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Abstract

Aerogels are mesoporous materials with unique properties, including high specific

surface area, high porosity, low thermal conductivity, and low density, increasing these

materials’ effectiveness in applications such as catalyst supports, sorption media, and

electrodes in solid oxide fuel cells. Zirconia (ZrO2) aerogels have special interest for

high-temperature applications due to the high melting point of ZrO2 (2715°C) and

stability between 600°C and 1000°C, where other aerogel systems often begin to sinter

and densify. These properties and unique pore structure make zirconia aerogels ad-

vantageous as thermal management systems, especially in aeronautics and aerospace

applications. However, to be effective in high-temperature applications, the aerogel for-

mulation must be optimized so that pore collapse and subsequent surface area decrease

are mitigated following high-temperature exposure. By utilizing surfactant templates,

it is anticipated that the mesoporous structure and high surface area of yttria-stabilized

zirconia (YSZ) aerogels will be retained following exposure to high temperatures, in-

creasing the thermal stability and efficiency of YSZ aerogels as thermal management

systems. To experimentally consider the impact of synthetic variables on aerogels, sur-

factants are used as templating agents to influence the pore structure and surface area

of YSZ aerogels. Additionally, due to the large number of parameters associated with

aerogel synthesis and processing, a developed aerogel graph database and a machine

learning predictive model are applied to examine the complex relationships between

aerogel synthesis, processing, and final properties, specifically BET surface area. Sub-

graphs of the developed aerogel graph database are used to visually determine the

impact of specific variables on the aerogel surface area, while the predictive model

maps from aerogel synthetic and processing conditions to predict the final property,

BET surface area, with precision. These digital design tools could reduce experimental

dimensionality, time, and resources, enabling the successful synthesis of high surface

area aerogels.
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Chapter 1 Introduction

Aerogels are a unique class of mesoporous solid materials that exhibit a wide range of useful

properties, including high surface area, low density, and low thermal conductivity. They

are useful for a broad range of applications and have gained attention over the last sev-

eral decades. Zirconia aerogels are used in an expansive variety of applications, including

catalyst supports, sorption media, and electrodes in solid oxide fuel cells.1,2 High porosity

and high surface area aerogels have significance in a wide range of disciplines, including

astrophysics, material science, high-energy physics, and chemical engineering.3 Due to the

extremely low thermal conductivity and high porosity of zirconia aerogels, these materials

are often used in thermal management applications, such as high-temperature thermal insu-

lation, especially in aeronautics and aerospace systems.4 In comparison with silica aerogels,

which display sintering and loss of mesoporous structure at high temperatures, zirconia aero-

gels are promising candidates for applications taking place at temperatures above 1000°C

due to their high melting point of ZrO2 at 2715°C, low thermal conductivity, and presence

of both acid and base active centers. The high thermal stability of zirconia aerogels can be

increased further by optimizing the aerogel formulation; for example, zirconia metal oxide

aerogels stabilized by yttria, or other rare earth dopants, are especially thermally stable.

This is due to the low thermal conductivity of yttria-stabilized zirconia (0.5 - 2.36 W/m·K),

which is made even lower when used as an aerogel system (0.168 - 0.212 W/m·K).5 Since

the formulation of zirconia aerogels can directly influence the thermal stability of these ma-

terials, an understanding of the effects of synthesis and processing on the zirconia aerogel

system is valuable.

The general aerogel synthesis process is outlined in Figure 2. First, to create the aerogel’s

sol, precursors are added to the solvent system, along with any dopants or templating agents

that will be used. A gelation agent is then added and, following hydrolysis and condensation

reactions, a gel is formed. After washing and aging steps, the gel is then dried, typically

1



with supercritical drying, to become an aerogel. As-dried aerogels are then heat-treated to

determine the behavior of the aerogel following high-temperature exposure. The aerogels are

then characterized using various techniques to determine the final properties of the aerogels,

including surface area, pore volume, pore structure, crystallite size, and crystalline phase.

Depending on the conditions chosen, it can take up to 2 - 3 weeks to fully synthesize, process,

and characterize an aerogel. A comprehensive review of aerogel synthesis and processing is

included first in this dissertation.

This dissertation sought to optimize the synthesis of aerogels to improve the thermal sta-

bility and effectiveness of these materials when used in high-temperature systems, specifically

for aerospace and aeronautics applications. To achieve this, two objectives were outlined:

to optimize the formulation of yttria-stabilized zirconia (YSZ) aerogels using surfactant

templating and to enhance understanding of the relationships between aerogel synthetic

pathways and final properties using information architecture and machine learning.

When exposed to high-temperature, aerogels begin to sinter and densify, collapsing the

mesoporous structure and decreasing the surface area of the aerogels, as displayed in Figure 1.

Yet, the mesoporous structure, high surface area, and high porosity of the aerogel is required

to leverage the benefits of aerogel properties in thermal management systems. Therefore,

the collapse of the pore structure and decrease of surface area diminishes the utility of

the material as a thermal insulator. To use these materials effectively in high-temperature

applications, the aerogel formulation must be further understood and optimized to mitigate

the negative effects upon exposure to high temperatures.

Silica aerogels, which are well-known and well-studied, suffer from sintering and densi-

fication when exposed to temperatures above 700°C due to polycondensation reactions and

structural rearrangement.6,7 Therefore, to achieve use of aerogels at a higher temperature

range, zirconia aerogels have been considered for thermal management systems.8 Typically,

zirconia aerogels have lower surface areas than silica aerogels, 200 – 900 m2/g for zirconia

aerogels versus 500 – 1200 m2/g for silica aerogels, and higher thermal conductivities than

2



Figure 1: Sintering and densification of aerogels. Increasing temperature leads to sintering
and densification of aerogels, decreasing surface area and pore volume, as displayed in the
SEM micrographs. Exposure temperatures, BET specific surface areas, and BJH desorption
cumulative pore volumes are displayed below each micrograph.

silica aerogels, 0.021 – 0.180 W/m·K for zirconia aerogels versus 0.012 – 0.020 W/m·K for

silica aerogels.9,10 These properties alone would make silica aerogels more favorable for use in

thermal management systems than zirconia aerogels. However, because of the high melting

point of zirconium dioxide, 2715°C, zirconia aerogels can remain stable at high temperatures

between 600°C and 1000°C, while silica aerogels begin to sinter and densify around 700°C,

collapsing the pore structure.7,11 Adding yttrium as a dopant further stabilizes zirconia aero-

gels; yttrium stabilizes high temperature polymorphs of zirconia, preventing transformation

to the monoclinic phase and decreasing the aerogel thermal conductivity (as low as 0.168

W/m·K).5,12

To influence the pore structure of aerogels, surfactants can be used as templating agents

during aerogel synthesis. Surfactant templating was proposed within this dissertation as

a way to optimize the mesoporous structure of YSZ aerogels. Surfactants are used in the

synthesis of a variety of aerogels as these chemicals can be used as structure directing agents

to influence pore structure in mesoporous materials due to electrostatic repulsion and steric

hinderance effects.10,13 Surfactants can template the aerogel structure during synthesis, en-

hancing surface area and pore size upon high-temperature exposure.14–16 With a hydrophilic

head and a hydrophobic tail, surfactants can also reduce interfacial energy, which causes sur-

face tension in the aerogel system and leads to pore collapse and shrinkage during drying.17,18

3



Surfactants control nanoparticle and crystallite growth through a capping effect, which influ-

ences crystalline structure; they also prevent agglomeration, which increases aerogel surface

area.

As the first objective of this dissertation, to understand the influence of surfactant

on aerogels, the cationic surfactant cetrimonium bromide (CTAB), the anionic surfactant

sodium dodecyl sulfate (SDS) and the nonionic surfactant Pluronic® P-123 were chosen as

surfactant templating agents for 20 mol% YSZ aerogels. The chosen surfactants were added

at concentrations of one-half, twice, and three-times the CMC of each surfactant. It was

anticipated that the use of surfactant templates would enable the retention of mesoporous

structure and high surface area in as-dried aerogels, while also mitigating crystallite growth

and densification of aerogels exposed to high-temperatures.

Due to the lengthy development lifecycle of aerogels and since the formulation of aerogels

can directly influence the thermal stability of these materials, knowledge of the effects of syn-

thesis and processing on the aerogel system is valuable. Therefore, enhanced understanding

of the synthesis and processing conditions of aerogels, and the influence of these conditions

on the final properties of aerogels, should be achieved.

As the second objective of this dissertation, to further understand the complex rela-

tionships between aerogel synthesis, processing, and final properties, aerogel property graph

databases and machine learning models were developed. As a test case, the aerogel property

graph database was first applied to 600 zirconia aerogels.1,4,5,11,13,18–51 The graph database

was further expanded and applied to 1000 silica aerogels, which had a wider scope of available

literature.52–148 Visualization of the aerogel graph databases could be used to determine the

impact of specific synthesis and processing conditions on the final properties of aerogels. Fol-

lowing the development of the silica aerogel graph database, machine learning models were

used to map from aerogel synthesis and processing conditions to predict the final silica aero-

gel property, BET surface area, with precision. The BET surface area was chosen as it can

be used to map to the thermal behavior of the aerogels and is a commonly reported aerogel

4



property. These digital design tools could be advantageous by decreasing the experimental

dimensionality of aerogel synthesis, reducing experimental time and resources.

Further optimization of aerogel synthesis and an increased understanding of the complex

relationships between aerogel synthesis, processing, and final properties would lead to in-

creasingly efficient synthesis of aerogels with target properties, including high surface area,

high pore volume, and mesoporous structure.

1.1 Aerogel-based technologies with review of aerogel properties

Aerogels are a unique class of mesoporous solid materials with high specific surface area,

high porosity, and low density.149 Aerogels are the lightest synthetic material in the world,

composed of 95 - 99% air by volume. Aerogels also have low thermal conductivity and some

can have high mechanical strength. Due to these extreme material properties, aerogels can

be used for many different applications.3,87,150–157 Here, the benefits of using aerogels, what

properties make aerogels useful, and specific application examples are highlighted. In section

2.1, a more comprehensive review for the properties and applications of five different aerogel

types, zirconia (ZrO2), silica (SiO2), alumina (Al2O3), aluminosilicate (Al2O3/SiO2), and

carbon aerogels, is presented.

The high porosity of aerogels lowers the thermal conductivity of these materials due to

larger amounts of air, which has a low thermal conductivity, being present in the system.

Because these materials are mesoporous, the small pore size inhibits the movement of air

molecules, suppressing gas convection. Additionally, aerogels can be made of insulating

solids such as yttria-stabilized zirconia and with such low amounts of solid present in the

aerogel sample, as well as a tortuous path for heat transfer, the solid conduction of the ma-

terial is decreased. Because of this extremely low thermal conductivity, and ultralightweight

structure, as well as high surface area and high porosity, aerogels are excellent thermal insu-

lating solids. Due to the thermal stability of aerogels, they are used in many different types

of applications as thermal management systems. Insulating applications include architec-
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tural (roofs, facades, windows, etc.), appliance (refrigerators, outdoor cooling boxes, etc.),

aerospace, aeronautics, and pipeline insulation.5,149,158–164

Aerogels have lower thermal conductivity values than traditional insulation materials,

leading to weight and space saved by using less material in construction and improved

insulation performance. However, aerogel insulation remains more expensive than traditional

insulation so efforts are in process to reduce the manufacturing cost so that aerogel insulation

can become more widespread. As a specific example, aerogel-based slurries consisting of silica

aerogels and yttria-stabilized zirconia have been utilized in thermal spray-drying to obtain a

thermally resistant coating; this spray coating could be useful in aerospace applications where

space is constrained for large insulating materials.165,166 Aerogels have also been used as

reinforcing material in firefighters’ protective clothing and blankets, enhancing both comfort

and thermal protection; the aerogel nonwoven material could provide up to eight times the

thermal resistance of traditional thermal batting material.167

Aerogels have high sensitivity and selectivity, as well as fast response and recovery times,

when used in sensing applications, such as in biosensors, gas sensors, or strain and pressure

sensors.168–170 Due to the fact that all constituting elements are nanoscale and that the pore

size of aerogels is extremely small, these materials are useful as electrodes in solid oxide fuel

cells, catalyst supports, thermoresistors, piezoelectrics, and templating materials.13,171,172

Mixed oxide materials, e.g., ZrO2/SiO2, ZrO2/TiO2, that are highly porous are useful in

a variety of applications, including biomaterials and heterogeneous catalysis.1 High-surface

area zirconia aerogels were used to catalyze the ketonization of hexanoic acid, leading to

high conversion and high selectivity.173

The porosity, low density, and high surface area of aerogels give these materials very high

sorption capabilities, making them beneficial for chemical absorption or adsorption applica-

tions, such as oil absorption.174,175 Aerogels are useful for many environmental applications,

such as the adsorption of heavy metal ions or organic pollutants in wastewater, the adsorp-

tion of organic molecules in air, hydrogen production, and carbon dioxide capture.176–179
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For instance, zirconia aerogels have been explored as reactive sorbents and decomposers of

chemical warfare agents.2 Aerogels have also been used in a variety of separation processes,

such as oil/water separation or pollutant removal, as well as in filtration through the removal

of airborne nanoparticles.178,180–183 As an example of aerogel filtration, zirconium-crosslinked

graphene oxide/alginate aerogel beads were used in phosphate removal from polluted water

with good phosphate sorption capacity and easy separation advantage.

