion-like trait 

model in which within 𝑹! all transitions occur freely, but for 𝑹" all transition rates are zero, and 

evolution is essentially “turned off” (Penny et al., 2001). For all simulation scenarios, we set the 

parameter-process to have equal transition rates between state-dependent processes. In addition 

to examining ancestral state reconstruction at nodes, we also used the new makeSimmap to 

assess how well the model captures the expected number of character changes within and among 

all branches in the tree. For each of the 150 datasets simulated above, we evaluated 100 simmaps 

per model by counting the number of transitions for a given simmap. 

Next, we tested the impact of the magnitude of the asymmetry in the underlying 

parameter-process. We simulated data where the state-dependent process always differed by 100-

fold, but for the underlying parameter-process there was: (1) no difference in transition rate 
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(𝑟#!→#"=𝑟#"→#!), (2) 1.5× faster transition rate to the slower rate class (𝑟#!→#">𝑟#"→#!), (3) 2× 

faster transition rate to the slower rate class, (4) 10× faster transition rate to the slower rate class. 

For each of the models described, we used simulated 500-tip phylogeny with a root age of 15.43 

Myr (birth rate set to 1 event Myr-1, and death rate of 0.7 events Myr-1).  

Finally, we examined how much information is available when we allow for hidden states 

to be observed at the tips. We used the same data generated from simulations examining state-

dependent differences, but this time we did not remove the hidden state. We then fit a Markov 

model to this full dataset and compared it to models in which the “second character” remained 

unobserved.  

Case study: reconstructing the ancestral angiosperm flower 

Understanding the origin of flowering plants is widely considered to be one of the most 

important goals of systematic botany. In a recent study, (Sauquet et al., 2017) compiled an 

extensive database of floral characteristics and attempted to reconstruct the morphology of the 

ancestral angiosperm flower. Sauquet et al. (2017) did not present a single answer for the 

ancestral state because there were several possible state combinations depending on the method 

used and uncertainty associated with each of those estimates. Nonetheless, their hypothetical 

diagram of the ancestral flower as having a whorled perianth, whorled androecium, and spiral 

gynoecium proved controversial. For example, Sokoloff, Remizowa, Bateman, & Rudall (2018) 

disputed this depiction of the ancestral phyllotaxy, suggesting that some of the characters were 

scored incorrectly and that it seemed improbable that state combinations that are rare in the data 

could be the ancestral state. Sokoloff et al. (2018) instead prefer the hypothesis that the ancestral 

flower was either entirely whorled or entirely spiraled. In response, Sauquet et al. (2018) 

rescored the disputed characters and reanalyzed the dataset using the same methods as the 
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original study. Their Bayesian analyses conformed to the predictions of Sokoloff et al. (2018), 

but remained highly uncertain overall.  A limitation of the original study was the fact that “no 

comparative method exists yet to account for the potential correlation of more than two discrete 

characters” (Sauquet et al., 2017, but see Beaulieu & Donoghue, 2013). Given that flowers are 

highly integrated structures with potentially several developmental constraints the correlation 

between states seems a necessary prerequisite to study their evolution (Sauquet et al., 2017, 

2018; Sokoloff et al., 2018).  Treating the phyllotaxy of the perianth, androecium, and 

gynoecium as independent represents a major assumption with potentially large consequences on 

the ancestral state reconstruction. Indeed, Sauquet et al. (2017) conducted several pairwise 

correlation analyses and found that the phyllotactic patterns of these focal characters were 

strongly correlated.  

Worked example and methods  

We limited ourselves to including only the characters related to the phyllotaxy of the perianth, 

androecium, and gynoecium. Although it is possible to include other characters, given the 

corresponding increase of parameter space, we suspect that we would not have the power to 

accurately infer the model and ancestral states (O’Meara et al., 2016). The dataset of Sauquet et 

al. (2018) has several polymorphic species as well as species for which some of the tip states are 

unknown. Therefore, we analyzed three separate datasets: (1) no uncertain taxa (n = 295), (2) 

polymorphic species included (n = 297), and (3) all taxa included (n = 780). We treated the 

phyllotaxy of the perianth, androecium, and gynoecium as either “whorled” or “spiral” and 

polymorphic species are coded to have both states. The choice of dataset has major implications 

for model performance because corHMM will exclude state combinations that are absent from 

the dataset. However, the inclusion of either polymorphic or unknown states for taxa will expand 
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state space and thus increase the number of parameters that need to be estimated. Finally, we use 

the C series phylogeny of Sauquet et al. (2017) in which Amborella is constrained as the sister to 

all remaining angiosperms and Monocotyledoneae, Ceratophyllaceae, and Eudicotyledoneae are 

constrained to form a monophyletic group.  

In our case, we have three data columns each with two observed states. Because this 

dataset contains two or more columns of trait information, each column is automatically 

interpreted as an evolving character. In these cases, corHMM will also automatically remove 

dual transitions from the model since that would constitute two or more evolutionary events 

(Pagel, 1994; Maddison, Midford, Otto, & Oakley, 2007). However, previous work has 

suggested that dual transitions are possible and likely in this system (Sauquet et al. 2018; 

Sokoloff et al. 2018).  Thus, we include both models in which dual transitions are allowed and 

disallowed. Our analysis without hidden states include three different model structures: 

model=”ER” (equal rates), model=”SYM” (symmetric rates), and model=”ARD” (all rates 

differ). The other options used (rate.cat=1 and nstarts=10) specify that no hidden states are to be 

used and that the maximum likelihood search will be performed 10 additional times with 

different initial parameters.  

We also include a set of analyses in which hidden states are present because it is likely that 

there are unobserved characters which influence the evolution of the angiosperm flower. We 

include four hidden state models: ER/ER, SYM/SYM, ARD/ARD, and ER/ARD. Each of these 

models allows for the possibility of rate heterogeneity through the inclusion of a hidden state, 

however the state-dependent processes differ. In the ER/ER model all changes between states 

occur at the same rate within a state-dependent process, but the magnitude of change can depend 

on the underlying parameter process. The SYM/SYM model specifies that there are equal rates of 
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reversible change among character states. The ARD/ARD model specifies that there could be a 

bias towards a particular state, but this state may differ depending on whether the lineage is in 𝑹! 

or 𝑹". Finally, ER/ARD is a hybrid model which includes aspects of the equal rates model and all 

rates differ model.  

 

Results 

Performance in Simulation  

Overall, the accuracy of an ancestral state reconstruction is predominately a function of the 

transition rates, but there are regions of parameter space where the number of states is influential 

(Fig. 2a). For example, all datasets generally inferred the correct ancestral state at low rates and 

datasets with more states performed better at intermediate rates. However, when viewed in terms 

of information, datasets that contained just two states showed detectable informational loss when 

compared to the three- and four-state datasets. In fact, across all scenarios — low, intermediate, 

and especially at the highest rates — datasets with more states consistently showed more 

informational gain relative to the maximum information content for a given number of states 

(Fig. 2b). We suspect this largely reflects the impacts of homoplasy when the number of 

character states are restricted in the model (Sanderson & Donoghue, 1989; Steel & Penny, 2005). 

This is not to say that more character states are always necessary for accurate ASR. Rather, we 

demonstrate that there are cases when additional characters or character states enhance the 

accuracy of an ancestral state reconstruction and those datasets have a signal of increased 

information. 
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Evaluating hidden Markov models 

The accuracy of ancestral state estimation, based solely on reconstructing character states at 

nodes, appears largely unaffected by the inclusion of hidden states regardless of differences in 

the state-dependent processes (Fig. 3a). However, the amount of information gained depends on 

both the use of an HMM and the presence of strong differences between the state-dependent 

processes (Fig. 3b). These seemingly contradictory results are a consequence of how we 

calculate information. Model uncertainty certainly comes from the increase in parameters of 

HMMs relative to standard Mk models and manifests in both increased model complexity and an 

increased number of potential ancestral states. The increase in possible ancestral states results in 

a higher unconditional entropy, which can actually lead to greater informational content even 

when the ancestral states are not known with as much certainty as a Mk model. However, as we 

show in section 3.1.1 increasing the number of observed states improved ancestral state 

reconstruction accuracy, despite a greater number of estimated parameters, and so this does not 

solely account for the greater ancestral state accuracy of a Mk over an HMM. We suspect it is 

also due to datasets fit under an HMM have added uncertainty applied to the tips because it is 

initially unknown which hidden state a particular taxon occupies. The greater uncertainty at the 

tips is likely the reason why we observe Mk models outperforming HMMs in ancestral state 

reconstruction, and the greater uncertainty of the model is likely why HMMs are able to extract 

more information from a given dataset.  

We found that when the generating model does not have state-dependent differences, the 

HMM does not pickup significant rate variation and resembles the character history implied by 

the standard Markov model (Fig. 4a-c). When there was no difference between the state-

dependent processes, 2.6% of datasets had an AICc difference greater than 2 in support of an 
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HMM over a Markov model. Whereas 100% of datasets supported an HMM when data was 

simulated under a covarion-like model. These findings suggest that HMMs are supported in 

datasets where rate heterogeneity is present and this can be seen qualitatively through simmap 

reconstructions (Fig. 4d-f). We found little effect of altering the transition rate bias of the 

parameter process on either ancestral state reconstruction or information content. 

Unsurprisingly, observing the “second character” states increased the amount of 

information (Fig. 5). However, as the state-dependent processes became more distinguishable, 

the informational gap between an HMM and including the observed second character decreased. 

In other words, when the evolution of an observed character changes across the phylogeny, an 

HMM is able to extract additional information from a dataset.  

Case study: reconstructing the ancestral angiosperm flower 

 Across all three datasets our best supported model was ER/ER, a two rate class model 

with both state-dependent processes being equal rates (Table 1; Table S1-S3). Because our 

modeling set included a wide range of complexity ranging from 1 estimated rate (ER) to 114 

estimated rates (ARD/ARD), we used AIC weights to calculate the model averaged ancestral 

states for datasets individually (Fig. 6). For all three datasets we find that an entirely whorled 

angiosperm flower is the most likely state. However, we found that the preferred ancestral state 

is highly variable and dependent on the model and the entirely whorled angiosperm flower is 

likely a reflection of the ER/ER model’s high AIC weight within the set of tested models (Table 

1; Table S1). For several of the models we found that the parameter estimates reached the upper 

limit of the transition rates allowed. This could be reflection of a lack of adequate data, too many 

unknown and polymorphic state combinations, and/or unrealistic models included in the set. 
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However, none of the transition rates estimated reached the upper limit for any of the best 

supported models.  

 

Discussion 

Hidden Markov models are an essential tool for inferring character states across phylogenies. 

The new version of corHMM, expands the array of potential uses of HMMs by increasing the 

number of possible character states and allowing users to construct custom models. In addition, 

we demonstrated the informational advantages of using hidden Markov models versus simple 

Markov models. Users interested in hypothesis-driven model construction are encouraged to read 

through the vignette associated with the corHMM package. This vignette fully describes how to 

use the package and includes several examples of how to take a biological hypothesis and codify 

it into an explicit HMM. 

Information theory has mainly been discussed in a theoretical context and rarely used in 

practice to understand empirical trait evolution (Mossel, 2003; Mossel & Peres, 2003; Townsend 

& Naylor, 2007; Sober & Steel, 2011, 2014; Gascuel & Steel, 2014). In this paper, we have 

introduced a measure for the amount of information that the tips provide the nodes during 

ancestral state reconstruction. Two important caveats of this measure of information. First, the 

data and model are taken as fixed. These are not uncommon assumptions in phylogenetic 

comparative methods. For example, if one is to interpret an ancestral state reconstruction it 

comes with the implicit assumption that the model accurately describes the evolution of the traits 

(Beaulieu & O’Meara, 2019). Second, mutual information, as we have defined it, only provides 

information relative to the specified model and specified tips. A model which is more uncertain 

about any ancestral state, such as an equal rates model, is likely to have a more informative 
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ancestral state reconstruction because any deviation from an uninformed ancestral state is due to 

the particular values of the tip states. This does not make the equal rates model better than 

alternatives nor do we advocate for the use of information to assist in model selection. Instead, 

mutual information provides insight into the interaction between the model and tip states. Higher 

information of particular nodes could be indicative of an area of the phylogeny where the 

model’s equilibrium frequencies were different from the ancestral state reconstruction and thus 

the tips provided the major explanation of the ancestral state. Mutual information is also highly 

correlated with the rates of evolution and has the intuitive property that as rates of evolution (or 

time) increase the information that the tips provide to the nodes decreases (Sober & Steel, 2011).  

It is important to have a biologically realistic model of trait evolution when conducting an 

ancestral state reconstruction. With the generalizations made to corHMM we have provided two 

distinct ways to increase the realism of phylogenetic comparative modeling. First, we have 

allowed for the correlated evolution of several characters and states. Whether traits are correlated 

because of underlying pleiotropy leading to genetic correlation (Conner et al., 2011) or selective 

covariance  (Mahler, Revell, Glor, & Losos, 2010), at the macroevolutionary scale they are better 

understood in a holistic context rather than independently evolving subunits. Second, the 

inclusion of hidden states allows for more detailed descriptions of the evolutionary process. 

State-dependent processes can differ in both rate and structure and thus provide a description of 

heterogeneity in the tempo and mode of evolution. However, these generalizations do not exist 

without cost. Increased complexity of models leads to greater parameterization which can lead to 

poor model performance (Grundler & Rabosky, 2020). Thus, as others recommend, we suggest 

having multiple working hypotheses (Chamberlin, 1890; Platt, 1964; Mayr, 1997; Burnham & 

Anderson, 2002). The generalizations and tools available in corHMM allow for the construction 
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of a carefully defined set of candidate models which can be compared in an information theoretic 

context. The Akaike Information Criterion (AIC) applies the principles of parsimony and 

represents a trade-off between bias and variance as a function of the dimension of the model 

(Forster & Sober, 1994). Combining AIC with a carefully constructed set of models leads to 

multi-model inference. Rather than focusing on a single best model, we can focus on the 

parameters from the set of our best supported models (Burnham & Anderson, 2002; Caetano, 

O’Meara, & Beaulieu, 2018). It is, therefore, just as important to include Mk models alongside 

HMMs because in cases where the increased parameterization of an HMM are unnecessary, 

alternative models with less parameterization are available as simpler explanations.  

We have demonstrated that there is a potential informational and accuracy advantage of 

including additional states and characters in a simulation setting (3.1.1 Increasing the number of 

observed characters or states). However, it remained to be seen whether modeling the correlated 

evolution of multiple characters would impact the ancestral state in an empirical example and 

whether those results match biological expectations. The controversy surrounding the phyllotaxy 

of the ancestral angiosperm flower is a particularly appropriate case study for the generalized 

version of corHMM, as it not only allows for the dependent evolution of several discrete 

characters but also includes hidden states as a fitting addition to help describe the heterogeneous 

evolution of angiosperms. We presented three different datasets, each allowing for a different 

level of polymorphism, uncertainty, and number of tip states. In our first dataset, we excluded all 

polymorphic species and any species with an unknown tip state. In this case, we found a two rate 

class ER/ER model was favored and the most likely ancestral state of the floral phyllotaxy was 

entirely whorled. This is in contrast to previous work which used a similarly constrained dataset 

and suggested either an ambiguous state (Maximum Parsimony result), an entirely spiral floral 
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phyllotaxy (Maximum Likelihood result), or a spiral perianth, whorled androecium, and spiral 

gynoecium (reversible jump Monte Carlo Markov Chain result) (Sauquet et al. 2018 - Appendix 

S2, V7Csub1).  

Previous work posed the question of whether we should dismiss ancestral state 

combinations not observed among living species (Sauquet et al. 2018). The first dataset we 

presented excluded any trait combinations not observed in the data. However, the other two 

datasets allow for an ancestral state combination that was never directly observed at the tips 

because these analyses include tips where the states are not completely known. In both cases, we 

found the hidden rates model ER/ER where dual transitions are allowed to be the best supported 

and the model averaged most likely ancestral state was an entirely whorled floral phyllotaxy. 

Thus, across all datasets we found that the ancestral state combination was one of the most 

common tip state combinations. However, this does not mean a combination of states unknown 

in any extant species is impossible. In fact, we find that the preferred ancestral state is highly 

variable and dependent on the model (Table 1; Table S1-S3) and the entirely whorled 

angiosperm flower is likely a reflection of the ER/ER model’s high AIC weight within the set of 

tested models. This means that should a more realistic model be introduced in the set we could 

find a very different answer and highlights the importance of having a set of biologically realistic 

models. 

 

Conclusion 

Although there is a growing consensus that phylogenies and their associated methods are being 

used in ways that exceed what they can infer (Losos 2011; Maddison and FitzJohn 2015; 

Rabosky and Goldberg 2015; Cooper et al. 2016), we have shown that there is still under-utilized 
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information in phylogenetic comparative datasets. First, HMMs extract signals of rate 

heterogeneity when it is present and equally important, do not falsely locate signals where they 

are absent. Second, increased trait depth adds new information and consistently improves 

ancestral state reconstruction estimates. Indeed, as datasets continue to grow, so will the 

analytical power that biologists have for testing complex models of evolution. Finally, the 

inclusion of correlated trait evolution and hidden states is relevant beyond theoretical 

considerations, and we have shown that these generalizations can change the results of an 

ancestral state reconstruction in empirical datasets. There is still a great deal of uncertainty in the 

reconstruction of the ancestral phyllotaxy of angiosperms, but by using AIC weighted marginal 

probabilities we have been able to take into account different biological explanations of floral 

evolution, eventually finding support an entirely whorled perianth, androecium, and gynoecium. 

Although hidden Markov models are not a perfect substitute for real observation of a hidden 

character, they make for a tractable and a biologically reasonable description of heterogeneity in 

the evolutionary process over long time scales. 
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Appendix 

Table 1 – Model rankings from the maximum-likelihood analysis of the ancestral angiosperm 
flower for dataset two (polymorphic species included and unknown states excluded). Models 
separated by a “/” indicate a hidden rates model and the split distinguishes between the two state-
dependent process (for example, ER/ARD, represents a hidden rate model where R1 is an equal 
rates model and R2 is an all rates differ model). Dual describe whether the model allowed for 
multi-state transitions (for example, if dual transitions were TRUE, then changing from entirely 
whorled phyllotaxy to entirely spiral phyllotaxy is allowed). AICc is the sample size corrected 
Aikaike Information Criterion. AICcWt is the relative likelihood of each model and is used in 
model averaging. Mean rate is the average transition rate for a particular model. ASR is the most 
likely ancestral state reconstruction for a particular model and its marginal probability. k rates is 
the number of independent rate parameters being estimated for a given model. 
 

Model Dual 
Transitions 

AICc AICcWt Mean Rate ASR k 
rates 

ER FALSE 208.44 <0.01 <0.001 (1,R1) 93% 1 
SYM FALSE 138.25 <0.01 16.67 (1,R1) 99% 12 
ARD FALSE 125.53 <0.01 13.56 (5,R1) 100% 24 

ER/ER FALSE 118.06 0.01 37.52 (1,R2) 63% 4 
SYM/SYM FALSE 147.3 <0.01 6.25 (1,R2) 93% 26 
ER/ARD FALSE 132.6 <0.01 4.72 (8,R2) 87% 27 

ARD/ARD FALSE 191.76 <0.01 13.58 (4,R1) 82% 50 
ER TRUE 115.2 0.06 <0.001 (1,R1) 97% 1 

SYM TRUE 193.77 <0.01 5.51 (5,R1) 100% 50 
ARD TRUE 212.59 <0.01 16.36 (5,R1) 100% 56 

ER/ER TRUE 109.72 0.93 <0.001 (1,R2) 91% 4 
SYM/SYM TRUE 383.59 <0.01 5.47 (8,R1) 92% 102 
ER/ARD TRUE 220.93 <0.01 3.13 (8,R2) 93% 59 

ARD/ARD TRUE 443.07 <0.01 10.76 (4,R1) 86% 114 
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Figure 1. A decomposed HMM containing 3 observed states and 2 hidden rate classes. R1 is one 
state-dependent process that describes transitions to and from observed states as being equal (a, 
d), whereas R2 is a state-dependent process that describes state 2 as a necessary intermediate (b, 
e). The parameter process that relates R1 and R2 and describes the transitions between R1 and 
R2 (c, f).  
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Figure 2. Performance of standard and hidden Markov models depending on the number of states 
in the dataset and mean rate. Each dataset was simulated under a mean rate of 0.1, 1, or 10 
transitions Myr-1, with 2, 3, or 4 observed states and no hidden states. a) The marginal probability 
of estimating the correct ancestral state. b) The proportion of information gained about ancestral 
states from each dataset and model. 

 

Figure 3. Comparison of fits from a Markov and HMM model when an HMM is the generating 
model. We vary the difference between state-dependent processes from no difference (1x) to 
complete asymmetry where state transitions occur in one state-dependent process only (i.e., 
“covarion” model; see Performance in simulation). a) The marginal probability of the correct 
ancestral state. b) The average amount of information (bits) for ancestral states from each dataset 
and model. c) The number of transitions averaged over 150 simmaps.  
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Figure 4. Stochastic maps demonstrating the effect of differences in the magnitude of two state-
dependent processes. The first row shows data is simulated where there were no differences in the 
state-dependent processes, where (a) is the true generating model, (b) is one example of the 
character history simulated under the MLE from standard Markov model, and (c) is one example 
of the character history simulated under the MLE of an HMM. The second row is the same, but 
with data simulated with a 10-fold difference between the state-dependent processes. A Markov 
model does not contain a distinction between the hidden classes A and B, thus it is displayed only 
in terms of the states 1A, 2A, and 3A. Comparing the HMM in (c) and (f) demonstrates that an 
HMM will only detect a hidden state when it influences the observed, state-dependent, process.  
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Figure 5. Average information when a hidden state is either directly observable or unobserved. 
If the hidden state is unobserved (Hidden States Absent), we compare the information gained 
when fitting a Markov model (Mk) or a hidden Markov model (HMM) to a dataset that was 
generated with a hidden state, but that hidden state was removed from the dataset. When the 
hidden state is directly observable (Hidden States Present) we fit a standard Mk to the full dataset 
that includes the potential hidden state. When the hidden state is directly observed, the datasets 
are comprised of 6 discrete states.   
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Figure 6. Model averaged ancestral state reconstructions of dataset two (polymorphic species are 
included, but species with unknown states are excluded). The marginal probability that the root 
state is entirely whorled is 91.7%.  
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Derivation of Mutual Information 
 

We define information as the difference between the unconditional entropy of the node 

states, 𝐻(𝑋%), and the entropy of the node states conditioned on the data, 𝐻(𝑋%|𝑋& = 𝐷) (Cover 

& Thomas, 1991). The unconditional entropy of node 𝑣 is defined as:  

𝐻(𝑋%) = −T𝜋[𝑋% = 𝑖]𝑙𝑜𝑔"(𝜋[𝑋% = 𝑖])
'

()!

, 

where 𝜋[𝑋% = 𝑖] is the prior probability of a node taking a particular state. For the root, the prior 

depends on user choice, as there are several options (Yang, Kumar, & Nei, 1995; Pagel, 1999; 

FitzJohn, Maddison, & Otto, 2009). Here we assume the prior probability on the root node is the 

expected equilibrium frequency, 𝜋, which is calculated directly from the transition model by 

solving 𝜋𝑸 = 0. This aligns our expectation of the root node with all other internal nodes such 

that, in the absence of information from the tips, the probability of a particular state is assumed 

to be drawn from the equilibrium frequencies. In other words, the information of the tip states 

decreases as rates increase and, ultimately, the probability of a node state becomes completely 

determined by the model. We define the conditional entropy as: 

𝐻(𝑋%|𝑋& = 𝐷) = 	−T𝑃[𝑋% = 𝑖|𝑋& = 𝐷]𝑙𝑜𝑔"(𝑃[𝑋% = 𝑖	|𝑋& = 𝐷]),
'

()!

 

where 𝑃[𝑋% = 𝑖|𝑋& = 𝐷] is the conditional probability that a node is fixed as being in state 𝑖 

given the probability of observing the tip data (which is just the marginal probability of state i). 

In particular, we are interested in the average entropy of a node for all states	𝑖 … 𝑘, given we 

observe a particular dataset, 𝑋& = 𝐷. Thus, the conditional entropy will vary by node, but the 

unconditional entropy is set by the model.  To produce a measure of mutual information between 

the observations at the tips and estimates at internal nodes, we take the difference between the 
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conditional entropy and the unconditional entropy and average across all nodes. However, the 

unconditional entropies will be greater for datasets that include more states because 

unconditional entropy sets the upper limit of what is possible to learn. This alone could 

contribute to large informational differences between models with different numbers of observed 

states. Therefore, we also measure the proportion of maximum information gained 

( *+,+-.	(0123*-,(20
+04205(,(20-.	60,3278

× 100%). 

 

Table S1 – Modeling results when all polymorphic and unknown taxa are removed. Note: When 
we say "unknown taxa" we mean that at least one of the states of that species is unknown. 

Model k.rate AICc AICcWt MeanRate ASR 
ER 1 99.95 0.04 <0.01 (1,R1) 98% 

SYM 6 100.59 0.03 <0.01 (1,R1) 98% 
ARD 12 98.82 0.07 <0.01 (3,R1) 100% 

ER/ER 4 93.71 0.86 <0.01 (1,R2) 91% 
SYM/SYM 14 104.06 <0.01 <0.01 (1,R2) 90% 
ER/ARD 15 104.48 <0.01 <0.01 (4,R2) 93% 

ARD/ARD 26 128.79 <0.01 <0.01 (3,R1) 99% 
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Table S2 – Modeling results when polymorphic are included and unknown taxa are removed.  
Model Dual 

Transitions 
AICc AICcWt MeanRate ASR (%) k.rate 

ER FALSE 208.44 <0.01 <0.01 (1,R1) 93 1 
SYM FALSE 138.25 <0.01 16.67 (1,R1) 99 12 
ARD FALSE 125.53 <0.01 13.56 (5,R1) 100 24 

ER/ER FALSE 118.06 0.01 37.52 (1,R2) 63 4 
SYM/SYM FALSE 147.3 <0.01 6.25 (1,R2) 93 26 
ER/ARD FALSE 132.6 <0.01 4.72 (8,R2) 87 27 

ARD/ARD FALSE 191.76 <0.01 13.58 (4,R1) 82 50 
ER TRUE 115.2 0.06 <0.01 (1,R1) 97 1 

SYM TRUE 193.77 <0.01 5.51 (5,R1) 100 50 
ARD TRUE 212.59 <0.01 16.36 (5,R1) 100 56 

ER/ER TRUE 109.72 0.93 <0.01 (1,R2) 91 4 
SYM/SYM TRUE 383.59 <0.01 5.47 (8,R1) 92 102 
ER/ARD TRUE 220.93 <0.01 3.13 (8,R2) 93 59 

ARD/ARD TRUE 443.07 <0.01 10.76 (4,R1) 86 114 
 
 
Table S3 – Modeling results when polymorphic are included and unknown taxa are included.  

