Review Article

Kidney Res Clin Pract 2022;41(Suppl 2):S46-S62
PISSN: 2211-9132 e eISSN: 2211-9140
https://doi.org/10.23876/j.krcp.22.084

Check for
updates

KIDNEY RESEARCH
" CLINICAL PRACTICE

Novel biomarkers for diabetic kidney disease
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Although diabetic kidney disease (DKD) remains one of the leading causes of reduced lifespan in patients with diabetes mellitus; its
prevalence has failed to decline over the past 30 years. To identify those at high risk of developing DKD and disease progression at
an early stage, extensive research has been ongoing in the search for prognostic and surrogate endpoint biomarkers for DKD. Al-
though biomarkers are not used routinely in clinical practice or prospective clinical trials, many biomarkers have been developed to
improve the early identification and prognostication of patients with DKD. Novel biomarkers that capture one specific mechanism of
the DKD disease process have been developed, and studies have evaluated the prognostic value of assay-based biomarkers either in
small sets or in combinations involving multiple biomarkers. More recently, several studies have assessed the prognostic value of om-
ics-based biomarkers that include proteomics, metabolomics, and transcriptomics. This review will first describe the biomarkers used
in current practice and their limitations, and then summarize the current status of novel biomarkers for DKD with respect to as-
say-based protein biomarkers, proteomics, metabolomics, and transcriptomics.
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Introduction

Diabetic kidney disease (DKD) is the leading cause of
chronic kidney disease (CKD) and end-stage kidney disease
(ESKD) worldwide [1]. Due to its association with a con-
comitant increase in cardiovascular morbidity and mortal-
ity, it remains one of the leading causes of reduced lifespan
in people with diabetes mellitus (DM). Given the high risk
of progressive deterioration in kidney function eventually
leading to ESKD that requires kidney transplantation or
chronic kidney replacement therapy, as well as increased
risk of cardiovascular morbidity and mortality, early iden-
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tification and risk stratification of disease is essential. Al-
though our understanding of the pathophysiology of the
disease has improved over the years, the prevalence of DKD
has not changed significantly over the past 30 years [2].

To reduce disease prevalence and reverse or slow down
disease progression, efforts to develop novel drugs have
been ongoing, but many phase 3 clinical trials have failed
to show any clinically significant findings [1,3]. For exam-
ple, as oxidative stress is an important pathophysiological
process in DKD, antioxidants have been developed to
target the pathways of this disease. Although the antioxi-
dant bardoxolone methyl (Reata Pharmaceuticals, Plano,
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TX, USA) showed promising phase 2 study results [4],
administration of this agent in a phase 3 study showed an
increased risk of early-onset fluid overload in patients with
risk factors for heart failure [5]. Sulodexide, a purified mix-
ture of sulfated glycosaminoglycan polysaccharides, can
ameliorate DKD in animal experiments [6]. However, larg-
er randomized controlled trials failed to demonstrate any
beneficial clinical outcomes with the use of this agent [7,8].
As aresult, efforts have been ongoing to develop novel bio-
markers of DKD that can detect DKD at very early stages,
as well as identify high-risk patients that are highly likely to
eventually develop ESKD. Such novel biomarkers have also
been developed to allow for risk stratification in clinical
trials, as well as the development of drugs that specifically
target these biomarkers.

This review will first describe current biomarkers used to
predict the risk of DKD and disease progression, and then
describe the current status of multiple novel biomarkers
with respect to assay-based biomarkers, as well as om-
ics-based biomarkers that include proteomics, metabolo-
mics, and transcriptomics.

Biomarkers used in current practice
Markers of kidney function

The most commonly used current biomarkers of DKD
are albuminuria and estimated glomerular filtration rate
(eGFR) [9].