While several main applications of aerogels have been discussed above, there are a wide

range of other applications in which aerogels are useful. Due to their stiffness and mechani-

cal strength, some aerogels are used in construction materials and as ballistic protection.149

The excellent acoustic properties of aerogels make them useful for sound insulation.159,160,184

Aerogels with higher porosities and lower bulk densities demonstrate the best sound ab-

sorption performance.185 The mesoporous structure and high surface area of aerogels make

them useful for drug delivery, biosensing applications, and medical implants.186–189 Aerogel

materials can have high drug loading capacities and are capable of controlled drug release,

which can be influenced by the sol-gel processing of the materials. However, toxicity and

biocompatibility studies of aerogels are rare, which occasionally hinder commercialization.

The future of aerogels in biomedicine may be in the field of regenerative medicine, such as

wound care and tissue engineering.

1.2 Importance of understanding aerogel structure/process-property

relationships

There are an extensive number of synthetic variables and processing conditions for aero-

gels. Depictions of the general synthesis and processing pathways of aerogels are found in

Figure 2; a more comprehensive review of aerogel synthesis and processing is included in

section 2. Prior to formation of the gel, the aerogel’s sol must be formulated using a variety

of precursors, dopants, solvent systems, templating agents, and gelation agents. Follow-

ing formulation of the sol, the sol-gel method is most commonly used to initiate gelation;
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however, hydrothermal, sonochemical, electrolysis, solution heating, chemical precipitation,

and microwave irradiation methods can also be used. Aging and washing are then typically

conducted to strengthen the gel network and prepare for the drying process. After aging

and washing, the gel can be dried using a variety of drying methods, such as freeze drying,

ambient pressure drying, oven drying, atmospheric drying, and most frequently for aerogels,

supercritical drying. Dried aerogels are often heat-treated, causing sintering and densifica-

tion of the pore structure, at a variety of temperatures and times to determine behavior of

the system upon high-temperature exposure. As-dried and heat-treated aerogel samples are

then characterized using a variety of characterization techniques, including scanning elec-

tron microscopy, nitrogen adsorption/desorption, x-ray diffraction, and thermogravimetric

analysis, some of which can be time-consuming.

Figure 2: General synthesis, processing, and characterization methods of aerogels. Following
gelation of the precursor via the sol-gel technique, a variety of drying methods and sintering
parameters can be used in the processing of the final aerogel. As-dried and heat-treated
aerogels are then characterized using several techniques.

The number of synthetic pathways can be determined using the relationship mn where

n is the number of synthetic variables considered and m is the number of distinct options

possible for each variable. Looking at the sol formation alone, there are at least five distinct

synthetic variables to be considered: precursor, rare earth dopant stabilizer, solvent system,

templating agent, and gelation agent. If there were only two distinct options for each of these

five variables (m = 2, n = 5), there would be 32 synthetic pathways; if there were three

distinct options (m = 3, n = 5), 243 synthetic pathways would be feasible. Typically, m is

much greater than two or three, as there are many more potential options for each synthetic

variable; for example, m is greater than 17 for the gelation agent variable when considering
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zirconia aerogel synthesis. The concentrations of each of the five synthetic variables added

to the sol also need to be considered, further increasing the value of m. Following the

formulation of the sol, variables included in the gelation method, aging method, washing

method, drying method, and sintering method need to also be examined, increasing the

value of n. The large number of synthetic variables shows an exponential increase as each

processing step is evaluated.

In addition to the extensive amount of synthesis and processing variables that must be

considered, the development lifecycle of aerogels from initial sol formulation to characterized

product can take as long as one to three weeks, with some reported synthetic pathways

requiring even longer times, up to two months.

During a comprehensive review of zirconia aerogel synthesis and processing, it was es-

tablished that, on average, aging occurred in 37 hours, washing occurred in 80 hours, drying

occurred in 6 hours, and sintering occurred in 1 hour. However, some reported synthetic

pathways were much longer, as washing occurred for up to 9 days, drying occurred for up to

3 days, and sintering occurred for up to 24 hours; one synthesis reported aging the zirconia

gels for one to two months prior to drying. Additionally, when considering characteriza-

tion, the BET surface area measurement takes approximately 48 hours to complete both

degassing and analysis and can typically only be done with one to a few samples at a time

per instrument. Overall, it was reported that zirconia aerogel synthesis took 6 to 12 days,

with some reported synthetic pathways taking much longer, even up to approximately two

months.

Following a review of silica aerogel synthesis and processing, it was determined that, on

average, silica sols stirred for 1 hour, sols were left for 15 hours prior to gelation, gelation

occurred in 10 hours, aging occurred in 40 hours, washing occurred in 48 hours, and drying

occurred in 10 hours. However, a number of silica aerogel synthetic pathways reported

much longer synthesis and processing times, with aging occurring for up to 7 days, washing

occurring for up to 8 days, and drying occurring for up to 8 days. In total, including
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BET characterization time, from initial sol formulation to final characterized material, the

silica aerogel synthetic process on average took approximately 7 days. The maximum time

reviewed for silica aerogel synthesis was 20 days.

Due to the lengthy experimental time between initial formulation and final characterized

product, as well as cost of materials and methods, arbitrary investigation of the synthetic

pathways of aerogels should be avoided. An optimized synthetic pathway, creating aerogels

with high surface area and mesoporous structure, should be determined prior to experimen-

tation. Yet, the sheer number of synthetic and processing variables of aerogels can make the

optimization of these materials difficult and can hinder potential development. To mitigate

the number of synthesis and processing variables used in the creation of aerogels, tools that

can optimize aerogel synthesis, such as a property graph database or machine learning mod-

els, were developed and utilized in this dissertation. Here, data science was utilized in a way

that could clarify structure-property relationships in colloidal chemistry, providing a more

efficient way to evaluate the synthesis and processing of materials with high experimental

dimensionality.
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Chapter 2 Review of aerogel synthesis and processing

An extensive review of aerogel synthetic and processing conditions was conducted as part of

this dissertation. Following an introduction to five aerogel systems, zirconia (ZrO2), silica

(SiO2), alumina (Al2O3), aluminosilicate (Al2O3/SiO2), and carbon, an overview of synthesis

and processing conditions of aerogels will be presented, with a primary focus of the synthesis

and processing of zirconia aerogels and silica aerogels, as these two aerogel systems were

predominately considered in this work.

2.1 Various aerogel systems: Properties and applications

While many precursor systems are used in the synthesis of aerogels, zirconia (ZrO2), silica

(SiO2), alumina (Al2O3), aluminosilicate (Al2O3/SiO2), and carbon aerogels are among some

of the most prevalent. Here, we discuss the synthesis methods, properties, and applications,

which are summarized in Table 1, specific to each of these aerogel systems. Figure 3 depicts

a selection of the potential applications for each aerogel system.
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Table 1: Review of various aerogel types. Several precursors, averaged aerogel properties,
and potential applications for five different aerogel types: zirconia, silica, alumina, alumi-
nosilicate, and carbon.

Surface Thermal

Area Density Conductivity

Aerogel Precursors (m2/g) (g/cm3) (W/m·K)

zirconyl chloride

Zirconia octahydrate, 200 - 900 0.050 - 0.450 0.021 - 0.180

(ZrO2) zirconium(IV) propoxide,

zirconium(IV) chloride

tetraethyl orthosilicate,

Silica tetramethyl orthosilicate, 600 - 1000 0.030 - 0.350 0.012 - 0.020

(SiO2) methyltriethoxysilane,

sodium metasilicate

aluminum isopropoxide,

Alumina aluminum sec-butoxide, 350 - 700 0.035 - 0.400 0.028

(Al2O3) aluminun chloride

hexahydrate

tetraethyl orthosilicate,

Aluminosilciate sodium metasilicate, 150 - 905 0.050 - 0.630 0.023 - 0.081

(Al2O3/SiO2) aluminum chloride

hexahydrate

graphene,

Carbon carbon nanotubes, 500 - 900 0.003 0.018 - 0.350

resorcinol,

biomass
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Figure 3: Aerogel applications. Applications for various aerogel types, including zirconia
(ZrO2), silica (SiO2), alumina (Al2O3), aluminosilicate (Al2O3/SiO2), and carbon aerogels.
Applications for zirconia aerogels include thermal insulation, aeronautics, aerospace, sorp-
tion media, catalysis, and electrode material. Silica, alumina, aluminosilicate, and carbon
aerogels can be used in applications such as catalysis, concentration sensors, and dielectric
materials.

2.1.1 Zirconia (ZrO2) aerogels

Zirconia (ZrO2) aerogels were first synthesized in 1976 by Teichner et al. using the sol-gel

method, with a zirconium alkoxide precursor in organic solvent, and supercritical drying.190

These materials have recently become further investigated for high-temperature applications

due to their low thermal conductivity and increased thermal stability.1 Zirconia aerogels have

thermal conductivities as low as 0.021 W/m·K and up to 0.180 W/m·K. As-dried zirconia

aerogels have specific surface area values ranging between 200 and 900 m2/g. They also have

high porosities of up to 97% and densities between 0.05 - 0.45 g/cm3.

Zirconia aerogels are synthesized using a variety of precursors, including zirconyl chloride
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octahydrate, zirconium(IV) propoxide, zirconium(IV) chloride, and zirconium(IV) oxynitrate

hydrate.37,49,191–193 The choice of precursor can have an effect on the final properties of the

aerogel, including surface area, pore volume, and density. Drying techniques, including

supercritical drying and ambient pressure drying, are used to create zirconia aerogels.32,35

The microstructure and resulting properties of zirconia aerogels are beneficial when used

in a variety of applications. Selected zirconia aerogel applications are displayed in Figure 3.

The high melting point of ZrO2, 2715°C, allows zirconia aerogels to be used at high tem-

peratures where other aerogel systems, such as silica, begin to sinter.1 This makes zirconia

aerogels useful in a wide range of thermal management systems, including high-temperature

thermal insulation. In addition, zirconia aerogels can be used in a variety of aerospace

and aeronautics applications. Specifically, zirconia aerogels have been formulated for use as

thermal barrier coatings in gas turbines and aero-engines, as well as hypervelocity particle

capture systems for space applications.5,162,165 Zirconia aerogels are also used as heteroge-

neous catalyst supports, sorption media, and electrodes in solid oxide fuel cells.1,2,4,23

2.1.2 Silica (SiO2) aerogels

Silica (SiO2) aerogels are widely studied and used due to their vast range of exceptional

properties. Silica aerogels have low thermal conductivity (0.012 - 0.020 W/m·K), high specific

surface area (600 - 1000 m2/g), low density (0.03 - 0.35 g/cm3) and excellent porosity (approx.

99%) with a mean pore diameter of 20 nm.9,152,194,195 Silica aerogels also have low dielectric

constant (1.0 - 2.0), refractive index (1.00 - 1.08), and sound velocity (100 m/s). However,

silica aerogels are known to sinter and densify when exposed to temperatures between 600°C

and 700°C, which makes them not as suitable for high-temperature applications, due to thin

structural links and a melting temperature of 1713°C for silicon dioxide.7,196 Silica aerogels

are also fragile and can be sensitive to relatively low stresses.

Silica aerogels are synthesized using precursors such as tetraethyl orthosilicate (TEOS),

tetramethyl orthosilicate (TMOS), methyltriethoxysilane (MTES), or sodium metasilicate
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(water glass), which tend to be less expensive than precursors typically used for other aerogel

systems.152,194,195 Whether a silica precursor is hydrophilic or hydrophobic has an effect on

the optical transmission, density, hardness, and elasticity of silica aerogels. Additives, for

example polyethylene glycol (PEG) to influence pore size or glycerol to prevent further

reaction of water, can also be added to the silica sols prior to gelation to tailor the process

for specific properties or to stabilize gels, especially during drying. As additional examples,

He et al.’s work utilized a drying control chemical agent, N,N-Dimethylacetamide (DMA),

to minimize shrinkage during drying and Zhu et al. used graphene to aid in the thermal

stability and conductivity of graphene-doped silica aerogel products.90,123 Transition metal

complexes, containing metals such as nickel, copper, or cobalt, and compounds such as

graphene can be used as dopants in silica aerogels.90,197 Acid catalysts, including hydrochloric

acid or sulfuric acid, or base catalysts, namely ammonia, are typically added to the silica

sol to increase hydrolysis and condensation rates and induce gelation, completing the sol-

gel transition.57,66,67,143 Silica aerogels are dried using supercritical drying, ambient pressure

drying, and freeze drying.