Model k.rate AICc AICcWt MeanRate ASR 
No dual transitions 

ER 1 322.91 <0.01 <0.01 (1,R1) 93% 
SYM 12 248.08 <0.01 16.67 (1,R1) 99% 
ARD 24 231.28 0.01 15.56 (7,R1) 58% 

ER/ER 4 234.55 <0.01 37.73 (1,R2) 97% 
SYM/SYM 26 250.65 <0.01 12.45 (1,R2) 93% 
ER/ARD 27 237.47 <0.01 17.44 (7,R2) 55% 

ARD/ARD 50 282.92 <0.01 11.1 (8,R1) 82% 
Model k.rate AICc AICcWt MeanRate ASR 

Dual transitions 
ER 1 228.27 0.04 <0.01 (1,R1) 97% 

SYM 50 287.89 <0.01 17.4 (5,R1) 99% 
ARD 56 302.98 <0.01 20.36 (7,R1) 97% 

ER/ER 4 221.73 0.95 <0.01 (1,R2) 93% 
SYM/SYM 102 410.48 <0.01 4.98 (8,R2) 88% 
ER/ARD 59 309.76 <0.01 11.71 (2,R1) 90% 

ARD/ARD 114 445.36 <0.01 5.99 (8,R1) 76% 
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CHAPTER II 

A potential solution to the unresolved challenge of false correlation between discrete 

characters 

James Boyko and Jeremy Beaulieu 

 

Abstract 

The correlation between two characters is often interpreted as evidence that there exists a 

significant and biologically important relationship between them. However, Maddison and 

FitzJohn (2015) recently pointed out that in certain situations find evidence of correlated 

evolution between two categorical characters is often spurious, particularly, when the dependent 

relationship stems from a single replicate deep in time. Here we will show that there may, in fact, 

be a statistical solution to the problem posed by Maddison and FitzJohn (2015) naturally 

embedded within the expanded model space afforded by the hidden Markov model (HMM) 

framework. We demonstrate that the problem of single unreplicated evolutionary events 

manifests itself as rate heterogeneity within our models and that this is the source of the false 

correlation. Therefore, we argue that this problem is better understood as model misspecification 

rather than a failure of comparative methods to account for phylogenetic pseudoreplication. We 

utilize HMMs to develop a multi-rate independent model which, when implemented, drastically 

reduces support for correlation. The problem itself extends beyond categorical character 

evolution, but we believe that the practical solution presented here may lend itself to future 

extensions in other areas of comparative biology.  
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Introduction 

Correlated or dependent evolution on a macroevolutionary scale is defined as a change in a 

character state (e.g., plumage color) that is linked to the presence of a particular state in a 

separate character (e.g., beak color). In other words, the evolution of character X can be said to 

be dependent on character Y if in the presence of a particular state of Y (e.g., Y0), shifts within 

character X occur in a different way from when the lineage is in an alternative state of Y (e.g., 

Y1). For example, a shift from X0 to X1 may occur more quickly when paired with Y1 than with Y0 

resulting in a distribution with many character pairs X1Y1. It is often the case that these sorts of 

dependent relationships between characters seem obvious, especially if the observations of many 

individuals are consistent.  

However, what happens when all observations of the pair come from, for example, one 

biogeographic region? In other words, there may have been many individual pairs of X1Y1 

observed, but they all came from one population. Since the strength of the relationship is related 

to the number of individual observations, the non-independence of them raises concerns about 

the validity of the proposed correlation. This problem extends to interspecific comparisons too, 

but rather than observations being linked to one of two populations, they are associated with 

particular taxonomic groupings and shared histories. This fact was well understood as early as 

Darwin (1859) and the tools for dealing with the resulting statistical non-independence have 

been available to comparative biologists since the foundational work of Felsenstein (1985). 

Nevertheless, this issue of “phylogenetic pseudoreplication”, where species are non-independent 

due to their shared ancestry, served as the basis for the concerns raised by Maddison and 

FitzJohn (2015) regarding tests of dependent character evolution. 
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Maddison and FitzJohn (2015) demonstrated that the most widely used phylogenetic 

method for detecting correlated evolution between categorical characters (Pagel 1994), almost 

always indicates strong evidence of correlation when singular events deep in time can account 

for the co-distribution of two characters. To demonstrate their point, they fit correlated models to 

datasets generated under their so-called, “Darwin's” and the “Unreplicated Burst” scenarios (Fig. 

1). Darwin’s scenario results in the perfect co-distribution of two characters, which in practice, 

might occur when testing for correlations between two synapomorphies (e.g., presence/absence 

of middle ear bones and fur). Under the Unreplicated Burst scenario, only one of the two 

characters has phylogenetically replicated change. This scenario occurs when one of the 

characters is a synapomorphy for the clade, with the other character undergoing several changes 

within the focal clade. The issue is that, when applied to either Darwin’s or the Unreplicated 

Burst scenario, commonly used comparative methods (Pagel 1994) will almost always indicate 

strong evidence of correlation despite the dependent relationship arising from little more than a 

single event deep in time. 

There is considerable interest in understanding and, ultimately, finding a resolution to the 

problem posed by Maddison and FitzJohn (2015). Recently, Uyeda et al. (2018) suggested that 

for Darwin’s scenario, the relatively long periods of stasis between the two characters (i.e., 

minimal trait change) is the primary cause for their significant dependent relationship. In fact, 

they showed that the probability of selecting a character-dependent model (i.e., a model of 

correlated evolution between the two characters) over a character-independent model (i.e., a 

model where the two characters are explicitly not correlated) was proportional to the ratio 

between the length of the branch where the shift occurred and the total length of the tree. The 

nature of this ratio ensured that a correlated model would always be supported in cases where 
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singular evolutionary events led to a co-distribution of characters. Another study, by Gardner and 

Organ (2021), tested a variety of correlated models beyond Markov models and examined the 

structure of datasets which are susceptible to the problem of false dependence. They found that 

all the tested comparative methods produced erroneous correlations when datasets were 

phylogenetically pseudoreplicated. 

In both of these studies, the authors have addressed the problem by encouraging scientists 

to think critically about their models. While this recommendation is certainly admirable and 

correct, it is not a direct and satisfying solution to the statistical problems presented so far, as no 

amount of methodological vigilance will ever prevent analyses from being marred by 

phylogenetic pseudoreplication. However, prior analyses have limited model comparisons to 

only a few models, and have overlooked the very large set of alternative Markov models which 

can also be consistent with correlation or independence depending on the model’s structure. 

These alternative models have been briefly discussed previously (Pagel 1994; Pagel and Meade 

2006) and, as we will show, the inclusion of a few examples within the model set can play a 

crucial role in ensuring a fair test of correlation. These underrepresented models, in addition to 

enormous model space provided by hidden Markov models (HMMs) for addressing rate 

heterogeneity across the tree (Beaulieu et al. 2013; Boyko and Beaulieu 2021), form the basis of 

our putative statistical solution to the problem posed by Maddison and FitzJohn (2015). We 

acknowledge that the problem itself extends beyond categorical character evolution, but we 

believe that the practical solution presented here may lend itself to future extensions in other 

areas.  

We draw on two important insights as they relate to models of categorical character 

evolution. The first is that model space is severely underexplored and that the inclusion of more 
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complex, character-independent models within our modeling set helps reduce evidence of false 

correlation. We note that estimates of transition rates to and from unobserved character states are 

not statistically identifiable, revealing that the canonical character-dependent model is over-

parameterizationed in phylogenetically pseudoreplicated datasets like Darwin’s scenario (Fig. 

1a). When only two or three of the four possible character state combinations are observed, we 

produce models nested within the correlated and independent model that are overwhelmingly 

favored over both. Second, the issue of false dependent relationships is not one of stasis per se, 

but rather, a failure to account for rate heterogeneity. We demonstrate that an explicit character-

independent hidden Markov model (HMM) provides significant evidence for models of 

independent evolution in cases where a correlated model would have previously been supported. 

This is because under the classic Pagel (1994) framework, support for correlation comes from 

both a dependent relationship between characters and a strong signal of rate heterogeneity. By 

amending the Pagel framework with a model which allows for rate heterogeneity independent of 

a focal character, we correct the bias towards correlation. We also reiterate that the relative 

support of each model should be considered when interpreting biologically sound results rather 

than examining tests of character dependence against “trivial” nulls (Beaulieu and O’Meara 

2016; Caetano et al. 2018; O’Meara and Beaulieu 2021). 

 

Methods and Results 

Correlated models depend on observations of intermediate states 

While much has been written about the specifics of Pagel’s model, we briefly review aspects of 

it in order to better illustrate our point — namely, that certain transition rates are not estimatable 

and that their inclusion may be an additional cause of false correlations uncovered by Maddison 
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and FitzJohn (2015). The correlated or dependent model of discrete character evolution, 

introduced by Pagel (1994), uses a continuous-time Markov process to estimate the rate of 

transitions between character states (Fig. 2ab). With a single binary character, X, the transition 

rate matrix, denoted as Q, is a simple 2x2 matrix, which contains all the information necessary to 

estimate the probability of a transition occurring between two states of character X over a given 

period of time. At its most complex, Q would contain two transition rates: from state X0 to state 

X1, and from state X1 to state X0. If we introduce a second binary character, Y, the number of 

possible observed state combinations is expanded — that is, the possible observed state 

combinations become X0Y0, X0Y1, X1Y0, and X1Y1. Consequently, this requires an expansion of Q 

to a 4x4 matrix, to account for all the possible transitions between state combinations. This 

model is considerably more complex, as the number of transitions goes from a maximum of two 

to a maximum of 12. However, the model introduced by Pagel (1994) is constrained specifically 

for the purpose of detecting correlations between characters by examining whether the state of 

one variable affects the probability of change in the other. To do this, dual transitions (i.e., 

changes in both X and Y occurring in a single time step) are removed. As noted by Pagel (1994), 

setting dual transition rates to zero does not rule out dual transitions over long periods of time. 

Rather, a dual transition from X0Y0 must first pass through state X0Y1 or X1Y0, before finally 

transitioning to X1Y1. Equating the rates of transitions between particular pathways allows for the 

construction and testing of an independent model (Pagel and Meade 2006). A model of 

independent evolution is nested within the correlated model but assumes that the transition rates 

between states of a character are equal to one another regardless of the state of the other 

character (e.g., [X0 to X1 | Y0] = [X0 to X1 | Y1]; Fig. 2ab). In other words, if these two characters, 
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X and Y, are independent, the presence of one character will have no influence on the change of 

the other and thus model selection criteria should choose the simpler model.  

Using this specific nested framework, we were able to replicate the results of Maddison 

and Fitzjohn (2015). Specifically, we generated 100 datasets for Darwin’s scenario and the 

Unreplicated Bursts scenario. Phylogenies were simulated under a λ=1 and μ=0.5 until 100 

extant taxa were reached, and each resulting tree was then evaluated for a focal monophyletic 

group between 40 and 60 taxa. For Darwin’s scenario, extant species within the focal clade were 

assigned X1Y1 and species outside the clade were assigned X0Y0. We simulated Unreplicated 

Bursts by assigning all species outside the focal clade X0, and all species within the clade X1. 

Next, character Y was simulated at a rate of 100 transitions per million years. Outside of the focal 

clade, species were assigned Y0 whereas within the focal clade, the simulated data resulted in 

both Y0 and Y1. We used corHMM (Beaulieu et al. 2013; Boyko and Beaulieu 2021) to fit and 

compare the four-state independent model (Fig. 2a) against the four-state correlated model (Fig. 

2b) using Akaike Information Criterion (AIC). In all cases, we found overwhelming support for 

the correlated model for both Unreplicated Bursts and Darwin's scenario datasets (See 

Supplemental Materials). The mean AIC weight for the correlated model under Darwin’s 

scenario was 92.52% and under Unreplicated Bursts it was 99.96%. As expected, an independent 

model was never favored over a correlated model in either scenario. 

For Darwin’s scenario, setting aside the critical analytical issues regarding phylogenetic 

pseudoreplication, we had additional concerns with the structure of the data and how this might 

impact estimates of transition rates. Under any continuous-time Markov process, the estimates of 

the transition rates among all possible character combinations are reflective of the observed state 

frequencies and distribution at the tips. But, what if two of the four character combinations are 
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not observed at all? Here we are referring to the two combinations, X0Y1 and X1Y0, not observed 

in any of the tips under Darwin's scenario. There may be biological reasons for not observing 

intermediate state combinations. For example, these combinations may be at some selective 

disadvantage, resulting in rapid transitions to another, more viable character combination (e.g., 

X0Y0 or X1Y1). Alternatively, it could be that one or both combinations are never possible due to 

some underlying genetic or developmental reasons (e.g., certain fruit character combinations, see 

Beaulieu and Donoghue 2013). However, whatever biological meaning is attributed to the lack 

of intermediate character state observations, in this case, is beside the point. There seems to be 

obvious, and yet unrecognized, identifiability issues with including transitions to and from these 

unobserved state combinations in the model, calling into question fitting the correlated model to 

these types of data. That is to say, if we never see intermediate state combinations at the tips, 

how can the model ever favor one pathway over the other? 

To illustrate this point, we examined the likelihood surface of one of the datasets 

simulated under Darwin's scenario and fit under Pagel's correlated model (Fig. 3). Whether 

starting from X0Y0 or X1Y1, transition rate estimates to either of the unobserved character 

combinations fall along a ridge of equal likelihood, where changing the rate of transition to one 

unobserved state determines the rate for the transitions to the other unobserved state. When a 

lineage transitions into one of the states, the likelihood surface for transitions out of these states 

to either state X0Y0 or X1Y1 are completely flat, with all rates ranging from 0.1 to 100 transitions 

per unit time all having nearly identical likelihoods. Taken together, the preferred model 

estimates for various transition rates arise simply by chance of the optimization procedure, but 

more importantly, there are parameters which are clearly unneeded to explain the data.  
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One obvious solution is to simply remove the unobserved character combinations from 

the model completely. From a modeling perspective, removing unobserved states removes the  

parameters that fall along the likelihood ridge and should lead to a model that ends up being well 

estimated. Consequently, the question of whether independent or dependent models better 

explain the data becomes irrelevant as the two models collapse into one another when 

unobserved states are removed (Fig. 2c,d). This is clearly seen when the collapsed model is 

applied to an Unreplicated Burst scenario. Whether one starts with an independent model (Fig. 

2a) or a correlated model (Fig. 2b), once unobserved states are removed, comparing alternative 

transition pathways between X0Y0 and X1Y1 are no longer possible. For example, take transitions 

between states of character X. Both the correlated and independent models estimate transitions 

from X0 to X1 as depending only on Y0, since X0Y1 is not observed in the dataset. Since it is not 

possible to compare the likelihood of alternative scenarios of dependence a comparison of 

correlation and independence becomes irrelevant.  

Including a collapsed model as part of our model set drastically changes the results. We 

found complete support for a collapsed state model for both Darwin’s scenario and Unreplicated 

Bursts (see Supplemental Materials). The average AIC weight for the collapsed model is 99.7% 

under Darwin’s scenario and 100.0% under an Unreplicated burst scenario. This suggests that the 

support for the correlated models over simpler independent models is a result of an intuitive, but 

necessary parameter constraint. Specifically, in an independent model, transitions between 

observed states are constrained to be identical to transitions between unobserved states (e.g., 

X0Y0 to X0Y1 must be identical to X0Y1 to X1Y1, even if X0Y1 is never observed). In contrast, the 

correlated model is not subject to these constraints. This is, of course, the important distinction 

between the two models and what allows us to test for correlated evolution. In this case, the 
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support for dependence occurs because, in a sense, the correlated model is free to “throw away” 

the inestimatable transition rates which describe movement to and from intermediate states, 

while the independent model is forced to evaluate them. However, this issue becomes moot when 

exclusively modeling observed state combinations because the dependent and independent 

models become equivalent descriptions of the evolutionary process and are, therefore, 

indistinguishable for the given data.  

Rate heterogeneity is necessary when testing for correlation between categorical variables 

A major issue for the collapsed model described above is that in Darwin’s scenario, a single 

observation of X0Y1 and X1Y0 removes the possibility of collapsing the model structure. This 

suggests that modeling only observed state combinations is not a generalizable solution to the 

phylogenetic pseudoreplication of categorical characters. As we will show, with only a single 

observation of intermediate character combinations, support for the correlated model over an 

independent model remains substantial. Even so, the results above highlight information 

limitations and that the strong evidence for dependent models may be due to a lack of viable 

alternative independent models rather than being irrefutable evidence of correlation.  

It is worth considering again the possible explanations of the data under Darwin’s 

scenario. One possibility is that the characters X and Y evolve slowly and that their co-

distribution is the result of two independent events deep in time. The probability of this scenario 

has been explored in-depth and its implausibility is a major contributor to the recurrent issues of 

false correlation when comparing dependent and independent models (Uyeda et al. 2018). We 

propose a complementary explanation for the correlated model’s support: the independent model 

structure fixes the transition X0 to X1 to always be the same rate in the context of the state of Y 

(Fig. 2a), whereas a dependent model structure allows transitions from X0 to X1 to vary 
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depending on the state of Y (Fig. 2b). Support for the correlated model, therefore, comes from the 

fact that the best explanation of the data is not one that has a single slow transition rate for the 

characters. Instead, the most likely description of the process is one in which transitions between 

X0 and X1 or Y0 and Y1 are allowed to occur rapidly within the focal clade and occur slowly 

outside of the focal clade. The relative stasis of X0 outside the focal clade and the rapid 

accumulation of X1 within the clade suggests that changes in X are not consistent throughout the 

tree. 

Hidden Markov models (HMMs) are a natural way to deal with this kind of rate 

heterogeneity across the tree. The underlying mathematical framework of an HMM is no 

different than a typical Markov model. They utilize a rate matrix, Q, to estimate the probabilities 

of transitioning between discrete states and arrive at the likelihood of the model given the 

observed dataset (Felsenstein and Churchill 1996). However, HMMs introduce a so-called 

“hidden-state”, which can represent any number of unobserved factors, biological or otherwise. 

Based on the presence or absence of this hidden-state, changes between observed states are 

allowed to vary. In the most extreme cases, the absence of the hidden state may halt the 

evolutionary process and result in periods of stasis. For example, Marazzi et al. (2012) 

conceptualized the hidden-state as a “precursor” trait and only in its presence could extrafloral 

nectaries (EFNs) emerge. It is important to emphasize that the precursor state was never directly 

observed and that the information for its presence or absence of the hidden state came from the 

rate heterogeneity of EFNs transitions. In some parts of the tree, the model EFNs emerged 

rapidly and in others there were periods of stasis. Of course, HMMs are more general than either 

halting or actuating the evolutionary process and are used to quantify rate heterogeneity without 

the necessity of stasis (e.g., comparing fast, slow, or intermediate rates as in Beaulieu et al. 
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2013). The key point here is that they allow for rate heterogeneity that is unlinked to another 

observed character. 

We developed and tested a hidden Markov independent model (HMIM) which accounts 

for rate heterogeneity while maintaining the independence of the observed focal characters X and 

Y (Fig. 4). In our view, the inclusion of our model within the evaluated set better levels the 

playing field between correlated and independent models. For example, if we focus on character 

X, our proposed model utilizes hidden states to vary transition rates between X0 and X1 based on 

an unobserved character. This is similar to the way that the correlated model allows transition 

rates between X0 and X1 to differ based on the observed state of Y. If the cause of false 

correlation was, as we suspect, not accounting for rate heterogeneity, then both the hidden state 

independent and correlated model should be preferable to the simple independent model and 

evidence of correlation between X and Y should be greatly reduced.  

We first removed the possibility of collapsing the Markov model by modifying Darwin’s 

scenario. We defined the focal clade as being the monophyletic group where all observations of 

X1Y1 occur and randomly add the intermediate state observations of X0Y1 and X1Y0 within the 

focal clade (which refer to as “inside” hereafter), outside of the focal clade (which we refer to as 

“outside” hereafter), and both within and outside the focal clade (which refer to as “both” 

hereafter) (Fig. 5). Next, we verified that this modified Darwin’s scenario still suffers from the 

problems of the original Darwin’s scenario by comparing the independent and correlated models 

sensu Pagel (1994). We then added the hidden Markov independent model to the model set and 

evaluated two questions: (1) when comparing independent models to one another, is there 

evidence of rate heterogeneity? and (2) is support for the correlated model reduced when 

compared to an independent model with rate heterogeneity? In addition to AIC weight, we 
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utilized evidence ratios (ER) to explore the relative likelihood of our models. Evidence ratios are 

a simple extension of AIC weights, but as a means of evaluation, are important here since they 

allow us to focus on evaluating the relative evidence of pairs of models irrespective of other 

models in the set (Burnham and Anderson 2002). The evidence for model i over model j is the 

ratio between their AIC weights: ER = wi /wj and it can help quantify whether the best model in 

our comparison is convincingly best. With alternative samples, a convincingly best model is 

likely to be chosen again sample to sample. However, if evidence for a model is low, we expect 

model selection uncertainty to be high. Following Burnham and Anderson (2002), an evidence 

ratio of greater than 2.7 is used as a guide to justify judging support for one model being better 

than another. This also neatly corresponds to a ΔAIC = 2. We emphasize that this value should 

not be misconstrued as a significant test in a frequentist sense since we are not evaluating the 

probability of rejecting a null hypothesis.  

For all modified Darwin’s scenarios, we found substantial evidence (ER > 2.7) for a 

correlated model over a single rate class independent model (Fig. 5). The geometric mean 

evidence ratio for the correlated model over the single rate independent model was ERoutside= 

59.51, ERinside= 78.16, ERboth= 11.44 (Fig. 5), thus we, again, successfully recreated the 

conditions of Maddison and FitzJohn (2015) under a modified Darwin’s scenario. Next, we 

examined the evidence for rate heterogeneity by comparing a single rate independent model to 

the hidden Markov independent model. We found substantial evidence for rate heterogeneity 

across all scenarios, with all mean evidence ratios of the HMIM over the standard independent 

model well over 20, indicating substantial support for rate heterogeneity (ERoutside= 24.45, 

ERinside= 24.33, ERboth= 50.45). Finally, we tested whether there is still conclusive evidence of 

correlation between characters if we include the hidden state independent model within our 
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modeling set. We found that the evidence for a correlated model over the hidden Markov 

independent model was greatly reduced when compared to the single rate class independent 

model (Fig. 5; ERoutside= 2.43, ERinside= 3.21, ERboth= 0.22; Fig. 5). In fact, with only two 

observations of each intermediate state combination (X0Y1 and X1Y0), support for the hidden 

Markov independent model over the correlated model was substantial (evidence for HMIM over 

a correlated model: ERboth= 4.41). Taken together, these findings suggest that 1) there is indeed 

substantial evidence of rate heterogeneity, and that this is causing the signal of false correlation; 

and 2) including a hidden Markov independent model can, at least, muddle evidence for 

correlation. 

A (potentially) complete solution to biased correlation between synapomorphies 

It was still concerning to us that for the original and two of the modified Darwin’s scenarios 

(specifically the “outside” and “inside” sets; see Fig. 5), support for the correlated model was 

still often greater than the hidden state independent model. Although the addition of character 

independent rate heterogeneity muddles support for the correlated model, in the most extreme 

cases the best model remained the dependent model. To deal with this issue, we applied what we 

learned thus far, with regards to the over-parameterization of models and the necessity of rate 

heterogeneity and added a new set of simpler and nested models within the set presented thus far 

to specifically address the issues of Darwin’s scenario.  

It is critical to emphasize that model space has been underexplored and that there are 

many nested model structures that are consistent with either independence or correlation 

depending on their constraints (see also Pagel and Meade 2006). Here we describe two 

constrained versions of the independent and correlated models that achieve the most efficient 

description of the data. One simplified version of the correlated model suggests that when either 
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character X or Y is in state 0, rates of change are slower or faster than when either character is in 

state 1 (Fig. 6b). We refer to this as the “simplified correlated” model and it represents the 

simplest way to model a dependent relationship between two binary characters. Next, we created 

a “simplified independent” model of equal parameterization to the simplified correlated model, 

which equates all changes from 0 to 1 regardless of the character and the same is done for 

changes from 1 to 0 (Pagel and Meade 2006; Fig. 6a).  

The structures of these simplified models have certain qualities that may make them apt 

descriptions of data like Darwin’s scenario. Primarily, these models suggest that changes 

between states 0 and 1 do not necessarily depend on the specific identity of character X or Y 

since they are constrained to be equal. When we consider the redundancy of a dataset composed 

of two synapomorphies, it is obvious that there is little to no information that distinguishes the 

two characters– that is, it makes no difference whether one analyzes character X or character Y 

since their distributions are identical. The simplified models make that assumption explicit. It is 

also important to note that the simplified independent model and simplified correlated model 

maintain independence and dependence sensu Pagel (1994). The background state of the 

unchanging character does not influence changes in the case of the simplified independent 

model, whereas the background state of the unchanging character will influence rates of change 

in the case of the simplified dependent model (Pagel and Meade 2006). Finally, we can introduce 

rate heterogeneity by modeling the simplified independent and correlated models as two rate 

class hidden Markov models (Fig. 6c).  

Returning to the modified Darwin’s scenario datasets, we found consistent and 

overwhelming support for the simplified hidden Markov independent model across all scenarios 

(Table 1). The average AIC weight of the simplified HMIM when fit to modified Darwin’s 
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scenarios are woutisde= 89.6%, winside= 90.2%, and wboth= 93.5%. The set of models applied to this 

data included all models discussed thus far as well as more complicated versions of those 

previously described (such as a standard correlated model with multiple rate classes). 

Additionally, to ensure that these models are not biased towards being favored across all 

datasets, we simulated data under a simplified correlated, simplified independent, and simplified 

hidden Markov independent models. We then fit each model to these datasets and found that the 

generating model is consistently chosen as the best fitting model (see Supplemental Materials). 

In summary, our findings suggest that when a complete model set is considered, the bias towards 

a correlation noted by Maddison and Fitzjohn (2015) disappears. The model which best describes 

data under a strict Darwin’s scenario is not one of correlation, but a simplified independent 

model with character independent rate heterogeneity.  

Broadly applicable solutions 

The issue discussed herein is recognized as being broadly applicable to several comparative 

methods that test for associations between variables (FitzJohn 2010; Rabosky and Goldberg 

2015; Uyeda et al. 2018; Nakov et al. 2019; Gardner and Organ 2021). It is concerning that such 

a significant issue has seemingly gone unresolved for so long given comparative methods are of 

critical importance for understanding macroevolutionary patterns. However, in our view, the 

prevalence of the problems identified over the past few years is due to a singular overarching 

cause, namely, model misspecification, which occurs when a model, or set of models, is 

incomplete. Within the context of their model sets, authors of previous studies have correctly 

portrayed and analyzed the correlation bias of modeling dependence between discrete characters 

(Maddison and FitzJohn 2015; Uyeda et al. 2018; Gardner and Organ 2021). However, the 

danger of model misspecification is that the inferences drawn from an incomplete set are highly 
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susceptible to unforeseen biases – a fact will hold true in both theoretical and empirical contexts. 

Here, we are arguing that the model set is incomplete without the inclusion of models that allow 

for rate heterogeneity that is independent of the focal characters. The canonical character 

independent model of Pagel (1994) has no way to account for multiple rates of evolution, 

whereas support for a correlated model can come from both evidence of correlation and evidence 

of rate heterogeneity. The additional support from explaining rate heterogeneity is not a feature 

exclusive to correlated characters, and thus accounting for independent rate heterogeneity is 

necessary to resolve the model set misspecification. This misspecified model set has led to 

consistently biased evidence towards correlation, and it is the same issue addressed by the 

inclusion of the character independent models within state-dependent speciation extinction 

models (Beaulieu and O’Meara 2016). In that case, the biased association was between 

diversification rates and phenotype (Rabosky and Goldberg 2015), but the cause is the same. 

Models in which there are no differences in diversification are compared to models which tested 

for the presence of a correlation between character and diversification rate (which necessarily 

allow for multiple rates of diversification). 

One difference between the problem of false correlation in SSE models and the problems 

within simpler Markov models is the narrative surrounding them. In the case of SSE models, the 

problem was viewed as a high false positive rate (Rabosky and Goldberg 2015), whereas in the 

case of discrete character evolution we are led towards viewing rate heterogeneity through the 

lens of single unreplicated evolutionary events (Maddison and FitzJohn 2015). However, both 

points contribute to the same problem and if we view single evolutionary events as examples of 

where evolution has changed in tempo or mode, then the inclusion of hidden Markov models as a 

solution arises naturally from the problem. 
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Since we as comparative biologists are involved in a historical science, we will inevitably 

encounter single evolutionary events of large importance. However, it must be recognized that 

datasets which are susceptible to biases from singular events are not amenable to most 

phylogenetic comparative tests. Although here we have resolved the statistical biases associated 

with false correlations, there is no amount of methodological massaging that will allow for a 

satisfying test of macroevolutionary correlation between two synapomorphies. This is because 

comparative methods rely on several independent replicates of correlation such that the 

associations found between the variables may be considered robust even when extended beyond 

the dataset used for the analysis. If there is only one example of the correlation arising in the 

entire dataset, we should not have confidence in extending our inferences beyond the clade and 

should be wary of the correlation even within the focal clade. However, that is not to say there is 

no mechanistic reason for an association between synapomorphies. It is entirely possible that two 

characters which share identical evolutionary histories have an underlying biological link. 

Nonetheless, conclusions about the potential links between these characters cannot come from 

studies conducted at a macroevolutionary scale, and they should instead be investigated at a 

smaller scale (Beaulieu and O’Meara 2018, 2019; Donoghue and Edwards 2019). Additional 

lines of evidence and a more mechanistic explanation will be necessary in order for a conclusion 

of correlation to be satisfying (Gardner and Organ 2021). In a sense, the hidden rate classes of 

our proposed framework may represent lineage-specific factors that, once present, readily allow 

for a shift in the tempo and mode of a lineage's evolution (Maddison and FitzJohn 2015; Ogburn 

and Edwards 2015).  