Given that albuminuria is an important component of
DKD, as well as the strongest predictor of ESKD and car-
diovascular morbidity in patients with type 2 DM [10], it
is important to establish the degree of albuminuria in pa-
tients with DKD at the time of diagnosis. However, a major
limitation of albuminuria as a biomarker of DKD is that
not all patients with DKD have albuminuria. For example,
approximately 30% of patients with DKD do not have albu-
minuria [11,12]. There is also a growing body of evidence
suggesting that patients with type 1 or 2 DM can progress
to ESKD in the absence of albuminuria, even after account-
ing for renoprotective agents [13-18]. In a recent study of
935 patients with type 1 DM and 1,984 patients with type
2 DM, followed for up to 16 years after the development of
CKD stage 3, mean annual declines in eGFR for normo-,
micro-, and macroalbuminuria for the first 10 years follow-

ing the development of CKD stage 3 were 1.9, 2.3, and 3.3
mL/min/1.73 m® in type 1 DM, and 1.9, 2.1, and 3.0 mL/
min/1.73 m” in type 2 DM, respectively [18]. In patients
with normoalbuminuria, two distinct eGFR patterns were
found, with one displaying an accelerated rate of eGFR
decline. Of note, patients displaying this accelerated rate
of eGFR decline were associated with less use of lipid-low-
ering treatment, renin-angiotensin system (RAS) blockers,
and other antihypertensive treatments. These findings
suggest that albuminuria has its limitations as a prognostic
marker for DKD.

Current eGFR and past glomerular filtration rate (GFR)
trajectory are well-established predictors of the future risk
of ESKD [19]. Thus, eGFR is the most common prognostic
biomarker used for predicting ESKD in both clinical prac-
tice and clinical trials. However, similar to albuminuria,
eGFR also has important limitations as a prognostic bio-
marker of DKD. Limitations of using eGFR to predict DKD
progression include different equations used to estimate
eGFR, which include the Chronic Kidney Disease Epide-
miology Collaboration (CKD-EPI), the Modification of Diet
in Renal Disease (MDRD) equation, and eGFR calculated
using cystatin C instead of creatinine [14]. The risk of DKD
development or progression may be under or overesti-
mated depending on which eGFR equation is used for risk
stratification. For instance, in a study to assess popula-
tion-based incidence rates of CKD in patients with DM de-
pending on the eGFR equation, CKD incidence rates were
higher when the MDRD equation, rather than the CKD-EPI
equation, was used [20]. Moreover, considering that GFR is
the product of the number of nephrons and the mean sin-
gle nephron GFR, a reduction in the number of nephrons
due to the progression of DKD can be compensated by an
increase in the single nephron GFRs of surviving nephrons.
Such changes may not be accurately reflected by the eGFR,
as eGFR decline may only happen when each nephron
exceeds its maximal filtration capacity. This is further con-
founded because the vasodilation of the afferent arteriole
in patients with DKD may increase single nephron GFR
even in the absence of nephron loss [21]. Thus, patients
without actual functional nephron loss and those with
actual functional nephron loss, but with compensation in
GFR by remnant nephrons, may have identical eGFRs with
vastly different prognoses.

As both albuminuria and eGFR have important limita-
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tions as prognostic biomarkers of DKD, the identification
of novel diagnostic and prognostic biomarkers for the early
risk stratification of DKD is much needed. Potential novel
biomarkers for DKD are summarized in Table 1.

Novel biomarkers of diabetic kidney disease—
assay based

Considering the implications of the delayed identification
of DKD progression, many studies have investigated poten-
tial predictive and prognostic biomarkers [22]. These bio-
markers typically capture one specific aspect of the patho-
physiology of the disease process such as tubular damage,
inflammation, or oxidative stress [23]. However, given that
DM is a heterogeneous disease involving multiple patho-
physiological mechanisms, using just a single biomarker
for the risk stratification of disease progression has several
limitations. Single biomarkers have problems with indi-
vidual, biological, and analytical variability. For example,
novel biomarkers such as tissue necrosis factor receptor
(TNFR) 1, TNFR2, fibroblast growth factor-23 (FGF-23),
and high-density lipoprotein cholesterol are known to pre-
dict kidney outcomes in patients with type 2 DM [24-26].
However, TNFR1 and TNFR2 are not specific to type 2 DM,
and measurements of FGF-23 may vary according to the
choice of the analytical method [27]. Due to such issues, it
is more likely that a panel of biomarkers will be needed to
predict disease progression.