Silica aerogels have a wide range of potential applications because of their unique proper-

ties. A few select silica aerogel applications are depicted in Figure 3. Due to their low thermal

conductivity, silica aerogels can be used as insulators in building construction, blankets, solar

devices, and thermal insulation on space craft and in space suits.194,198 Superhydrophobic

silica aerogels can be effective, reusable absorbents of oils and organic liquids, with high up-

take capacity and rate.199 Silica aerogels can also be used as photoanodes for dye sensitized

solar cells because of their high surface area and mesoporosity.200 Due to the low dielectric

constant of silica aerogels, these materials can be used for intermetal dielectric materials in

microelectronic devices.201
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2.1.3 Alumina (Al2O3) aerogels

Similar to silica aerogels, alumina (Al2O3) aerogels have low density (0.035 - 0.400 g/cm3),

high porosity (> 98%), high surface area (350 - 700 m2/g), and low thermal conductivity

( 0.028 W/m·K).9,202,203 Alumina aerogels are typically more thermally and chemically stable

than silica aerogels due to a network microstructure that is crystalline and fibrous, as well as

aluminum oxide’s higher melting point of 2072°C.204 Alumina aerogels are very fragile and

can have poor mechanical properties, limiting their application; however, the optimization

of synthesis method often strengthens alumina aerogels.205

Alumina aerogels can be synthesized using aluminum alkoxides (aluminum isopropoxide

or aluminum sec-butoxide), aluminum salts (aluminum chloride hexahydrate or aluminum

nitrate nonahydrate), or aluminum oxyhydroxides (boehmite).9,202,206 Alumina aerogels syn-

thesized using aluminum alkoxides have high thermal stability and are mechanically strong

due to a polycrystalline aerogel microstructure.207 However, using aluminum salts in conjunc-

tion with an epoxide proton scavenger synthesizes high surface area and low density alumina

aerogels, without the use of highly reactive alkoxide precursors. A variety of dopants can be

added to stabilize alumina aerogels, including yttrium oxide, titanium dioxide, and silicon

dioxide.208–210 Acid catalysts, such as acetic acid, or epoxides, such as propylene oxide, can

be used as gelation initiators in alumina aerogels. Alumina aerogels are dried using typical

aerogel drying methods, including supercritical drying, freeze drying, and ambient pressure

drying.

There are many diverse applications for alumina aerogels, a few of which are represented

in Figure 3. Due to their thermal stability, alumina aerogels are useful in thermal manage-

ment applications, such as high-temperature thermal superinsulators and heat-storage sys-

tems. Alumina aerogels tend to be better insulating materials than silica aerogels because of

increased thermal stability.203,207 Alumina aerogels can be used as high-temperature catalyst

supports and adsorption material for separations due to their high surface area.202,205,206
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2.1.4 Aluminosilicate (Al2O3/SiO2) aerogels

Aluminosilicate (Al2O3/SiO2) aerogels, made from both silicon and aluminum precursors,

have become increasingly popular. The addition of silica to alumina aerogels can inhibit

the crystalline phase transition of alumina aerogels at 1000°C, which can deform the porous

structure.211 Aluminosilicate aerogels show increased resistance to high temperatures than

pure silica aerogels and better thermal stability than pure alumina aerogels.212 Aluminosil-

icate compounds can have melting points greater than 1810°C, which is higher than the

melting point of silicon dioxide alone (1713°C).213 Aluminosilicate aerogels have low density

(0.05 - 0.63 g/cm3), low thermal conductivity (0.023 - 0.081 W/m·K), small pore size (0.5 -

50 nm), and high surface area (150 - 905 m2/g).9 However, aluminosilicate aerogels are very

fragile and can lack mechanical strength without the proper formulation.

Aluminosilicate aerogels are synthesized with a combination of silica and alumina sols

that are used in the synthesis of pure silica and pure alumina aerogels. For silicon precursors,

tetraethyl orthosilicate or sodium metasilicate are frequently used. For aluminum precur-

sors, aluminum chloride hexahydrate or boehmite powders are often used.7,9,212 To initiate

gelation, epoxides, for example propylene oxide, acid catalysts, or base catalysts are added

to the sol. Aluminosilicate aerogels are dried using methods typical to most aerogel synthesis

- supercritical drying, freeze drying, or ambient pressure drying.

There are many potential applications that aluminosilicate aerogels can be used in. Select

applications of aluminosilicate aerogels are shown in Figure 3. Due to their high-temperature

resistance, aluminosilicate aerogels can be used in thermal protection systems, such as build-

ing insulation and aerospace applications, including use as particle collectors, cryogenic fluid

containers, and re-entry vehicles.7,9 Aluminosilicate aerogels are also used in catalytic ap-

plications because of their large surface area, high pore volume, and high acid site concen-

tration.214 Aluminosilicate aerogels can also be used in environmental applications, such as

water vapor or nickel adsorbents, due to high surface area.215
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2.1.5 Carbon aerogels

Carbon aerogels, with excellent chemical and mechanical properties, are a current topic of

research interest. Carbon aerogels have low density (0.003 g/cm3), low thermal conductivity

(0.018 - 0.350 W/m·K), high specific surface area (500 - 900 m2/g), and high pore volume

(0.4 - 2.6 cm3/g) with porosities of up to 98%.216–218 Carbon aerogels can be very brittle,

depending on formulation, which can limit use in certain applications, such as stretchable

electronics and smart manufacturing.219 However, carbon aerogels have excellent thermal

stability and can maintain a mesoporous structure up to 2800°C. This high thermal stability

is in part due to the high melting temperature of carbon, as some forms of carbon, such as

graphite, can have a melting temperature greater than 4000°C.196

Carbon aerogels are synthesized using precursors such as graphene, carbon nanotubes

(CNTs), biomass, resorcinol, and formaldehyde.217 Each precursor has unique benefits, as

discussed below. Graphene aerogels can be synthesized using a variety of methods, including

sol-gel, templating, self-support, and substrate-based methods.216 Aerogels derived from car-

bon nanotubes are electrically conductive; however, CNT aerogels that are formed directly

can have poorly formed structures and can be mechanically unstable. Biomass is a promising

precursor for carbon aerogels as it is inexpensive and abundant. To initiate polymerization

and gelation of carbon aerogels, a variety of catalysts are used, including alkali catalysts and

acid catalysts. A range of dopants can be used in carbon aerogels, such as copper, sulfur,

nitrogen, and silver nanoparticles.220–222 Highly porous carbon aerogels are typically dried

using freeze-drying; however, supercritical drying and ambient pressure drying can also be

used. Carbon aerogels can be used in a variety of applications because of their advantageous

properties. Carbon aerogels are used as dampening components, electromagnetic metamate-

rials, and sensors.219 Due to the large pore volume and high surface area of carbon aerogels,

these materials can be used in supercapacitors, with ultrafast energy conversion and charg-

ing.223 Carbon aerogels can also be used in catalytic applications, such as electrode material

for lithium-ion batteries and solar photocatalysts.224 These aerogels have high rate capability
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and recyclable photocatalytic activity. Multiwall carbon nanotube-graphene hybrid aerogels,

with superhydrophobicity, superoleophilicity, large pore volume, and high compressibility,

can be used in oil sorption with large sorption capacity and excellent recyclability.225 Due

to low thermal conductivity, carbon aerogels can also be used in high-temperature thermal

insulation applications.217 A selection of applications used with carbon aerogels are displayed

in Figure 3.

2.2 Aerogel synthesis

Prior to drying and processing to synthesize aerogels, wet gels must first be prepared. Here,

several different routes for colloidal dispersion and gel formation, along with a variety of pre-

cursors, dopants, gelation agents, modifying agents, and surfactant templates that are added

to the system prior to gelation are reviewed. The technique chosen influences the proper-

ties of as-dried and heat-treated aerogels, including pore structure, surface area, crystalline

phase, and sintering or grain growth upon high-temperature exposure. Tuning the final aero-

gel properties can affect the way that they are used for various applications, including use as

thermal management, catalytic, and sorption systems. Many of the reviewed synthetic and

processing techniques are used for a variety of aerogel systems; however, examples referring

specifically to zirconia aerogels and silica aerogels are highlighted as these aerogel systems

were specifically considered as part of this dissertation.

2.2.1 Dispersion & Gel Formation

A dispersion of colloidal particles can be used to form a variety of products, including

nanocrystals, powders, gels, and aerogels.226–231 Here, methods are discussed for dispers-

ing particles, forming sols and gels, which can then be transformed to aerogels following

further processing. Figure 4 depicts seven different methods used for gels: sol-gel, hy-

drothermal treatment, sonochemical, electrolysis, solution heating, chemical precipitation,

and microwave irradiation.
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Figure 4: Gel synthesis methods. Gels can be synthesized using a variety of methods,
including A) sol-gel, B) hydrothermal, C) sonochemical, D) electrolysis, E) solution heating,
F) chemical precipitation, and G) microwave irradiation methods. Each method can be
used for a variety of aerogel systems and has different process parameters and resulting gel
properties associated with it.
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The conventional method to form aerogels is through sol-gel synthesis, which uses inor-

ganic polymerization to form gels through hydrolysis and condensation reactions.8,10,32,192,232–235

A depiction of the sol-gel method is shown in Figure 4A. The sol-gel method can effectively

synthesize aerogels with high surface areas, tunable pore size distributions, controllable prop-

erties, and stable crystalline phase. Advantages of using the sol-gel method to synthesize

solid materials are low processing temperatures, increased tunability of microstructure and

morphology, inexpensive design, convenient processing (completed under room conditions

with general lab equipment), process safety, and versatility of synthesized materials. To

form aerogels using the sol-gel method, precursors or colloidal particles are first dispersed

in an aqueous and alcoholic, most commonly ethanol, mixture to create a sol of particles

with nanoscale dimensions. Once a gelation agent is added, the sol can form a gel, which,

with continued processing such as drying and densification, can form an aerogel or other

type of solid material, e.g., ceramic powder. The precursors, alcoholic or aqueous solvents,

dopants, dispersants, gelation agents, or overall chemical procedure can have an influence on

the gelation time, mechanical strength, morphology, pore structure and size, surface area,

and thermal stability of the aerogels synthesized through the sol-gel method.236,237 As an

example, Bedilo et al. synthesized zirconia aerogels by a sol-gel method and subsequent high-

temperature supercritical drying.233 The zirconia aerogels had high surface areas of greater

than 500 m2/g, which remained above 100 m2/g after 2 hours of calcination at 500°C. In a

similar case, Sun et al. determined that ultrafine zirconia aerogels, with high thermal sta-

bility, surface area, and pore volume, could be prepared through a sol-gel supercritical fluid

drying method.234 Additionally, Chervin et al. synthesized yttria-stabilized zirconia (YSZ)

aerogels through a non-alkoxide sol-gel method using Zr4+ and Y3+ chlorides as precursors

and propylene oxide as the gelation agent.8 The wet gels were dried using supercritical CO2,

transforming into aerogels, which were then crystallized into stable ZrO2 upon 500°C expo-

sure. The resulting aerogels had high surface areas, particle diameters below 10 nm, and

cubic-tetragonal crystalline structure.
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Through the sol-gel hydrolysis of a mixture of aqueous solutions and alcoholic zirconium

alkoxide solutions, zirconium oxides can be prepared.232,236 To slow down condensation by

decreasing reactivity and prevent aggregation of zirconia nanoparticles, a complexing agent,

such as acetylacetone, can be added to the sol; this increases the stability of the colloidal

oxide particles. The sol-gel method produces stable zirconia solid solutions, as well as zirconia

solid solutions with high dopant content, that have high thermal resistance, which is difficult

to achieve using other synthesis methods, such as coprecipitation. As another example of

the sol-gel method, using zirconyl chloride octahydrate and yttrium nitrate hexahydrate

precursors dissolved in a water-ethanol mixture, with polyethylene glycol (PEG) used as a

dispersant, yttria-stabilized zirconia (YSZ) gel powders were formed by Kuo et al. following

pH adjustment.237 The presence of residual ions caused agglomeration of YSZ nanopowders

with high thermal stability, high ionic conductivity, and exceptional mechanical properties.

While examples relating specifically to zirconia systems were presented, these sol-gel methods

can be applied to many different candidate systems.

In the hydrothermal treatment method, shown in Figure 4B, an aqueous solution of pre-

cursor is heated to form a colloidal dispersion or sol.238,239 Prior to heating, the pH of the

solution is usually adjusted. Following heat-treatment in an autoclave, generally around

150°C to 280°C for anywhere from 2 hours to 3 days, the solution is cooled, centrifuged,

washed, and dried to form the solid product. This hydrothermal treatment method forms

colloidal suspensions, which consist of small colloids that do not aggregate. This method is

generally low-energy, safe, controlled, and high yielding.240 Using microwave hydrothermal

methods, which utilize microwave irradiation in addition to hydrothermal treatment, can

also be beneficial in synthesizing highly crystallized products. As an example of hydrother-

mal treatment, Chang et al. used a sol-gel-hydrothermal method to synthesize zirconia

single crystal nanoparticles containing pores.241 The pores were directly resulting from the

gel’s structure and hydrothermal treatment. Similarly, Wang et al. utilized a modified

hydrothermal-assisted sol-gel method to synthesize Y2O3-stabilized tetragonal ZrO2 poly-
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crystal composites.242 The precursor solution was heated at 180°C for 2 hours, followed by

freeze drying and calcination. The powders had high crystallinity, as well as uniform size

and near-spherical morphology. Additionally, Lee et al. formed zirconia sols from solutions

of zirconium acetate, zirconium nitrate, and zirconium chloride using hydrothermal methods

at 150, 200, and 300°C, respectively.243 The sols produced via hydrothermal methods could

be further processed to achieve a number of final products, including thin films, nanopow-

ders, gels, and aerogels. As an example relating specifically to aerogels, Cao et al. used

an alcohothermal method, similar to hydrothermal methods but with alcoholic solvents, to

synthesize thermally stable zirconia aerogels with high surface area.244 To create the zirconia

gels prior to supercritical drying, an alcoholic solution of Zr(NO3)4 · 5 H2O was placed in an

autoclave at 110°C for 1 hour, which is a slightly lower temperature and time than typically

used for hydrothermal treatment.