A broader methodological conclusion that can be drawn from our results, which have 

been echoed elsewhere (Beaulieu and O’Meara 2016; Caetano et al. 2018; O’Meara and 
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Beaulieu 2021), is that testing against simple null hypotheses is usually not a productive way to 

do science. Rather than testing for a binary outcome of whether or not correlation is present, it is 

often beneficial to examine what these models suggest about the evolutionary process. Utilizing 

model comparison and finding that correlation exists is certainly interesting, but the real utility of 

modeling macroevolutionary processes is interpreting parameters that could not have been 

identified from the pattern alone. Within reason, it is often possible to look at the distribution of 

two discrete characters and be able to say whether the two are correlated before doing any 

modeling. However, it is more difficult to specify numerical values for the rates at which these 

characters evolve. For example, neither a glance at the dataset nor summary statistics will be 

consistently informative as to how many orders of magnitude faster a lineage in state Y0 evolves 

character X than a lineage in state Y1. Additionally, transition rates which are measured in 

changes per million years (more specifically, changes per time unit of the phylogenetic tree) are 

directly comparable across any comparative study. For instance, changes in flower color in one 

study can be compared directly to changes in mammalian diet in another, because the parameters 

of transition have the same unit (event per unit of time). With these parameter estimates we may 

more robustly test hypotheses based on a well-defined model of macroevolution (Pennell and 

Harmon 2013). Furthermore, an examination of parameter estimates applies to most commonly 

used macroevolutionary models. For example, Vasconcelos et al. (2021) tested a set of three 

hypotheses related to how the mode of seed dispersal related to climatic niche evolution using 

Ornstein-Uhlenbeck models. This is not new for these types of models, but a key point from this 

study is that the model support was not as important as the relative value of the parameters. 

Instead of examining whether model A was more supported than model B, they looked at how 

specific hypotheses (i.e., that abiotically dispersed seeds tend to have a more arid climatic 
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optima) were differentially supported across a diverse set of models. A focus on parameter 

estimates rather than relative model support underscores that we are uncertain about the best 

model, but we wish to estimate parameters which reflect that uncertainty and robustly relate 

them to our hypotheses. This insight spurred the adoption of model-averaging by comparative 

biologists, which is now recognized as vital for macroevolutionary studies (see Caetano et al. 

2018).  

 

Conclusion 

Sparked by an appreciation of the limitations of PCMs, several commonly used phylogenetic 

comparative methods have seen critical challenges recently, which have led to advancements 

useful for both developers and users (Boettiger et al. 2012; Maddison and FitzJohn 2015; 

Rabosky and Goldberg 2015; Louca and Pennell 2020). Here, too, the critiques of classic tests of 

correlation (Pagel 1994) are not wrong, and the recommendations of past studies remain useful 

(Maddison and FitzJohn 2015; Uyeda et al. 2018; Gardner and Organ 2021). Instead, what we 

have demonstrated is that the statistical bias towards correlation is primarily due to a 

misspecification of the model set and a failure to account for character independent rate 

heterogeneity. We have highlighted that the inclusion of non-standard Markov models in the 

model set can be critical for the quality of the inferences being made. We acknowledge that 

choosing a diverse set of models a priori is not always straightforward, but both likelihood and 

Bayesian methods will only be as effective as the plausibility of the models set being analyzed 

(Burnham and Anderson 2002). We know that a homogeneous process over millions of years 

and across thousands of lineages is incorrect (Eldredge and Gould 1972) and that the individual 

parts of an organism do not evolve independently (Levins and Lewontin 1985). While we may 
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not be able to always specify each of these individual processes, we must try to incorporate them 

in our modeling. Accounting for rate heterogeneity through HMMs is a simplified way that we 

can bring realism to our modeling while also making statistically consistent and unbiased 

estimates of evolutionary parameters. From there, undoubtedly more work will be necessary 

(e.g., Goldberg and Foo 2020). But comparative analyses must at the very least attempt to 

account for what we know about macroevolution while making us aware of the wonderful 

idiosyncrasies of evolutionary history.  
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Appendix 
 
Table 1. Average ΔAIC values for 100 datasets with standard deviations shown in brackets. 
Each column represents a scenario described in the main text and each row represents a different 
Markov model structure which may be consistent with independence or correlation. For each 
scenario, 8 or 9 models were fit to the datasets. The collapsed model is fit only when not all 
potential state combinations are directly observed and therefore are not fit in modified scenarios. 
A ΔAIC of 0 indicates the best model and models within 2 AIC units of each other are generally 
considered good fits to the data (Burnham and Anderson 2002).  
 

Scenario 
 

Darwin's Unreplicated 
bursts 

Modified 
Darwin's 
(outside) 

Modified 
Darwin's 
(inside) 

Modified 
Darwin's 

(both) 
Collapsed 0.0 (± 0.0) 0.0 (± 0.0) NA NA NA 
Independent 17.9 (± 12.3) 36.8 (±9.0) 14.3 (±3.6) 14.8 (±4.0) 15.6 (±4.7) 
Simplified independent 13.9 (±2.3) 67.3 (±15.8) 10.3 (±3.6) 10.8 (±4.0) 11.6 (±4.7) 
Correlated 12.0 (±0.2) 8.0 (±0.1) 6.1 (±0.5) 6.1 (±0.7) 10.8 (±2.6) 
Simplified correlated 13.9 (±2.3) 30.0 (±8.2) 9.8 (±3.6) 10.4 (±4.1) 11.6 (±4.7) 
Hidden Markov 
independent 

20.8 (±6.8) 9.2 (±0.4) 7.9 (±1.2) 8.4 (±3.3) 7.8 (±2.2) 

Simplified hidden 
Markov independent 

5.5 (±0.1) 36.3 (±9.1) 0.0 (±0.0) 0.0 (±0.0) 0.0 (±0.0) 

Correlated hidden 
Markov 

29.7 (±0.3) 24.9 (±0.8) 22.9 (±0.7) 23.5 (±0.8) 23.2 (±1.4) 

Simplified correlated 
hidden Markov 

18.8 (±2.1) 34.3 (±7.7) 14.2 (±3.3) 14.3 (±2.8) 15.7 (±3.5) 
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Figure 1. The two problematic scenarios from Maddison and FitzJohn (2015) for the evolution 
of characters X and Y. Character X is painted on the left phylogeny using red and orange for state 
X0 and X1, whereas character Y is painted on the right phylogeny using dark blue and light blue 
for state Y0 and Y1. a) Darwin’s scenario is depicted as a single event deep in time that has led to 
the co-distribution of X0Y0 outside of the focal clade and X1Y1 within the focal clade. b) 
Unreplicated bursts scenario is where a single event deep in time has led to the co-distribution of 
X0Y0 outside of the focal clade and X1Y0 and X1Y1 within the focal clade. 
 

X0
X1

Y0
Y1

a) Darwin's scenario b) Unreplicated bursts
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Figure 2. Representations of the different transition rate matrices, Q, with k number of 
parameters associated with each. Where transitions are fixed to occur at the same rate, the 
squares are colored to be the same. Unique parameters are also indicated with a roman numeral 
in the bottom left corner of the square. To the right of each matrix, a ball and stick representation 
of the model is presented with colors and parameter numbers matching the transitions indicated 
in the matrix, Q. The ball and stick representation is organized such that internal arrows 
represent transitions from 1 to 0, and external arrows represent transitions from 0 to 1. 
Additionally, arrows which cross the vertical midpoint indicate transitions in character X, 
whereas transitions across the horizontal midpoint indicate transitions in character Y. a) An 
independent model with four unique parameters, which fixes transitions within a character such 
that changes in X or Y do not depend on the state of the other character. b) A dependent model 
with eight unique parameters, whichs model allows transitions within a character to depend on 
the state of the other character. c) A model which removes transitions to and from an unobserved 
state from the independent model (a). d) A model that removes transitions to and from an 
unobserved state from the dependent model (b). In (c) and (d) the unobserved state is based on 
the Unreplicated Burst scenario where X0Y1 is not observed. 
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Figure 3. An example likelihood surface of a correlated model when applied to one of the 100 
Darwin’s scenario datasets. The color of the plot indicates the likelihood of a particular pair of 
parameters when the remaining transition rates are optimized. Thus, each point represents the 
maximum likelihood estimate when the transition rates indicated by the axes are fixed. a) 
Transitions from X0Y0 to an intermediate state result in several likelihood ridges. b) Transitions 
from X1Y1 to an intermediate state result in several likelihood ridges. c) Transitions from X0Y1 to 
either X0Y0 or X1Y1 result in a completely flat likelihood surface. d) Transitions from X1Y0 to 
either X0Y0 or X1Y1 result in a completely flat likelihood surface. 
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Figure 4. The hidden Markov independent model (HMIM), which allows transitions within a 
character to have rate heterogeneity without it necessarily being linked to an observed character. 
This matrix can be read as a block matrix, with 4x4 blocks representing transitions between 
observed characters following an independent model (top left and bottom right) and transitions 
between hidden rate classes A and B (top right and bottom left). The independent model is 
essentially duplicated in the top left (blue and green) and bottom right (red and orange) of the 
block matrix with transitions occurring between these different types of independent models 
(purple). Here, transition rates between the hidden states are fixed to be the same (parameter ix), 
but it is straightforward to allow the transition between rate class A and B to differ. 
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Figure 5. The amount of evidence for correlation when comparing a correlated model to ether an 
independent model (IM) or hidden Markov independent model (HMIM). The models are fit to 
data of the modified version of Darwin’s scenario where a single observation of X0Y1 and X1Y0 is 
added outside of the focal clade (a), inside of the focal clade (b), and both within and outside of 
the focal clade (c). Evidence ratios for each m`odel comparison are plotted as boxplots to the left 
of the simulation scenario. In all cases, the evidence ratio of the correlated model over the 
independent model is substantially greater than 2.7 (left boxplot) but, the correlated model 
receives much less support over the hidden Markov independent model (right boxplot). 
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Figure 6. a) A simplified independent model. In this model, transitions from 0 to 1 all occur at 
the same rate and transitions from 1 to 0 all occur at the same rate. b) A simplified correlated 
model. Under this model, transitions between states of character X and Y depend on the 
background state of the other character. c) A simplified hidden Markov independent model, 
where the simple independent model of (a) is used in the hidden Markov framework which 
allows for rate heterogeneity independent of focal characters. The same can be done for the 
simple correlated model (not shown).  
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Supplemental Figures 

 

Figure S1. Replicated the Maddison and Fitzjohn (2015) result with our simulation and model 
fitting framework. Support for a dependent/ correlated model is consistently greater than an 
independent model.  
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Figure S2. The same model set used by Maddison and Fitzjohn (2015), but with the inclusion of 
a collapsed model. Support for the collapsed model is overwhelming.  
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Figure S3. The effect of increasing the number of taxa on model support. Shown here are the 
two standard Pagel (1994) models (independent and correlated) as well as the unsimplified 
hidden state independent model. Support for the models is consistent across 100, 250, 500 taxa. 
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Figure S4. Akaike model weights are shown for data simulated under a simplified independent 
model (ind_dat), simplified correlated model (cor_dat) and simplified hidden Markov 
independent model (ind_2) for 100 unique datasets (See Figure 6 for model structure). For the 
simple independent and dependent models, the rates of evolution were 1 and 5 changes per 
million years. With the addition of the hidden states, we added rates of 2 and 10 for the second 
rate category as well as a transition rate of 4 between rate classes. Phylogenetic trees of 100 taxa 
were simulated with a birth rate of 1 and death rate of 0.75. Total branching time in the tree was 
rescaled to a total of 10 MY.  
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CHAPTER III 

Jointly Modeling the Evolution of Discrete and Continuous Traits 

James Boyko, Brian O’Meara, and Jeremy Beaulieu 

 

 

Abstract 

Whether modeling the evolution of a discrete or continuous character, the focal trait of interest 

does not evolve in isolation, which requires comparative methods that can model multivariate 

evolution of several traits. However, most progress along these lines have involved multivariate 

evolution within the same class of character (i.e., either multivariate continuous or multivariate 

discrete) and there are significantly fewer options when jointly modeling traits when one trait is 

discrete and the other is a continuous character. Here we develop such a framework to explicitly 

estimate the joint likelihood for discrete and continuous characters. Specifically, our model 

combines the probability of observing the continuous character under a generalized OU process 

with the probability of the discrete character under a hidden Markov model, linked by a shared 

underlying regime. We use simulation studies to demonstrate that this approach, hOUwie, is able 

to accurately evaluate parameter values across a broad set of models. We then apply our model 

to test whether fleshy and dry fruits of Ericaceae lineages are correlated with their climatic niche 

evolution as represented by the aridity index. Consistent with our expectations, we find that dry 

fruits have higher rates of climatic niche evolution, that the climatic niche of fleshy fruits is more 

conserved and dry fruits have a more humid climatic optimum. 
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Introduction 

A common theme in comparative biology is the detection of causal, or least mechanistic, factors 

that affect the evolution of quantitative characters. Questions of how plant life habit influence 

genome size evolution (Beaulieu et al. 2012), how substrate use alters limb length evolution 

(Mahler et al. 2013), or how tooth morphology slowly changes in response to habitat and diet 

(Toljagić et al. 2018) are all examples of testing whether evolutionary changes in a discrete 

variable may have altered evolutionary trajectories of a continuously varying trait. One very 

common phylogenetic comparative approach for these types of questions is to employ an 

Ornstein-Uhlenbeck (OU) model, which assumes distinct regimes, described by the evolution of 

a discrete character, are known completely a priori (e.g., Butler and King 2004; Hansen et al. 

2008; Beaulieu et al. 2012), or assumes that “shifts” in regimes can be inferred directly from the 

distribution of the continuous trait (e.g. Ingram and Mahler 2013; Uyeda and Harmon 2014; 

Khabbazian et al. 2016). While these approaches are practical, the discrete trait is assumed the 

driving force underlying the evolution of the continuous character. However, dependence rarely 

flows just one way in evolution, and we suspect that as often as a discrete character causes 

change in the continuous character, continuous characters also influence discrete character 

evolution, or at the very minimum, can provide information about how they may be evolving in 

tandem.  

Progress along these lines has mostly involved acknowledging uncertainty in the 

evolution of the discrete character by fitting models over a large set of stochastically generated 

character mappings. That is, a large set of alternative reconstructions of the discrete character are 

obtained completely uninformed by the continuous trait’s evolution, then the likelihood of the 

continuous character becomes the average of the likelihoods across these maps (e.g., Revell 
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2012). The advantage of this approach is that there is an explicit model for how regimes change 

through time, but the evolution of these regimes remains entirely independent of the continuous 

trait, and the probability of these regimes is not explicitly considered. For example, it is possible 

that the model that best fits the discrete data generates stochastic maps that does not provide a 

good fit to the continuous data.  

A promising approach was recently described for detecting adaptive codon evolution 

(Jones et al 2020), where a set of maps obtained for a discrete phenotype under a standard 

Markov process is optimized along with parameters associated with genotype properties, thus 

forcing an emergent dependency between the two. Similarly, May and Moore (2020) developed 

a joint model for discrete and continuous characters under a state-dependent Brownian motion 

model. Their approach takes advantage of prior probabilities within a Bayesian framework to 

accommodate variation in the “background” rate of evolution in the continuous trait (i.e., rate 

variation across lineages that is independent of the discrete character under consideration). The 

novel Bayesian pipeline recently developed by Tribble et al. (2021) is the first attempt that we 

are aware of for jointly modeling discrete and continuous traits under an OU framework. Their 

approach samples discrete stochastic mappings informed by the discrete trait along with regime 

mappings which were informed by the continuous trait while accounting for the potential of 

hidden variation. While a more effective test of correlation between discrete and continuous 

characters, one drawback is that they do not explicitly account for the joint probability of the 

discrete and continuous parameter estimates together. They assume that the combination of 

independently estimated discrete and continuous models produces a joint estimate. 

Here we develop and implement a framework that provides an explicitly joint estimate of 

the likelihood for a discrete and continuous character. Specifically, our model combines the 
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probability of the continuous character given a particular regime evolving under a generalized 

OU process, and the probability of that discrete regime painting obtained from an expanded set 

of Markov models, integrated over many regime paintings. We demonstrate how our framework, 

which we call hOUwie, can be used to test hypotheses of correlated evolution between discrete 

and continuous characters while also accounting for hidden character states and unobserved 

variation. Finally, we apply several hOUwie models to test the correlated dynamics of the mode 

of seed dispersal and climatic niche evolution and compare our results to those that did not 

account for the potential joint evolution of discrete and continuous variables. 

 

Methods 

The hOUwie model 

Our model is composed of two processes: one describing the evolution of a discrete character 

and the other describing the evolution of a continuous character. To model the evolution of a 

single continuous character we use an Ornstein-Uhlenbeck (OU) model (Hansen 1997; Butler 

and King 2004; Hansen et al. 2008; Beaulieu et al. 2012; Ho and Ané 2014a). Formally, the OU 

process is an Itô diffusion satisfying:  

𝑑𝑋(𝑡) 	= 	𝛼(𝜃(𝑡) 	− 	𝑋(𝑡)) 	+ 	𝜎𝑑𝐵(𝑡). 

Conceptually, this model combines the stochastic evolution of a trait through time with a 

deterministic component that models the tendency for a trait to evolve towards an “optimum.” In 

this model, the value of a trait, 𝑋(𝑡), is pulled towards an optimum, 𝜃(𝑡), at a rate scaled by the 

parameter 𝛼. The optimum, 𝜃(𝑡), is a piecewise constant on intervals and takes values in a finite 

set	{𝜃(}. This can represent the set of “selective regimes”, “regimes”, or Simpson’s “adaptive 

zones” (Cressler et al. 2015), though it is consistent with a variety of true underlying 
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microevolutionary models (Hansen 2014). Additionally, random deviations are introduced by 

Gaussian white noise 𝑑𝐵(𝑡), which is distributed as a normal random variable with mean zero 

and variance equal to 𝜎"𝑑𝑡. Thus, 𝜎" is a constant describing the rate of stochastic evolution 

away from the optimum. We use the set of extensions introduced by Beaulieu et al. (2012) and 

implemented in the R package OUwie, which allows for multiple primary optima 𝜃(𝑡) in which 

both the pull strength (𝛼) and the rate of stochastic evolution (𝜎") can vary across the phylogeny. 

However, the algorithm used to calculate the likelihood described in Beaulieu et al. (2012) 

involves a computationally costly matrix inversion procedure. Here we implement a linear-time 

computation of the likelihood of Gaussian trait models following (Ho and Ané 2014a). To do 

this, we first transform the phylogeny such that its variance covariance matrix, 𝑉, is 3-point 

structured. We can write the variance covariance matrix of the untransformed phylogeny as 𝑉 =

𝐷+𝑉f 	𝐷+, where following Beaulieu et al. (2012) and Ho and Ané (2014), 

𝑉f(9 =	 T
𝜎(9,;"

2𝛼(9,;
(e"<!",$=!",$ 	− 	𝑒"<!",$=!",$%&)

>((,9)

;)!

, 

and, 𝐷+ =	𝑒
∑ <!,$(=!,$B=!,$%&)
'(!)
$*& , 

where, 𝑠; is the distance from the root to the beginning of the selective regime (𝛾) for the 𝜅 

number of selective regimes along the path from the root to the last common ancestor of 𝑖 and 𝑗, 

𝜅(𝑖, 𝑗), or from the root to the terminal tip	𝑖, 𝜅(𝑖). Our transformed phylogeny now has a variance 

covariance matrix 𝑉f(9 and diagonal matrix 𝐷+. We can then calculate the quadratic quantities and 

determinant of 𝑉 (Ho and Ané 2014a). The probability of our continuous trait is given by 

𝑙𝑜𝑔(𝑃(𝑋|	𝐷, 𝑧, 𝜗, 𝜓)) 	= 	𝑛 log(2𝜋) +	 log(𝑑𝑒𝑡(𝑉)) 	+	
𝑃′𝑉B!𝑃	 − 	2𝑃′𝑉B!𝑄	 + 	𝑄′𝑉B!𝑄

2 , 
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where 𝑛 is the number of tips in the phylogeny (𝜓), 𝑃 is the continuous trait value of each 

species, and 𝑄 is the expected value of each species given the continuous trait model calculated 

following equation (11) of Beaulieu et al. (2012), D	is the discrete character data, 𝑧 is a particular 

regime mapping, and 𝜗 are the parameters of the hOUwie model.  

Next, we describe the calculation of the probability of the underlying regime structure, 𝛾, 

that is the joint probability of discrete characters (𝐷) and stochastic mapping (𝑧). This calculation 

is analogous to the pathway likelihood of Steel and Penny (2000). Recently, May and Moore 

(2020) suggested that the joint probability of a regime structure and the discrete character is the 

product of the probabilities of exponentially distributed waiting times. By this definition, branch 

lengths are the sum of waiting times. But, when we calculate the probability of starting and 

ending a branch in state i, the likelihood of a regime structure was unaffected by the number of 

transitions (Supplemental Materials), even though the maximum likelihood estimate should be 

zero transitions (O’Meara 2008).  

To calculate the probability of discrete characters (𝐷) and stochastic mapping (𝑧) we 

instead use an approximation. Our approximation relies on a finite number of degree-2 

internodes and uses the standard Chapman-Kolmgorov equation to calculate the probabilities of 

beginning in a particular state 𝑖 and ending in state 𝑗 (Pagel 1994) and is identical to a joint 

probability of a set of state reconstructions (Yang 2006). As the number of internodes increase, 

the amount of time between nodes decreases and the approximation improves (Rao and Teh 

2013). The joint probability of a regime structure and the discrete character i 

𝑃(𝐷, 𝑧|𝑄, 𝜓) 	= 	𝑃(𝑥C|𝑄, 𝜓)	x𝑃(𝑧ℓ|𝑄, 𝑇ℓ)
0B!

ℓ)!

, 
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where 𝐐 the instantaneous rate matrix (𝐐 ∈ 𝜗), 𝜓 is the phylogeny, 𝑃(𝑥C|𝐐, 𝜓) is the root state 

probability (Pagel 1994; Yang 2006; Maddison et al. 2007),	𝑛 is the number of external nodes 

(tips), internal nodes, and internodes (degree-2 nodes) summed, ℓ indicates a particular branch, 

𝑃(𝑧ℓ|𝐐, 𝑇ℓ) = 	 𝑒𝐐Fℓ 	𝟙;, where 𝟙; is an indicator function which ensures that we only use the 

probability of states indicated by the specific the regime mapping instead of summing over all 

possible state combinations. The continuous character probability requires the discrete state(s) to 

be defined along the entire branch, thus we place transitions halfway between any two nodes.  

 For each set of parameters evaluated during the maximum likelihood search, a set of 

possible mappings of discrete states and continuous regimes are generated to evaluate the 

discrete and continuous likelihoods (Fig. 3). Ideally, we would calculate the likelihood by 

summing across all possible reconstructions (note that we want the sum across the 

reconstructions, not the single reconstruction with highest likelihood). The number of such 

reconstructions is very large (number of states ^ ((2*number of taxa-2)*(1+number of degree 

two internodes per edge))), which is particularly daunting as the sum must be calculated anew for 

every unique examined set of parameter values as part of search. We found in early work where 

we did look at this exhaustively that a few mappings made up the vast majority of the total 

likelihood, so we set up the analysis to focus on calculating total likelihood given the highest 

probability mappings. 

To do this, we first approximate the conditional state probabilities at nodes. The 

conditional state probability, unlike the more common marginal reconstruction or joint state 

reconstruction (Pupko et al. 2000; Felsenstein 2004; Yang 2006), calculates the probability that a 

node has a particular state value conditioned only on the observations of its descendants. For a 

particular focal node, we calculate the probability of the observing all pairwise descendant values 



 88 

given the OU model parameters, integrated over all possible rootward node states, and observed 

tipward discrete states (Fig 3d, see Supplemental for more detail). Although this is only an 

approximation of the conditional state probabilities, it proves to be an essential improvement 

over the typical procedure of sampling many stochastic maps based solely on the discrete process 

(Fig. 4). Next, the conditional probabilities of states at nodes are sampled starting with the root. 

Once the root is sampled, descendent states are sampled based on both the conditional ancestral 

values and the sampled ancestral state. This is achieved by multiplying the conditional 

probability of the node states by the probability of starting in the sampled rootward ancestral 

value and ending in any of the tipward states (the latter is calculated using familiar matrix 

exponentiation methods; e.g., Pagel 1994). Finally, under usual stochastic mapping procedures 

we would use rejection sampling (Nielsen 2002; Rao and I 2013) to simulate a path between the 

sampled rootward and tipward nodes. However, for increased computational efficiency, we opt 

to place transitions at pre-defined internodes. After nodes and internodes are sampled in step 

two, mappings are evaluated to ensure consistency with the discrete model (i.e., impossible 

transitions do not occur) and branches are painted based on the sampled nodes with transitions 

occurring half-way between nodes (and remember that a single edge may have multiple 

internodes placed on it). 

 Our function for the joint probability of a continuous and a discrete character is, 

𝑃(𝑋, 𝐷|𝜗, 𝜓) = 	T𝑃(𝑋|	𝐷, 𝑧, 𝜗, 𝜓)𝑃(𝐷, 𝑧|𝜗, 𝜓),
G

 

where summing over all generated maps (𝑧), 𝑃(𝑋|	𝐷, 𝑧, 𝜗, 𝜓) is the probability of the continuous 

character (𝑋) given the discrete character data (𝐷), mapping (𝑧), hOUwie parameters (𝜗), and 

phylogeny (𝜓). 𝑃(𝐷, 𝑧|𝜗, 𝜓) is the joint probability of the discrete character data (𝐷) and 

stochastic mapping (𝑧) given the hOUwie parameters (𝜗) and phylogeny (𝜓). 
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The hOUwie model space 

Our simulation studies examined 22 possible hOUwie model structures for a binary discrete 

character, although the possible number of models is significantly higher because any number of 

discrete characters and states can be modeled together. For the discrete component of the model, 

we assumed that transitions between the observed characters were equal. We constrained 

transitions between hidden states to be the same for observed states, but this constraint can be 

relaxed if desired. The continuous model structures allowable in hOUwie are a generalized form 

of those allowed in OUwie and now include models in which only 𝛼 varies (OUA), only 𝜎" 

varies (OUV), and combinations of an OU and BM process (OUBM1 and OUBMV). We note 

that the OUBM1 model within hOUwie differs from The Ornstein–Uhlenbeck Brownian-motion 

(OUBM) model presented in Hansen et al. (2008) and Bartoszek et al. (2012) since the latter 

models are of multiple continuous characters, rather than different processes describing the same 

continuous character.  

The potential model structures range from completely character-dependent to character-

independent. Character-dependent (CD) models are models in which any continuous OU 

parameter differs between observed discrete state, whereas character-independent models (CID) 

test whether observed discrete states can be described by the same OU parameters. There are two 

types of character-independent model (Fig. 1). First, character-independent models include 

structures where there are no differences between any OU parameters. Under this model the 

entire evolutionary history of the clade can be described by a single 𝛼, 𝜎", and 𝜃 (Fig. 1a). To 

combat this unrealistic assumption we introduce a character-independent model which allows for 

differences in the OU parameters to depend upon an unobserved hidden state (CID+) and has 

been shown to correct for the bias towards detecting correlation (Boyko and Beaulieu 2022). 
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This addition allows for heterogeneity within the evolutionary process without the necessity of it 

being linked to a focal trait (Fig. 1c). In total we examine 22 unique model structures (2 CID, 10 

CD, and 10CID+).  