Single biomarkers or small sets of biomarkers—assay
based

Single biomarkers typically capture a specific pathophysio-
logical pathway of the DKD process, such as tubular dam-
age, inflammation, oxidative stress, or endothelial dysfunc-
tion, whereas others focus primarily on glomerular features
such as glycocalyx abnormalities, podocyte damage, or
glomerular fibrosis.

Markers of tubular damage

Markers of tubular damage include kidney injury mole-
cule-1 (KIM-1), neutrophil gelatinase-associated lipocalin
(NGAL), and liver fatty acid-binding protein (L-FABP). Uri-
nary concentrations of KIM-1, which is a protein expressed

S48

www.krcp-ksn.org

on the apical membrane of the proximal tubule cells, in-
crease in response to acute kidney injury [28]. In a nested
case-control study and a prospective cohort study, plasma
KIM-1 levels were independently associated with a high-
er risk of eGFR decline in persons with early or advanced
DKD [29]. Similarly, in a case-cohort study of 894 partici-
pants with DKD from the Chronic Renal Insufficiency Co-
hort (CRIC), higher plasma levels of KIM-1 were associated
with an increased risk of DKD progression [30]. Another
tubular marker that has been extensively studied is NGAL.
NGAL is a 25-kDa protein from the lipocalin superfamily
that was initially found in activated neutrophils but is also
produced by kidney tubular cells in response to tubular
injury. Higher levels of urinary NGAL have been shown
to precede microalbuminuria in patients with type 1 DM
[31,32]. In another study of 117 patients with type 2 DM,
higher values of urinary NGAL have been observed in nor-
moalbuminuric type 2 DM patients, and rose progressively
in those with micro- and macroalbuminuria, suggesting
that tubular damage may occur even in the very early
stages of DKD [33]. Urinary L-FABP levels have also been
shown to be associated with DKD progression. In patients
with type 1 DM, high levels of urinary L-FABP predicted
the initiation and progression of DKD and all-cause mor-
tality, independent of the severity of albuminuria and other
established risk factors [34]. In another cross-sectional and
longitudinal study of 140 patients with type 2 DM without
DKD and 412 healthy control subjects, urinary L-FABP lev-
els accurately reflected the severity of DKD, and these lev-
els were particularly high in those with normoalbuminuria
[35]. High urinary L-FABP levels were found to be a strong
and independent predictor of DKD progression [36].

Markers of inflammation

Biomarkers of inflammation such as tumor necrosis factor
(TNF)-a and interleukin-1f (IL-1p) were first associated
with DM in diabetic mouse models. Macrophages incu-
bated with glomerular basement membranes produced
significantly greater levels of both TNF-a and IL-1f than in
nondiabetic mice [37]. This has led to further investigations
into the use of TNF-a as a predictive marker of DM. Urinary
TNF-a excretion and serum TNF-a levels were both found
to be elevated in DKD [38]. Further investigations into the
receptors that TNF-a bind to, namely TNFR1 and TNFR2,
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have also suggested that circulating TNFR levels could also
be used as good predictors of DKD [24]. For example, in a
cohort consisting of 349 patients with type 1 DM and pro-
teinuria, TNFR2 levels were the strongest determinant of
eGFR decline [39].

Another biomarker that captures the oxidative stress
characteristics of the DKD pathophysiologic process is
8-hydroxy-2'-deoxyguanosine (8-OHdG), which is a prod-
uct of oxidative DNA damage. It is excreted in the plasma
and urine after the repair of DNA by nuclease [40]. This has
led to the assessment of 8-OHdG as a biomarker of oxida-
tive stress in patients with DM [41,42]. In two cohorts of
patients with type 1 DM, higher plasma concentrations of
8-OHdG were independently associated with increased risk
of kidney disease in individuals with type 1 DM, suggesting
that this marker may be used to evaluate the progression of
DKD [42]. However, in a study of patients with type 2 DM
and healthy control subjects, although urine 8-OHdG lev-
els were increased in patients with DV, its ability to predict
the development of DKD was inferior to the urine albu-
min-to-creatinine ratio [43].