Sonochemical methods can be used to transform precursor solutions into colloidal sols,

and therefore, aerogels or nanopowders.227,231,245–247 Sonochemical methods, as depicted in

Figure 4C, utilize sound at high-frequency through an ultrasonic probe and high-intensity

ultrasound irradiation (approx. power 500 - 600 W, approx. frequency 20 - 35 kHz) to aid

in the homogeneous dispersion of colloidal particles. Ultrasonic irradiation creates waves of

pressure that form cavities that are capable of violent collapse; the induced stress of this

collapse creates smaller particles, typically in the 1 - 300 nm size-range, and breaks up powder

agglomerates. Because of the formation of smaller particles, the use of ultrasound irradiation

can form particles with higher surface areas, which decrease negligibly after calcination

at 500°C, than those produced with other methods.246–248 Ultrasonic parameters such as

applied ultrasonic power, frequency, and processing time, have effects on the structure of

the resulting particles as well as the final aerogel properties. As an example of using this

technique, Jod lowski et al. used a sonochemical sol-gel method to produce zirconium dioxide

dip-coatings.249 The formed gel nanoparticles had high homogeneity and small molecular size,

both of which were controlled by the ultrasound irradiation. Gubanova et al. synthesized
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amorphous zirconia gels from zirconium(IV) propoxide using the sonochemical approach.250

The zirconia gels synthesized using sonication exhibited a more structured surface and higher

specific surface area as compared to gels made without ultrasonic irradiation. As another

example, Jiayi Zhu et al. created graphene and silica hybrid aerogels where the initial silica

sols underwent ultrasonic irradiation treatment after the addition of graphene in order to

ensure thorough dispersion of the graphene particles in the sols.90

Aerogels can also be synthesized using an electrolysis method (see Figure 4D). For exam-

ple, Zhao et al. synthesized high-surface area (640 m2/g) zirconia aerogels by electrolyzing

zirconium oxychloride solution.251 The electrolysis method converts a metal chloride solution

to a wet gel, which can then be transformed to an aerogel via supercritical drying or freeze

drying. The resulting zirconia aerogels were mesoporous with a mixture of monoclinic and

tetragonal ZrO2 crystalline structure. The electrolysis route has also been used to produce

fibers, suggesting that the resulting morphology and properties are highly dependent on the

sol precursors used. The electrolysis method is capable of scale-up and is a green process,

making it advantageous to the production of aerogels. However, the electrolysis method has

high energy consumption in comparison to other synthesis methods.32

As an example of the solution heating method, Wu et al. synthesized aerogels by heat-

ing a zirconyl dihydrate solution with an alcohol-aqueous mixture, followed by supercritical

drying.252 The solution heating method, which can be easily implemented in the lab, formed

zirconia aerogels with weak agglomeration and high specific surface area of 676 m2/g. This

synthesis method leverages the significant decrease of the dielectric constant and solvent

energy upon heating in a water bath at 80°C for approximately one hour, which results in

precipitation leading to gels. Solution heating typically occurs at lower temperatures for

shorter times compared to the hydrothermal treatment method, which uses temperatures

ranging from 150°C to 280°C for anywhere from 2 hours to 3 days. As an additional dis-

tinction between the two methods, solution heating takes place in a water bath, while the

hydrothermal treatment method is conducted in an autoclave. The solution heating method

24



is displayed in Figure 4E.

The chemical precipitation method can be used to synthesize aerogels, powders, or

nanoparticles from a solution of colloidal particles.236,253,254 One of the most widely used

methods of zirconia powder synthesis is the precipitation of zirconia-based ceramics via sol-

gel technique.255 This method permits the synthesis of high purity and quality powders by

providing regulation of chemical homogeneity and particle size. Precipitation occurs when

a basic additive, such as an ammonium zirconium carbonate solution, sodium hydroxide, or

aqueous ammonia, is added to the zirconium solution and solid particles precipitate out of

solution. The solid precipitate is then further processed, which can include filtering, rins-

ing, or drying, to create nanoparticles or powder; upon exposure to high temperature, the

solid can be crystallized. Figure 4F depicts the chemical precipitation method. Parameters

such as precursors, solvents, pH, temperature, and additives, e.g., surfactants, can affect the

chemical precipitation reaction, thus influencing the final properties, including structure,

surface, and texture of the solid material. However, when precipitation is used to synthe-

size aerogels, the method can be uncontrollable and complicated; aerogels synthesized using

precipitation are typically powders or greatly cracked, which limits and shortens use.32

Colloidal sols can be formed using microwave irradiation, displayed in Figure 4G.256,257

This technique uses microwave irradiation to increase the speed and number of collisions

between nanoparticles. An apparatus capable of producing microwave irradiation allows for

uniform heating of the sol and reduced synthesis time. This technique allows the colloidal

solution to be well-dispersed, well-crystallized, and uniform. Aerogels can be formed by

combining sol-gel methods with microwave irradiation, which would be utilized during the

hydrolysis and condensation reactions taking place throughout the sol-gel transition. To

illustrate the benefits of microwave irradiation, Fetter et al. found that, in zirconia aerogels,

a tetragonal crystalline phase was formed at nearly any pH level using microwave irradiation,

while conventional sol-gel methods only formed the tetragonal phase at pH 3 - 4 or pH 13 -

14.258
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2.2.2 Precursors

Precursors, the starting material of the aerogel system, are necessary for aerogel synthesis,

regardless of dispersion or gel formation methods. Here, precursors that are often used

for zirconia aerogels and silica aerogels, the aerogel systems predominately studied in this

dissertation, are reviewed.

In the synthesis of zirconia aerogels, many different types of zirconium precursors - such

as oxychlorides, chlorides, nitrates, hydroxides, oxyhydroxides and alkoxides - can be used.32

Zirconium oxyhydroxides and hydroxides can be used as precursors in zirconia aerogel syn-

thesis. For example, Gossard et al. used Zr4(OH)16 hydroxides as the zirconium precursor.193

These hydroxides are not stable in solution and, thus, undergo dehydration via oxolation to

form the oxyhydroxide ZrO(OH)2. Conversely, Baklanova et al. synthesized ZrO(OH)2 from

an ion exchange reaction in aqueous acetic acid solution from Li2ZrO3.
259 This ZrO(OH)2

oxyhydroxide spontaneously precipitated out of solution; however, following the addition of

the chelating agent, acetylacetone, the oxyhydroxide could be stabilized. A zirconia gel was

formed once the pH of the system was increased and the system was destabilized.

Alkoxide precursors are commonly used in zirconia aerogels. As an example, Livage

et al. synthesized stable tetragonal zirconia sols using zirconium alkoxides.232 Due to the

electrophilicity of Zr4+, zirconium alkoxides tend to react violently towards hydrolysis and

condensation reactions upon the addition of water, inhibiting the development of a well-

established gel structure and causing precipitation.37 Complexing agents are typically added

to stabilize the zirconium alkoxide solutions in order to control the formation of the resulting

metal oxide. Using zirconium(IV) propoxide and yttrium(III) isopropoxide as the alkoxide

precursors, Peshev et al. synthesized yttria-stabilized zirconia amorphous gel coatings using

the sol-gel method.191 Similarly, Rezaee et al. synthesized zirconia ceramic powders using

the sol-gel method and zirconium alkoxide solution.260 The synthesized nanopowders had

reduced thermal conductivity and high porosity. As another example, Zu et al. synthesized

zirconia/silica composite aerogels via supercritical deposition using zirconium(IV) butoxide
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as the zirconium precursor; the aerogels retained high specific surface area of 172 m2/g and

large pore volume 0.97 cm3/g after exposure to 1000°C.45

Inorganic salts, such as nitrates or chlorides, can also be used as precursors for zir-

conia aerogel synthesis. Using a non-alkoxide synthesis route, such as inorganic salts as

zirconium precursor with epoxides as proton scavenger, is advantageous as alkoxides can be

difficult to handle and sensitive during the sol-gel process.43 Zirconyl chloride octahydrate

(ZrOCl2 · 8 H2O) is a frequently used zirconium precursor in zirconia aerogel synthesis, result-

ing in aerogels with high surface area, low density, and large pore volume.37,49 As an example

of a different chloride precursor, using zirconium(IV) chloride (ZrCl4), Gash et al. synthe-

sized zirconium dioxide (ZrO2) metal oxide aerogels with the epoxide addition method.192

Demonstrating nitrates used in synthesis, Gossard et al. used an inorganic zirconium salt,

zirconium(IV) oxynitrate hydrate (ZrO(NO3)2), to form a colloidal nitrate zirconyl solution

and subsequent gels.193 The nitrate counter ions of nitrate zirconium salts are neutral for

cluster complexation, especially compared to other counter ions, such as chloride ions.

Regarding silica aerogel synthesis, the four most commonly used precursors are tetraethyl

orthosilicate (TEOS), tetramethyl orthosilicate (TMOS), sodium silicate (water glass), and

methyltrimethoxysilane (MTMS).87 Less common silica aerogels can also be used, such as

silicic acid derived from organic waste; in Garram Ban et al.’s work, rice husk ash was used

as the silica precursor.86

The silicon alkoxide tetraethyl orthosilicate (TEOS) is frequently used, as it is less expen-

sive and less toxic than the precursor used before it, tetramethyl orthosilicate (TMOS).107,194

Silica aerogels from TEOS precursors were created by Tiemin Li et al. by varying the aging

and washing times of the wet gels. The aged and washed silica aerogels had densities ranging

from 0.086 g/cm3 to 0.108 g/cm3 and good optical transmittance with low refractive indices.

Gels produced in this study that were not washed or aged had a bulk density of 0.172 g/cm3

and the highest refractive index.107

Researchers looking for an alternative to TEOS have studied another hydrophilic pre-
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cursor, sodium silicate (water glass), as it can be less expensive, more abundant, and more

environmentally friendly than TEOS.54,58 The main difference between using water glass

and using TEOS is that water glass must undergo strong cation exchange in order to replace

the sodium ions with hydrogen ions and create silicic acid for use in the silica gel sols. An

example of this process is seen in the work by Yujin Wang et al. where water glass was first

ion exchanged using strong acid styrene cation exchange resin before gelation and drying to

form silica aerogels with surface areas as high as 772 m2/g.58

Silica aerogels synthesized from hydrophilic precursors, such as TEOS or water glass,

must be supercritically dried or modified prior to ambient pressure drying. The hydroxyl

groups in these wet gels undergo condensation reactions, leading to moisture absorption.

This moisture absorption can result in sharp shrinkages, increased thermal conductivities,

low compressive strengths, and poor flexibilities of the aerogels.

A benefit of using a hydrophobic precursor, such as methyltrimethoxysilane (MTMS),

is that it leads to hydrophobic silica aerogels without surface modification since the methyl

groups on MTMS replace the hydroxyl groups on the surface of the wet silica gels.72,194,261,262

These methyl groups reduce moisture absorption and subsequent shrinkage during drying.

For example, Song He et al. created silica aerogels with MTMS as a precursor using ambient

pressure drying without the surface modification necessary for ambient pressure dried TEOS

or water glass gels. The samples created in this manner yielded surface areas in the range of

325 m2/g to 543 m2/g and densities of 0.116 g/cm3 to 0.413 g/cm3.121 Properties of MTMS

based silica aerogels can be improved with the addition of other precursors such as in the

work of Hongyi Gao et al. which synthesized silica aerogels with surface areas ranging from

424 m2/g to 937 m2/g from combinations of MTMS and and additional silica precursors

and ambient pressure drying without surface modification.72 The disadvantage of MTMS

aerogels is that the surface areas are not as high as seen with hydrophilic precursors. MTMS

aerogels, as with most hydrophobic aerogels, are also fully opaque and tend to have densities

greater than 0.1 g/cm3.262 Due to increased elasticities, hydrophobic precursors and their
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resultant gels are soft and flexible in comparison to the hard and brittle aerogels created

with hydrophilic precursors.194,261

Surfactants are particularly useful in aerogel synthesis when a hydrophobic precursor

is chosen. Hydrophobic precursors do not dissolve in water making surfactants such as

the cationic surfactant cetrimonium bromide (CTAB) key additions to the initial sols.263

Typically, an alcoholic solvent is used to dissolve the silica precursor, however in cases with

hydrophobic precursors this is often not ideal due to the difference in polarities between

alcohols and the hydrophobic silica precursor.