Simulation study 

For each of the 22 hOUwie model structures, we simulated 50 datasets for phylogenies of 25, 

100, and 250 taxa for a total of 3300 unique datasets. Phylogenies were pure birth phylogenetic 

trees with 𝜆 = 1, rescaled tree height to 1, and the root state was fixed to state 1. The parameters 

used to generate a phenotypic dataset depend on the structure of the generating model. For 

example, an OUM model and OU1 model can have identical 𝑞(9 , 𝛼, and	𝜎", but they must differ 

in 𝜃 or else OUM will collapse into OU1 (model structures associated with model name are 

shown in Table 1). The simulating parameters were chosen to match Beaulieu et al. (2012) with 

𝑞(9 = 0.1, 𝛼! = 3, 𝛼" = 1.5, 𝜎!" = 0.35, 𝜎"" = 1, 𝜃! = 2, and	𝜃" = 0.75. Once a phylogeny and 

phenotypic dataset were simulated, we fit our models to assess parameter estimation accuracy 

and model selection power. Although this represents a small subset of the potentially vast 

parameter space available to OU models, the behavior of these models has been thoroughly 

characterized and thus we chose parameters within the range of typical identifiability (Beaulieu 

et al. 2012; Ho and Ané 2014a; Cressler et al. 2015). Additionally, because hOUwie uses a 

variable number of mappings, we evaluate changing the number of stochastic maps. We fit each 

model using 25, 100, and 250 stochastic mappings per likelihood evaluation. Each dataset was 

evaluated using the true generating model, a BM1, an OU1, and either the character-dependent 

or character-independent counterpart to the generating model. For example, if the data were 

simulated under a character-dependent OUM model where the value of 𝜃!and	𝜃" depend on the 

observed character, a character-independent OUM model would also be fit as part of the model 
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set. Under the CID+ OUM model, a variable 𝜃 is still allowed, but it is unlinked to the focal 

character and thus should provide a more reliable character independent null hypothesis than 

BM1 or OU1 (Beaulieu and O’Meara 2016; Uyeda et al. 2018; May and Moore 2020; Boyko and 

Beaulieu 2022). 

The impact of climatic variables on seed dispersal 

For sedentary organisms, such as plants, dispersal is mainly limited to a brief stage of their life 

cycle and mediated mainly through the movement of seeds (Levin et al. 2003). Generally, the 

expectation is that seeds dispersed by frugivores are going to be dispersed to environments more 

like their parents’ environment, whereas abiotically dispersed seeds are likely to be more erratic 

in their dispersal patterns (Schupp 1993; Westoby et al. 1996). Furthermore, it has been proposed 

that adaptations for frugivorous dispersal is linked to tropical and subtropical biomes, because in 

these warmer and wetter habitats, large trees create shady environments where competition for 

light is more important. A shadier habitat then imposes a selective pressure for larger seeds 

because more nutrients are needed for germination and initial survival (Foster and Janson 1985). 

However, the evolution of larger seeds comes with a tradeoff as they have a significantly lower 

dispersal potential (Howe and Smallwood 1982). Thus, we might expect that the climatic 

variables of a habitat influence the probability of transitioning between abiotic and biotic modes 

of dispersal, with transition rates from abiotic to biotic being greater in less arid environments.  

Here we use dry or fleshy fruit morphology as a proxy for abiotic or biotic seed dispersal 

(Lorts et al. 2008) to evaluate three predictions outlined in Vasconcelos et al. (2021), but 

specifically measuring the aridity index. First, we expect that the climatic optima for fleshy fruits 

will be more humid compared to dry fruits (θHIJ < θKLMNOJ). Second, we expect that dry fruits 

will have faster rates of climatic niche evolution (σHIJ" > σKLMNOJ" ). Finally, we expect that the 
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climatic niches of fleshy fruits will be more conserved through time (αHIJ < αKLMNOJ). We apply 

several hOUwie models to test these hypotheses and compare our results to those discussed in 

Vasconcelos et al. (2021). We expect that any differences found between this study and 

Vasconcelos et al. (2021) are because we can explicitly account for the joint probability of the 

discrete and continuous characters. We focus our attention on Ericaceae specifically because 

Vasconcelos et al. (2021) found two counter-intuitive results. Namely, they found that the 

phenotypic optima of dry fruits were more humid than fleshy fruited lineages, and that the rate of 

climatic evolution was greater in fleshy fruits than dry fruits.  

We included 25 hOUwie models within our model set: 2 CID, 10 CD, 10 CID+, and 3 

HYB. Gaultheria is technically a dry-fruited genus within Ericaceae but has a persistent fleshy 

calyx that attracts frugivores (Stevens et al. 2004). However, since we are interested in the 

association between dispersal and fruit type, we code this as fleshy fruited within our dataset. 

Models are evaluated using the sample size corrected Akaike Information Criterion (AICc) and 

model averaging is conducted when discussing how our results relate to our hypotheses 

(Burnham and Anderson 2002). Measurement error is included for each model fit as within 

species variance (the sample-sized weighted average of the individual species variances 

following Labra et al. (2009) and Vasconcelos et al. (2021)). We evaluate then model averaged 

parameter estimates of 𝜃, 𝜎", and 𝛼 for fleshy and dry fruited lineages, as they relate to our 

hypotheses and compare our results to Vasconcelos et al. (2021). Finally, we conduct a 

parametric bootstrap of 100 simulated datasets to evaluate the standard error of our model 

averaged parameter estimates. 
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Results 

Simulation study 

For character-independent (CID) models, our heuristic adaptive sampling algorithm consistently 

produced more probable mappings than using purely discrete mappings for all models examined. 

On average, adaptive sampling produced mappings which were roughly 38 log likelihood units 

better than purely discrete sampling when examining joint probabilities. This was driven 

primarily by the improved continuous probabilities which were on average 38.4 log likelihood 

units better. In contrast, the discrete probability of each mapping was similar with discrete-only 

simulations producing maps that were on average 0.39 log likelihood units better (Table 1; 

Figure 3). For character-dependent models, the difference was negligible (not shown). This is 

because when the discrete and continuous character are linked, discrete-only mappings will 

match the continuous character’s distribution quite well.  

Most character-dependent models (CD) had lower overall deviations from the generating 

model across all model types. The RMSE was largest for alpha at 1.76 and 1.65 (if variable 

alpha) and errors were generally higher for more complex models. All other parameters had 

relatively similar RMSE, ranging from 0.1 for discrete the rate to 0.75 for 𝜎"". The BMV (BM 

with variable 𝜎), OUV (OU with variable 𝜎), OUA (OU with variable 𝛼), and OUM (OU with 

variable 𝜃) models generally had the lowest errors, but there were some biases present. Most 

notably, alpha was biased upwards for OUM and OUV models and under variable alpha models 

(OUA, OUMA, OUVA, OUMVA), the difference between the alpha estimates tended to be 

larger than the generating parameter difference. The more complex models had larger error 

variances but showed similar biases as the simple models. Finally, OUBM models showed a 

significantly downward biased 𝛼, suggesting BM like processes (Figure 5; Table 2). 
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Character-independent models with rate heterogeneity models generally performed well 

in terms of parameter estimates, but as expected, due to their inherit uncertainty, CID+ models 

had larger errors than CD models. The largest error was estimates of 𝜎""which had an RMSE of 

8.5, although the median error value was only 0.03, suggesting that the large RMSE is driven by 

a long rightward tail of the estimates. Like CD models, 𝛼! and 𝛼" consistently showed the 

largest RMSE at 3.6 and 1.2. In general, 𝛼 was underestimated with medians of -0.4 and -1.4 

below the simulating values of 3 and 1.5. This means that models for CID+ models tended to be 

more BM like even under an OU generated data (Figure 5; Table 2). 

Increasing the number of taxa examined improved both CD and CID+ performance. The 

RMSE for 𝛼 was nearly cut in half between when moving from 25 tips to 250 tips from 5.2 to 

2.8 under CID+ models. Nonetheless, some parameters continued to be estimated poorly, such as 

𝜎"". Interestingly, increasing the number of stochastic maps improved CID+ performance, but did 

not substantially improve estimation under CD models (Fig. 5bc).  

Generally, evidence of CD when it was the generating model was consistent across all 

model types. The lowest support for the OUA and OUBM1 models at an average AICwt of 0.31 

and 0.13. For complex models, such as OUMVA, model support for was 0.81 and highest for 

OUMV at 0.97. CID+ models fared worse in terms of generating consistent support even when 

they were the generating model. Models which were difficult to estimate under character 

dependence were difficult to find consistent support for under character independence. The most 

extreme case was OUA model for which CID+ model was never chosen as the best supported 

model. However, models which performed well for CD tended to perform well under CID+. For 

example, OUM models garnered consistent support when with an average AICwt of 0.733 

(Table 3; Figure 6). 
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For both CD and CID+ models, support improved when increasing the number of tips 

analyzed. Support for a CD model when CD was the generating model increased from 𝑤PQ =

0.5 to 𝑤PQ = 0.67	to 𝑤PQ = 0.79 for 25, 100, 250 tips and support for a CID+ model when it 

was the generating model increased from 𝑤PRQS = 0.11	to 𝑤PRQS = 0.15 to 𝑤PRQS = 0.22. 

Similarly, increasing the number of stochastic maps generally improved the fit, but not as much 

as increasing the number of tips. We found that the false evidence of correlation (as measured by 

the average AICwt of a character-dependent model when character-independence was the 

generating model) was generally not an issue for variable 𝜃 models (OUM*). Variable 𝜃 models 

had average AICwts for false character-dependence ranging from 0.03 to 0.23 and for none of 

our simulations models was a CD model best supported. Under a simple OUM model, CID+ 

models helped correct any potential bias with an average AICwt of 0.68. However, false 

evidence of correlation was an issue for variable 𝜎("and 𝛼( models. False support for CD as 

measured by AIC weight ranged from 0.34 to 0.44 when 𝜃 was fixed and 𝛼( and/or 𝜎(" varied. 

Although CID+ models did not garner much support when these models were fit, OU1 and BM1 

models served as reasonable null hypotheses in these cases. In general, we found that when CID 

models were the generating model, evidence of CID was strongest and when CD models were 

the generating model, evidence of character dependence was strongest. This suggests that the 

effect of rate heterogeneity causing false correlations is not as pronounced as other comparative 

methods (Maddison and FitzJohn 2015; Rabosky and Goldberg 2015). 

Seed dispersal and climatic evolution 

We found evidence of a character-dependent model over either a simple or hidden state 

character-independent model, suggesting a link between the climatic niche of Ericaceae lineages 

and their fruit type (Table 6). The best supported models were OUMVA and OUVA with AIC 
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weights of 0.41 and 0.32 respectively. This suggests that there were character dependent 

differences in phenotypic optima, rates of evolution, and overall phylogenetic signal. To evaluate 

support for our hypotheses we examined the model averaged parameter estimates (Table 7). The 

estimated optimum 0.81 for fleshy fruits suggests a more arid environment for their optimal 

habitat, and the 0.97 AI of dry fruits corresponds to a more humid environment (Middleton and 

Thomas 1997). However, both optima correspond to non-dryland humid environments. Both 

𝜎"and 𝛼 interact to create tip variance, so in addition to 𝜎", we measured the stationary variance 

𝑉 = T,

"<
. As predicted, we found that Ericaceae lineages with dry fruits were more variable in 

their climatic niche evolution (𝜎538" = 0.011	𝐴𝐼"𝑀𝑌B!, 𝑉538 = 0.37	𝐴𝐼") compared to fleshy 

fruits (𝜎1.6=&8" = 0.007	𝐴𝐼"𝑀𝑌B!, 𝑉1.6=&8 = 0.15	𝐴𝐼"). Additionally, the phylogenetic signal of 

fleshy fruited lineages was greater than dry fruited lineages (𝛼1.6=&8 = 0.022𝑀𝑌B! 	> 	𝛼538 =

0.014𝑀𝑌B!). This corresponds to phylogenetic half-lives of 𝑡!
"U ,538 = 46.4	MY	and 

𝑡!
"U ,1.6=&8 = 30.3	MY which are 38% and 25% of the total tree height respectively. Transitions to 

fleshy fruit occurred at 0.0015 transitions per million years which is more than 4.3 times faster 

than transitions to dry fruits (0.00035 transitions per million years). Given the total branch length 

in the tree is 10,120	𝑀𝑌, we would expect 15.6 transitions to fleshy fruit and 3.6 transitions to 

dry fruits to have occurred throughout the history of Ericaceae. Finally, on average lineages were 

in more arid environments than predicted by the model (average difference of 0.19 AI), with 

some species expected to be in much more humid environments (difference between current AI 

and optimal AI ranged from -4.4 to 0.85; Figure 7).  
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Discussion 

Phylogenetic comparative methods have been widely applied to study discrete and continuous 

characters separately. Due primarily to computational limitations there are few options which 

jointly evaluate both classes of character. The hOUwie framework proposed here overcomes 

these limitations, and we demonstrate how it is used to test hypotheses of correlated evolution 

between discrete and continuous characters while accounting for hidden character states and 

unobserved variation. Our model jointly models discrete and continuous characters by linking 

both via a common regime painting. However, unlike other similar methods, our likelihood 

formula explicitly calculates the probability of the underlying regimes. This has the advantage of 

describing the discrete character evolution probabilistically and allows information from the 

discrete and continuous characters to jointly contribute to the overall likelihood.  

Relationship to existing methods 

Considerable progress has been made towards more realistic models of continuous character 

evolution within the last two decades. Continuous character models which initially relied on 

either single rate Brownian motion or simple Ornstein-Uhlenbeck models (Felsenstein 1985; 

Hansen 1997) have seen several extensions to allow for heterogeneity in the evolutionary process 

as well as the deterministic influence of underlying independent variables. Generally, these 

models can be classified as either being “hypothesis driven” or “data driven” (Martin et al. 

2022). Hypothesis driven models are those which require a priori hypotheses regarding where 

evolutionary rates may differ throughout the phylogeny. These include models which have 

extended simple single-rate BM to incorporate rate variation based on discrete regime mappings 

(e.g., O’Meara et al. 2006; Thomas et al. 2006; Revell and Collar 2009; Caetano and Harmon 

2017) or more generalized Ornstein-Uhlenbeck models where parameters are allowed to vary 



 98 

based on an underlying regime mapping (e.g., Butler and King 2004; Bartoszek et al. 2012; 

Beaulieu et al. 2012). In contrast, several methods have focused on the development of data 

driven, shift-detection methods (which may indeed be used in testing hypotheses, but these 

hypotheses are not directly used in creating the regime map). These methods utilize an Ornstein-

Uhlenbeck process to automatically detect where in the phylogeny evolutionary rates and 

phenotypic optima shift (Ingram and Mahler 2013b; Uyeda and Harmon 2014; Khabbazian et al. 

2016; Bastide et al. 2017). Furthermore, some recently developed methods have allowed for rate 

variation without the assumption of constant regimes at all. Instead, these models assume the 

rates themselves evolve and change throughout the phylogeny under various Brownian motion-

like processes (Lemey et al. 2010; Eastman et al. 2013; Revell 2021; Martin et al. 2022) or single 

optima Ornstein-Uhlenbeck processes (Hansen et al. 2008; Mitov et al. 2019). The method 

presented here is most like the latter group. hOUwie attempts to explicitly model the evolution of 

rate shifts according to regimes which jointly influence discrete and continuous character 

evolution. The regimes themselves are never fixed a priori and each is evaluated as a partial 

contribution to the overall probability of the data. The advantage of this approach is that it 

acknowledges the uncertainty in the underlying regime paintings and allows them to change 

through time.  

Additionally, unlike hOUwie, the “hypothesis driven” or “data driven” models do not 

explicitly account for the joint modeling of the discrete and continuous characters. Most progress 

in this area has, until recently, been made via phylogenetic logistic regressions (Ives and Garland 

2010) or threshold models in which the discrete character is modeled by a continuously varying 

unobserved lability (Felsenstein 2012; Revell 2014; Cybis et al. 2015). However, these models 

rely on more simplistic evolutionary models without character independent rate heterogeneity 
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(such as single rate Brownian motion). This lack of character independent rate heterogeneity has 

recently been recognized as a potential source of inflated correlation between discrete and 

continuous characters. Such was the reasoning for the MuSSCRat model (May and Moore 2020). 

Like hOUwie, MuSSCRat allows for character-independent rate heterogeneity following a 

multiple rate Brownian motion model to be directly contrasted against character correlation to 

correct for potential biases towards correlation. However, as we describe in detail above, the way 

the underlying discrete character is calculated in hOUwie, as well as how rate heterogeneity is 

modeled, differs substantially from May and Moore (2020). Finally, Tribble et al. (2021) has 

recently developed a method which is similar to the one presented here. One of the primary 

differences between hOUwie and the Bayesian pipeline discussed in Tribble et al. (2021) is how 

discrete character evolution is treated. Specifically, Tribble et al. (2021) assumed that character-

independent mappings are generated under the same parameters which best fit their focal discrete 

character. In contrast, hOUwie allows the free estimation of character-independent discrete rates 

which best fit both discrete and continuous data. This difference may lead to biases against null 

models in the Tribble et al. (2021) approach since the character-independent regimes are forced 

to follow a character-dependent discrete model.  

 

Character-independent models and null hypotheses 

There is a growing appreciation that comparing constant-rate null models to variable-rate 

alternative models will consistently favor rate heterogeneity, regardless of whether there is a 

genuine association with a focal variable (Maddison and FitzJohn 2015; Rabosky and Goldberg 

2015; Beaulieu and O’Meara 2016; Uyeda et al. 2018; O’Meara and Beaulieu 2021; Boyko and 

Beaulieu 2022). This problem, termed the “straw-man effect” by May and Moore (2020), has 
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been demonstrated to lead to nearly 100% error rates for evidence of discrete character 

correlation (Maddison and FitzJohn 2015; Boyko and Beaulieu 2022), and has severely biased 

evidence towards state-dependent speciation and extinction (Rabosky and Goldberg 2015; 

Beaulieu and O’Meara 2016). Given these often-overwhelming error rates in other comparative 

methods, we expected to find a similarly consistent bias towards correlation between discrete and 

continuous characters. However, we found that support for single rate character-independent null 

models was greater than character-dependent models even when simulated under character-

independent models with rate heterogeneity. Although the inclusion of explicit multi-rate 

character independent models (CID+) models did help reduce evidence of false correlation in 

some cases, by and large, simplistic null models performed admirably. This is not to say that the 

error rates for discrete and continuous character correlation should be dismissed outright. If our 

simulations correctly assess that nearly one-third of results find false evidence of a correlation 

between continuous character rates of evolution and discrete characters, then better null models 

are certainly needed. But, in comparison to the profound effect that model misspecification has 

had in other comparative analyses (Beaulieu and O’Meara 2016; Boyko and Beaulieu 2022), the 

joint models tested here have substantially lower error rates. 

We suspect that part of the reason that the correlation between discrete and continuous 

characters is less susceptible to “straw-man” effects than other PCMs is related to the 

inefficiency of sampling potential maps from the univariate stochastic mapping model. A 

common approach to fitting OU models involves simulating many stochastic maps to represent 

underlying regimes from parameters estimated only from the discrete character (Revell 2013). 

The resulting distribution of underlying regimes will therefore reflect a distribution appropriate 

for the discrete character, but not necessarily suitable for the continuous character. This is 
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especially true if the continuous character is unlinked to the focal discrete character. Indeed, we 

found that if the discrete and continuous characters are unlinked, most stochastic maps, even 

though good descriptions of the discrete characters, were completely inadequate representations 

of continuous regimes. Thus, any joint model with these maps contributed little to the overall 

likelihood. Under our simulation protocol, for a typical run, 90% of the total likelihood for the 

best set of parameters came from just 2% of the attempted maps.  

In some ways the substantial contributions of only a few underlying regimes to the 

overall likelihood is good. First, it makes spurious links between a randomly distributed discrete 

character and a continuous character more unlikely since associations between regimes and 

continuous variables tend to be specific. This ultimately reduces the potential “straw-man” 

effect. Second, the continuous characters can inform the placement of shared regimes and 

therefore shift detection methods, where the continuous data are all that provides information 

about regimes shifts (Ingram and Mahler 2013; Uyeda and Harmon 2014; Khabbazian et al. 

2016; Bastide et al. 2017), may be appropriate across a broad range of scenarios. However, this 

property also makes sampling a good set of regimes to get an accurate estimate of the likelihood 

difficult and is why the development of our adaptive sampling heuristics was necessary. 

Adaptive sampling, in combination with our approximation of the joint conditional distributions, 

helped make parameter estimation more accurate. Increasing the amount of sampled regime 

mappings is useful in improving precision (Fig 5c), at the cost of longer run time. 

 

Interplay of continuous, discrete, and hidden traits 

In many studies that deal with the correlation of discrete and continuous traits, it is often 

assumed that the discrete trait functions as the independent trait and the continuous trait as the 
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dependent trait. This assumption is baked into methods that map the discrete trait first and then 

analyze the continuous trait given these mappings, but it would be easy to fall into this form of 

thinking even with hOUwie, which does not have this assumption. Instead, hOUwie can help 

understand whether and how traits are correlated. For example, one could see if mammal body 

size correlates with trophic level: are hypercarnivores larger on average than herbivores? It could 

be that an herbivorous (discrete character) beaver evolves a taste for meat and then grows bigger 

(continuous character) so it can take down bigger prey; it could be that once things get to be the 

size of a bison (continuous character) they start adding more and more rodents to their diet, 

eventually becoming carnivores (discrete character). Causality can go both directions, and of 

course both traits may be evolving based on some other third trait and not functionally related to 

each other.  

hOUwie is part of a series of hidden state models developed by our research groups (i.e., 

Beaulieu et al. 2013; Beaulieu and O’Meara 2016; Caetano et al. 2018; Boyko and Beaulieu 

2021, 2022; Vasconcelos et al. 2022). One misconception we have noted in use of these methods 

is the thought that there is a single, discrete, hidden character in the biology. These models do 

model a single hidden character (with potentially many states), but this could be reflecting 

multiple characters evolving together or other factors that change in a heritable manner through 

time. It is a way to allow heterogeneity, especially by factors that vary by clades. With hOUwie, 

this heterogeneity can affect the discrete trait, the continuous trait, both, or neither.  

Seed dispersal and climatic niche evolution in Ericaceae 

Here we revaluated three hypotheses related to climatic niche evolution and seed dispersal and 

found that: (1) the climatic optima of dry fruits was more humid than fleshy fruits (𝜃1.6=&8 <

𝜃538), (2) lineages with dry fruits had faster rates of climatic niche evolution (𝜎538" > 𝜎1.6=&8" ), 
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and (3) climatic niches of fleshy fruits are more conserved through time (𝛼538 < 𝛼1.6=&8). In 

contrast to previous findings, the higher rate and stationary variance of climatic niche evolution 

for dry seeds matched our original hypothesis (Vasconcelos et al. 2021). This is to be expected 

because abiotically dispersed seeds are likely to be more erratic in their dispersal patterns 

(Schupp 1993; Westoby et al. 1996). Additionally, that our results differ from previous findings 

(Vasconcelos et al. 2021) suggests that jointly modeling climatic niche evolution alongside fruit 

type changed our parameter estimation in a meaningful way.  

Our final hypothesis, which stated that fleshy, biotically dispersed, seeds are more likely 

to be associated with humid environments, was not supported. However, it has been suggested 

that a trade-off between seed persistence, seed size, and dispersal strategies can be also common 

in arid environments (Venable and Brown 1988; Nunes et al. 2017). Specifically, large seed size 

may occasionally help withstand unfavorable conditions associated with increased aridity (Nunes 

et al. 2017). With an increased seed size, biotic seed dispersal and fleshy fruits, may become 

necessary for seed dispersal. This may be the case for Styphelieae, which is distributed in the 

arid Australian heathland and, of all predominately fleshy-fruited groups, lies the furthest from 

the inferred aridity optima. Additionally, it has been found that the proportion of abiotically 

dispersed seeds increases as elevation increases, due to the decreasing availability of frugivores 

(Chapman et al. 2016). Given that several radiations of Ericaceae lineages are associated with 

montane habitats (Schwery et al. 2015), it may be that the distribution of dry and fleshy fruits are 

a consequence of elevation rather than being directly linked to climatic niche evolution. Finally, 

it has been noted Ericaceae lineages are often found in well-leached soils and epiphytic habitats 

(Schwery et al. 2015). If associations with soil type are more important than links to climatic 

optima, we may expect that fruit-dependent climatic optima are consequence of unmodeled 
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factors. Although our modeling explicitly considers hidden variables that may lead to rate 

heterogeny, if the proposed hidden variable (soil condition) is closely linked to our modeled 

variable (aridity), then we may not be able to detect the presence of hidden variation. This may 

be the case between soil condition and aridity (Moreno-Jiménez et al. 2019). 

Caveats and possible extensions 

There are three important caveats to our proposed modeling framework. First, our discrete 

mapping probability, 𝑃(𝐷, 𝑧|𝜗, 𝜓), is only an approximation. What we calculate is the 

probability of starting in a particular state 𝑖 and ending a particular state 𝑗, summed over all 

possible paths. However, the continuous model probability is based off a particular pathway 

history that is defined throughout the entire branch (Hansen 1997). Ultimately, this means that 

the underlying regimes are not treated identically for the continuous and discrete characters. The 

second caveat is that we do not force hOUwie to sum over all possible mappings 𝑧. This is 

because the number of mappings will grow exponentially as the number of nodes and internodes 

increases and the computation will quickly become infeasible (see Jones et al. 2020). Although 

this may not be entirely necessary since we have shown that only a small percentage of possible 

mappings contribute to the overall joint probability. Nonetheless, an ideal solution could be the 

use Markov-Modulated Ornstein-Uhlenbeck models (Huang et al. 2016) since this would remove 

the need for a regime mapping approach, but these have yet to be applied in phylogenetic 

comparative biology. hOUwie currently only deals with one discrete and one continuous trait at a 

time – a set of discrete traits can be handled by converting them to a single multistate character, 

but incorporating multiple continuous traits requires adding correlations between them. Finally, 

it is possible to extend hOUwie to include state-dependent speciation and extinction dynamics 

which have been shown to influence the distribution of discrete characters (Maddison 2006) and 
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would therefore influence continuous characters if the two were linked. However, this extension 

would require a different calculation of the underlying regime mapping probability. Approaches 

for stochastically mapping SSE models already exist (Freyman and Höhna 2019), so the largest 

remaining challenge of this extension would be generating high joint probability mappings. 

 

Conclusion 

The use of pre-defined discrete character mappings can be useful for testing hypotheses which 

rely on distinct, well-defined differences in the evolutionary histories of lineages. However, this 

approach assumes that the underlying mapping is known with complete accuracy and ignores the 

probabilistic nature of discrete regimes. hOUwie’s methodology integrates over the uncertainty 

of high probability character mappings and relies on the interpretation of parameter estimates 

from contrasting model structures to find evidence for hypotheses. Rather than assuming an a 

priori mapping, hOUwie can utilize the mutual information about the discrete and continuous 

characters to learn something about the underlying regimes evolution.  
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Appendix 

Table 1: A comparison of the effectiveness of the adaptive sampling procedure and standard 
discrete only sampling of maps. Regardless of the sampling procedure, all probabilities are 
calculated in the same way and so any differences in probabilities reflects each procedure’s 
ability to generate appropriate mappings. 50 stochastic mappings are used to calculate the 
likelihood of the parameters. For each model type, data are simulated following our methods 
with 𝑞(9 = 0.1, 𝛼! = 3, 𝛼" = 1.5, 𝜎!" = 0.35, 𝜎"" = 1, 𝜃! = 2, and	𝜃" = 0.75. The generating 
parameters are used to evaluate probability of each dataset and thus the probabilities represented 
here are not necessarily the same as those derived from the MLE. Generally, adaptive sampling 
improves the joint estimate by improving the probability of the continuous character and is most 
effective for variable 𝜃 models. As expected, discrete only sampling produces regime paintings 
which better reflect the discrete character than adaptive sampling, but the difference is minor. 
 

Model 
class 

Model type Sampling 
procedure 

Discrete marginal 
𝑙𝑜𝑔-	likelihood 

Continuous marginal 
𝑙𝑜𝑔-	likelihood 

Joint 𝑙𝑜𝑔- 
likelihood 

C
ID

+   

BMV  adaptive sampling -16.48 10.54 -10.59 
discrete only -16.43 9.19 -10.59 

OUA  adaptive sampling -15.46 44.34 25.14 
discrete only -15.53 43.11 24.96 

OUV adaptive sampling -30.89 47.86 12.17 
discrete only -30.14 46 12.11 

OUVA  adaptive sampling -11.88 36.91 21.14 
discrete only -11.17 36.27 21.08 

OUM adaptive sampling -11.94 57.57 39.08 
discrete only -11.19 53.56 32.21 

OUMA adaptive sampling -9.94 35.01 17.39 
discrete only -9.38 2.19 -20.48 

OUMV adaptive sampling -19.96 20.77 -15.64 
discrete only -14.76 -2.92 -25.83 

OUMVA adaptive sampling -13.91 25.47 7.48 
discrete only -13.23 26.36 4.48 

OUBM1 adaptive sampling -14.26 42.2 24.39 
discrete only -14.88 40.89 24.22 

OUBMV adaptive sampling -19.17 49.1 18.84 
discrete only -19.01 33.45 7.71 
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Table 2: The average accuracy of hOUwie parameter estimates across several model classes and 
types as measured by root-mean-square error (RMSE). RMSE is calculated for each model type 
by taking the square root of the mean squared error (MSE), where MSE is the average squared 
difference between the MLE and the simulating parameters. Data is generated with 𝑞(9 =
0.1, 𝛼! = 3, 𝛼" = 1.5, 𝜎!" = 0.35, 𝜎"" = 1, 𝜃! = 2, and	𝜃" = 0.75, and for phylogenies with 25, 
100, and 250 taxa. Finally, model fits use either 25, 100, or 250 stochastic maps per likelihood 
iteration. The table shown here calculates RMSE integrating over all phylogenetic tree sizes and 
number of stochastic maps (n=8217). Dashes indicate a parameter that is not estimated for a 
given model type. Generally, character independent (CID+) models had higher errors than 
character dependent (CD) models. The greatest errors occurred when estimating alpha in variable 
alpha models for both CD and CID+ model classes. Estimates of the optimum and transition 
rates generally had the lowest errors. 
 