Markers of glomerular damage

In contrast to biomarkers that capture specific pathophys-
iological pathways of the DKD process, some well-known
biomarkers, including transferrin, immunoglobulin G
(IgG), IgM, and ceruloplasmin, reflect glomerular dam-
age. In theory, as the molecular weight of transferrin is
similar to that of albumin, urinary transferrin could also
be a biomarker of DKD. In a study of 45 patients with type
2 DM and with normoalbuminuria or microalbuminuria,
increased urinary transferrin levels in microalbuminuria
patients significantly correlated with kidney biopsy-prov-
en tubulointerstitial injuries, suggesting a potential role
of urinary transferrin in the prediction of early tubular
damage in patients with DKD [44]. In a more recent study
of 60 patients with and without type 2 DM, urine transfer-
rin correlated with subclinical atherogenesis in patients
with type 2 DM without kidney dysfunction, suggesting
that it could potentially be an early marker of endothelial
dysfunction in patients with type 2 DM but without kidney
dysfunction [45]. Another marker of glomerular damage
that has been investigated is ceruloplasmin. Ceruloplasmin
is a copper-carrying metalloenzyme that is more negative-

ly charged than albumin, and thus is more difficult to be
filtered by the glomerulus. In a study of 140 patients with
type 2 DM with normoalbuminuria, urinary ceruloplasmin
levels were found to be elevated in normoalbuminuric pa-
tients with DM and were highly predictive of the develop-
ment of microalbuminuria [46]. Urinary IgM and IgG levels
have also been shown to be predictive of DKD. A study of
22 patients with type 1 DM and 20 patients with type 2 DM,
all with evidence of DKD, revealed that the increased urine
excretion of IgG and IgM accompanied albuminuria in pa-
tients with type 2 DM, suggesting a potential role of urinary
immunoglobulins in the risk stratification of DKD [47].

Multiple biomarkers—assay based

As DKD is a disease entity that involves multiple patho-
physiological pathways, a combination of biomarkers may
be required to accurately predict disease progression. For
example, most studies that have investigated panels of
candidate biomarkers have included TNFR, often in com-
bination with biomarkers of tubular damage such as KIM-
1 [29,30]. In a nested case-control of 380 participants, and
a prospective cohort study of 1,156 participants with type
2 DM, higher plasma levels of KIM-1, TNFR-1, and TNFR-
2 were associated with a higher risk of DKD progression,
even after adjustments for age, relevant anthropometric,
sociodemographic, and laboratory parameters. Of note,
when all three plasma biomarkers were added to the
clinical model, the area under the curve (AUC) for DKD
progression improved from 0.680 to 0.752 [29]. A case-co-
hort study consisting of 894 participants with both type 1
and 2 DM reported similar findings, where higher levels of
monocyte chemoattractant protein 1 (MCP-1) were also
associated with a higher risk of DKD progression [30]. In a
study of 260 Pima Indians with type 2 DM, urinary NGAL/
creatinine was positively associated with risk of ESKD and
mortality, whereas L-FABP/creatinine was inversely asso-
ciated with ESKD. The addition of NGAL/creatinine and
L-FABP/creatinine to models that included albuminuria
and eGFR increased the C-statistics for predicting the risk
of ESKD [48].

Other studies have explored higher numbers of potential
candidate biomarkers to improve the prediction of DKD
outcomes. In a study evaluating 17 potential urinary and
seven plasma biomarkers in 67 participants with type 2
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DM, urinary C-terminal FGF-23 was found to show the
strongest association with ESKD, whereas plasma vascular
endothelial growth factor (VEGF) was associated with the
highest risk of the composite outcome of ESKD and death
[49]. Another prospective study followed 83 patients with
overt diabetic nephropathy and obtained repeated mea-
surements of proteinuria, IL-1p, IL-6, IL-8, MCP-1, TNF-q,
transforming growth factor-beta 1 (TGF-p1), and plasmin-
ogen activator inhibitor-1 (PAI-1) [50]. In the study, urinary
MCP-1 and TGF-B1 predicted kidney function decline
that was independent of albuminuria. In a more recent
study involving 345 community-based patients with type
2 DM from the Fremantle Diabetes Study Phase II, eight
potential candidate biomarkers were studied after adjust-
ment for clinical parameters. Of these eight biomarkers,
apolipoprotein A4 (apoA4), CD5 antigen-like (CD5L), and
complement C1q subcomponent subunit B (C1QB) were
independently associated with the rapid decline in kidney
function, improved predictive performance, fitness, dis-
crimination, and reclassification [51].