It should also be noted that sometimes hybrid aerogels, such as zirconia/silica hybrid

aerogels, are synthesized. In this case, the ZrO2 sol containing Zr precursors and the SiO2

sol containing Si precursors are usually mixed together to prepare a homogeneous sol prior

to gelation. The addition of SiO2 into the ZrO2 aerogel is shown to improve the structural

stability of the aerogels following thermal exposure.4,21,45 SiO2 is shown to form a shell-

like layer around zirconia particles, inhibiting crystalline growth at high temperatures. For

silica aerogels, precursors such as silver nitrate (AgNO3), aluminum nitrate (Al(NO3)3), or

titanium tetrachloride (TiCl4) can be combined with a silica precursor to make a silver-silica,

aluminosilicate, or titanium-silica aerogel respectively.77,93 These combinations of precursors

can lead to a wider range of applications as well as beneficial properties such as mechanically

stronger aerogels, higher surface areas, or lower thermal conductivities according to the

hybrid precursor used. Many hybrid silica aerogels have much greater thermal stability at

higher temperatures than silica aerogels. However, these benefits often come at the expense

of another property as shown in the work of Shalygin et al.. Aluminum isopropoxide was

used as a precursor along with TEOS to form aluminosilicate aerogels with high thermal

stability but with low surface areas only ranging from 143 m2/g to 517 m2/g.116
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2.2.3 Dopants

Aerogels are often stabilized by a variety of dopants. Each dopant has various effects on

the aerogel properties; these different effects are caused by various intrinsic characteristics of

the dopants, such as the ionic radius or electronic properties of the dopant.8 As an example

relating to dopant stabilization of zirconia aerogels, zirconia is a polymorphic oxide, capable

of several different crystalline phases. At room temperature, zirconia is monoclinic; zirconia

transforms to tetragonal phase at approximately 1172°C and cubic phase at approximately

2370°C. To stabilize the tetragonal and cubic phases of zirconia, Zr4+ can be substituted

using rare earth or alkali earth cation dopants. To balance charge compensation, oxygen

vacancies are formed, which are critical for thermally activated conduction processes. The

following is a review of some rare earth dopants that have been used in stabilizing zirconia

aerogels, including yttrium, ytterbium, cerium, and gadolinium. Following this review, a

few select non-rare earth dopants are briefly discussed. While sometimes observed, the use

of dopants to stabilize silica aerogels is not as common.

Rare earth oxyhydroxides and rare earth hydroxides, can be used as rare earth precursors

for rare earth doped zirconia aerogels.264 Rare earth oxyhydroxides (REOOH) are known to

form tetragonal crystalline structure at high temperature and pressure, while a monoclinic

structure is formed at ambient pressure. As an example of use, Yang et al. utilized REOOH

(RE = Eu to Lu) as synthetic and thermodynamic intermediates in rare earth oxide - water

systems.265 Using thermal conversion of REOOH, rare earth oxides (RE2O3) can be achieved

as dehydration products. Thermodynamically, oxyhydroxides are more energetically stable

than oxides plus water in the rare earth series; these oxyhydroxides act as intermediates

between hydroxides and oxides.

The rare earth metal, yttrium (Y), is commonly used to stabilize zirconia aerogels.8

Yttria-stabilized zirconia (YSZ) has been used as a thermal barrier coating with high thermal

stability and low thermal conductivity.266 YSZ has an extremely low thermal conductivity;

a YSZ aerogel would have an even lower thermal conductivity due to the nature of aerogel
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properties, including small pore size and low amounts of solid material. To demonstrate using

yttria, Chervin et al. synthesized YSZ aerogels using yttrium(III) chloride hexahydrate; the

aerogels had high surface area and thermal conductivity measurements that were similar to

that of YSZ reported previously.8 Depending on the temperature, above 8 mol% Y2O3, it is

known that cubic stabilization occurs; below this concentration, a mixture of tetragonal and

cubic phases exists. At approximately 8 mol% Y2O3, the optimal ionic conductivity occurs;

electrolyte applications of YSZ use 8 - 10 mol% Y2O3. Yttria-stabilized zirconia has high

ionic conductivity, high thermal stability, and outstanding mechanical strength, making YSZ

useful in a wide variety of high-temperature applications.237 For example, Chao et al. proved

the improvement of zirconia aerogel thermal stability by doping with yttrium(III) nitrate

hexahydrate.48 The YSZ aerogels maintained a stable tetragonal phase after 1200°C exposure

for 2 hours. Zirconia aerogels without yttrium are shown to transform from tetragonal to

monoclinic after 600°C exposure, which causes a volume increase and limits use of the aerogels

as structural materials due to cracking. Additionally, Angle et al. demonstrated that the

addition of alumina in 8 mol% YSZ increases the thermal shock resistance, reducing crack

propagation during thermal stress.267 As another example of using yttria, Tsay et al. utilized

yttrium oxide (Y2O3) precursor solution to synthesize gels, and subsequent thin films, via

the sol-gel method.268

While yttria-stabilized zirconia aerogels are widely studied, other rare earth dopants are

used to stabilize the zirconia aerogel systems. Since the rare earth metal, ytterbium (Yb),

has a smaller ionic radius than yttrium, 3 - 10 mol% ytterbia-doped zirconia has a lower

thermal conductivity than YSZ. Using ytterbium(III) chloride hexahydrate, Hurwitz et al.

synthesized ytterbia-stabilized zirconia (YbSZ) aerogels, which retained a higher porosity,

predicted to decrease thermal conductivity, when exposed to temperatures of 1100°C - 1200°C

when compared to YSZ aerogels.22 The rare earth metal, cerium (Ce), is also doped into

the zirconia aerogel system as a stabilizer. Ceria-stabilized zirconia (CeSZ) draws attention

due to its high oxygen storage capacity and catalytic activity. Ceria-stabilized zirconia can

31



be synthesized using a variety of methods, including sol-gel, co-precipitation, and template-

assisted approaches.269 For example, Mejri et al. synthesized ceria-doped sulfated zirconia

aerogels that had excellent catalytic activity due to retention of specific surface area upon

exposure of temperatures up to 600°C.270 Likewise, Lamas et al. synthesized compositionally

homogeneous ZrO2-CeO2 solid solutions which had high specific surface areas and retained

the tetragonal phase with cerium oxide content up to 70 mol%.228 As another example, Sun

et al. synthesized CeSZ aerogels, as well as zirconia aerogels stabilized using lanthanum

(La), via the sol-gel method which were shown to have greater thermal stability, surface

area, and mesoporosity than the pristine zirconia aerogels.271 Using the rare earth metal

gadolinium (Gd), Montoya et al. synthesized gadolinium-doped ZrO2 nanoparticles via the

sol-gel method which were monodisperse and had high crystallinity.272

To demonstrate the use of a variety of rare earth elements, Torres-Rodriguez et al. syn-

thesized rare earth zirconate (Ln2Zr2O7 where Ln is La (lanthanum), Nd (neodymium), Gd

(gadolinium), and Dy (dysprosium)) monolithic aerogels via the sol-gel method and super-

critical drying.35 The aerogels had high specific surface areas following calcination at 1000°C

and a mixture of cubic and tetragonal zirconia phases.34

In addition to rare earth metals, non-rare earth metals can also be used as stabilizing

dopants in zirconia aerogel synthesis. As an example, Wu et al. synthesized monolithic

microporous zirconia gels using magnesium chloride hexahydrate.39 The addition of Mg2+

led to gels with high surface area and stabilized cubic zirconia phase after heat-treatment

at 800°C. As another example of non-rare earth dopants, Boyse et al. synthesized zirco-

nia aerogels that were doped with either tungstate or sulfate, as well as a combination of

the two.273 It was determined that having both dopants led to aerogels that had increased

thermal stability, as compared to aerogels which only had either tungstate or sulfate. Simi-

larly, Chakhari et al. doped zirconia aerogels with either sulfates or heteropolytungstic acid

(HPW).274 The aerogels doped with sulfate groups had higher resulting surface area and

average pore diameter than the aerogels doped with HPW.
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2.2.4 Solvents

In a typical sol-gel process, a solvent system of water and alcohol, commonly ethanol or

isopropanol, is used. This solvent system is used to dissolve the precursor material, which is

not usually soluble in water.275 The amount of water added to the solution must be controlled

because if too little water is added, hydrolysis does not go to completion; if too much water

is added, the aerogel is likely to have narrower pores, leading to higher density.276 He et al.

created aerogels from methyltriethoxysilane (MTES) precursor, ethanol, water, and ammonia

base catalyst by varying the volume ratio of water/ethanol from 0.7 to 1.5.110 As the ratio

increased from 0.7 to 1.5 average pore diameters of the resultant aerogels decreased from 6.1

nm to 3.4 nm.

2.2.5 Gelation agents

Gelation agents, or gelators, are used to transform solutions of colloidal precursors into a

gel, a weakly organized internal structure.277 Alternatively, complexing agents or chelating

agents can be added to the system in order to influence gelation.278,279 Chelating agents

can be used to modify alkoxide precursors, slowing down rapid hydrolysis and premature

precipitation during the sol-gel process. The measurement of gelation time, defined as the

time it takes for the sol to stand without flowing, typically starts after the addition of the

gelation agent and ends once a wet gel has formed.73,105 The gelation time can be slowed

down or sped up by changing many variables in the sol-gel process including precursor,

hydrolysis time, acid and base catalyst concentrations, process temperature, and solvent to

precursor ratio.280 Gelation time for wet gels can range from mere seconds to many days

depending on the sol contents and processing conditions.

The gelation agent that is selected has impacts on the final synthesized aerogel, including

its pore structure, surface area, crystalline phase stability, and sintering behavior. While a

variety can be used for aerogels, four select gelation agents are considered in this dissertation:

propylene oxide, acetylacetone, water glass, and acids. Base catalysts can also be used to
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initiate gelation in aerogels, specifically in silica aerogels.

Epoxides are frequently used as gelation agents during the sol-gel process as they are

able to synthesize wet gels from a variety of initial precursors, including oxynitrates, oxy-

chlorides, and chlorides.37 Propylene oxide (CH3CHCH2O) is a widely used gelation agent

for all types of sol-gel materials, providing consistent and quick gelation times.66,143 As an

example, Schäfer et al. synthesized yttria-stabilized zirconia (YSZ) and pure zirconia aero-

gels starting from zirconium(IV) chloride and using propylene oxide.281 Similarly, Chervin

et al. synthesized YSZ aerogels, using propylene oxide, with retained high surface areas and

nanostructure following 500°C exposure.8

The role of propylene oxide (PO) as a gelation agent is to promote metal ions to undergo

hydrolysis and condensation reactions.281 PO accomplishes this by consuming acid as a pro-

ton scavenger, raising the pH of the solution through an irreversible ring-opening reaction.51

In metal oxide aerogel synthesis, the gelation time varies with the molar ratio of PO to total

metals; increasing amounts of PO lead to faster gelation times.8

While propylene oxide is a widely used gelation agent, PO is a hazardous substance, with

high toxicity, flammability, explosiveness, and irritancy.37 The safety hazards associated with

propylene oxide make it problematic for use as a gelation agent, especially when consider-

ing the potential scale-up of the metal oxide aerogel synthesis process. As alternatives to

propylene oxide, Gash et al. demonstrated that other epoxides, such as 1,2-epoxybutane,

1,2-epoxypentane, 2,3-epoxy(propyl)benzene, trimethylene oxide, glycidol, epichlorohydrin,

and epibromohydrin, can be used to synthesize metal oxide aerogels by inducing gelation.192

Acetylacetone (CH3COCH2COCH3), the conjugate acid of acetylacetonate, is another

gelation agent that is used in sol-gel reactions. For instance, Gossard et al. synthesized

zirconia gels using zirconyl nitrate salt as the precursor and acetylacetone as the complex-

ing agent via a colloidal sol-gel method.193 Furthermore, Schäfer et al. synthesized zirconia

gels using acetylacetone as a gelation agent and found that the addition of acetylacetone

was required for the formation of the gel.281 Acetylacetone is used to inhibit dehydration
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reactions via oxolation and to prevent precipitation of the Zr precursor. Acetylacetone also

acts as a chelating agent by creating a steric barrier and stabilizing the Zr-based colloids,

which facilitates the formation of the nanoparticles and subsequent zirconia gel. Along with

the concentration of the precursor and the pH of the sol, the concentration of acetylacetone,

specifically the concentration ratio of acetylacetone to precursor, influences the gelation

time of the system. Gelation time is known to increase with the concentration of acetylace-

tone.281,282 As an example, Gossard et al. set the value of the [acetylacetone]/[Zr] ratio at a

value of 0.5 for the best optimization of gelation time and avoiding powder precipitation.283

Sodium silicate (Na2SiO3), also known as “water glass”, can be used as a gelation agent

in sol-gel reactions. For example, Gao et al. synthesized high-temperature resistant zirconia

aerogels via an environmentally friendly, co-hydrolysis method using water glass as the gel

initiator.49 Water glass was used to control the hydrolysis of the Zr4+ ions and to accelerate

gelation. Water glass also acted as a modifier and was used to introduce SiO2 in-situ as a

shell around ZrO2 nanoparticles, reinforcing the nanoparticles and inhibiting crystal growth,

which improved the thermal stability and preserved the high surface area of the aerogel

upon high-temperature exposure. To demonstrate the use of water glass, Schäfer et al.

attempted to synthesize silica-zirconia mixed oxide aerogels using zirconium(IV) chloride as

precursor and water glass as a crosslinking agent; non-stable wet gels resulted.284 However,

the group was able to synthesize stable silica aerogels starting from silicon tetrachloride

and water glass. As another example, water glass in combination with the base catalyst,

NH4OH, formed silica aerogels in the work of Eskandari et al.128 Base catalysts are rarely

used without acid catalysts; however, in this case, using water glass as a precursor allows for

the use of a base and not an acid catalyst. The results were surface areas ranging from 447

m2/g to 764 m2/g and densities from 0.08 g/cm3 to 0.19 g/cm3 but with porosities as low

as 84%.