Model 
class 

Model 
type 

RMSE 
𝑞 

RMSE 
𝛼! 

RMSE 
𝛼" 

RMSE 
𝜎!" 

RMSE 
𝜎"" 

RMSE 
𝜃! 

RMSE 
𝜃" 

C
D

 

BMV 0.12 - - 0.1 0.28 0.22 - 
OUV 0.11 1.27 - 0.15 0.33 0.05 - 
OUA 0.12 1.55 1.63 0.11 - 0.06 - 
OUM 0.13 1.49 - 0.1 - 0.07 0.13 
OUVA 0.09 1.44 1.11 0.14 0.98 0.06 - 
OUMV 0.16 1.82 - 0.16 0.32 0.07 0.17 
OUMA 0.15 2.11 2.48 0.28 - 0.12 0.5 
OUMVA 0.18 1.62 1.12 0.12 1.07 0.76 1.06 
OUBM1 0.1 2.64 - 0.08 - 0.08 - 
OUBMV 0.09 2.29 - 0.13 2.37 0.08 - 

C
ID

+ 

BMV 0.05 - - 0.27 10.11 0.24 - 
OUV 0.04 1.13 - 0.32 1.83 0.05 - 
OUA 0.05 2.93 1.34 0.33 - 0.07 - 
OUM 0.09 2.53 - 0.15 - 0.44 0.2 
OUVA 0.05 1.26 1.11 0.27 13.44 0.07 - 
OUMV 0.1 2.5 - 0.16 2.12 1.3 0.68 
OUMA 0.05 8.28 1.27 0.23 - 5.88 0.8 
OUMVA 0.07 5.54 1.24 0.2 9.37 8.76 1.35 
OUBM1 0.05 3.33 - 0.32 - 0.14 - 
OUBMV 0.05 3.5 - 0.27 8.79 0.14 - 
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Table 3: AIC weights summarizing the average support for each model class when they are the 
generating model. Data is generated with 𝑞(9 = 0.1, 𝛼! = 3, 𝛼" = 1.5, 𝜎!" = 0.35, 𝜎"" = 1, 𝜃! =
2, and	𝜃" = 0.75 for phylogenies with 25, 100, and 250 taxa and model fits using either 25, 100, 
or 250 stochastic maps per likelihood iteration. When the generating model class is character 
dependent (CD) or character independent (CID+) we expect that the AICwt will be highest for 
that model when fit. Character dependent models generally show that pattern, however CID+ 
models generally perform poorly. An additional concern is datasets simulated by a character 
independent model with rate heterogeneity (datasets generated by a CID+ model) are best fit by 
CD models – which would be a spurious correlation. Although there was often some signal of 
character dependence in these models (AICwt of CD when CID+ is generating), most of the AIC 
weight was for simple character independent models (BM1 or OU1). 
 

Generating 
model class 

Generating 
model type 

AICwt 
of BM1 

AICwt 
of OU1 

AICwt 
of CD 

AICwt 
of CID+ 

Proportion 
generating model 
chosen as best  

C
D

 

BMV 0.18 0.17 0.64 0.02 0.62 
OUV 0.03 0.22 0.74 0.02 0.73 
OUA 0.07 0.56 0.31 0.06 0.15 
OUM 0.04 0.02 0.9 0.04 0.92 
OUVA 0.04 0.21 0.7 0.06 0.7 
OUMV 0.02 0.02 0.93 0.03 0.95 
OUMA 0.12 0.15 0.64 0.09 0.66 
OUMVA 0.05 0.13 0.76 0.06 0.76 
OUBM1 0.19 0.58 0.13 0.1 0.08 
OUBMV 0.07 0.2 0.71 0.02 0.73 

C
ID

+ 

BMV 0.36 0.28 0.33 0.03 0.01 
OUV 0.04 0.49 0.43 0.04 0.01 
OUA 0.06 0.56 0.37 0.02 0 
OUM 0.21 0.09 0.03 0.67 0.71 
OUVA 0.07 0.55 0.35 0.04 0.03 
OUMV 0.24 0.19 0.14 0.44 0.44 
OUMA 0.41 0.4 0.13 0.06 0.06 
OUMVA 0.24 0.39 0.21 0.16 0.15 
OUBM1 0.24 0.55 0.16 0.05 0.01 
OUBMV 0.23 0.37 0.3 0.1 0.08 
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Table 4: Average AIC weight as the number of taxa increases for each model class. Colored 
cells indicate the AIC weight of the generating model class. In general, as the number of taxa 
increases the average support for the generating model class increases. 
 

Generating 
model class 

nTaxa AICwt BM1 AICwt OU1 AICwt CD AICwt CID+ 

C
D

 25 0.12 0.22 0.51 0.15 
100 0.06 0.22 0.7 0.02 
250 0.02 0.14 0.82 0.02 

C
ID

+ 25 0.28 0.35 0.24 0.14 
100 0.21 0.4 0.23 0.15 
250 0.11 0.34 0.32 0.22 
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Table 5: Modeling results from the 25 models fit to Ericaceae aridity index and fruit type data. 
Model classes are character independent without rate heterogeneity (CID), character dependence 
(CD), character independence with rate heterogeneity (CID+), and mixed character dependent 
and character independence (HYB). Character dependent models suggest that climatic niche 
evolution will be linked to the fruit type. We found substantial support for OUVA (variable 𝜎" 
and 𝛼) and OUMVA (variable 𝜎", 𝛼, and 𝜃) models. np is the number of freely estimated 
parameters. lnLik is the joint likelihood of the MLE. DiscLik and ContLik are the marginal 
likelihood of the discrete and continuous datasets respectively, given the maximum joint 
likelihood estimate of the parameters. AIC is the Akaike information criterion, DAIC is the 
difference from the best fit model measured as the difference between each model’s AIC, and 
AICwt is the relative support for each model. 
 

Model class Model type np lnLik DiscLik ContLik AIC DAIC AICwt 

C
ID

 BM1 4 -243.89 -32.62 -206.67 495.78 39.07 0 
OU1 5 -225.5 -32.62 -188.28 461.01 4.3 0.05 

C
D

 

BMV 5 -243.78 -32.62 -207.08 497.56 40.85 0 
OUV 6 -225.49 -32.62 -188.47 462.98 6.27 0.02 
OUA 6 -224.95 -32.58 -189.48 461.9 5.19 0.03 
OUM 6 -224.12 -32.57 -187.79 460.24 3.53 0.07 
OUVA 7 -221.62 -32.58 -184.44 457.24 0.53 0.32 
OUMV 7 -224.05 -32.62 -188.15 462.1 5.39 0.03 
OUMA 7 -223.21 -32.58 -187.97 460.42 3.71 0.06 
OUMVA 8 -220.35 -32.6 -183.27 456.71 0 0.41 
OUBM1 5 -243.84 -32.57 -206.67 497.68 40.97 0 
OUBMV 6 -243.79 -32.61 -206.99 499.57 42.87 0 

C
ID

+ 

BMV 7 -244.8 -33.11 -205.78 503.59 46.89 0 
OUV 8 -228.77 -32.98 -190.16 473.55 16.84 0 
OUA 8 -226.42 -33.17 -188.53 468.84 12.13 0 
OUM 8 -226.43 -33.32 -189.07 468.87 12.16 0 
OUVA 9 -244.38 -33.43 -202.12 506.76 50.05 0 
OUMV 9 -225.2 -33.39 -182.88 468.39 11.68 0 
OUMA 9 -225.57 -32.68 -189.92 469.14 12.43 0 
OUMVA 10 -227.39 -33.13 -185.15 474.79 18.08 0 
OUBM1 7 -244.44 -33.16 -206.67 502.88 46.17 0 
OUBMV 8 -225.58 -32.71 -186.58 467.17 10.46 0 

H
Y

B
 BMS 9 -244.46 -33.08 -204.83 506.93 50.22 0 

OUM 10 -224.12 -32.67 -188.99 468.23 11.52 0 
OUMVA 16 -226.56 -33.03 -179.11 485.13 28.42 0 
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Table 6: Model averaged parameter estimates and standard errors for Ericaceae aridity index and 
fruit type data. Models with higher AIC weights contribute more overall to the parameter values. 

The units for 𝛼, 𝜎", and 𝜃 are V
VWF

 ÷ 𝑡𝑖𝑚𝑒, B V
VWF

E
"
, and V

VWF
 respectively. Where P is the average 

annual precipitation and PET is average annual potential evapotranspiration. Rates of 𝑞 are 
measured in transitions per million years.  
 

Continuous parameter estimates Discrete parameter estimates  𝛼 𝜎" 𝜃 

Dry 0.015 
(±0.0059) 

0.011 
(±0.0043) 

0.97 
(±0.011) 

𝑞#$%	'(	)*+,-% 0.0015 
(±0.00058) 

Fleshy 0.023 
(±0.011) 

0.007 
(±0.002) 

0.81 
(±0.28) 

𝑞)*+,-%	'(	#$% 00036 
(±0.000086) 
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Figure 1. A state-transition diagram describing the model classes allowable in hOUwie. Each 
panel is comprised of observed discrete states 0 and 1 with possible hidden states A and B. 
Transitions between states are described with the 𝑞 parameter. Continuous model parameters 
appear in a box below the states they describe, and their association is displayed with a subscript 
specific to that state. a) A simple character independent model in which the two observed states 
do not influence the continuous character which will have the same 𝜃, 𝜎", 𝛼 throughout the 
phylogeny. b) A character dependent model in which the continuous character depends on the 
discrete character by virtue of 𝜃, 𝜎", 𝛼 being associated with a particular observed discrete state. 
c) A character independent model with rate heterogeneity. The two observed states (0 and 1) are 
not directly linked to the continuous character. However, the continuous character is still allowed 
to have multiple  𝜃, 𝜎", 𝛼 describing its evolution, but these parameters are associated with 
hidden states A and B. d) A hybrid model in which each combined observed and hidden state is 
allowed to have its own 𝜃, 𝜎", 𝛼. Under this model, the continuous character is linked to both 
character dependent differences (parameters associated with 0 and 1) and character independent 
differences (A and B). 
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Figure 2. A visual representation of binary discrete character hOUwie model types. Discrete 
time forward simulations are conducted starting in the red state and the distribution of the 
continuous character is plotted on the right as a histogram and density plot. Each line represents 
a continuous character value at some time. Transitions occur at colored points and each line is 
colored by the current discrete state. 100 time-steps are simulated with the same parameters as 
our simulation study (𝑞(9 = 0.1, 𝛼! = 3, 𝛼" = 1.5, 𝜎!" = 0.35, 𝜎"" = 1, 𝜃! = 2, and	𝜃" = 0.75). 
The highlighted line was randomly chosen from the set in which at least one discrete state 
transition occurred.  
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Figure 3. A visual representation of the algorithm underlying the calculation of conditional node 
probabilities and the adaptive sampling procedure. The goal of the procedure is to produce 
underlying regime paintings well suited to both the discrete and continuous character. a) select 
the focal node for which we will be calculating the joint conditional probabilities of the discrete 
and continuous characters. b) on each side of the node we select a pair of tips. c) the conditional 
probability of the observed discrete and continuous character is calculated for each discrete 
regime state with an ancestral continuous value equal to 𝜃 of that regime state. d) the conditional 
probability of the focal node is calculated as the average probability of each regime state for all 
pairs of observed tips. e) the conditional probabilities are calculated for all internal nodes. This 
can be turned off within hOUwie by setting the sample_nodes argument to false. f) A stochastic 
map is generating using forward simulation rejection sampling. g) adaptive sampling uses the 
highest joint probability of previously generated underling regimes to generate a set of ancestral 
continuous character values. This differs from previous ancestral values because instead of 
assuming the value 𝜃 for each regime state, it calculates the expected value given the root state 
and regime mapping for that particular node. h) we repeat steps d) through g) until the joint 
likelihood of the set of underlying regimes does not improve.  
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Figure 4. Overlapping histograms comparing the effectiveness of the adaptive sampling 
procedure (blue) and standard discrete only sampling (red) of maps. Regardless of the sampling 
procedure, all probabilities are calculated in the same way and so any differences in probabilities 
reflects each procedure’s ability to generate appropriate mappings. 50 stochastic mappings are 
used to calculate the likelihood of the parameters. For each model type, data are simulated 
following our methods with 𝑞(9 = 0.1, 𝛼! = 3, 𝛼" = 1.5, 𝜎!" = 0.35, 𝜎"" = 1, 𝜃! = 2, and	𝜃" =
0.75. Dashed line likelihood under generating map.  
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Figure 5. The raw difference of the maximum likelihood parameter estimates and the generating 
values depending on the a) model type, b) number of taxa in the dataset, and c) number of 
stochastic maps per iteration of the likelihood search. Generally, variable alpha models had the 
highest biases with alpha being consistently underestimated. As the number of taxa increased, 
estimation of CD model parameters was estimated with less error. The number of maps per 
iteration had the greatest effect on character independent models with rate heterogeneity.  
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Figure 6. AIC weights summarizing the average support for particular model classes and model 
type when they are the generating model. Headings indicate the generating model type and 
model class. Data was generated with 𝑞(9 = 0.1, 𝛼! = 3, 𝛼" = 1.5, 𝜎!" = 0.35, 𝜎"" = 1, 𝜃! =
2, and	𝜃" = 0.75 for phylogenies with 25, 100, and 250 taxa and model fits using either 25, 100, 
or 250 stochastic maps per likelihood iteration. When the generating model class is character 
dependent (CD) or character independent (CID+) we expect that the AICwt will be highest for 
that model when fit.  
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Figure 7. a) Ericaceae phylogeny for which we had data (n=309). b) Ln aridity index dataset 
where each bar is colored by dry (brown) and fleshy (green) fruit type. c) Model averaged 
parameter estimates with standard error calculated from 100 parametric bootstraps.  
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CHAPTER IV 

Long-term responses of life-history strategies to climatic variability in flowering plants 

James Boyko, Eric Hagen, Jeremy Beaulieu, and Thais Vasconcelos 

 

Abstract 

Understanding the evolution of life history strategies within flowering plants is a long-standing 

goal in evolutionary biology. Increasingly, biologists have sought to explain the distribution of 

annuals and perennials based on their association with broad climatic variables such as 

temperature or precipitation. However, these efforts have focused on specific clades or 

geographic areas and, due to methodological limitations, have not allowed joint modeling the 

evolution of both climatic niches and life history strategies. Here, we combine data on life 

history strategy and geographic distribution for 9,993 flowering plant species and a recently 

developed modeling framework which accounts for rate heterogeneity and joint evolution of 

continuous and discrete traits to evaluate two hypotheses: (1) that annuals tend to evolve in 

highly seasonal regions prone to extreme heat and drought, because they can rapidly take 

advantage of short beneficial climatic conditions for reproduction, and (2) that annuals tend to 

have faster rates of climatic niche evolution than perennials, due to their higher vagility and 

shorter generation times. Temperature, more specifically the temperature during the warmest 

season of a year, is the main climatic factor influencing the evolution of annual life history 

strategy in flowering plants. Annuals are favored in this type of climate due to their ability to 

escape heat stress as seeds, but they are outcompeted by perennials in regions where extreme 

heat is uncommon or inexistent. Precipitation and seasonality are less important factors, perhaps 

due the existence of alternative mechanisms for drought tolerance in perennial species.  
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Introduction 

Flowering plants have evolved into multiple types of life history strategies to survive 

environmental challenges (Grime 1977; Stearns 1992). For instance, resprouting plants can have 

underground systems to persist through fire and drought (e.g., Rando et al. 2016; Howard et al. 

2019) and large trees can become deciduous or have scales to protect their growing buds during 

freezing conditions (Raunkiaer 1934; Edwards et al. 2017). Other plants have increasingly 

shortened their life cycles so that germination, fertilization, and seed release all happen through 

the favorable season of a single year, allowing their progeny to live through unfavorable seasonal 

weather as seeds (Mulroy and Rundel 1977). The latter describes the life history strategy of 

annual plants, which are semelparous (i.e., reproduce just once before death; Stearns 1992). This 

is opposite to the vast majority of flowering plant species, which are mostly iteroparous (i.e., 

reproduce multiple times and in multiple years) and are characterized by a perennial life history 

strategy with adaptations to survive an indefinite number of unfavorable seasons as sporophytes 

(plants) rather than gametophytes (seeds for angiosperms and gymnosperms; Raunkiaer 1934; 

Friedman 2020).  

Botanists have long been interested in finding environmental correlates associated with 

the evolution of different life history strategies in flowering plants because species with annual 

and perennial strategies are unevenly distributed across the globe (Figure 1; Raunkiaer 1934; 

Ricklefs and Renner 1994; Friedman 2020). The distribution of perennials is nonlinear, as they 

are disproportionately diverse both in areas where freezing is constant, such as higher latitudes 

and alpine habitats (Billings and Mooney 1968; Givnish 2015), and in areas with warmer tropical 

climates (Grime 1977). On the other hand, annuals compose the greatest proportion of the flora 

in mid-latitude areas subject to prolonged drought, such as desert and Mediterranean habitats 
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(Mulroy and Rundel 1977). Though annuals are considerably less common than perennials 

across the angiosperm tree of life (Friedman 2020), they can represent over 50% of the floristic 

diversity in some of these regions (Figure 1b; Raunkiaer 1934).  

Although the uneven distribution in the proportion of different life forms across the globe 

has long been recognized (Raunkiaer 1934; Stebbins 1974; Grime 1977; Friedman 2020), 

botanists still debate the relative importance of the historical drivers of this pattern, with special 

focus on the role of climate. For instance, according to the theory of life history strategies in 

plants, annuals are more likely to evolve where climate is seasonal because the annual strategy 

allows for rapid responses to short-lived favorable climatic conditions beneficial to reproduction 

(Cole 1954; Friedman 2020). Support for this has been found in clades typical of Mediterranean 

habitats, such as Heliophila (Brassicaceae) in Africa (Monroe et al. 2019), Bellis (Asteraceae) in 

Europe (Fiz et al. 2002), and in grasses (Poaceae) (Humphreys and Linder 2013). Others have 

argued that evolution of the annual life form is linked to occupation of generally warmer 

environments (Stearns 1992), and support for this has been found in temperate clades such as 

Montiaceae (Ogburn and Edwards 2015). Similarly, annuals would be excluded from alpine 

environments where frost is common due to high seedling mortality (Givnish, 2015). Finally, 

some have argued that both temperature and precipitation combined, as well as their seasonality 

throughout the year, are relevant in explaining the evolution of different strategies, as has been 

shown in Oenothera (Onagraceae) (Evans et al. 2005). In other words, temperature (particularly 

extremes of heat and frost), precipitation (especially drought), and seasonality have all been 

found to influence evolutionary transitions between annual and perennial strategies within 

flowering plants. However, studies have so far focused on specific clades or geographic areas, 
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and it is unclear which patterns are general enough to hold when multiple clades are considered 

in the same analytical framework.  

In addition to low generality, previous work has paid insufficient attention to how the 

rates and directions of climatic niche evolution differ between clades possessing different life 

history strategies. Whereas the different life history strategies likely evolved in response to 

particular climatic pressures, they may also impact long term biogeographical patterns of 

lineages evolving under them. For example, the evolution of the annual habit is linked to a series 

of traits associated with securing reproduction and increased vagility, like selfing (Stebbins 

1950; Aarssen 2000) and relatively high investment in seed production (Friedman 2020). For 

those reasons, annuals are considered to be generally good invaders (Pannell et al. 2015; Linder 

et al. 2018), a generalization supported by the observation that many of the worst invasive plants 

in the world are annuals (Holzmueller and Jose 2009). Furthermore, phenotypic evolution may 

be faster in annuals than in perennials due to their generally shorter generation times (e.g., Smith 

and Beaulieu 2009), which could make them able to adapt more quickly to changing 

environmental conditions (Andreasen and Baldwin 2001).  

Here, we assess the dialectical relationship between climatic factors and the evolution of 

life history strategies in flowering plants. To that end, we apply recent theoretical developments 

in trait evolution models (Chapter III) to explicitly incorporate the impact of climatic niche 

variation on the evolution of life history strategies. We account for the heterogeneity of 

evolutionary histories in flowering plants and the habitats associated with them by analyzing a 

broad sample of clades where multiple transitions between annual and perennial strategies are 

observed. Two specific hypotheses are addressed: (1) annuals tend to evolve in warmer and drier 

climates, or where seasonality is stronger, more often than perennials; and (2) annuals tend to 
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have faster rates of climatic niche evolution than perennials, because of their higher invasibility 

and shorter generation times. We expect to find mixed support for our hypotheses due to clade 

specific evolutionary patterns. Some clades will undoubtedly have more heterogeneity in 

transition rates between life history strategies, whereas other clades may have exclusively 

unidirectional transitions, and yet others may have no heterogeneity at all. However, due to our 

large dataset and the ability to account for rate heterogeneity in our model, we expect that we can 

illuminate the generalities of the long-term responses of life-history strategies to climatic 

variability in flowering plants. 

 

Methods 

Phylogenetic and life history datasets 

To build a dataset of life history strategies for a set of flowering plant clades, we used the recent 

release of the World Checklist of Vascular Plants dataset (WCVP, 2022*; note: this data is part 

of a dataset to be officially released in November 2022. The dataset was made available for 

manuscripts that are part of a New Phytologist special issue to be published in 2023), which 

includes life form data following the Raunkiaer (1934) system. The Raunkiaer system classifies 

different life history strategies in flowering plants based on the position of the buds in relation to 

the soil at the end of the growing season and on how plants protect growing buds during the 

unfavorable seasons. We scored as “annuals” all species marked as “Therophytes” (including 

combinations such as “Climbing therophyte” and “Semiaquatic therophyte”) or “Biennials” in 

the WCVP dataset. All other life forms, such as “Cryptophytes”, “Nanophanerophytes”, and 

“Phanerophytes”, were scored as “perennials”.  
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Following this scoring, the proportion of “annuals” to “perennials” in the WCVP dataset 

is around 1:5. In other words, annual plants are considerably less common than perennials and 

therefore it is more common to find clades where all species are perennials than clades where 

evolutionary transitions between annual and perennial strategies are observed. However, we 

restricted our set of clades to groups that presented multiple evolutionary transitions between 

different life history strategies. Selecting only groups where both life history states are present is 

not the ideal scenario, because excluding groups consisting only of perennials may bias our view 

of how different life histories and climatic niches impact each other across evolutionary time. On 

the other hand, our analytical framework accounts for hidden heterogeneity that would come 

from a character independent continuous trait evolution, partially mitigating this source of bias.  

The set of clades selected for our analyses is not restricted to a single taxonomic rank and 

includes any clade that matched the criteria: (1) both annuals and perennial strategies are 

observed; (2) time calibrated phylogenetic tree is available in the literature; and (3) phylogenetic 

tree includes from c. 50 to c. 1000 tips and at least 10% of the known species diversity assigned 

to that clade. The clades selected were: the families Balsaminaceae (Rose et al. 2018), 

Gesneriaceae (Roalson and Roberts 2016), Onagraceae (Freyman and Höhna 2019), 

Orobanchaceae (Schneider and Moore 2017), Polemoniaceae (Rose et al., 2018), and Solanaceae 

(Särkinen et al. 2013). The Malvaceae subfamilies Eumalvoideae and Grewioideae (Hoorn et al. 

2019), the Apiaceae subfamily Apioideae (Banasiak et al. 2013), the Poaceae subfamilies 

Pooideae and Panicoideae (Spriggs et al. 2014), and the Primulaceae subfamily Primuloideae (de 

Vos et al. 2014). The Asteraceae tribe Cardueae (Park and Potter 2015), the Brassicaceae tribes 

Alysseae, Arabideae, Brassiceae, Cardamineae, Chorisporeae, Erysimeae, Euclidieae, 

Heliophileae, Lepidieae, Thelypodieae (Huang et al. 2020) and Cremolobeae, Eudemeae, and 
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Schizopetaleae (“CES-clade”; Salariato et al. 2016), the Plantaginaceae tribe Antirrhineae 

(Gorospe et al. 2020), the Primulaceae tribe Lysimachieae (Yan et al. 2018),  the Rubiaceae 

tribes Rubieae and Spermacoceae (Neupane et al. 2017; Ehrendorfer et al. 2018). The genera 

Chamaecrista (Fabaceae, Vasconcelos et al. 2020). Croton (Euphorbiaceae, Arévalo et al. 2017),  

Hypericum (Hypericaceae, Nürk et al. 2013), Lupinus (Fabaceae, Drummond et al. 2012) and 

Salvia (Lamiaceae, Kriebel et al. 2020). All clades combined sum 33 phylogenetic trees and 

9,993 tips and lineages are distributed globally. We also completed the life form scoring by 

adding data collected from the literature, so that each clade had a maximum of 30% missing data.  

Distribution points and climatic data 

We standardized all species names in the 33 phylogenetic trees following the GBIF taxonomic 

backbone with the R packages taxize (Chamberlain and Szöcs 2013) and downloaded occurrence 

points that had preserved specimens associated with them using functions of the R package rgbif 

(Chamberlain and Boettiger 2017), resulting in a dataset of 3,158,632 occurrence points. This 

dataset was filtered according to the native distribution range of genera and species using the 

shapefiles of the Working Group on Taxonomic Databases for Plant Sciences (TDWG) for level 

3 botanical countries (Brummitt et al. 2001) combined with the WCVP dataset. This filtering was 

particularly important to exclude the invasive range of several species, keeping only native 

ranges according to the expertise of taxonomists. Other irregularities such as points in the sea, 

outliers, duplicated coordinates for the same species and centroids of countries were also 

removed using a similar protocol as Vasconcelos et al. (2021). 

Based on our hypotheses, and because there is no consensus in the literature of what type 

of climatic variables correlate with evolutionary transition of annual and perennial strategies, we 

used the climate data from CHELSA (Climatologies at high resolution for the earth’s land 
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surface areas; Karger et al. 2017). In total, eight climatic variables divided into three groupings 

were tested (Table 1): (1) mean variables, including BIO 1: Mean Annual Temperature (MAT), 

BIO 12: Mean Annual Precipitation (MAP) and Aridity Index (AI; the higher the more humid); 

(2) seasonality variables, including BIO 4: Temperature Seasonality and BIO15: Precipitation 

Seasonality; and (3) variables associated with climatic extremes, including BIO17: Precipitation 

of Driest Quarter (drought), BIO5: Maximum Temperature of the Warmest Month (heat) and 

BIO6: Minimum Temperature of the Coldest Month (freezing conditions). All variables were 

analyzed in their finer scale of 30arc sec (1km in the equator?). To summarize climatic data for 

each species, we used functions of the R packages sp and rasters (Bivand et al. 2008; Hijmans et 

al. 2015) to extract a value for each filtered occurrence point based on the climatic layers we 

assembled. To mitigate the impact of collecting bias, we filtered these points so that no more 

than one occurrence point for every 1 x 1 degree cell for each species was included. The value of 

each remaining point was then log transformed and used to calculate mean and within species 

variance (Labra et al. 2009) for each species, which was used as error measurement in 

downstream analyses.  