However, as evidenced in the SUMMIT (the Surrogate
Markers for Micro- and Macro-Vascular Hard Endpoints
for Innovative Diabetes Tools) program [52], there are very
strong correlations between these biomarkers, and this
confounds the interpretation of these biomarkers as pre-
dictors of disease progression. Further optimization of a
panel of best-reported biomarkers would be needed. Ideal-
ly, future studies could explore a panel of biomarkers that
show low correlation with each other. Moreover, most stud-
ies reported to date are small in sample size, and therefore
studies consisting of larger populations would be needed
for the validation of the aforementioned biomarkers.

Novel biomarkers of diabetic kidney disease—
omics based

The omics platform-based approach

Over the last decade, the use of approaches that measure
large sets of lipids, metabolites, amino acids, peptides, and
proteins are increasing [53]. These approaches have been
called omics-based tests, and are defined as an assay de-
rived from multiple molecular measurements that allow
the quantification of all RNAs, proteins, and metabolites
present in biological samples, and interpreted by compu-
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tational models to produce clinically meaningful results.
Omics-based approaches have the advantage of not only
measuring a full spectrum of peptides or metabolites in a
short amount of time but also producing large sets of unbi-
ased data that can be used for diagnosis, prediction of dis-
ease progression, and treatment response. As a result, this
omics platform-based approach has emerged as a strong
tool in biomarker discovery in recent years [53] (Fig. 1).

Proteomics

Proteomics allows the simultaneous quantification of
multiple protein markers in a biological sample [54,55].
Although tissue samples provide the most information
on protein expression, DKD is often diagnosed clinically,
rather than by biopsy, and therefore the number of patients
who will undergo kidney biopsy for DKD will not increase.
Blood samples can display protein signals that are pro-
duced from the kidney and of more generic processes such
as fibrosis [56]. However, obtaining large volumes of blood
samples in patients is often not feasible. The collection of

Genome

Transcriptome N MM
RNA

v

Proteome 090909090909
Protein
QO Q9
Metabolome @

@ 9

Nucleotides/amino acids/lipidome

Figure 1. The concept of the omics platform-based approach
consists of the genome, transcriptome, proteome, and metab-
olome.
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urine samples overcomes the limitations of blood samples.
Urine collection is not only available in large volumes, but
it is also noninvasive. This led to urinary proteomics gain-
ing more attention as a tool for the identification of diag-
nostic and prognostic biomarkers in kidney disease [57].

Early studies using proteomics in DKD used urinary
samples to improve early diagnosis and the prediction of
kidney-related and other outcomes [58-60]. The most stud-
ied and well-validated proteomic classifier to date is the
capillary electrophoresis-mass spectrometry-based urinary
peptide classifier, CKD-273. This mass spectrometry-based
method combines the data of 273 urinary peptides into a
combined score that has high accuracy in predicting the
new onset of albuminuria. Approximately 75% of the pep-
tides are collagen fragments, with uromodulin, clusterin,
albumin, B-2 microglobulin, a-1 antitrypsin, and others
comprising the remainder. The diagnostic utility of this
proteomic classifier was first developed in a cross-sectional
study of 3,600 patients with different CKD etiologies, where
the classifier showed a sensitivity of 85% and a specificity of
100% for the diagnosis of CKD [61].