A variety of acids, such as citric acid (C6H8O7), nitric acid (HNO3) and mercaptosuccinic

acid (C4H6O4S), are also used as gelation agents, or acid catalysts, in the synthesis of aero-
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gels. The hydrolysis and condensation reactions of the sol-gel method are easily influenced

by the solution pH; therefore, it is often necessary to use acid, or base catalysts as later

discussed, to control the rate at which hydrolysis and condensation occur.132,194,262,285 For

example, Wang et al. used citric acid to initiate the sol-gel transition during the synthe-

sis of monolithic zirconia aerogels.37 The interactions between the hydroxyl groups of citric

acid were critical in crosslinking the metal ions to produce the gel network. Citric acid also

prevents precipitation by creating an acidic environment, which slows down hydrolysis. As

another example, Zhang et al. synthesized yttria-stabilized zirconia aerogels using citric acid

as the gelation accelerator.42 By adjusting the ratio of citric acid to Zr4+, the gelation time,

density, and specific surface area of the aerogels could be influenced. In addition to syn-

thesizing high surface area, mesoporous aerogels, citric acid is cost-effective and non-toxic,

which leads to a safer synthesis route than using traditional gelation agents that can be

harmful, such as propylene oxide.

In addition to using citric acid as a gelation agent, Wang et al. synthesized aerogels

with high surface area and large pore volume using various other organic acids.37 Zirconia

aerogels were formed using L-malic acid, L-aspartic acid, and mercaptosuccinic acid, which

each have identical main chain structures with carboxylic acid ends but different side groups

(-OH, -NH2, and -SH, respectively). Interactions between the organic acid and the Zr4+ ions,

due to the presence of the side group, could form coordination bonds, which were critical in

inducing gelation. The resulting zirconia aerogels showed negligible differences when each

acid was used in the synthesis, as most of the organic material was removed during the

supercritical drying process.

Using highly concentrated acids can cause loss of control over the rate of hydrolysis,

speeding up the reaction due to its exothermic nature. However, when done carefully, suc-

cessful aerogels can result. For example, Ming Li et al. used the acid catalyst HCl to create

aerogels from TEOS with a range of pore volumes from 2.628 cm3/g to 3.875 cm3/g.132

To demonstrate the use of an inorganic acid, Torres-Rodriguez et al. synthesized zirconia
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and yttria-stabilized zirconia aerogels via a nitric acid-catalyzed sol-gel method.34 Nitric acid

was used to hydrolyze the zirconium and yttrium precursors, forming thermally stable wet

gels and subsequent aerogels. Additionally, Southon et al. synthesized zirconia gels via the

controlled hydrolysis of zirconium carbonate in nitric acid.229 When the Zr:NO3 ratio was

1:1, the solution gelled reversibly following either water evaporation or an increase in pH or

irreversibly following removal of nitrate anions.

Acid catalysts are often used with base catalysts, especially for silica aerogels. Sols that

are only acid catalyzed, if the pH is too low, may create weak gels due to randomly branched

or entangled linear polymer chain structures, which will lead to high density aerogels with

small pore volumes.194,285 Therefore, base catalysts are an important addition to initiate and

aid condensation reactions.

Base catalysts, such as ammonium hydroxide (NH4OH) or ammonium fluoride (NH4F),

increase the branching of sol particles and strengthen the gel network with cross-linking

between polymer chains, leading to a stronger gel structure with larger pore volume and lower

density.128 Base catalysts also typically decrease gelation time when used in combination with

acid catalysts by raising pH levels of the silica sol.114,275 For example, Zhi Li et al. triggered

gelation with the addition of ammonium hydroxide.57 A method by Deng Yiyi et al. using

both the acid catalyst HCl and the base catalyst NH4OH displayed aerogels from TEOS

with pore volumes from 1.04 cm3/g to 2.02 cm3/g.114

2.2.6 Gel modification

Synthesizing aerogels with a core-shell nanostructure or with surface modification can in-

crease the strength and thermal stability of the aerogels, as well as inhibit crystalline trans-

formation and minimize shrinkage. Recent applications of several techniques used for each

modification method, relating specifically to zirconia aerogels, are described below.

The presence of a core-shell nanostructure provides many benefits when aerogels are

used in applications such as thermal superinsulators, catalysts, and adsorbents.32,44 There
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are four main types of core-shell aerogels: 1) inorganic/inorganic, 2) organic/organic, 3)

organic/inorganic, and 4) inorganic/organic, with the last two types considered as core/shell

hybrids.286 Many different compounds are used to form the shell of core-shell aerogels, in-

cluding metal oxides, silica, and polymers.32,44,286–288

As an example of inorganic/inorganic core-shell nanostructures, Zu et al. synthesized

core-shell aerogels with metal oxide-silica shells using an alkoxide chemical liquid deposition

(ACLD) technique; the metal oxide cores used were ZrO2, Al2O3, and TiO2.
44 First, the

metal oxide was deposited onto the surface nanoparticles of the metal oxide wet gel. Next,

a metal oxide and silica composite was deposited onto the metal oxide surface formed in

the first step. Finally, silica was deposited onto the metal oxide/silica surface. The group

found that metal oxide aerogels made using core-shell synthesis have increased specific sur-

face areas, larger pore volumes, lower thermal conductivities, and minimized shrinkages

with heat-treatment as compared to aerogels made without a core-shell nanostructure. The

core-shell structure enhances the mechanical strength, prevents transformation of the crys-

talline structure, and improves thermal stability of the aerogel. As another example, Ren

et al. synthesized ZrO2/SiO2 core-shell aerogels, via immersion in tetraethyl orthosilicate

(TEOS), that demonstrated uniform pore structure, low bulk density, and high specific sur-

face area.32 High surface area was retained because of the resistance to capillary stress caused

by deposited SiO2 nanoparticles on the ZrO2 aerogel primary particle surface. Due to TEOS

modification, the dried aerogel was amorphous and transformed to tetragonal ZrO2 follow-

ing high-temperature exposure at 1000°C; crystalline growth following heat-treatment was

inhibited. Additionally, Wang et al. synthesized monolithic ZrO2 aerogels that inhibited

cracking and had low thermal conductivity by modifying with SiO2.
36 ZrO2 gels were aged

in tetraethyl orthosilicate solution and supercritically dried. The layer of SiO2 on the aero-

gels reinforced the solid skeleton that was formed during the sol-gel process, increasing the

compressive strength of the aerogel and improving the ability to withstand aging and drying

stresses of the aerogel.
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For core-shell aerogel nanostructures that consist of an organic and an inorganic com-

ponent, typical nanoparticles have an inorganic solid core and a polymer shell. Polymer

coatings are compatible with a wide range of cores, including zirconia, silica, iron oxide,

and noble metals, as the surface hydroxyls of the aerogel core can interact with the polymer

to form a shell.286,287 Particularly, Leventis et al. synthesized rare earth aerogels with a

polymer shell of polyurethane/polyurea.288 The presence of the polymer shell retained the

mesoporous structure and surface area of the aerogel. Additionally, Leventis synthesized

zirconia aerogels with a polymer shell coating that had high mechanical strength. The group

determined that inorganic core-polymer shell aerogel nanostructures should be achievable

for all sol-gel materials.

The introduction of deactivating functional groups used to inhibit the surface hydroxyls of

aerogels is another way to increase the thermal stability. To demonstrate, Hu et al. improved

the stability of ZrO2-SiO2 aerogels exposed to high temperature using surface modification.21

To create Fe modified aerogels, inorganic ions (Fe(III) ions) that were thermally stable

were introduced into the ZrO2-SiO2 gel skeleton prior to drying. To generate inert silyl

surface groups, the Fe modified aerogels were treated with hexamethyldisilazane (HMDZ)

gas phase. The functional groups replaced the hydroxyl groups on the aerogel surface, which

was confirmed by fourier-transform infrared spectroscopy (FTIR). Upon heat-treatment at

1000°C, the uniform pore structure of the surface modified aerogels was retained due to

the inhibition of particle growth caused by hydroxyl group condensation; in addition, the

surface modified aerogels demonstrated a lower degree of particle agglomeration. A high

specific surface area was maintained in the aerogels following calcination, as well as high

pore volume. Surface modification was shown to not affect the mesoporous structure of

the ZrO2-SiO2 aerogels. Both the addition of Fe modifiers and HMDZ gas phase treatment

were shown to inhibit crystalline transformation of ZrO2-SiO2 aerogels at high temperatures.

It is anticipated that surface modification of aerogels could lead to ultrahigh-temperature

applications.
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2.2.7 Templating methods

The use of surfactants as templating agents for aerogels is discussed in detail in section 3,

therefore it will not be elaborated on here. However, there are several other ways to tem-

plate aerogels and control their porosity and surface area. This includes superfine powders,

emulsion templating and foam insertion, to name a few. For instance, Duan et al. templated

tetragonal phase mesoporous zirconia with poly(methyl methacrylate) superfine powders us-

ing the sol-gel method.289 The synthesized mesoporous zirconia had a small particle size of

3.7 nm and a narrow pore size distribution. Alternatively, Teo et al. synthesized aerogel

foams using an oil-in-oil emulsion templating method; the emulsion was stabilized using

block copolymer surfactant.290 The resulting aerogel foams had an increased pore volume

following emulsion templating, which lead to an increased capacity for oil absorption. Porous

materials can also be templated using direct foaming methods, which insert air bubbles into

the solution prior to gelation or setting.14 The porosity of the final material is directly re-

lated to the amount of gas inserted during the foaming process; the pore size is dependent

on the stability of the wet foam prior to gelation. To stabilize the incorporated air bubbles,

surfactants or solid particles can be used.

2.2.8 Gel aging & washing

Final gel processing, including aging and washing, is performed prior to drying for most

aerogel systems. Following gelation, gels are usually aged at elevated temperature and/or

washed in solvent to prepare the wet gels for the drying process. During aging, gels are

submerged typically in an alcohol, such as ethanol, to strengthen the gel skeleton in order to

minimize shrinkage and cracking. The aging process allows the composition, structure, and

properties of the gel to continue to evolve over time.18,74,291 The chemical reactions during

the gelation period are known to occur long after the initial gelation of the solution; the

aging process allows for the reactions to continue prior to drying, enhancing the aerogel

backbone.292 The aging process increases the modulus of rupture of the aerogel, as well
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as enhances stiffness.293 As an example, Bedilo et al. showed that longer aging times (up

to 52 hours) resulted in zirconia aerogels with higher surface areas (111 m2/g) following

supercritical drying and heat treatment.233 It was also shown that aging had negligible

effect on the pore structure of the aerogels.

Washing of the gels typically occurs in a solution that is compatible with the drying

process for several hours to several days.10,37,43 Subsequent washes are generally used to

exchange the water and potential byproducts contained in the gels’ pores prior to drying.49

Alcohols, such as ethanol and isopropanol, are often chosen for gels intended for supercritical

drying because these solvents have high solubility in supercritical CO2 which is necessary in

order for the solvent to be extracted from the pores efficiently during the drying process.294

When the drying process is ambient pressure drying, n-hexane is one of the most used wash

solvents due to its reactivity with common surface modifiers such as trimethylsilyl chloride

(TMCS).295

Modifying washes are an important step for gels using ambient pressure drying as the

modification preserves pore structure and protects against the high capillary pressure that

occurs when solvent evaporates from the pores.21,40 When using hydrophillic precursors in

silica aerogels, such as tetraethyl orthosilicate (TEOS) and sodium silicate (water glass),

if not modified, silanol groups on the surface of wet gels undergo condensation reactions.

These condensation reactions can lead to densification and shrinkage during the ambient

pressure drying process.53 Chemical modification of the gel surface replaces the hydrogen

on the hydroxyl group of silanol in order to create hydrophobic surfaces on the gel.194 One

common modifier used in silica aerogel creation is TMCS, as mentioned above. In the work

of Hyeonjung Kim et al., TMCS modified water glass aerogels are compared with unmodified

silica aerogels after ambient pressure drying. The results of this study show that the modified

silica aerogels could reach surface areas as high as 473 m2/g with a pore volume of 4.15

cm3/g while the unmodified aerogel had a surface area of only 98 m2/g and a pore volume

of 0.08cm3/g.67 A hydrophobic precursor, such as methyltrimethoxysilane (MTMS), can be
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advantageous as methyl groups on MTMS replace hydroxyl groups on the wet gel surface,

synthesizing hydrophobic silica aerogels without modification.