Trait evolution analyses  

Our analysis is conducted with two complementary goals in mind. First, we wish to accurately 

model the potential link between climatic niche evolution and life history characters within each 

of our 33 clades. This is done by fitting a set of 10 hOUwie models with 50 stochastic mappings 

per iteration and adaptive sampling enabled. hOUwie is a recently developed model which 

explicitly models the joint evolution of discrete and continuous characters (Chapter III). Each of 

the fitted model structures can be parameterized such that it is either character dependent or 

character independent. Character dependent models test for an explicit difference in climatic 



 132 

niche evolution between annual and perennial lineages whereas character independent model 

structures assume no difference. Furthermore, several models have a mixture of character 

dependent and independent processes, allowing some differences between parameters to depend 

on life-history and other parameters to be fixed as equal. Finally, we include character 

independent models which allow for trait-independent rate heterogeneity. These types of models 

have been shown to be important as robust null hypotheses and to account for the possibility that 

our model selection without HMIMs would be biased towards correlation as a consequence of 

detecting rate heterogeneity without true correlation (Chapter II). In the context of this study, 

these models account for the fact that climatic niche evolution is likely to be variable throughout 

the phylogeny regardless of potential correlation with life-history. 

The parameters we allow to vary in our model are rates of transition between annual and 

perennial (𝑞), the phenotypic optima of the climatic niche (𝜃), and the rate of climatic niche 

evolution (𝜎"). We conduct model averaging and compare several parameter estimates within 

hOUwie to test for: (1) a relationship between climatic optima and life history strategy (𝜃), and 

(2) whether evolutionary rates of annuals are greater for annuals than perennials across all 

climatic variables (𝜎"). The differences between these climatic niche optima of annuals and 

perennials are expected to depend on the particular climatic variable being modeled (Table 1). 

For each clade, we test whether there is a signal of correlation between the climatic variable and 

life history strategy by examining the differences between parameter estimates.  

To determine the model averaged parameter estimates we first reconstructed the 

probabilities of each tip state. This step is done for every fitted model and is necessary because 

the potential inclusion of hidden states means that there may be additional uncertainty in the tip 

states. Second, we multiply the probability of each tip state by the parameter value associated 
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with that state. In the case of character independence, the parameter value associated with the 

observed tip states will always be the same. This step leaves us with a set of parameter values for 

each extant tip. Finally, we conduct model averaging by weighting each tip’s parameter values 

by the AIC weight of the model fit it is associated with. These tip values are then categorized as 

either annual or perennial and the mean of each discrete category is taken for each clade. We 

note that any differences in parameter estimates within a clade are significant since they 

represent parameter estimates from a model set. Each tip will always have the same observed 

state (unless explicitly coded as unknown), but their hidden state may differ. Thus, all estimated 

parameters are averaged over hidden rate classes based on the associated observed character and 

joint probability of the underlying regime.  

The second part of our analysis is conducted to test whether the associations we detect 

within clades are broadly consistent across clades. We use phylogenetic paired t-tests to assess 

whether model averaged parameter estimates associated with life history strategy are consistently 

different across clades (Revell 2012). We used the whole seed plant phylogeny based on 

molecular data from Smith and Brown (2018; “GBMB” tree) as a template to generate a 

backbone phylogeny that includes each of the 33 clades as individual tips (Figure 2a), using the 

R packages phangorn (Schliep 2011) and ape (Paradis et al. 2004) to prune out all other tips.  

 

Results 

Multi-clade analysis with hOUwie: model selection  

In general, we find a mix of support for character dependence and independence depending on 

both the clade and climatic variable being analyzed (Figure 2b). Certain clades, such as Lupinus 

and Pooideae, have consistent support for some form of character dependence, whereas other 
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clades, such as Orobanchaceae and Chamaecrista, show little correlation between life history 

strategy and climatic niche evolution. However, these patterns are only broad overviews and do 

not distinguish between in what way that the character dependent relationship exists (i.e., 

whether a clade finds support for a variable theta model and others a variable sigma model, but 

both cases are character dependent). What is shown in Figure 2 is the sum of the AIC weights for 

all models with some relationship between the parameters of climatic niche evolution and life 

history strategy. To determine whether our hypotheses are supported by the modeling results, we 

examine the model averaged parameter estimates for annual and perennial lineages.  

First, we outline the difference in estimates related to long term average temperature, 

precipitation, and aridity. For BIO1 (Table S1), the difference in climatic optima ranged from 

12.4 degrees Celsius (°C) higher in annuals in Gesneriaceae to 7.37°C higher in perennials in 

Croton. All clades but Apioideae, Grewioideae, Solanaceae, Hypericum, Primulaceae, 

Balsaminaceae, and Croton had a pattern of higher temperature θannuals than θperennials. For BIO12 

(Table S5), the difference in climatic optima ranged from 492.1mm more precipitation in annuals 

in Gesneriaceae to 3601mm more precipitation in perennials in Polemoniaceae. All clades but 

Gesneriaceae, Chamaecrista, Spermacoceae, Thelypodieae, Brassiceae, Orobanchaceae, 

Lysimachieae, Cardamineae, and Lepidieae had a pattern of higher precipitation in θperennials than 

θannuals. Finally, for AI (Table S8), the difference in climatic optima ranged from 930.5AI more 

humid in annual habitats in Thelypodieae to 834131.9AI more humid in perennial habitats in 

Lupinus. Lupinus was clearly an outlier in θannuals for humidity, the next closest difference was 

for Polemoniaceae with 8954.6AI more humidity in perennials. Nonetheless, all clades but 

Thelypodieae, Brassiceae, Spermacoceae, Orobanchaceae, and Gesneriaceae showed a higher 

humidity optima for θperennials than θannuals.  
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Next, we outline the difference in estimates related to temperature and precipitation 

seasonality. For BIO4 (Table S2), and excluding outliers, the difference in climatic optima 

ranged from 660.9°C standard deviations higher in annuals in Lupinus to 31.6°C standard 

deviations higher in perennials in Spermacoceae. All clades but Cardamineae, Gesneriaceae, 

Rubieae, Cardueae, Chorisporeae, Orobanchaceae, and Spermacoceae had a pattern of greater 

temperature variability in annuals than perennials. For BIO15 (Table S7), the difference in 

climatic optima ranged from 27.8mm CV (coefficient of variation) more precipitation variation 

in annuals in Lupinus to 28.0mm CV more precipitation variability in perennials in Croton. All 

clades but Polemoniaceae, Primulaceae, Cardueae, Antirrhineae, Thelypodieae, Arabideae, 

Brassiceae, Apioideae, Orobanchaceae, Cardamineae, Erysimeae, and Croton had a pattern of 

more precipitation variability in annuals than perennials. 

 Finally, we outline the difference in the most extreme climatic conditions of a year as 

they are measured by temperature and precipitation. For BIO5 (Table S3), the difference in 

climatic optima ranged from 16°C higher max temperature in annuals in Chorisporeae to 0.28°C 

higher max temperature in perennials in Balsaminaceae. For BIO6 and ignoring outliers for 

which models failed to converge (Table S4), the difference in climatic optima ranged from 

6.87°C minimum temperature in annuals in Pooideae to 2.65°C minimum temperature in 

perennials Primulaceae. All clades but Polemoniaceae, Croton, Hypericum, Lepidieae, 

Onagraceae, Erysimeae, Grewioideae, Solanaceae, Primulaceae, Antirrhineae, and 

Balsaminaceae had a pattern of lower minimum temperature of the coldest months in perennials 

than annuals. For BIO14 (Table S6), the difference in climatic optima ranged from 2.39mm of 

precipitation during the driest month in annuals in Erysimeae to 32.4 mm of precipitation in the 

driest month in perennials in Hypericum. All clades but Erysimeae, Croton, Brassiceae, 
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Thelypodieae, CES, Apioideae, Lepidieae, Gesneriaceae, Lupinus, Orobanchaceae, and 

Cardamineae had a pattern of lower minimum precipitation of the driest months in annuals than 

perennials.  

 

General patterns: parameter estimates 

When averaging all models, phylo.t.test comparisons between parameter estimates show slight 

differences in sigma squared across all variables (Figure 3-5), but none of these differences were 

significant (phylo.t.test p > 0.05). Significant differences in climatic optima between annuals and 

perennials (θannuals ≠ θperennials) were observed for three out of the eight climatic variables 

analyzed (Figure 3): (1) mean annual temperature, where annuals tend to have higher values than 

perennials (θannuals > θperennials; phylo.t.test p = 0.01); (2) maximum temperature of the warmest 

month, where annuals tend to have higher values then perennials (θannuals > θperennials; phylo.t.test p 

< 0.001) and precipitation of the driest month, where annuals tend to have lower values than 

perennials  (θannuals < θperennials; phylo.t.test p = 0.01). Though some parameter values of other 

variables are coherent with our hypotheses, no significant differences between climatic optima of 

annuals and perennials were observed for mean annual precipitation, aridity index, minimum 

temperature of the coldest month and for none of the variables representing climatic seasonality 

(phylo.t.test p > 0.05).  

When looking at individual clades, the maximum temperature of the warmest month was 

the climatic variable where the strongest pattern was observed. For this variable, the only 

exception to the general pattern was Balsaminaceae (24.53°C in annuals, 24.82°C in perennials). 

Maximum difference in optima values is observed in the Brassicaceae tribes Chorisporeae (32°C 
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in annuals and 15.6°C in perennials), Euclidieae (27.59°C in annuals, 13.90°C in perennials), and 

Thelypodieae (32.79°C in annuals, 19.8°C in perennials).  

Transition rates tended to be higher for annuals to perennials (0.045-0.097 transitions per 

million years) than perennials to annuals (0.036-0.085 transitions per million years). We note 

that in cases where the discrete character was influenced by the continuous character (character 

dependent models), there is the potential for a great deal of variation in the ancestral state (Figure 

6). This is because, even though a purely discrete process may favor an entirely annual or 

perennial life history, when accounting for a reconstruction of the climatic niche, the most 

probable discrete state will depend on the continuous character distribution. For example, the 

ancestral state for Apioideae had a marginal probability of 99% annual when life history was 

reconstructed alongside the climatic optima for the warmest temperature of the hottest month, 

but a probability of 100% perennial when reconstructed alongside the optima for annual 

precipitation.  

 

Discussion 

Ancestral state reconstruction can be sensitive to climatic associations 

Although not directly related to our main hypotheses, our results challenge, as others have (e.g., 

Carlquist 1974; Baldwin 2007), the traditional idea that annuality is always a “derived” condition 

in flowering plants. In fact, for 13 out of 33 clades we analyzed, the root state was recovered as 

an “annual” life form with greater than 50% certainty and several transitions to perennial life 

form. This, in and of itself, is interesting, but we note that there was a great deal of variation in 

the ancestral state reconstruction depending on the particular climatic variable. Some clades such 

as Apioideae, Rubieae, or Balsamiaceae could be reconstructed with a highly certain annual state 
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or highly certain perennial state depending on the climatic variable being modeled. This 

highlight both the importance of joint modeling and the inherent uncertainty of reconstructing 

ancestral states. In cases where uncertainty was highest, the best supported model was often a 

character dependent model in which the phenotypic optima was allowed to vary (OUM). This 

stark difference occurs because the probability of the OU model can be quite sensitive to root 

states (Butler and King 2004; Ho and Ané 2014). Under an OU model, the influence of the root 

state decays through time in proportion to the strength of selection (Hansen 1997) and thus the 

selection of the root state can have a large impact on the model’s fit to the data.  

This also highlights the sensitivity of ancestral state reconstruction to the particular model 

and dataset being fit, especially when conducted independently of factors that may influence the 

evolution of a discrete character. Climate, for example, has been found to be an important factor 

influencing the evolution of many different discrete traits in plants, such as fruit type 

(Vasconcelos et al. 2021) and underground storage organs (Tribble et al. 2021). In that way, we 

show the importance of joint modeling to understand the evolution of discrete traits that respond 

to climate. This finding suggests that a multivariate extension of hOUwie, where several 

continuous characters are modeled simultaneously, could be important for correctly 

reconstructing ancestral states. Finally, it is important to note that the high amount of uncertainty 

depending on the bioclimatic variable was not the case for all character dependent models. 

Lupinus, Heilophileae, Solanaceae, Pooideae and other clades showed high amounts of support 

for character dependence and highly certain ancestral state reconstructions across all climiatic 

variables. This shows that there is also the potential of increasing the overall certainty of the 

reconstruction if both the discrete and continuous character had the same likely regime 

reconstructed at the root.  
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Annuals do not have faster rates of climatic niche evolution  

Previous literature point towards lineages with shorter generation times having faster rates of 

evolution (e.g., Mooers and Harvey 1994; Smith and Beaulieu 2009). We found that this is not 

the case for annuals, and there are some possible reasons for this. First, although annuals do tend 

to have a faster development in their post-germination phase (Grime, 1977; Friedman 2020), 

their generations are not necessarily shorter because annuals can also have relatively longer seed 

dormancy and can remain in the form of seeds for many years (Venable and Lawlor 1980; 

Nunney 2002; Kooyers 2015). In that way, their generation times can be in fact much longer in 

the pre-germination phase, leading to the incorrect assumption that the visible aboveground, 

post-germination phase represents the whole life cycle.  

Second, many annuals are self-compatible due to the necessity of guaranteed fertilization 

in a single reproductive event (Aarssen, 2000). Selfing has long been considered an evolutionary 

dead-end in plants (Stebbins, 1950) because inbreeding depression reduces genetic diversity of 

selfing populations, precluding adaptation to changing environments (Takebayashi and Morrell 

2001; Escobar et al. 2010; Shimizu and Tsuchimatsu 2015; but see Igic and Busch 2013) which 

may constraint rates of niche evolution in annuals despite their generally higher vagility. In areas 

of constant disturbance, such as in areas of anthropogenic influence, annuals will be favored due 

to their higher vagility and their short reproductive window between germination and seed 

dispersal (Grime, 1977). Though this may make them look like they are generally better 

invaders, they are poor competitors against perennials in more stable environments and thus are 

“confined” to habitats where heat is very extreme (Grime, 1977). 
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Lack of general rules for most variables, including seasonality and precipitation 

As the accessibility of data and methods to test trait evolution hypotheses using phylogenetic 

comparative frameworks increased, multiple studies have found that temperature, precipitation 

and seasonality variables are relevant in explaining the evolution of different life history 

strategies in plants (Fiz et al. 2002; Evans et al. 2005; Humphreys and Linder 2013; Ogburn and 

Edwards 2015; Monroe et al. 2019). Our results show that some of these previously documented 

patterns are clade or area specific, but do not hold as a generality across all flowering plants. For 

instance, we found no significant difference in optima values for mean annual precipitation and 

aridity index across all clades, and the lack of strong signal for drought as an important factor in 

the evolution of annual strategy was unanticipated. We did recover a significant difference 

between θannuals and θperennials for precipitation of the driest month (p < 0.05) with annuals tending 

to have a drier optimum, but this pattern was not observed in one third of the clades analyzed. 

The reason for this lack of strong correlation with precipitation may be the existence of other 

forms of compensatory mechanisms to deal with extreme drought in perennial plants. Several 

mechanisms of vegetative tolerance to desiccation have evolved in perennials, including, but not 

restricted to, changes in photosynthesis pathways (Ehleringer et al. 1991), presence of 

subterraneous structures (Howard et al., 2019), succulence of leaves and stems (Ogburn and 

Edwards, 2010), and senescence of photosynthesis structures during dry seasons (Munné-Bosch 

and Alegre 2004). In that way, evolutionary pathways to survive drought are diverse and 

evolving an annual lifestyle is not the sole mechanism to escape drought available for plants.  

A similar lack of significant association was found for all variables related to seasonality, 

and for minimum temperature of the coldest month, a variable associated with freezing 
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temperatures. In those cases, θannuals and θperennials are not significantly different from each other 

across all clades, meaning that there is little support for the role of these climatic variables as 

general rules governing how life history strategies evolve in plants. This suggests that the 

relevance of these variables to the evolution of life history strategies are probably clade specific 

and related to particularities of their geographical distributions. For example, in groups where 

species distribution varies from dry lowland to humid alpine environments, such as Lupinus 

(Drummond et al., 2012; Givnish, 2015) and the Brassicaeae tribe Arabideae (Koch et al. 2012), 

θperennials was found to be lower. In those cases, perennials may indeed be associated with a frost 

tolerance strategy, due to evenly distributed events of frost in mountains that lead to high 

seedling mortality in annuals (“winter by night and summer by day”; Givnish, 2015). However, 

in groups such as Balsaminaceae, Onagraceae, and Solanaceae, where their distribution ranges 

from tropical to temperate biomes (Wagner et al. 2007) and most perennial species are restricted 

to humid tropical forests where frost does not occur, annuals are the strategy found in areas 

where occasional events of frost are present, such as Mediterranean habitats (Pescador et al. 

2018). In that way, our results do not support these variables as strong generalities for the whole 

of flowering plants, but we also do not discard their importance in some groups, depending on 

their geographical distribution. 

Annual strategy as a heat avoidance mechanism 

The one constant pattern we found across almost all analyzed clades relates to their response to 

extreme heat. In 32 out of the 33 clades, we found θannuals to be consistently higher for maximum 

temperature of the warmest month. This points towards a generality in the way flowering plants 

evolve in response to survival in areas subject to extreme heat, where adult mortality is high and 

surviving as a seed through the hottest seasons may be an option (Angert et al. 2007; Venable 
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2007). Both annuals and perennials are probably equally sensitive to heat stress in their adult 

form (Raunkiaer 1934; Teskey et al. 2015), but annuals can evade the hottest season in the form 

of seed, which is one of the most resistant plant structures (e.g., Janzen 1984). Annuality then 

becomes a type of heat avoidance mechanism. 

In Impatiens (Balsaminaceae), the group that was constantly found to go against this 

general pattern, many of the annuals occur in temperate regions of North America, Europe, and 

Asia, whereas many perennials are native to the warmer tropical areas (Grey-Wilson 1980; 

Ruchisansakun et al. 2016). They are mainly summer annuals (i.e. complete their life cycle 

during the summer), in contrast to other species in our dataset which are winter annuals 

(complete life cycle during winter; e.g. Mulroy and Rundel, 1977). To our knowledge there is no 

list of species at a global scale that distinguish winter from summer annuals, nor are there any 

evolutionary studies comparing these two different types of life history strategies. However, we 

suspect the strong support for maximum temperature of the warmest month as an important 

variable means that most annuals, at least in our dataset, are likely to be summer annuals. That 

would be also consistent with the idea that Mediterranean and subtropical deserts, where 

summers are the most unfavorable season for plants, generally favor the evolution of annuals. 

From an evolutionary standpoint, this further supports the lack of alternative pathways for heat 

tolerance in vegetative structures in plants. This is a worrying scenario for most environments 

dominated by perennials, given that extreme heat and heat waves tend to become increasingly 

frequent (Teskey et al., 2015).  
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Conclusion 

This study provides the first broadscale analysis of life history strategy evolution in flowering 

plants in relation to their distribution across a climatic gradient. We show how multi-clade 

analyses can change previous ideas based on a few groups. As predicted, we found mixed 

support for most climatic variables tested due to clade-specific evolutionary patterns. However, 

this approach also allowed us to find at least one universality in the long-term responses of life 

history evolution in relation to climate. Temperature variables, especially extreme heat, were 

found to have a consistent effect in all clades, pointing towards a generality that the annual 

semelparous strategy probably often evolves as a mechanism of heat avoidance, possibly due to 

the lack of alternative evolutionary pathways to survive heat stress in plants. Finally, we also 

showed how climatic variables have a huge influence in the evolution of correlated discrete traits 

once a joint modeling approach is considered. Besides answering our research questions, this 

analysis also provides an example of how to use hOUwie for future users.  
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Appendix 

 
Table 1. Inequalities describing how expectations of climatic optima and variance will differ for 
each climatic variable. When θa > θp, we expect the climatic optima for that variable to be greater 
for annuals than perennials. When θa < θp, we expect the climatic optima for that variable to be 
greater for perennials than annuals. For all variables, we expect annuals to present higher rates of 
climatic niche evolution (σ2) for annuals than perennials.  
 

 Mean vars Seasonality vars Extreme vars 
 BIO1 BIO12 AI BIO4 BIO15 BIO5 BIO6 BIO14 

Estimated θ θa > θp θa < θp θa > θp θa > θp θa < θp 
Estimated σ2 σ2a > σ2p 

 

 

Figure 1. Global distribution of vascular plant diversity and proportion of annual plants. (a) 
Total species richness of vascular plants by botanical country according to the WCVP database 
(WCVP, 2022), and (b) Proportion of annual plants in relation to total species richness. Y-axis: 
longitude; x-axis: latitude.  
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Figure 2. a) the backbone phylogeny based on Smith and Brown (2018) pruned to include 
groups analyzed in this paper. b) Each square of the heat map represents the summed AIC weight 
of models which support some form of character dependence. These do not distinguish the type 
of character dependence, so support for an OUM model (variable optimum model) will be 
summed with support for an OUV model (variable rate model). The columns are broken into 
groups with by (1) mean: BIO1 = Annual Mean Temperature, BIO12 = Annual Precipitation, 
BIOAI = Aridity Index, (2) seasonality: BIO4 = Temperature Seasonality (standard deviation 
×100), BIO15 = Precipitation Seasonality (Coefficient of Variation), and (3) extreme season: 
BIO5 = Max Temperature of Warmest Month, BIO6 = Min Temperature of Coldest Month, 
BIO14 = Precipitation of Driest Month. 
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Figure 3. Each row represents a different measure of mean climatic niche. Model averaged 
parameter estimates for 𝜎" (left column) and 𝜃 (right column) for each given observed state 
(annual and perennial) averaged over all clades. Grey lines represent individual clade 
comparisons between estimates associated with each observed state. Foreground points are the 
mean values of each parameter estimate. 
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Figure 4. Each row represents a different measure of climatic variability. Model averaged 
parameter estimates for 𝜎" (left column) and 𝜃 (right column) for each given observed state 
(annual and perennial) averaged over all clades. Grey lines represent individual clade 
comparisons between estimates associated with each observed state. Foreground points are the 
mean values of each parameter estimate. 
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Figure 5. Each row represents a different measure of extreme climatic conditions. Model 
averaged parameter estimates for 𝜎" (left column) and 𝜃 (right column) for each given observed 
state (annual and perennial) averaged over all clades. Grey lines represent individual clade 
comparisons between estimates associated with each observed state. Foreground points are the 
mean values of each parameter estimate. 
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Figure 6. Probability of an annual root state averaged across all climatic variables. Error bars 
show the range of root probabilities depending on a given bioclimatic variable.  
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Table S1. Parameter estimates from the model averaged hOUwie fits for BIO1  
clade Group.1 rate alpha sigma.sq theta 
Alysseae annual 0.0438796 6.66380991 0.00122882 5.65231669 
Alysseae perennial 0.02477475 6.66380991 0.00160141 5.64680254 
Antirrhineae annual 0.02940751 0.04643861 2.65E-05 5.66873603 
Antirrhineae perennial 0.01245086 0.04643861 2.68E-05 5.66024456 
Apioideae annual 0.00058539 0.05740227 5.01E-05 5.64775307 
Apioideae perennial 0.03378897 0.05740227 5.02E-05 5.64775307 
Arabideae annual 0.10684912 1.52370347 0.00149364 5.63994426 
Arabideae perennial 0.14433569 1.52370347 0.0014937 5.62388522 
Balsamiaceae annual 0.01410781 0.15320731 6.99E-05 5.65668698 
Balsamiaceae perennial 0.01362342 0.15320731 6.99E-05 5.67899648 
Brassiceae annual 0.04331724 4.8301285 0.00194311 5.66307004 
Brassiceae perennial 0.01707056 4.8301285 0.00184615 5.66067065 
Cardamineae annual 0.05677185 1.11450045 0.00054358 5.65534687 
Cardamineae perennial 0.0285243 1.11450045 0.00122269 5.63275777 
Cardueae annual 0.07259066 0.0707443 3.76E-05 5.66395545 
Cardueae perennial 0.01356082 0.0707443 3.76E-05 5.63997566 
CES annual 0.08029827 0.33840208 8.23E-05 5.6497311 
CES perennial 0.02859758 0.33840208 8.09E-05 5.6289667 
Chamaecrista annual 0.08542555 0.36907315 1.65E-05 5.69291157 
Chamaecrista perennial 0.01174591 0.36907315 2.00E-05 5.69199213 
Chorisporeae annual 0.08315248 6.46759564 0.00136669 5.6556097 
Chorisporeae perennial 0.09301251 6.46759564 0.00438094 5.61525076 
Croton annual 0.0062452 0.08819602 1.65E-05 5.66504307 
Croton perennial 0.00428844 0.08819602 1.65E-05 5.69025885 
Erysimeae annual 0.05569405 4.2867926 0.00090283 5.64377249 
Erysimeae perennial 0.06482172 4.2867926 0.00245118 5.64349519 
Euclidieae annual 0.03000192 6.63279819 0.00924364 5.63957406 
Euclidieae perennial 0.04529422 6.63279819 0.00758932 5.6109697 
Eumalvoideae annual 0.03829349 0.04342246 1.84E-05 5.69024117 
Eumalvoideae perennial 0.01247766 0.04342246 2.30E-05 5.67821104 
Gesneriaceae annual 0.01125012 1.46E-06 7.05E-06 5.73938276 
Gesneriaceae perennial 0.00243141 1.46E-06 6.83E-06 5.69851976 
Grewioideae annual 0.01822188 0.02790307 5.30E-06 5.6894835 
Grewioideae perennial 0.00155572 0.02790307 5.65E-06 5.68949456 
Heliophileae annual 0.03667496 6.09150422 0.00024601 5.66884398 
Heliophileae perennial 0.02186931 6.09150422 0.00018783 5.66569729 
Hypericum annual 0.08537842 0.38584394 0.00015109 5.66297032 
Hypericum perennial 0.01726038 0.38584394 0.00015248 5.6635204 
Lepidieae annual 0.28073252 0.00872247 0.00048522 5.66117101 
Lepidieae perennial 0.21380198 0.00872247 3.37E-05 5.66116977 
Lupinus annual 0.02506642 0.01243178 1.55E-05 5.67202581 
Lupinus perennial 0.06983453 0.01243178 9.55E-05 5.6714866 
Lysimachieae annual 0.03527644 0.07063979 3.79E-05 5.67589926 
Lysimachieae perennial 0.02933563 0.07063979 3.90E-05 5.65429022 
Onagraceae annual 0.15590832 2.27618099 0.00176227 5.65971482 
Onagraceae perennial 0.12897585 2.27618099 0.00176195 5.65664412 
Orobanchaceae annual 0.04551376 0.10480994 0.00011349 5.65928522 
Orobanchaceae perennial 0.03955944 0.10480994 0.0001157 5.65210788 
Panicoideae annual 0.02899001 9.22595692 0.00329369 5.68736146 
Panicoideae perennial 0.04371949 9.22595692 0.00229697 5.68384497 
Polemoniaceae annual 0.01151066 0.06820139 2.61E-05 5.65755837 
Polemoniaceae perennial 0.00894239 0.06820139 8.35E-05 5.65705563 
Pooideae annual 0.02100831 6.21567172 0.00179795 5.65854111 
Pooideae perennial 0.03167847 6.21567172 0.00637541 5.63597646 
Primulaceae annual 0.02420475 0.1861174 0.00013539 5.62820689 
Primulaceae perennial 0.01241557 0.1861174 0.00013539 5.63476058 
Rubieae annual 0.07887715 7.60596218 0.00137441 5.6609244 
Rubieae perennial 0.02367558 7.60596218 0.00321191 5.64852974 
Salvia annual 0.01863225 0.08485602 2.61E-05 5.66888468 
Salvia perennial 0.01559416 0.08485602 2.61E-05 5.66545115 
Solanaceae annual 0.03571926 0.13652036 7.70E-05 5.67014821 
Solanaceae perennial 0.01489461 0.13652036 7.70E-05 5.67068859 
Spermacoceae annual 0.03551673 0.11004689 3.39E-05 5.68812404 
Spermacoceae perennial 0.01325236 0.11004689 3.39E-05 5.67732921 
Thelypodieae annual 0.04539937 0.34730271 0.00010741 5.66352413 
Thelypodieae perennial 0.05954099 0.34730271 0.00010601 5.64077808 

 
  