This classifier was subsequently validated across several
cohorts consisting of patients with type 2 DM, where CKD-
273 predicted both the development and progression of
albuminuria in patients with DKD. In a prospective study
of 35 patients with either type 1 or 2 DM, CKD-273 was able
to predict progression to macroalbuminuria 5 years before
the actual onset [62]. In another prospective case-control
study from the PREVEND (Prevention of Renal and Vascu-
lar End-stage Disease) study and from the Steno Diabetes
Center (Gentofte, Denmark), the proteomic classifier was
independently associated with the transition to micro- or
macroalbuminuria. The classifier improved the predic-
tive ability of albuminuria and eGFR in the development
and progression of albuminuria [63]. Analyses of both the
Effect of Candesartan on Progression of Retinopathy in
Type 1 Diabetes (DIRECT-Protect 1) and in Type 2 Dia-
betes (DIRECT-Protect 2) studies demonstrated that the
CKD-273 classifier was able to predict microalbuminuria,
independent of treatment, age, sex, systolic blood pres-
sure, albuminuria, eGFR, hemoglobin Alc (HbAlc), and
DM duration [60,64-66]. More recently, in a study of 1,014
individuals with type 1 or 2 DM, baseline eGFR of 270 mL/
min/1.73 m? and normoalbuminuria, CKD-273 was able
to identify patients with DM who will progress to eGFR of

<60 mL/min/1.73 m” in the absence of albuminuria, inde-
pendent of age, blood pressure, and baseline eGFR [67].
The concept that CKD-273 may be useful in determining
the risk of disease progression and that it may also stratify
treatment response to spironolactone was more definitive-
ly tested in the recent PRIORITY (Proteomic Prediction
and Renin Angiotensin Aldosterone System Inhibition Pre-
vention of Early Diabetic nephropathy in Type 2 Diabetic
Patients with Normoalbuminuria) trial. In 1,775 partici-
pants with type 2 DM and normoalbuminuria over a medi-
an follow-up time of 2.5 years, high-risk patients defined by
CKD-273 were more likely to develop microalbuminuria,
even after adjustments for baseline risk factors such as
HbAlc, systolic blood pressure, baseline albuminuria, and
eGFR [68]. However, spironolactone did not prevent pro-
gression to microalbuminuria in high-risk patients. On the
contrary, in an exploratory analysis of the MARLINA-T2D
(Efficacy, Safety & Modification of Albuminuria in Type 2
Diabetes Subjects With Renal Disease With LINAgliptin)
trial, where participants were randomized to receive either
linagliptin or placebo for 24 weeks, there was a significant
correlation between CKD-273 and clinical renal parame-
ters as well as eGFR decline. Patient stratification using this
classifier found that linagliptin had the potential to slow
progressive kidney function decline in high-risk CKD pa-
tients [69].

Results from urinary proteomic studies have improved
our knowledge of the pathophysiology of DKD. Other pro-
teomic methods include the use of collagen fragments.
For example, the al type 1 collagen chain is significantly
altered in urine 3 to 5 years before the onset of macroal-
buminuria [62]. It was found that before urinary albumin
excretion starts to increase, urinary collagen fragments
decreased. In a multicenter study involving 165 patients
with type 2 DM, type I and type III al collagen and a2-Her-
emans-Schmid-glycoprotein were found to be prominent
collagen markers. Therefore, it is thought that collagen
fragments originate from the kidney, and a decrease in
these fragments in patients with DKD may be due to the
accumulation of extracellular matrix and increased kidney
fibrosis [70].

Other urinary peptides that have been studied include
uromodulin, progranulin, clusterin, al acid glycoprotein,
and haptoglobin. In a nested case-control design, a panel
including uromodulin, progranulin, clusterin, and al acid
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glycoprotein predicted an early decline in eGFR in a cohort
of 465 adults with type 1 DM [71]. Moreover, in a study of
patients with DKD from the VADT (Veterans Affairs Dia-
betes Trial), urinary haptoglobin was identified as a candi-
date biomarker to predict early kidney functional decline
[72].

Regardless of which sample is used for proteomic anal-
ysis, the use of proteomics to predict DKD development
and progression still has several limitations including the
absence of well-validated diagnostic criteria. Prospective
validation studies are needed before the widespread im-
plementation of proteomics in DKD.

Metabolomics

Metabolomics is the measurement of low-weight interme-
diates (<500 Da) and small end products of biochemical
processes in biological fluids, and they have emerged as
another potential tool in the discovery of novel biomarkers
for kidney diseases. The metabolome is often regarded as
the final downstream integration of biological information
that consists of the genome, proteome, transcriptome, and
overall enzymatic reactions of an individual [73]. This en-
ables the detection of short- and long-term physiological
and pathological changes that occur in chronic diseases.
However, their results are often difficult to interpret due
to various confounders that include lifestyle, medications,
and nutritional status [74].