2.3 Aerogel post-synthesis processing

Following synthesis, gels are further processed to form aerogels. Here, different drying tech-

niques, sintering parameters, and characterization methods that are used in the processing

of aerogels are discussed. It should be noted that the majority of these processing techniques

are generally used for a wide range of aerogel systems; however, select examples relating to

zirconia aerogels and silica aerogels are presented.

2.3.1 Drying techniques

Many techniques are used to dry a wet gel, transforming it into an aerogel. Depending

on choice of drying technique and conditions, aerogel properties, such as pore structure,

surface area, sintering behavior, or crystalline phase transformation, can be controlled or

enhanced. Five selected drying techniques are discussed below and are displayed in Figure

5: supercritical drying, ambient pressure drying, freeze drying, atmospheric drying, and oven

drying. These general drying techniques can be used for a variety of aerogel systems.

Supercritical fluid drying is a widely used technique for drying aerogels. Supercritical

drying transforms wet gels into aerogels by extracting the solvent in the pores of the gel via

a supercritical fluid, as shown in Figure 5A.10,294 Supercritical fluids, fluids that have been

heated and compressed above the critical temperature and pressure of the fluid, have high

diffusion coefficients and gas-like viscosities, allowing for greater mass transfer than tradi-

tional liquid solvents. Supercritical drying results in aerogels that have high pore volumes,

high porosities, high surface areas, and low shrinkages; these properties are generally greater

than those in aerogels that are dried using ambient pressure drying or freeze drying. An

example of supercritical drying used to produce silica aerogels can be seen in the work of

Duan et al. where an unmodified TEOS based silica gel was supercritically dried with CO2
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Figure 5: Drying techniques for aerogels. An overview of five drying techniques, resulting in
different materials, including A) supercritical drying for aerogels, B) atmospheric drying for
xerogels, C) ambient pressure drying for aerogels, D) freeze drying for cryogels, and E) oven
drying for xerogels. Each drying technique has different process parameters and results in
materials with varying properties.
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solvent for a high surface area of 805 m2/g.139

Supercritical drying is advantageous as it allows the solvent within the pores to be brought

from the liquid phase to the gas phase without crossing the liquid-phase boundary, which

often causes cracking or shrinkage of the sample. Supercritical fluids can accomplish this

by crossing through the supercritical region, where there is no distinction between gas and

liquid.296 Carbon dioxide is the most frequently used solvent for supercritical fluid drying,

with a mild critical temperature of 31.1°C and mild critical pressure of 7.39 MPa.297 Super-

critical CO2 (scCO2) is a safer (non-toxic, non-flammable) and greener (natural, plentiful)

alternative to solvents with higher critical temperatures used in nanotechnology. Advantages

to using scCO2 are tunable solvent strength, high diffusivity, and exceptional wetting of the

complex surfaces of nanostructures. The extremely low surface tension of scCO2 provides

the capability to synthesize mesoporous materials via supercritical drying.235

In the supercritical drying process, any residual water in the gels is first washed away

with alcohol, which is then washed away using high pressure liquid carbon dioxide.296 Once

the liquid CO2 has been heated beyond the critical point, the pressure is increased until

the supercritical solvent replaces any fluid in the gel pores. When the pressure is released,

the supercritical solvent drains from the pores leaving behind a dried aerogel.10,139,298 The

resulting product is a dried aerogel, with high surface area, porosity, and pore volume.

It should be noted that ethanol is also a widely used supercritical drying solvent, yet it

has a critical temperature of 240.8°C , much higher than carbon dioxide, which can pose a

higher safety risk.299 In addition, ammonia can be a useful supercritical solvent due to its

mild critical point of 132.5°C and 11.28 MPa; however ammonia is caustic and hazardous,

which can lead to unsafe operability.297

While aerogels are often synthesized under supercritical conditions, which can be an

energy-intensive, expensive, and, sometimes, dangerous process, aerogels can also be syn-

thesized through ambient pressure drying.300 Ambient pressure drying, depicted in Figure

5C, results in aerogels through the evaporation of the liquid in the pores of the wet gel
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at ambient pressures and temperatures ranging from room temperature to 200°C.294 This

drying method is attractive as it does not require any complicated instruments, has easy

implementation, and can be scaled-up for use in industry.301 Ambient pressure drying also

consumes less energy than supercritical drying. Generally, in order to combat the negative

effects of capillary tension, such as shrinkage or cracking, during ambient pressure drying,

surface modification is applied to the gels through solvent-exchange with low surface ten-

sion solvents prior to drying.294,300,302 This method causes the hydrophobization of the wet

gel, decreasing the capillary tension forces on the surface, and strengthens the network of

the gel skeleton. This results in a spring-back action, as the shrunken elastic gel network

returns to its porous state as the liquid-vapor withdraws into the interior of the gel. To

ensure the spring-back effect, drying control agents are often incorporated into the sol-gel

reactions prior to drying.303 Due to high thermal stability and low vapor pressure, ionic

liquids don’t evaporate over a long period of time, allowing them to be used to yield a stable

gel network and inhibit pore structure collapse. It should be noted that if ambient pressure

drying does not maintain the original gel structure in the sample, xerogels are obtained

instead of aerogels.304 For silica aerogels made with hydrophilic precursors like TEOS and

water glass, surface modification is necessary for successful aerogel production from ambient

pressure drying as surface modification is necessary to increase the surface tension of the

gels to allow them to withstand the heightened capillary pressure with minimal shrinkage

and cracking.53 If surface modification is not completed, ambient pressure drying of silica

gels with hydrophilic precursors can result in xerogels. For example, in the work of Maria

de Fátima Júlio and Laura M. Ilharco, hexamethyldisilazane (HMDZ) was used to modify

TEOS based silica aerogels.120 It was found that the reaction between HMDZ and silanol

produced trimethylsilyls instead of silanol surface groups. This replacement meant the gel

had become hydrophobic and was ready to be dried with ambient pressure drying without

collapsing the gel network. The final aerogels prepared with TEOS, HMDZ modifications,

and ambient pressure drying displayed surface areas of 379 m2/g to 783 m2/g with respective
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pore volumes of 0.79 cm3/g and 1.76 cm3/g. When a hydrophobic precursor such as MTMS

is used, often surface modification is not necessary for the creation of an aerogel from ambient

pressure drying. This is because of the methyl groups on MTMS which do not undergo the

condensation reactions that adjacent silanol groups do.194 This can be seen in the work of

Mahani et al. where MTMS based silica aerogels were prepared without surface modification

through ambient pressure drying.103 The resulting aerogels maintained porosities as high as

94% with a surface area of 712 m2/g.

Surfactants can be used to aid in the formation of high surface area aerogels via ambient

pressure drying. As an example, Perissinotto et al. used the surfactant sodium dodecyl

sulfate (SDS) in the synthesis of ambient pressure dried silica aerogels; it was determined

that higher amounts of SDS led to aerogels with larger pore volume and mean pore size.141 In

the work of Chen et al., surfactants allowed for the ambient pressure drying of gels without

further surface modification and with minimal shrinkage of the final aerogel product.88

Ambient pressure drying and subsequent surface modification can be a lengthy process,

taking up to several days or weeks.298 The ambient pressure drying process involves several

water or ethanol washing steps, as well as multiple solvents used in surface modification,

leading to large solvent consumption and possible environmental pollution. However, recent

industrial developments have led to the economic and large-scale ambient pressure drying of

aerogels and the production time has been reduced to approximately one day.302

Similar to supercritical drying, freeze drying is a method of drying gels that seeks to avoid

the liquid-phase boundary. Freeze drying consists of subjecting a sample to temperatures

below freezing, generally -50 to -85°C, by either placing it in a freezer, a freeze-dryer, or a

solution of liquid nitrogen in order to remove the solvent from the gel.251,305 Freeze drying

is displayed in Figure 5D. In a typical freeze drying process, the solvent inside of the pores

of the gel is frozen, followed by sublimation of the solvent directly into the gas phase by

reducing the pressure via pulling vacuum on the system, which removes approximately 95%

the solvent from the pores without forming a liquid-vapor interface.125,141,294,306 This is the
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primary drying step of the freeze drying process and is typically the most time-consuming.

After full removal of the solvent (any unfrozen water is removed during the secondary drying

step by raising the temperature of the system), the sample is brought to room temperature by

pressurization of the system. At the end of the drying process, the residual water content in

the sample should be only 1 to 4%. Freeze drying of aerogels previously resulted in powder-

like materials, however, more recently, freeze drying has been used to produce monolithic

aerogel pieces.301 The final product of freeze drying is often called a cryogel and is usually

in powder form due to the cracking of the gel structure during the initial crystallization of

the solvent in the pores.

There are quite a few disadvantages to freeze drying, such as that it is an energy-intensive

process, which can have long processing times, including aging, sublimation, and drying

times, and low potential for scale-up.294,305 Freeze drying can also cause crystal growth or

stress development inside of the gel’s pores, which could lead to damage of the nanostructure

or fracture of the matrix. One way to decrease the effects of solvent crystallization on final

gel structure is to increase the aging time of the gel in order to strengthen the network

structure. Salts can also be added to lower freezing temperatures.194,262,307 In freeze drying,

choice of solvent must be carefully considered as it is important to choose a solvent with

a low expansion coefficient and high sublimation pressure. If water is used as the solvent,

water can expand within the pores during the freezing process, further destroying the pore

structure. If an alcohol is used as the solvent, the freezing temperature can be hard to

achieve and maintain; for instance, ethanol freezes at -113.15°C. Aerogels that are freeze

dried also tend to shrink and have low surface areas or pore volumes. Methods of improving

freeze dried gels can be seen in the work of Pan et al.125 In this work, tert-Butanol, with a

high freezing point, was used as the solvent in a MTMS based silica aerogel. The gel was

also aged for two days for gel network stabilization. The resulting cryogels achieved surface

areas and pore volumes ranging from 485 m2/g to 867 m2/g and 3.26 cm3/g to 1.34 cm3/g,

respectively. To compare drying methods, Zhao et al. prepared zirconia aerogels by both
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supercritical CO2 drying and freeze drying.251 Zirconia aerogels that were synthesized using

freeze drying had a microporous structure with low surface area (400 m2/g) and pore size

(0.6 nm), while zirconia aerogels synthesized using supercritical drying had a mesoporous

structure with high surface area (640 m2/g) and pore size (9.7 nm). However, Simón-Herrero

et al. demonstrated that aerogels with higher porosity were synthesized using a freeze drying

process with higher freezing time, vacuum pressure, and freezing temperature.306

In addition to traditional freeze drying, directional freeze drying and spray freeze drying

can also be used to dry aerogels. In directional freeze drying, a sol is frozen in one x-y-z di-

rection in a controlled manner; the pores are templated by the areas that were not occupied

by the solution.308,309 The porosity of the aerogel is influenced by the temperature gradient

that occurs during the freezing process, the morphology of the ice crystals, and the solute

concentration. Directional freeze drying is easily operable, free of by-products, and envi-

ronmentally friendly.310 Aerogels that are synthesized using directional freeze-drying exhibit

minimized shrinkage upon heat-treatment, high surface area, high compressive strength, and

special anisotropic aligned porous structure.174 In spray freeze drying, the sol is atomized,

guided into a mold that is soaked in liquid nitrogen, and then dried in a freeze dryer. The

sol droplets, typically with a diameter of a few micrometers, make up thin layers of the

gel. To improve upon spray freeze drying, Pan et al. demonstrated that the addition of

a solvent with a high freezing point, such as tert-Butanol with a freezing point of 25.7°C,

allows fast freezing, rapid cooling, and the formation of smaller ice crystals than traditional

freeze drying.311 Aerogels synthesized using spray freeze drying are monolithic in shape and

have high thermal stability and low thermal conductivity.