 158 

Table S2. Parameter estimates from the model averaged hOUwie fits for BIO4 
clade Group.1 rate alpha sigma.sq theta 
Alysseae annual 0.04402529 0.50513189 0.0214897 6.90085056 
Alysseae perennial 0.02115548 0.50513189 0.0206555 6.8964374 
Antirrhineae annual 0.03074464 0.05615667 0.00202029 6.7449743 
Antirrhineae perennial 0.013287 0.05615667 0.00748483 6.62181024 
Apioideae annual 0.05385838 0.09432435 0.01597978 6.83677007 
Apioideae perennial 0.01000302 0.09432435 0.01366324 6.80066289 
Arabideae annual 0.52479212 0.67707888 0.06067607 6.90746927 
Arabideae perennial 0.3550588 0.67707888 0.14993046 6.88769237 
Balsamiaceae annual 0.01437388 0.00400375 0.00938075 13.9544985 
Balsamiaceae perennial 0.01525116 0.00400375 0.00052895 5.92161613 
Brassiceae annual 0.04402116 1.51465082 0.10740962 6.78182407 
Brassiceae perennial 0.02645235 1.51465082 0.1001567 6.78182379 
Cardamineae annual 0.05569111 2.01050027 0.24669257 6.81475042 
Cardamineae perennial 0.03214692 2.01050027 0.61875634 6.81510396 
Cardueae annual 0.05471326 0.164068 0.00997412 6.83333 
Cardueae perennial 0.03127461 0.164068 0.021815 6.8371473 
CES annual 0.0777941 0.00390449 0.00447383 6.75219765 
CES perennial 0.03003493 0.00390449 0.00591825 6.73773539 
Chamaecrista annual 0.08230412 0.20181379 0.00240117 6.05770015 
Chamaecrista perennial 0.01024206 0.20181379 0.00236646 6.04145922 
Chorisporeae annual 0.07476909 3.43309151 0.0975446 7.09512575 
Chorisporeae perennial 0.08212299 3.43309151 0.1243816 7.10139911 
Croton annual 0.03874914 0.10079235 0.01904948 6.93732722 
Croton perennial 0.00457246 0.10079235 0.01130981 6.05811266 
Erysimeae annual 0.05077356 0.92002517 0.05616603 6.95733832 
Erysimeae perennial 0.06039982 0.92002517 0.06972218 6.84685833 
Euclidieae annual 0.02911251 0.53731559 0.00364014 7.05320916 
Euclidieae perennial 0.04189974 0.53731559 0.04962295 7.00469944 
Eumalvoideae annual 0.04550747 0.07355345 0.02100277 6.37815164 
Eumalvoideae perennial 0.01531847 0.07355345 0.01325006 6.33094879 
Gesneriaceae annual 0.00318162 0.00073853 0.00285393 6.17085499 
Gesneriaceae perennial 0.00242287 0.00073853 0.00279004 6.17196296 
Grewioideae annual 0.01938833 0.05716908 0.0079496 6.28565391 
Grewioideae perennial 0.00189339 0.05716908 0.00879124 6.13622989 
Heliophileae annual 0.03419233 0.62867033 0.00727061 6.52207105 
Heliophileae perennial 0.01728062 0.62867033 0.004512 6.51685737 
Hypericum annual 0.09399561 0.02725369 0.06798064 6.93723798 
Hypericum perennial 0.01269791 0.02725369 0.00794815 6.83169659 
Lepidieae annual 0.25400584 1.14314901 0.17858675 6.79070592 
Lepidieae perennial 0.20257109 1.14314901 0.18199736 6.68723438 
Lupinus annual 0.04310612 0.04786416 0.00280172 6.67441324 
Lupinus perennial 0.11680511 0.04786416 0.03104991 4.87468226 
Lysimachieae annual 0.03684639 0.0181623 0.00073335 6.85649666 
Lysimachieae perennial 0.02895284 0.0181623 0.01024726 6.74457896 
Onagraceae annual 0.05946736 0.05839793 0.01966654 6.59235285 
Onagraceae perennial 0.00386964 0.05839793 0.02759087 6.59038337 
Orobanchaceae annual 0.04635661 0.1061356 0.01752305 6.75953878 
Orobanchaceae perennial 0.04025596 0.1061356 0.02163064 6.77726258 
Panicoideae annual 0.03284142 7.3301921 1.18361673 6.30995609 
Panicoideae perennial 0.04869404 7.3301921 1.18361673 6.30995609 
Polemoniaceae annual 0.01171329 0.0124009 0.00378928 6.61445969 
Polemoniaceae perennial 0.00820808 0.0124009 0.00447191 5.95634138 
Pooideae annual 0.02059462 0.91006226 0.06981983 6.79387246 
Pooideae perennial 0.02835526 0.91006226 0.22768235 6.79387224 
Primulaceae annual 0.02537533 2.75171986 0.22837268 6.96082126 
Primulaceae perennial 0.01166081 2.75171986 0.20583799 6.84584095 
Rubieae annual 0.11559292 0.73390042 0.01330869 6.78873939 
Rubieae perennial 0.01060442 0.73390042 0.06720687 6.79041683 
Salvia annual 0.01671827 0.04699644 0.01048412 6.89295788 
Salvia perennial 0.01561789 0.04699644 0.01224901 6.58687126 
Solanaceae annual 0.03175675 0.10939134 0.02884998 6.34154496 
Solanaceae perennial 0.01342037 0.10939134 0.0281287 6.26688753 
Spermacoceae annual 0.04342677 0.15412548 0.03526634 6.24154558 
Spermacoceae perennial 0.00688428 0.15412548 0.03213335 6.30131514 
Thelypodieae annual 0.04375139 0.00783391 0.00513416 6.7591833 
Thelypodieae perennial 0.07228538 0.00783391 0.00817083 6.68778877 
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Table S3. Parameter estimates from the model averaged hOUwie fits for BIO5 
clade Group.1 rate alpha sigma.sq theta 
Alysseae annual 0.04425457 2.82044388 0.00046104 5.70589138 
Alysseae perennial 0.02518721 2.82044388 0.00051073 5.70120769 
Antirrhineae annual 0.03031724 0.09562457 3.33E-05 5.71280648 
Antirrhineae perennial 0.01284412 0.09562457 4.40E-05 5.7086574 
Apioideae annual 0.05876041 0.14644361 7.44E-05 5.70679809 
Apioideae perennial 0.00627024 0.14644361 7.43E-05 5.69449996 
Arabideae annual 0.11370213 2.85991638 0.00170142 5.69139876 
Arabideae perennial 0.14269825 2.85991638 0.0018734 5.67541569 
Balsamiaceae annual 0.01388103 0.58288565 0.00019675 5.69603103 
Balsamiaceae perennial 0.01108232 0.58288565 0.00013285 5.6969941 
Brassiceae annual 0.04699898 3.24276752 0.00137183 5.70940182 
Brassiceae perennial 0.01527256 3.24276752 0.00157252 5.70927405 
Cardamineae annual 0.05377991 3.2632822 0.00121778 5.69961339 
Cardamineae perennial 0.032428 3.2632822 0.0014688 5.68396766 
Cardueae annual 0.04871319 0.09687431 4.17E-05 5.72076313 
Cardueae perennial 0.03332827 0.09687431 4.17E-05 5.70053771 
CES annual 0.09100693 0.25476791 3.76E-05 5.69817177 
CES perennial 0.03158301 0.25476791 5.42E-05 5.66537602 
Chamaecrista annual 0.06983725 0.46858579 2.52E-05 5.71545846 
Chamaecrista perennial 0.01246693 0.46858579 2.55E-05 5.71211278 
Chorisporeae annual 0.07616816 1.53255972 0.00021348 5.72108751 
Chorisporeae perennial 0.08669855 1.53255972 0.00032482 5.66559455 
Croton annual 0.01895065 0.1323376 2.04E-05 5.71590343 
Croton perennial 0.00492704 0.1323376 2.04E-05 5.71097597 
Erysimeae annual 0.06234572 1.81727809 0.00054987 5.70232049 
Erysimeae perennial 0.05857594 1.81727809 0.00082668 5.69286933 
Euclidieae annual 0.02896242 4.95123364 0.00904794 5.70626809 
Euclidieae perennial 0.04619274 4.95123364 0.00048371 5.65967287 
Eumalvoideae annual 0.03944987 0.06236298 2.78E-05 5.7082662 
Eumalvoideae perennial 0.01354125 0.06236298 2.78E-05 5.70811508 
Gesneriaceae annual 0.00334229 0.05270552 9.74E-06 5.70236796 
Gesneriaceae perennial 0.00264402 0.05270552 9.73E-06 5.70198224 
Grewioideae annual 0.01893903 0.14106783 1.30E-05 5.72100168 
Grewioideae perennial 0.00151463 0.14106783 1.19E-05 5.71092692 
Heliophileae annual 0.0357692 2.34640908 0.00013408 5.70831532 
Heliophileae perennial 0.02175662 2.34640908 0.00010853 5.70446631 
Hypericum annual 0.08843732 0.11337648 0.00021589 5.71000005 
Hypericum perennial 0.0182061 0.11337648 4.25E-05 5.70668625 
Lepidieae annual 0.24857415 4.26456567 0.00268474 5.71064194 
Lepidieae perennial 0.20838006 4.26456567 0.00277999 5.705299 
Lupinus annual 0.05797418 0.03439922 2.65E-05 5.70236488 
Lupinus perennial 0.13153395 0.03439922 7.67E-05 5.69817026 
Lysimachieae annual 0.03323861 0.16572421 3.63E-05 5.71469912 
Lysimachieae perennial 0.02841232 0.16572421 3.71E-05 5.69988256 
Onagraceae annual 0.03641358 0.67560333 0.0004794 5.71586994 
Onagraceae perennial 0.00543767 0.67560333 0.00045825 5.6957791 
Orobanchaceae annual 0.04609974 0.34577101 0.00011566 5.70479609 
Orobanchaceae perennial 0.04319785 0.34577101 0.00013263 5.70094528 
Panicoideae annual 0.02473338 2.23586369 0.00042825 5.71684926 
Panicoideae perennial 0.03880131 2.23586369 0.00039091 5.71230186 
Polemoniaceae annual 0.01165917 0.09109349 3.75E-05 5.71668617 
Polemoniaceae perennial 0.00876047 0.09109349 4.22E-05 5.69266014 
Pooideae annual 0.01997802 1.79546201 0.00049092 5.70839621 
Pooideae perennial 0.0306571 1.79546201 0.00121053 5.68587639 
Primulaceae annual 0.02498328 0.21131656 0.00010666 5.68146218 
Primulaceae perennial 0.01184284 0.21131656 0.00010748 5.68045901 
Rubieae annual 0.05448645 4.40248025 0.00075548 5.70546933 
Rubieae perennial 0.04163527 4.40248025 0.00086976 5.69494975 
Salvia annual 0.02069279 0.08465005 2.74E-05 5.71564015 
Salvia perennial 0.01502724 0.08465005 3.43E-05 5.70519573 
Solanaceae annual 0.02891487 0.15523176 7.65E-05 5.7001863 
Solanaceae perennial 0.01337719 0.15523176 7.65E-05 5.70001728 
Spermacoceae annual 0.03506212 0.04059133 9.92E-06 5.71121359 
Spermacoceae perennial 0.01202575 0.04059133 1.00E-05 5.70865015 
Thelypodieae annual 0.04322226 0.11086913 6.73E-05 5.72341629 
Thelypodieae perennial 0.07238157 0.11086913 9.21E-05 5.68001463 
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Table S4. Parameter estimates from the model averaged hOUwie fits for BIO6 
clade Group.1 rate alpha sigma.sq theta 
Alysseae annual 0.04472623 2.96503564 0.00178492 5.60076864 
Alysseae perennial 0.02478184 2.96503564 0.00219527 5.5984029 
Antirrhineae annual 0.02848683 0.03742949 4.22E-05 5.62559986 
Antirrhineae perennial 0.01220293 0.03742949 4.71E-05 5.69633689 
Apioideae annual 0.01190875 0.1005569 0.00016355 5.61684919 
Apioideae perennial 0.02026953 0.1005569 0.00016355 5.59624181 
Arabideae annual 0.1131574 1.00919909 0.00225588 5.58165672 
Arabideae perennial 0.14555317 1.00919909 0.00225588 5.57231951 
Balsamiaceae annual 0.01428589 0.00316519 2.64E-05 5.61634716 
Balsamiaceae perennial 0.01352837 0.00316519 4.68E-05 9.40136049 
Brassiceae annual 0.04830821 6.35900042 0.00411011 5.61942721 
Brassiceae perennial 0.02026394 6.35900042 0.00443601 5.61443573 
Cardamineae annual 0.05078855 9.75096861 0.00691248 5.60377737 
Cardamineae perennial 0.03177057 9.75096861 0.02980824 5.58540293 
Cardueae annual 0.06227451 0.06880442 0.00010617 5.61370299 
Cardueae perennial 0.02301537 0.06880442 0.0001068 5.58938693 
CES annual 0.0791401 0.00396446 7.98E-05 5.57178955 
CES perennial 0.03479396 0.00396446 1.07E-05 5.56875346 
Chamaecrista annual 0.09622943 0.11880452 1.82E-05 5.67148368 
Chamaecrista perennial 0.01146116 0.11880452 1.83E-05 5.6711077 
Chorisporeae annual 0.08033507 8.41196231 0.00321585 5.58656082 
Chorisporeae perennial 0.08755152 8.41196231 0.00941716 5.53147387 
Croton annual 0.02991996 0.05484939 4.80E-05 5.66243354 
Croton perennial 0.00530731 0.05484939 4.75E-05 5.66244962 
Erysimeae annual 0.05955994 0.39318421 0.00032684 5.58871394 
Erysimeae perennial 0.06206891 0.39318421 0.00078375 5.591116 
Euclidieae annual 0.03139276 1.67154646 0.00311077 5.57249656 
Euclidieae perennial 0.05188074 1.67154646 0.00392761 5.54840272 
Eumalvoideae annual 0.03826592 0.04090619 4.44E-05 5.66130735 
Eumalvoideae perennial 0.01349127 0.04090619 4.44E-05 5.64490202 
Gesneriaceae annual 0.00597533 0.00011239 1.81E-05 7.93344527 
Gesneriaceae perennial 0.00232387 0.00011239 1.74E-05 5.69702837 
Grewioideae annual 0.01761991 0.02822903 2.15E-05 5.66027413 
Grewioideae perennial 0.001786 0.02822903 2.67E-05 5.66292423 
Heliophileae annual 0.03500753 0.99048755 8.42E-05 5.62648548 
Heliophileae perennial 0.02276974 0.99048755 0.00010956 5.62437744 
Hypericum annual 0.07730112 0.42836443 0.00043481 5.62264575 
Hypericum perennial 0.01801538 0.42836443 0.00040052 5.62313186 
Lepidieae annual 0.25911108 0.13251048 0.00050075 5.61405362 
Lepidieae perennial 0.21785597 0.13251048 0.0003173 5.61464612 
Lupinus annual 0.04801391 0.00037044 1.77E-05 5.61983629 
Lupinus perennial 0.09070246 0.00037044 0.00019399 5.61983468 
Lysimachieae annual 0.03158252 0.00677689 2.49E-05 5.61532842 
Lysimachieae perennial 0.02977141 0.00677689 6.70E-05 5.61046734 
Onagraceae annual 0.03706599 1.35863169 0.00105959 5.61348578 
Onagraceae perennial 0.00323669 1.35863169 0.00257146 5.6142152 
Orobanchaceae annual 0.04676778 0.50912483 0.00084406 5.60796797 
Orobanchaceae perennial 0.04291609 0.50912483 0.00090528 5.60230897 
Panicoideae annual 0.02590142 7.02397466 0.00598784 5.65319941 
Panicoideae perennial 0.03932365 7.02397466 0.00600914 5.65127263 
Polemoniaceae annual 0.01191555 0.05554799 3.95E-05 5.60799034 
Polemoniaceae perennial 0.0085158 0.05554799 0.00013439 5.6079908 
Pooideae annual 0.03005168 7.02338554 0.00461929 5.61197783 
Pooideae perennial 0.02806981 7.02338554 0.01812177 5.58654015 
Primulaceae annual 0.0225558 1.4506934 0.00218386 5.56845748 
Primulaceae perennial 0.01196071 1.4506934 0.0021197 5.57852618 
Rubieae annual 0.03901116 9.60836014 0.00345269 5.61800702 
Rubieae perennial 0.03892015 9.60836014 0.01046649 5.60194233 
Salvia annual 0.01855879 0.08099552 7.45E-05 5.62297199 
Salvia perennial 0.01548408 0.08099552 7.45E-05 5.62271121 
Solanaceae annual 0.03769563 0.10215951 0.00014587 5.63775801 
Solanaceae perennial 0.01237181 0.10215951 0.00014587 5.64190815 
Spermacoceae annual 0.03534535 0.13736101 0.00015063 5.66189236 
Spermacoceae perennial 0.01316777 0.13736101 0.00012331 5.64154072 
Thelypodieae annual 0.04237487 1.00925814 0.00051586 5.61278281 
Thelypodieae perennial 0.07564032 1.00925814 0.00030275 5.59905695 
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Table S5. Parameter estimates from the model averaged hOUwie fits for BIO12 
clade Group.1 rate alpha sigma.sq theta 
Alysseae annual 0.04116941 0.19036195 0.04527165 6.24275828 
Alysseae perennial 0.02025504 0.19036195 0.03815442 6.39814099 
Antirrhineae annual 0.02919324 0.05880125 0.04210127 6.05373627 
Antirrhineae perennial 0.01269128 0.05880125 0.05850862 6.18955257 
Apioideae annual 0.01602982 0.11423193 0.07621422 6.19452692 
Apioideae perennial 0.0221401 0.11423193 0.07621422 6.46129814 
Arabideae annual 0.10444553 7.3119644 4.34841792 6.42520345 
Arabideae perennial 0.14178575 7.3119644 4.34841442 6.43388472 
Balsamiaceae annual 0.01417992 0.01179961 0.00842918 6.43690021 
Balsamiaceae perennial 0.01378934 0.01179961 0.00791053 8.34905015 
Brassiceae annual 0.04707618 1.87664502 1.39611112 6.21384524 
Brassiceae perennial 0.01834658 1.87664502 1.38690848 6.01805817 
Cardamineae annual 0.03827605 1.29718208 0.48138907 6.76727827 
Cardamineae perennial 0.03585023 1.29718208 0.67981705 6.74828047 
Cardueae annual 0.06688424 0.09082574 0.02928048 6.31051667 
Cardueae perennial 0.01642933 0.09082574 0.06484279 6.31288359 
CES annual 0.07955082 0.10451031 0.15538542 5.33390817 
CES perennial 0.03046781 0.10451031 0.10954848 5.79888036 
Chamaecrista annual 0.08373911 0.05367876 0.00196485 7.34630367 
Chamaecrista perennial 0.01153733 0.05367876 0.01038718 7.10679122 
Chorisporeae annual 0.08350274 3.22152374 0.79087149 5.41609029 
Chorisporeae perennial 0.09160367 3.22152374 0.95533864 5.65707773 
Croton annual 0.03687071 0.08882436 0.25867727 6.76402145 
Croton perennial 0.0058538 0.08882436 0.03636092 7.16056622 
Erysimeae annual 0.0435169 0.62594525 0.14738825 6.12313936 
Erysimeae perennial 0.08007439 0.62594525 0.15498314 6.28319991 
Euclidieae annual 0.03156694 0.17283082 0.02370745 5.39913121 
Euclidieae perennial 0.04644634 0.17283082 0.25837963 5.45281885 
Eumalvoideae annual 0.02813053 0.05236832 0.17352251 5.17245971 
Eumalvoideae perennial 0.01664049 0.05236832 0.04625187 6.60057645 
Gesneriaceae annual 0.00514178 0.02075967 0.00419459 7.64338703 
Gesneriaceae perennial 0.00259023 0.02075967 0.00696187 7.37442153 
Grewioideae annual 0.01851069 0.01519887 0.01079399 6.63883528 
Grewioideae perennial 0.00204155 0.01519887 0.01047099 7.22264512 
Heliophileae annual 0.03148566 0.18267111 0.08926383 5.50873313 
Heliophileae perennial 0.01997662 0.18267111 0.07281015 6.20895515 
Hypericum annual 0.08474611 0.68310322 0.17384484 7.14698412 
Hypericum perennial 0.01717609 0.68310322 0.05788547 7.21427088 
Lepidieae annual 0.22678721 4.09428613 1.62184764 5.98357632 
Lepidieae perennial 0.21022811 4.09428613 1.61479762 5.97607088 
Lupinus annual 0.03000707 0.03296219 0.0470141 6.32075538 
Lupinus perennial 0.07829517 0.03296219 0.10536494 8.20029689 
Lysimachieae annual 0.03603358 0.13033183 0.02691997 6.9317815 
Lysimachieae perennial 0.02863371 0.13033183 0.03122399 6.86290627 
Onagraceae annual 0.0385471 0.12746318 0.16128676 6.10071335 
Onagraceae perennial 0.00435933 0.12746318 0.09164123 6.8609902 
Orobanchaceae annual 0.04836983 0.04741257 0.03653261 6.63191087 
Orobanchaceae perennial 0.04104038 0.04741257 0.04334687 6.44066335 
Panicoideae annual 0.02649464 0.53361681 0.26292268 6.95358999 
Panicoideae perennial 0.03891246 0.53361681 0.26292275 6.99399853 
Polemoniaceae annual 0.01107295 0.02045512 0.02278383 4.33439272 
Polemoniaceae perennial 0.00787351 0.02045512 0.02486642 6.76427556 
Pooideae annual 0.0188484 8.0067692 4.67402096 6.28878834 
Pooideae perennial 0.02946306 8.0067692 4.68880261 6.42808007 
Primulaceae annual 0.02361879 0.38999068 0.18046481 6.39076673 
Primulaceae perennial 0.01149745 0.38999068 0.19282366 6.55496722 
Rubieae annual 0.03459232 0.75828112 0.04039053 6.40171632 
Rubieae perennial 0.04682316 0.75828112 0.2410869 6.61440928 
Salvia annual 0.01898019 0.05582403 0.061728 5.3249917 
Salvia perennial 0.015896 0.05582403 0.06167412 6.36815166 
Solanaceae annual 0.01401341 0.06630001 0.15851054 5.99752213 
Solanaceae perennial 0.01109792 0.06630001 0.15154511 6.04384296 
Spermacoceae annual 0.03530102 0.05217572 0.02525213 7.09950546 
Spermacoceae perennial 0.01211311 0.05217572 0.039049 6.86151135 
Thelypodieae annual 0.04425106 0.17905675 0.21687839 6.16657138 
Thelypodieae perennial 0.07060306 0.17905675 0.20996241 5.93483687 
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Table S6. Parameter estimates from the model averaged hOUwie fits for BIO14 
clade Group.1 rate alpha sigma.sq theta 
Alysseae annual 0.04128678 0.39587375 0.4441553 2.35840124 
Alysseae perennial 0.02371718 0.39587375 0.44781198 2.48680676 
Antirrhineae annual 0.03145354 0.25392107 0.51413319 1.70130112 
Antirrhineae perennial 0.01421217 0.25392107 0.51806035 2.14218543 
Apioideae annual 0.01524207 0.12422328 0.31137455 2.3450107 
Apioideae perennial 0.02096277 0.12422328 0.31137456 2.28645066 
Arabideae annual 0.1246393 2.50038113 4.36494717 2.6735432 
Arabideae perennial 0.14813544 2.50038113 4.34975364 2.69028869 
Balsamiaceae annual 0.01508213 0.07740779 0.14151924 2.53885605 
Balsamiaceae perennial 0.01425172 0.07740779 0.13577727 3.25555217 
Brassiceae annual 0.04329255 0.24011376 0.46438134 2.07425051 
Brassiceae perennial 0.02385256 0.24011376 0.47115288 1.8322232 
Cardamineae annual 0.04647318 2.30525389 1.42219497 3.28406468 
Cardamineae perennial 0.02832631 2.30525389 4.60777535 3.28371196 
Cardueae annual 0.07434588 0.13324756 0.26512498 2.18891674 
Cardueae perennial 0.01256012 0.13324756 0.2651275 2.21302382 
CES annual 0.19864708 0.2023053 0.25726829 2.21535711 
CES perennial 0.03586053 0.2023053 0.26335649 2.12561137 
Chamaecrista annual 0.09928236 0.07370525 0.06941213 2.72743857 
Chamaecrista perennial 0.01049807 0.07370525 0.10452338 2.75579867 
Chorisporeae annual 0.08930619 5.04648042 4.84786201 1.85570731 
Chorisporeae perennial 0.09086837 5.04648042 4.90602539 2.01469117 
Croton annual 0.02965713 0.13331075 0.26503343 3.11749788 
Croton perennial 0.00576384 0.13331075 0.26503813 3.00631608 
Erysimeae annual 0.05617456 0.90560808 1.63570551 2.34096316 
Erysimeae perennial 0.05681704 0.90560808 1.64801392 2.07878073 
Euclidieae annual 0.03052756 0.17899059 0.15139652 1.1490183 
Euclidieae perennial 0.04908825 0.17899059 0.41589176 1.45295695 
Eumalvoideae annual 0.03055092 0.06645048 0.13627013 1.23769843 
Eumalvoideae perennial 0.01301408 0.06645048 0.13627068 2.19076227 
Gesneriaceae annual 0.00960378 0.02763987 0.05832076 3.34129952 
Gesneriaceae perennial 0.00248544 0.02763987 0.05812546 3.33565852 
Grewioideae annual 0.02246705 0.05825947 0.11657273 2.0061262 
Grewioideae perennial 0.00299285 0.05825947 0.11656734 2.98738402 
Heliophileae annual 0.03505583 0.04611129 0.05166065 1.97158873 
Heliophileae perennial 0.01952112 0.04611129 0.04293603 3.03400287 
Hypericum annual 0.09775582 0.70354441 0.88301032 3.30162956 
Hypericum perennial 0.01262613 0.70354441 0.0737134 4.08757487 
Lepidieae annual 0.24148401 1.4627211 2.84283768 2.08167002 
Lepidieae perennial 0.20250524 1.4627211 2.46772765 2.06101929 
Lupinus annual 0.0299301 0.00045008 0.11232501 2.04600881 
Lupinus perennial 0.06609475 0.00045008 0.43654883 2.04027876 
Lysimachieae annual 0.04000742 0.32148745 0.33002989 2.79958746 
Lysimachieae perennial 0.02904615 0.32148745 0.33010595 3.00227727 
Onagraceae annual 1.47718469 0.26326998 0.45818026 1.94290395 
Onagraceae perennial 1.66286254 0.26326998 0.69082882 2.91186965 
Orobanchaceae annual 0.04082546 0.9540879 2.15192758 2.57300925 
Orobanchaceae perennial 0.04470213 0.9540879 2.21659985 2.57171532 
Panicoideae annual 0.01888656 1.29897197 2.23586442 2.28973178 
Panicoideae perennial 0.04030941 1.29897197 2.23586442 2.7961387 
Polemoniaceae annual 0.0132323 0.07515773 0.10438561 1.48991147 
Polemoniaceae perennial 0.01012157 0.07515773 0.15057698 2.58427997 
Pooideae annual 0.02001605 0.93384385 1.81217652 2.18967575 
Pooideae perennial 0.02696252 0.93384385 1.8121767 2.76232292 
Primulaceae annual 0.02057645 0.17474529 0.46749182 2.20033062 
Primulaceae perennial 0.01156039 0.17474529 0.46749183 2.24246698 
Rubieae annual 0.11367892 1.244906 2.31498746 2.20696365 
Rubieae perennial 0.03310733 1.244906 2.37652947 2.70892502 
Salvia annual 0.01870823 0.07861361 0.16211643 1.79452442 
Salvia perennial 0.0155215 0.07861361 0.162119 2.04769413 
Solanaceae annual 0.01715148 0.17187496 0.34899588 1.74133921 
Solanaceae perennial 0.01330192 0.17187496 0.34899592 2.87471849 
Spermacoceae annual 0.03407916 0.03791588 0.10042255 2.40158345 
Spermacoceae perennial 0.01287896 0.03791588 0.10057995 2.52361849 
Thelypodieae annual 0.05653152 0.02218699 0.19335883 1.40802748 
Thelypodieae perennial 0.05639596 0.02218699 0.06639772 0.99389082 
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Table S7. Parameter estimates from the model averaged hOUwie fits for BIO15 
clade Group.1 rate alpha sigma.sq theta 
Alysseae annual 0.04155405 6.76094614 1.38224676 3.79661529 
Alysseae perennial 0.02486197 6.76094614 1.37899295 3.79316364 
Antirrhineae annual 0.02871898 0.18997829 0.0699409 3.93790739 
Antirrhineae perennial 0.0121807 0.18997829 0.07433216 3.95943992 
Apioideae annual 0.05266043 0.09778867 0.04944416 3.85233249 
Apioideae perennial 0.00934632 0.09778867 0.05590919 3.89088209 
Arabideae annual 0.13736519 5.98079291 2.28870901 3.79356842 
Arabideae perennial 0.13691382 5.98079291 2.18669782 3.82285345 
Balsamiaceae annual 0.01423208 0.04892724 0.01477393 4.13217229 
Balsamiaceae perennial 0.01342129 0.04892724 0.01544012 4.06214418 
Brassiceae annual 0.0452066 0.78788956 0.41823176 3.83045967 
Brassiceae perennial 0.01679124 0.78788956 0.34660596 3.86681622 
Cardamineae annual 0.05609979 0.34653582 0.08432257 3.53490268 
Cardamineae perennial 0.03290568 0.34653582 0.22058434 3.60329065 
Cardueae annual 0.05763683 0.2244015 0.05683454 3.8804587 
Cardueae perennial 0.03353348 0.2244015 0.05817862 3.90034307 
CES annual 0.07679611 0.00798582 0.00979194 4.06059801 
CES perennial 0.03143227 0.00798582 0.02070469 3.9313969 
Chamaecrista annual 0.0884329 0.00586828 0.00622706 4.14633571 
Chamaecrista perennial 0.01161986 0.00586828 0.00543901 3.90529362 
Chorisporeae annual 0.06861689 0.49866028 0.1389933 4.02607213 
Chorisporeae perennial 0.08217822 0.49866028 0.17045693 3.98113444 
Croton annual 0.01827458 0.18210444 0.05639281 3.41900189 
Croton perennial 0.00489446 0.18210444 0.05626612 4.06993011 
Erysimeae annual 0.05877242 0.51344609 0.24097373 3.77932462 
Erysimeae perennial 0.06446853 0.51344609 0.15767626 4.04711484 
Euclidieae annual 0.03326008 0.24037128 0.08779928 4.14366647 
Euclidieae perennial 0.04482494 0.24037128 0.13181966 4.12335769 
Eumalvoideae annual 0.03993844 0.0764752 0.00729255 4.22932158 
Eumalvoideae perennial 0.01353152 0.0764752 0.02191895 4.21162143 
Gesneriaceae annual 0.00385405 0.04958787 0.01776767 4.00122058 
Gesneriaceae perennial 0.00260615 0.04958787 0.01772866 4.00082011 
Grewioideae annual 0.02103246 0.07945596 0.00708682 4.39063068 
Grewioideae perennial 0.00164885 0.07945596 0.02138871 4.01319547 
Heliophileae annual 0.03635766 0.23313833 0.01802255 3.82037234 
Heliophileae perennial 0.02558159 0.23313833 0.05086611 3.80351134 
Hypericum annual 0.0993899 0.29426783 0.17792348 3.41088445 
Hypericum perennial 0.01401524 0.29426783 0.05157863 3.23368566 
Lepidieae annual 0.22685506 1.81377752 0.84738575 3.86200635 
Lepidieae perennial 0.20373133 1.81377752 0.8292531 3.82621227 
Lupinus annual 0.02919639 0.03739374 0.02477043 3.9796499 
Lupinus perennial 0.07787184 0.03739374 0.1085328 3.24632011 
Lysimachieae annual 0.03717362 0.11835388 0.00848736 4.00125334 
Lysimachieae perennial 0.0281207 0.11835388 0.0507377 3.82533477 
Onagraceae annual 0.03837558 0.66114535 0.43469802 4.00959811 
Onagraceae perennial 0.0045882 0.66114535 0.43503327 3.81326747 
Orobanchaceae annual 0.04441356 0.36790357 0.19490971 3.83165369 
Orobanchaceae perennial 0.04145397 0.36790357 0.19944175 3.88496486 
Panicoideae annual 0.02800291 9.99992238 3.4084159 4.18741051 
Panicoideae perennial 0.04026629 9.99992238 3.408369 3.99529444 
Polemoniaceae annual 0.0115838 0.07434326 0.01963483 3.97675337 
Polemoniaceae perennial 0.00885962 0.07434326 0.0531946 3.97746893 
Pooideae annual 0.02522916 8.71583652 4.21029626 3.84098247 
Pooideae perennial 0.0311285 8.71583652 4.21029627 3.66684044 
Primulaceae annual 0.02314268 0.12321535 0.06162424 4.05960667 
Primulaceae perennial 0.01178813 0.12321535 0.06479303 4.07902527 
Rubieae annual 0.10892769 0.78391979 0.25530172 3.85143834 
Rubieae perennial 0.02367202 0.78391979 0.33716985 3.82713992 
Salvia annual 0.01700832 0.09567735 0.01553976 4.19909233 
Salvia perennial 0.0150281 0.09567735 0.03452563 4.1760563 
Solanaceae annual 0.03925798 0.20868257 0.08293553 4.12002722 
Solanaceae perennial 0.01441309 0.20868257 0.08113076 4.0231765 
Spermacoceae annual 0.03412617 0.05841163 0.02295724 4.22272915 
Spermacoceae perennial 0.01240046 0.05841163 0.02422034 4.11327556 
Thelypodieae annual 0.04313355 0.03939268 0.0394036 4.09556299 
Thelypodieae perennial 0.07203443 0.03939268 0.0375932 4.12090552 
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Table S8. Parameter estimates from the model averaged hOUwie fits for AI 
clade Group.1 rate alpha sigma.sq theta 
Alysseae annual 0.04030233 0.34853482 0.16651319 8.23596117 
Alysseae perennial 0.02424038 0.34853482 0.20031482 8.33323375 
Antirrhineae annual 0.02992664 0.05268783 0.0665517 7.83521596 
Antirrhineae perennial 0.01289018 0.05268783 0.08899283 7.91692405 
Apioideae annual 0.02107216 0.07106027 0.0799759 8.13484316 
Apioideae perennial 0.01946203 0.07106027 0.0799759 8.67364721 
Arabideae annual 0.09698462 10 5.48687265 8.71047719 
Arabideae perennial 0.13109321 10 5.48687265 8.82531687 
Balsamiaceae annual 0.01416107 4.68829094 1.15412892 9.12859414 
Balsamiaceae perennial 0.01232552 4.68829094 1.15506067 9.45715807 
Brassiceae annual 0.04485486 2.05732314 2.67691747 8.1041908 
Brassiceae perennial 0.01930118 2.05732314 2.66802778 7.91405884 
Cardamineae annual 0.05377465 6.8854024 2.23948173 8.98243888 
Cardamineae perennial 0.03299381 6.8854024 2.23158769 9.13251343 
Cardueae annual 0.05541007 0.13570678 0.10129996 8.147476 
Cardueae perennial 0.02616704 0.13570678 0.1178579 8.50145217 
CES annual 0.0852525 0.25268969 0.4753827 7.50996351 
CES perennial 0.03088316 0.25268969 0.13867862 7.91360517 
Chamaecrista annual 0.08469111 0.00953602 0.00697957 9.03197266 
Chamaecrista perennial 0.01153876 0.00953602 0.00673797 9.03932254 
Chorisporeae annual 0.08161394 0.2744213 0.01678788 7.04724848 
Chorisporeae perennial 0.10328263 0.2744213 0.13663049 8.83609909 
Croton annual 0.03415848 0.0692009 0.41526537 8.93385665 
Croton perennial 0.00640381 0.0692009 0.03627557 8.9338686 
Erysimeae annual 0.06030963 0.71632778 0.35194845 8.22615218 
Erysimeae perennial 0.06051128 0.71632778 0.34481591 8.27159025 
Euclidieae annual 0.03019637 0.50928631 0.17665409 7.25212009 
Euclidieae perennial 0.05275321 0.50928631 0.48401792 8.24217854 
Eumalvoideae annual 0.0409016 0.04877877 0.09335003 7.18902524 
Eumalvoideae perennial 0.01614903 0.04877877 0.09015431 8.28117526 
Gesneriaceae annual 0.00387631 0.04328585 0.01111532 9.43186045 
Gesneriaceae perennial 0.00229391 0.04328585 0.01121134 9.3856122 
Grewioideae annual 0.01734095 0.02189404 0.02827933 8.30361448 
Grewioideae perennial 0.00186462 0.02189404 0.0181696 9.04959079 
Heliophileae annual 0.06634313 0.13605649 0.08969506 6.97503679 
Heliophileae perennial 0.10404222 0.13605649 0.06252826 8.39869433 
Hypericum annual 0.08162554 0.59004273 0.35475392 9.12085686 
Hypericum perennial 0.01643431 0.59004273 0.02609249 9.16897766 
Lepidieae annual 0.24377528 9.48539121 7.81624215 7.77321372 
Lepidieae perennial 0.20901694 9.48539121 7.77153297 7.77984526 
Lupinus annual 0.02805195 0.0327964 0.08562482 8.1163569 
Lupinus perennial 0.07866818 0.0327964 0.11880514 13.6381535 
Lysimachieae annual 0.03774993 0.11544436 0.02712105 8.88684662 
Lysimachieae perennial 0.02849096 0.11544436 0.02389185 8.99585704 
Onagraceae annual 0.03871019 0.10943066 0.27245281 7.89504685 
Onagraceae perennial 0.00416502 0.10943066 0.07267066 8.85193465 
Orobanchaceae annual 0.04398991 0.15740082 0.1580424 8.5411767 
Orobanchaceae perennial 0.04174612 0.15740082 0.15936042 8.48590867 
Panicoideae annual 0.02815515 0.81789315 0.65324868 8.66344107 
Panicoideae perennial 0.03949567 0.81789315 0.65324854 8.78505209 
Polemoniaceae annual 0.01167735 0.03361776 0.03668367 7.38397126 
Polemoniaceae perennial 0.00838739 0.03361776 0.03667393 9.26525933 
Pooideae annual 0.0270249 2.41066525 1.94154524 8.26179387 
Pooideae perennial 0.03013477 2.41066525 1.94154524 8.69603936 
Primulaceae annual 0.0251974 0.2483582 0.11808828 8.75717914 
Primulaceae perennial 0.01151704 0.2483582 0.15285536 8.85551769 
Rubieae annual 0.04169511 1.18607452 0.15363439 8.35687711 
Rubieae perennial 0.04908283 1.18607452 0.55882939 8.7696908 
Salvia annual 0.01577602 0.05665405 0.07639197 7.61132764 
Salvia perennial 0.015253 0.05665405 0.07636625 8.19096074 
Solanaceae annual 0.02411958 0.12608527 0.31342469 7.88138697 
Solanaceae perennial 0.014473 0.12608527 0.23621796 8.45916171 
Spermacoceae annual 0.03479382 0.03536571 0.03113017 8.84366586 
Spermacoceae perennial 0.01199718 0.03536571 0.03419885 8.69948668 
Thelypodieae annual 0.04566576 0.02670115 0.10177345 7.87572838 
Thelypodieae perennial 0.07724747 0.02670115 0.09840788 7.48079913 
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CONCLUSION 