Metabolites may originate from blood or urine. Plasma
nonesterified and esterified fatty acids were found to differ-
entiate albuminuria stages in patients with type 2 DM [75].
In a study of 78 diabetic patients, a combination of serum
metabolites with multivariate analyses enabled accurate
discrimination of patients with DKD. In the study, the se-
lection of five metabolites that included y-butyrobetaine,
symmetric dimethylarginine, azelaic acid, and two un-
knowns yielded an AUC value of 0.927 for diagnosing DKD
[76]. Another study that included healthy controls and pa-
tients with type 2 DM indicated that serum metabolite lev-
els of leucine, dihydrosphingosine, and phytosphingosine
were significantly different in these two patient groups [77].
In the SUMMIT study, a combination of biomarkers of tu-
bular damage such as KIM-1 and B2-microglobulin, and
metabolite markers were used to predict the rapid progres-
sion of DKD in individuals with type 2 DM. A total of 207
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serum biomarkers were measured, of which 12 biomarkers
showed significant associations with rapid progression,
all adjusted for clinical characteristics. A combination of
14 serum biomarkers increased the predictive ability. The
addition of biomarkers to clinical data improved baseline
AUC from 0.706 to 0.868. Biomarkers in the predictive
model included fibroblast growth factor-21, the symmetric
to asymmetric dimethylarginine ratio, 2-microglobulin,
Cl6-acylcarnitine, and KIM-1 [78].

Urine metabolites that have been studied to date include
octanol, oxalic acid, phosphoric acid, benzamide, creati-
nine, 3,5-dimethoxymandelic amide, and N-acetylgluta-
mine [79]. One study combined both plasma and urinary
metabolites to improve the predictive utility of metabolites.
In a study of 90 patients with type 2 DM, urine hexose, glu-
tamine, tyrosine, plasma butenoylcarnitine, and histidine
levels predicted the development of albuminuria, indepen-
dent of baseline albuminuria levels, eGFR, and use of RAS
blockers [80]. In a study from the CRIC consisting of 1,001
participants with DM and CKD, after adjustments for clin-
ical variables, urinary 3-hydroxyisobutyrate (3-HIBA) and
3-methylcrotonyglycine levels had a significant negative
association with eGFR slope, whereas aconitic and citric
acid levels showed a positive association. Levels of 3-HIBA
and aconitic acid were each associated with higher and
lower risks of ESKD requiring kidney replacement therapy,
respectively [81]. Most recently, in 2,670 patients with type
1 DM from the Finnish Diabetic Nephropathy study, seven
urinary metabolites, which included leucine, valine, isoleu-
cine, pseudouridine, threonine, and citrate, were associat-
ed with DKD progression after adjustment for baseline al-
buminuria and CKD stage. Moreover, 2-hydroxyisobutyrate
was associated with the progression of DKD in individuals
with normoalbuminuria, and six amino acids and pyro-
glutamate were associated with the progression of DKD in
those with macroalbuminuria [82].

Although there have been significant advances in the
field of metabolomics for patients with DKD, most of the
aforementioned studies are cross-sectional. Not only is
there a need for more prospective studies to evaluate the
predictive utility of these metabolites, but replication of
current findings in other cohorts is also needed to convey
therapeutic targets and improve the clinical management
of DKD.
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Transcriptomics

Transcriptomic studies of DKD use micro RNAs (miRNAs),
which are small non-coding RNAs that block protein trans-
lation and can induce messenger RNA degradation. Thus,
miRNAs are regarded as regulators of gene expression. Like
metabolites, miRNAs may also originate from plasma, se-
rum, or urine, and their profiling can be performed using
either traditional microarray/real-time polymerase chain
reaction (RT-PCR) platforms or RNA sequencing.

One of the earliest studies to indicate that certain plasma
miRNAs showed an association with the progression of
DKD was performed in patients with type 1 DM with albu-
minuria but normal kidney function. In participants of the
Joslin cohort, baseline circulating TGF-p1-regulated miR-
NA levels were associated with progression to ESKD requir-
ing kidney replacement therapy. Baseline miRNA levels of
let-7c-5p and miR-29a-3p were independently associated
with more than a 50% reduction in the risk of progression
to ESKD, whereas baseline miRNA levels of let-7b-5p and
miR-21-5p were associated with a more than 2.5-fold in-
crease in the risk of ESKD [83]. In another cross-sectional
nested case-control study from the EURODIAB Prospective
Complications Study of 455 patients with type 1 DM, miR-
126 levels were negatively associated with all DM-related
complications. Although this association was no longer sig-
nificant after adjustment for both hyperglycemia and dura-
tion of DM, a statistically significant 25% risk reduction of
proliferative diabetic retinopathy was observed even after
adjustments for HbAlc and DM duration [84].

In addition to miRNAs sampled from the plasma or
serum, many studies have reported findings from urine
samples. One of the earliest studies to report on the asso-
ciation between urinary miRNAs and the risk of DKD pro-
gression was conducted with 83 patients with type 2 DM,
where baseline urinary miRNA levels of miR-29a and miR-
29b were associated with complications of DM. Higher
levels of urinary miR-29a were observed in patients with
albuminuria compared to those with normoalbuminuria.
Urinary miR-29a levels showed a significant correlation
with albuminuria and were also correlated with carotid in-
tima-media thickness [85]. Another study assessed the uri-
nary extracellular vesicle (EV)-miRNA profiles of patients
with type 1 DM, where 22 of 377 urinary EV-miRNAs were
differentially expressed in patients with normoalbumin-

uria compared to albuminuric patients. Results showed
that miR-130a and miR-145 were enriched, whereas miR-
155 and miR-424 were reduced in urinary exosomes for
patients with albuminuria [86]. More recently, in a study of
209 patients with biopsy-proven DKD, urinary miR-196a
levels correlated positively with proteinuria, duration of
DM, and systolic blood pressure, whereas baseline eGFR
and hemoglobin levels showed a negative correlation with
urinary miR-196a. This suggests that increased urinary
miR-196a levels were significantly associated with the pro-
gression of DKD and could be a noninvasive prognostic
marker of kidney fibrosis in patients with DKD [87].

Although several other studies have investigated tran-
scriptomics in patients with DKD, there is no overlap in the
specific miRNAs being reported as being relevant to DKD.
It is most likely that a combination of miRNAs may be
needed for the early detection of DKD rather than a single
miRNA [88]. Therefore, the evidence to support a clinically
useful role of miRNAs in the early diagnosis and risk strati-
fication of DKD remains uncertain.

Current practice and conclusion

Current treatment of DKD relies on lifestyle modification,
and medication that controls hyperglycemia, hypertension,
and proteinuria. However, even the optimal implemen-
tation of this strategy often fails to prevent progression to
ESKD in a substantial proportion of patients. There is hope
that novel biomarkers, both assay-based and omics-based,
will help to identify patients at the highest risk and guide
the treatment of these patients. In reality, only a few trials
use biomarkers other than albuminuria or eGFR to enroll
and risk stratify study participants [89], and even fewer
studies assess the effect of treatments with novel biomark-
ers [90-92]. In part, this may be because potential novel
biomarkers only modestly improve the performance of
eGFR and albuminuria, which are the biomarkers current-
ly available. Moreover, considering that the progression
of DKD is usually a slow process that may take decades to
emerge, the setting of robust clinical endpoints in clinical
trials is often not feasible.

Although the novel biomarkers discussed in this review
have enormous potential in the field of DKD, future studies
should look into using these biomarkers either as enrol-
ment criteria for randomized clinical trials or as surrogates
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of study endpoints. Larger study cohorts with kidney biop-
sies and both urine and plasma or serum samples from the
same patients would also be needed. To obtain comparable
and reproducible data, consensus protocols for sample col-
lection, processing, and analysis should be defined across
collaborators. Finally, as we gain a deeper understanding
of the DKD pathophysiology, an increasing number of po-
tential novel biomarkers will be available. To improve the
prognostication of patients with DKD, it will be essential to
integrate these novel findings and biomarkers into the de-
sign of future clinical trials.
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