 

“I had said at the very end of the paper that if someone insisted on doing comparative methods 

without using phylogenies, that it might be more useful if they took up selling real estate.” 

- Joe Felsenstein (1985 & 2019) 

 

Summary 

In Chapter I, I generalized hidden Markov models of discrete character evolution to allow for 

any number of characters, observed states, or hidden states. This project, though not requiring 

any new mathematical contributions for the character evolution aspect, set the groundwork for 

several collaborations and deepened my understanding of discrete character evolution. I also 

demonstrated some of the informational advantages of allowing for additional characters in states 

when conducting ancestral state reconstructions. To do this, I developed a novel metric of 

information as probabilities pass towards the root of the phylogeny.  

Next, in Chapter II, I applied some of the knowledge gained in Chapter I and found a way 

to help correct bias in correlation analyses between discrete characters. The method was 

analogous to that of Beaulieu and O’Meara (2016) and utilized hidden Markov models to allow 

for character independent rate heterogeneity. I found that part of the reason for biased correlation 

was that when a signal of dependence is tested at a macroevolutionary level, it is actually a test 

of rate heterogeneity tied to a focal character. By allowing for rate heterogeneity independent of 

a focal character, the signal for rate heterogeneity can be “removed” from the comparison 

leaving the model set to evaluate whether there is a signal of correlation.  
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In Chapter III, I develop a new model for linking discrete and continuous character 

evolution called hOUwie. This model is developed with the issues of the previous chapter in 

mind and therefore allows for character independent rate heterogeneity as an alternative 

explanation. This project required the implementation of several previously published algorithms 

(Ho and Ané 2014) as well as the development of novel heuristics.  

Finally, in Chapter IV, I applied the model developed in chapter 3 to 33 clades of 

angiosperms and attempt to understand the evolutionary patterns of plant life history in relation 

to climate. We demonstrated that a consistent driver of annual life history is the maximum 

temperature of the warmest month. Furthermore, we showed that some of the most commonly 

used model systems for life history evolution have biased our perceptions of the evolutionary 

process and in our analyses were more often the exception than the rule. Interestingly, this 

chapter also demonstrated most clearly the importance of joint modeling through the highly 

variable ancestral state reconstructions. The joint parameter estimation could massively change 

which state an ancestral state was reconstructed as depending on the particular climatic variable 

associated.  

 
Future Work 

I now turn to ideas of future work by discussing several extensions of this dissertation. Based on 

my work in Chapter I and Chapter II, I think a program which automatically searches model 

space (the alternative ways that we can constrain or estimate our parameters within a model) 

could be quite useful and interesting. Most of the discussion when it comes to modeling has been 

focussed on finding the maximum likelihood parameter estimates for a fixed model structure and 

dataset. However, model structures can vary by dropping and equating parameters. A model with 

a parameter dropped or two parameters equated can make vastly different assumptions about the 
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evolutionary process. In Chapter II, I discussed the differences between independent and 

correlated models as being differences in parameter constraints. The closest practice to searching 

model space is multimodel inference (Burnham and Anderson 2002), but this relies on biologists 

choosing a set of models which are reasonable for the question. As we saw in Chapter II, even 

biologists who are extremely knowledgeable in models of discrete character evolution can 

choose model sets which introduce a severe bias in their results. My contention is that choosing a 

biologically and statistically reasonable set of models is easier said than done. Besides that, I am 

unconvinced that we do not want the best fit to the data given appropriate corrections for 

overfitting the model. My goal with this program would be to search discrete model space and 

find the model which best fits the data according to AIC (Akaike 1998). There are two 

immediate challenges to this proposed extension. First, model space is vast. Searching this space 

exhaustively would be computationally infeasible without some clever heuristic algorithm. As 

part of this first challenge I include redundancy as a major issue (Cover and Thomas 1991). A 

more complex model estimated with two independently estimated parameters numerically being 

equal may have an identical likelihood to a model in the set where those two parameters were not 

freely estimated and instead constrained to be equal. This is likely to occur and even desirable if 

the data better supports these simpler models. However, I worry that the frequency that certain 

model structures appear may be biased in some way. The second challenge is model 

interpretation. Once the program had dredged through all possible model structures, we are left 

with an issue of interpretation. In the current paradigm, we fit a set of exclusive hypotheses that 

have their reasoning in the biology of the system. That means each model structure can be 

interpreted as a particular hypothesis and the parameters may be discussed in that context. If we 

were to fit all models at once, then we may have no direct link to any biological hypotheses. This 
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would mean relying on unbiased interpretations of the parameter estimates, model structures, and 

developing tools that make it easier to understand the parameters in the context of biology.  

I would like to develop a fundamentally different model of macroevolution not reliant on 

Markovian or Gaussian dynamics, but it is not clear what this kind of model would look like. For 

example, one issue with a dredge-like extension of corHMM is that it may, or may not, deal with 

the single unreplicated events described by Maddison and FitzJohn (2015). Although I am 

confident in the source of biased correlation is an inappropriate model set, the fact remains that 

evolution may not be Markovian at all. Many events in evolution are singular and unrepeatable. 

In contrast, Markov models rely on the repeated occurrence of events. And although there are 

many datasets that show repeated transitions between discrete states, who is to say that we are 

calling two things identical when, in fact, they have an entirely different set of causes and 

underlying genetic architectures. To say that the same transitions (X0 to X1) occurred at the 

same rate in different parts of the tree is quite the assumption to make. Even with hidden Markov 

models, we are limited in the number of ways that this transition can occur and will always 

constrained by Markovian dynamics. One issue with this paradigm, and a potential avenue for 

future work, is that the amount of time spent in a particular state has no influence on whether a 

transition is likely to occur. Markov models are memoryless processes which means that their 

current state will entirely determine their next state (Cover and Thomas 1991; Ephraim and 

Merhav 2002; Sober and Steel 2011; Gascuel and Steel 2018; Goldberg and Foo 2020; Boyko 

and Beaulieu 2021). We know that there are evolutionary lags and that genetics can be canalized 

such that the longer spent with a particular genetic architecture, the less likely you are to 

transition (Waddington 1953). If Markovian processes are truly inappropriate for evolution, then 

no amount of model structure searching will allow for an accurate depiction of evolution. There 
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are some options available for memoried processes in evolutionary models (Goldberg and Foo 

2020), but there are likely to be identifiability issues with these models similar to those discussed 

in Louca and Pennell (2020). In my own exploration of these processes, I have found that many 

of these memoried models are applied to time series data (Zucchini et al. 2017), and although the 

implementation may be straightforward, their practicality is not as obvious.  

There are several places hOUwie (Chapter III) could be improved and extended. The idea 

behind the model is important because we know things do not evolve independently (Levins and 

Lewontin 1985). Furthermore, I trust that our approximations are good and that the likelihood 

itself is correct since it operates using the same probabilities published previously (Beaulieu et 

al. 2012; Ho and Ané 2014). But the program can still be computationally costly even with the 

large speedups for any single iteration. It would be ideal to be able to directly calculate the 

likelihood without the need of simulation. One way forward would be to utilize Markov 

modulated OU processes to derive expected values, variances, and covariances (Galtier and Jean-

Marie 2004; Huang et al. 2016; Behme and Sideris 2022). Once those quantities are derived we 

could either use standard matrix inversion to calculate the likelihood (Hansen 1997; Butler and 

King 2004) or, more excitingly, we should be able to transform phylogeny to match the 

appropriate variance and covariances and apply the three point algorithm of Ho and Ané (2014). 

This is what was done in Chapter III for rapidly calculating the continuous character probability 

and is now available for use in the R-package OUwie. The greatest difficulty in this approach 

would be deriving the moments of the Markov modulated Ornstein-Uhlenbeck process, but this 

is fodder for future collaboration.  

Another potential improvement to jointly modeling discrete and continuous character 

evolution would come from the continuous value directly influencing the probability of the 
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discrete transition. Currently, the joint probability calculation relies on a shared underlying 

regime, but it should be theoretically possible to have the specific value of the continuous 

character directly influence the probability of a discrete transition. It is possible that the use of a 

threshold model would make the statistical assessment of this model more tractable. A threshold 

model (Felsenstein 2005, 2012; Revell 2014; Hiscott et al. 2016) assumes that underlying a 

discrete phenotype is a continuously varying character. This character may be said to represent 

the additive genetic variation underlying phenotypic expression. The advantage of this approach 

would be that modeling discrete and continuous characters jointly would simply be a 

multivariate Gaussian distribution and could utilize the multivariate statistics of multiple 

continuous characters (Bartoszek et al. 2012). Finally, an extension that incorporates the 

probability of the phylogeny may be necessary. State-dependent speciation and extinction 

(Maddison et al. 2007; Beaulieu and O’Meara 2016; Louca and Pennell 2020b) models 

fundamentally correct problems related to biases in character distributions at tips (Maddison 

2006). If the distribution of several continuous and discrete characters are biased in some way by 

diversification dynamics, this could lead to an overestimation of correlation. There is also work 

showing that OU models are effected by the structure of the phylogeny itself (Cooper et al. 

2016b). A joint discrete, continuous, speciation and extinction model (tentatively the “hOUSSE” 

model), could help resolve these potential biases. The immediate extension of hOUwie to 

hOUSSE should be straightforward requiring that discrete regimes are calculated following an 

SSE model instead of a discrete character evolution model. But, generating high probability 

underlying regimes may potentially be an issue. 

Finally, there are a few assumptions that we made in Chapter IV that could be improved. 

For instance, we lumped several classes of perennial life histories together. It is possible that the 
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hidden rate variation we found in some cases is failing to recognize that, for example, a shrub, 

geophyte, and a tree all evolve in the same way and react to environmental stresses in different 

ways. Furthermore, a major shortcoming (that would require an extension to the hOUwie model) 

was that climatic variables were modeled independent of one another. Extending the hOUwie 

model such that the cumulative effect of all climatic variables would be an interesting avenue to 

explore. The ideal approach would be to model the covariances between the different continuous 

characters and their influence on one another. This approach should be better able to capture and 

model the species climatic niche breadth. However, this would be a mathematically challenging 

problem and a more pragmatic approach would be to simply model several continuous characters 

all at once and evaluate a given joint regime probability for all the continuous characters. This 

would be a simple way to allow all continuous characters to influence the likelihood of the 

parameters at once. However, this would massively expand the model space and ignore the 

covariances between the continuous characters. 

 

Concluding Remarks 
 
Phylogenetic comparative methods (PCMs) have been criticized for high false positive rates 

(e.g., Maddison and FitzJohn 2015; Rabosky and Goldberg 2015), a lack of power (Boettiger et 

al. 2012; Cooper et al. 2016a), a lack of identifiability (e.g., Kubo and Iwasa 1995; Louca and 

Pennell 2020), and even a lack of common sense (e.g., Westoby et al. 1995). However, each 

newly developed method must in part justify its existence by addressing the shortcomings of 

previous iterations. Given that PCMs development is such an active field of research, it seems 

natural that criticism would be fast and frequent. For my part, I entered my PhD under the 

assumption that the information contained in a phylogenetic dataset could not be adequate to 
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know the diversification dynamics through time, or the ancestral state of lineages billions of 

years old. Now, I conclude the dissertation with mixed feelings. On the one hand, 

macroevolutionary models, like all models, are severe simplifications of reality and, because we 

deal with a historical science, our models are borderline untestable. On the other hand, they do 

exactly as advertised. The assumptions of each model are generally available for anyone 

interested and the model parameters do have the occasional reasonable interpretation. 

Furthermore, I have seen in collaborations how the best supported set of models can often be 

useful in resolving long standing natural history debates (the first time that happened, I was 

genuinely shocked). So, yes, maybe the models are all horribly wrong. Maybe any similarity 

between our parameters estimates and an underlying biological reality are purely by chance, or a 

statistical bias, or the result of an invented narrative. But, refining these methods and attempting 

to glimpse deeper into evolutionary history is an incredibly exciting and worthwhile prospect. It 

is so easy, and often necessary, to get caught up in the esoteric minutia of the methods, but it is 

for a fundamental understanding of nature that we do. And ultimately, there are few things more 

gratifying in comparative methods than when this tool can actually lead us to discovering 

something new. So, it is worth trying.  



 173 

References 

 Akaike H. 1998. Information Theory and an Extension of the Maximum Likelihood Principle. 
:15. 

Bartoszek K., Pienaar J., Mostad P., Andersson S., Hansen T.F. 2012. A phylogenetic 
comparative method for studying multivariate adaptation. Journal of Theoretical Biology. 
314:204–215. 

Beaulieu J.M., Jhwueng D.-C., Boettiger C., O’Meara B.C. 2012. Modeling Stabilizing 
Selection: Expanding the Ornstein–Uhlenbeck Model of Adaptive Evolution. Evolution. 
66:2369–2383. 

Beaulieu J.M., O’Meara B.C. 2016. Detecting Hidden Diversification Shifts in Models of Trait-
Dependent Speciation and Extinction. Syst Biol. 65:583–601. 

Behme A., Sideris A. 2022. Markov-modulated generalized Ornstein-Uhlenbeck processes and 
an application in risk theory. Bernoulli. 28:1309–1339. 

Boettiger C., Coop G., Ralph P. 2012. Is Your Phylogeny Informative? Measuring the Power of 
Comparative Methods. Evolution. 66:2240–2251. 

Boyko J.D., Beaulieu J.M. 2021. Generalized hidden Markov models for phylogenetic 
comparative datasets. Methods Ecol Evol. 12:468–478. 

Burnham K.P., Anderson D.R. 2002. Model selection and multimodel inference: a practical 
information-theoretic approach. New York: Springer. 

Butler M.A., King A.A. 2004. Phylogenetic Comparative Analysis: A Modeling Approach for                         
Adaptive Evolution. The American Naturalist. 164:683–695. 

Cooper N., Thomas G.H., FitzJohn R.G. 2016a. Shedding light on the ‘dark side’ of phylogenetic 
comparative methods. Methods in Ecology and Evolution. 7:693–699. 

Cooper N., Thomas G.H., Venditti C., Meade A., Freckleton R.P. 2016b. A cautionary note on 
the use of Ornstein Uhlenbeck models in macroevolutionary studies. Biological Journal 
of the Linnean Society. 118:64–77. 

Cover T.M., Thomas J.A. 1991. Elements of information theory. New York: Wiley. 

Ephraim Y., Merhav N. 2002. Hidden Markov processes. IEEE Transactions on Information 
Theory. 48:1518–1569. 

Felsenstein J. 2005. Using the quantitative genetic threshold model for inferences between and 
within species. Philosophical Transactions of the Royal Society B: Biological Sciences. 
360:1427–1434. 



 174 

Felsenstein J. 2012. A Comparative Method for Both Discrete and Continuous Characters Using 
the Threshold Model. The American Naturalist. 179:145–156. 

Galtier N., Jean-Marie A. 2004. Markov-Modulated Markov Chains and the Covarion Process of 
Molecular Evolution. :7. 

Gascuel O., Steel M. 2018. A Darwinian Uncertainty Principle: Supplementary Information - 
Mathematical proofs. bioRxiv. 

Goldberg E.E., Foo J. 2020. Memory in trait macroevolution. Am. Nat. 195:300–314. 

Hansen T.F. 1997. Stabilizing Selection and the Comparative Analysis of Adaptation. Evolution. 
51:1341–1351. 

Hiscott G., Fox C., Parry M., Bryant D. 2016. Efficient Recycled Algorithms for Quantitative 
Trait Models on Phylogenies. Genome Biology and Evolution. 8:1338–1350. 

Ho L. si, Ané C. 2014. A Linear-Time Algorithm for Gaussian and Non-Gaussian Trait 
Evolution Models. Syst Biol. 63:397–408. 

Huang G., Jansen H.M., Mandjes M., Spreij P., Turck K.D. 2016. Markov-modulated Ornstein-
Uhlenbeck processes. Advances in Applied Probability. 48:235–254. 

Kubo T., Iwasa Y. 1995. INFERRING THE RATES OF BRANCHING AND EXTINCTION 
FROM MOLECULAR PHYLOGENIES. Evolution. 49:694–704. 

Levins R., Lewontin R. 1985. The dialectical biologist. Harvard University Press. 

Louca S., Pennell M.W. 2020a. Extant timetrees are consistent with a myriad of diversification 
histories. Nature. 580:502–505. 

Louca S., Pennell M.W. 2020b. A General and Efficient Algorithm for the Likelihood of 
Diversification and Discrete-Trait Evolutionary Models. Systematic Biology. 69:545–
556. 

Maddison W.P. 2006. Confounding Asymmetries in Evolutionary Diversification and Character 
Change. Evolution. 60:1743–1746. 

Maddison W.P., FitzJohn R.G. 2015. The Unsolved Challenge to Phylogenetic Correlation Tests 
for Categorical Characters. Syst Biol. 64:127–136. 

Maddison W.P., Midford P.E., Otto S.P., Oakley T. 2007. Estimating a Binary Character’s Effect 
on Speciation and Extinction. Syst Biol. 56:701–710. 

Rabosky D.L., Goldberg E.E. 2015. Model Inadequacy and Mistaken Inferences of Trait-
Dependent Speciation. Syst Biol. 64:340–355. 

Revell L.J. 2014. Ancestral Character Estimation Under the Threshold Model from Quantitative 
Genetics. Evolution. 68:743–759. 



 175 

Sober E., Steel M. 2011. Entropy increase and information loss in Markov models of evolution. 
Biology & Philosophy. 26:223–250. 

Waddington C.H. 1953. GENETIC ASSIMILATION OF AN ACQUIRED CHARACTER. 
Evolution. 7:118–126. 

Westoby M., Leishman M.R., Lord J.M. 1995. On Misinterpreting the `Phylogenetic Correction’. 
Journal of Ecology. 83:531–534. 

Zucchini W., MacDonald I.L., Langrock R. 2017. Hidden Markov models for time series: an 
introduction using R. Chapman and Hall/CRC. 

 

 


	Hiding in plain sight: accounting for rate heterogeneity in trait evolution models
	Citation

	Microsoft Word - 05-boyko-dissertation.docx