Atmospheric drying, oven drying, and evaporative drying typically result in xerogels.35,303,312

Xerogels are distinguished from aerogels since they are unable to retain the original nanos-

tructure of the wet gel following drying in the same way that an aerogel can.304 Xerogels

can be used in a range of applications, including use as sensors, sorption media, and cata-

lysts.313–316
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Atmospheric drying, or direct air drying, is similar to ambient pressure drying except

that there is no surface modification taking place and the gels are dried at room temperature

or atmospheric conditions leading to evaporation of solvent from pores, as shown in Figure

5B.85,115,312 Atmospheric drying usually leads to cracking and shrinking of the pore structure

due to the high capillary pressure gradient generated by the surface tension of the liquid

within the pores that is present during solvent removal.304

Oven drying is typically conducted in laboratory and uses increased temperatures to

remove the liquid solvent from the pores of the gel. This drying method can also be called

evaporative drying and can be useful for drying large quantities of sample at low cost.317

Oven drying, depicted in Figure 5E, typically produces large amounts of capillary pressure,

which can lead to agglomeration, and causes the sample to dry rapidly and crack due to the

different thermal expansion coefficients between gels and liquid solvents. According to Wang

et al., the rate of drying must be controlled to be as low as possible to reduce cracking of

the sample; low-rate oven drying can be very time-consuming, sometimes taking as long as

one year.318 Oven drying is very similar to ambient pressure drying where gels are dried in

ovens at various heightened temperatures but not necessarily ambient pressure and typically

without surface modification, thus oven drying typically yields xerogels or aerogel powders,

which have lower surface areas and pore volumes than aerogels dried using supercritical or

freeze drying.10,35,128,319 Similar to oven drying, microwave drying is most commonly used

in the food and ceramics industry; in recent years, it has been considered as a potential

method of silica aerogel drying. The work of Guo et al. used microwave drying for MTMS

based aerogels to improve production efficiency without pore collapse.82 The work showed

that microwave drying at 700W for 32 minutes produced an aerogel with a surface area of

796 m2/g while drying at 200W for 55 minutes produced an aerogel with a surface area of

783 m2/g. The same aerogel when dried with evaporation for over 48 hours had a surface

area of 795 m2/g.
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2.3.2 Sintering

Sintering, or calcination, is a process technique in which a solid material is heated below its

melting point; this technique promotes mobility of the surface and the bulk and generally

leads to a reduction in surface area of the sample. When studying sintering, both surface

energies and grain-boundary energies need to be considered. Both of these energies can be

significantly changed by modification of the sample composition, specifically when dopants

are added to the system.320 Aerogels are sintered in order to determine the influence of

heat treatment temperature on the microstructure, morphology, and thermal properties of

the aerogels.321 Thermal treatment causes aerogels to densify, decrease in surface area, and

to show a collapse in pore volume and structure.322 However, sintering also causes an en-

hancement of the elastic and mechanical properties of aerogels.10 Sintering is a multifaceted

evolution on the microstructure of aerogels via several mass transport mechanisms.320

Heat treatment of aerogels also leads to the crystalline transformation of the system. Per-

taining specifically to zirconia aerogels, zirconia exhibits many different crystalline structures.

Monoclinic zirconia is thermodynamically stable at temperatures below 1172°C; tetragonal

is stable at temperatures between 1172°C and 2347°C; cubic zirconia is stable above a tem-

perature of approximately 2347°C; orthorhombic zirconia is thermodynamically stable at

high pressure.227 A stable crystalline phase is desirable as the crystalline phase of zirconia

affects its structural and textural properties, including surface area, porosity, and density.34

For example, the stabilized tetragonal phase of zirconia is shown to have high strength and

wear resistance; under optimized synthetic conditions, tetragonal zirconia can be stabilized

at temperatures outside of its normal stabilization range. The addition of Y2O3 dopant in

zirconia aerogels, for example, can stabilize the tetragonal crystalline phase up to higher

temperatures.48

In sintering experiments, typically the effect of heat-treatment temperature, time, and

heating rate are studied.321 To identify the independent variables of the sintering process, a

brief list of typical sintering parameters for zirconia aerogels is shown in Table 2.
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Table 2: Aerogel sintering parameters. Reported sintering parameters, including tempera-
ture, time, ramp rate, and atmosphere, used for selected zirconia aerogels.

Temperature Time Rate

Reference (°C) (hrs) (°C/min) Atmosphere

Bangi, 201813 500 1 10 Air

Hu, 201721 120 6 - -

Hurwitz, 202022 600/1000/1100/1200 0.3 5 Argon

Jung, 201718 40 4 - -

Jung, 201823 400/800 1 5 -

Ren, 2015 1000 2 5 -

Torres-Rodŕıguez, 201935 1000 5 - -

Torres-Rodŕıguez, 201934 300/500/1200 3/2/2 10 Atmospheric

Yoon, 20195 500 2 - -

The majority of silica aerogels do not undergo heat treatment. Silica aerogels have a

melting point of around 1700°C, but they begin densifying and cracking at around 650°C,

making heat treatment at high temperatures generally not viable.298 In some cases, such

as in Song He et al.’s work, heat treatment is carried out at lower temperatures, 600°C or

below, creating silica aerogels with surface areas that decrease from 734 m2/g when as-dried

to 448 m2/g when heat-treated at 600°C.123 Studies that choose to sinter silica aerogels at

temperatures above 650°C often obtain final aerogels with significantly lower surface areas

such as in Cai et al.’s study where aerogels were heat treated with temperatures ranging

from 600°C to 1300°C, with surface areas as low as 99 m2/g when treated at 1100°C for four

hours and even lower at 0.0018 m2/g when treated at 1300°C for just 30 minutes.62

2.3.3 Characterization techniques

The most frequently used characterization methods for aerogels are scanning electron mi-

croscopy (SEM), transmission electron microscopy (TEM), nitrogen physisorption, x-ray

diffraction (XRD), fourier-transform infrared spectroscopy (FTIR), thermogravimetric anal-

ysis (TGA), differential thermal analysis (DTA), and Raman spectroscopy. Each of these

techniques is used to determine different properties of the final aerogel materials. These
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characterization techniques are relevant to a variety of aerogel systems. The following para-

graphs include a brief review on the different characterization techniques and a description

of the aerogel property that is determined using each technique.

Typically, scanning electron microscopy (SEM) is used to determine the morphology

and microstructure of aerogels qualitatively.323 Image analysis is used to extract quanti-

tative feature size. SEM could be used to help determine whether the aerogel sample is

mesoporous or microporous, the effectiveness of certain surfactants as pore templates, or

the extent of sample densification following heat-treatment. SEM can also be paired with

energy-dispersive X-ray spectroscopy (EDX or EDS) to determine the elemental composi-

tion of aerogel samples.23,44 SEM imaging works best with conductive samples. Transmission

electron microscopy (TEM) is also used to determine the morphology and formation of the

network pore structure in aerogel samples. In TEM, an electron beam passes through and

interacts with a conductive sample.324 Due to the interaction between the transmitted elec-

trons and the sample, an image is formed, which can be magnified and detected by a camera.

In addition to further determining the morphology and microstructure of aerogels seen in

SEM, TEM can be used to determine the average crystallite size (Å) of particles within the

aerogel.37,45

Powder x-ray diffraction (XRD) is performed to determine crystalline structure and phase

composition of aerogel samples. The average crystallite size (Å) can be determined using

XRD and further confirmed by TEM. The crystalline phase of aerogels can also be determined

through analysis of XRD spectra. Cu Kα radiation, with a wavelength of 1.541 Å, is often

used over a 2θ range of approximately 10° to 90°.21,49 Typical current values range between

30 and 45 mA, while typical voltage values range between 40 and 45 kV.35,48 To better

distinguish between phases and mixtures of phases, Raman spectroscopy can be used to

determine different polymorphs of metal oxides, due to its sensitivity to the polarizability of

oxygen ions.43 Specifically, Raman can easily distinguish between various crystalline phases

due to different Raman active modes. Raman can also be used to quantify the incorporation
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of modifiers into the aerogel structure.50

Nitrogen physisorption is used to determine the surface area of aerogels using the Brunauer,

Emmett, and Teller (BET) method of analysis and the pore size distribution of aerogels us-

ing the Barrett, Joyner, and Halenda (BJH) method of analysis for pores up to 100 nm in

size.325,326 The sample must be properly equilibrated during analysis to ensure that the full

pore volume is determined in aerogels with high porosity.327 Nitrogen physisorption is useful

in determining values for surface area (m2/g), pore diameter (nm), and pore volume (cm3/g)

for zirconia aerogels. The different adsorption isotherms can be used to determine the pore

structure of the aerogel: microporous (pores < 2 nm), mesoporous (pores between 2 and 50

nm), or macroporous (pores > 50 nm).328 Aerogels are typically mesoporous materials with

high surface areas.

Fourier-transform infrared spectroscopy (FTIR) is performed on aerogel samples to estab-

lish information on chemical bonds and surface functional groups. FTIR spectra are useful in

determining whether aerogels have been properly modified by functional groups through the

presence of chemical bonds represented by absorption peaks.40,50 The mechanism of gelation

can also be studied using FTIR.37

Thermogravimetric analysis (TGA), differential thermal analysis (DTA), and differential

scanning calorimetry (DSC) are run to determine the amount of mass lost (%) by aerogel

samples as a function of temperature. Thermal analysis is typically run up to temperatures

between 1000°C and 1400°C.29,38 The thermal analysis techniques are useful in determin-

ing the thermal stability of aerogels during high-temperature exposure. Endothermic and

exothermic effects are also observed during thermal analysis.

X-ray photoelectron spectroscopy (XPS) is used to determine the surface concentrations

and the chemical states of oxygen atoms within the aerogel samples.25,44 XPS can also

be used to show interactions that occur during the formation of wet gels.37 Inductively

coupled plasma mass spectrometry (ICP) is used to determine the ratio of elemental species

in aerogels.21 ICP can be useful in determining whether modifiers or dopants have been
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successfully incorporated into aerogel samples. Using atomic force microscopy (AFM), force-

distance curves can be used to determine the strength of the gel network.23 The thermal

conductivity (W/m·K) of aerogel samples can be determined using a transient hot-wire

technique or a hot disk thermal analyzer.49 Aerogel samples are sometimes incorporated

into a fibrous material, such as ZrO2 fibrofelt, to determine the thermal conductivity.41

Physical measurement can be used to obtain as-dried shrinkage (%) and bulk density (g/cm3)

information of aerogels.22
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Chapter 3 Understanding structure/property-process

relationships in aerogels through surfactant

templating

This dissertation experimentally considered yttria-stabilized zirconia (YSZ) aerogels, which

have high surface area and low thermal conductivity and are expected to be used for temper-

atures between 600°C and 1000°C. Specifically, the use of surfactants as templating agents

for YSZ aerogels was considered. The cationic surfactant cetrimonium bromide (CTAB),

the anionic surfactant sodium dodecyl sulfate (SDS), and the nonionic surfactant Pluronic®

P-123 (P-123) were utilized as surfactant templates. It was anticipated that surfactant tem-

plating would yield YSZ aerogels that exhibited retained mesoporous structure, increased

surface area, and minimized shrinkage upon exposure to higher temperatures in the expected

use range.

3.1 Introduction to surfactant templating methods

The extreme material properties of aerogels make them useful for many applications, includ-

ing thermoresisters, sensors, catalysis, sorption media, drug delivery, and electrodes in solid

oxide fuel cells.1,13,171,173,177,186,188 Due to having low thermal conductivities and an overall

mesoporous and lightweight structure, the use of aerogels in thermal management systems

is also promising, with applications including insulation, fire suits or blankets, aerospace,

and aeronautics.5,149,162,165–167 However, aerogels often suffer from sintering and densification

when exposed to high-temperatures due to polycondensation reactions and structural rear-

rangement.6,7 The pore structure and high surface area of the aerogel upon high-temperature

exposure is required to leverage the benefits of aerogel properties in thermal management

systems. Therefore, the collapse of the pore structure and decrease of surface area diminishes

the utility of the material as a thermal insulator.

One of the ways that densification and surface area reduction of aerogels can be mitigated
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during high-temperature exposure is by using surfactants to template the aerogels during

sol-gel synthesis. Surfactants can be used as structure directing agents to control the pore

structure of materials in the mesopore range, from 2 to 50 nm.13 Surfactants are used in

the synthesis of a variety of aerogels to template the mesoporous structure of aerogels dur-

ing gelation and drying, optimizing pore size, surface area, and crystalline structure upon

heat-treatment of the aerogel.13–18 These optimized properties are due to the electrostatic

repulsion and steric hinderance effect resulting from the presence of the surfactants.17

Surfactants, composed of a hydrophilic head and hydrophobic tail, are known to assemble

at interfaces and in the bulk solution; this assembly is dependent on the surfactants’ molecu-

lar structure and concentration in solution.17 Within the aerogel system, surfactants provide

a saturated absorption layer on the solvent surfaces which reduces interfacial energy, a major

cause of surface tension leading to pore collapse and cracking during the drying process.18

The surfactants are also used to control the size of the aerogel nanoparticles and crystalline

growth via a capping effect to prevent overgrowth and agglomeration, leading to enhanced

surface area. Surfactants can be used to support initial gel structure and improve mechan-

ical properties by reducing phase separation in the sols through facilitation of thorough

mixing.88,104,263 For example, in the work of Ehgartner et al., the addition of cetrimonium

bromide (CTAB) was found to be necessary to synthesize monoliths with homogeneous gela-

tion in aerogels that were synthesized using MTMS and an organofunctional trialkoxysilane

with a reactive functional group due to the polarity difference of these functional groups and

the polar solvents used.119

Due to the amphiphilic nature of surfactants, certain types of surfactants are known to

form micelles, either spherical or rod-shape, at or above the critical micelle concentration

(CMC) of the surfactant.329 When surfactants are used to form pores, the formation and

integration of micelles in sols is extremely important. By adding surfactants to the aerogel

solution prior to gelation, surfactants act as structure directing agents as the gel forms around

the micelles.13 The precursor particles will aggregate around the micelles and, following the
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addition of the gelation agent, the precursor particles form a solid network around the

micelles. The presence of the surfactants typically does not impede the formation of the

solid gel matrix.330 The surfactants are removed from the aerogel system following washing

or high-temperature exposure; when the gels are exposed to temperatures above 350°C, either

through drying to form aerogels or post-processing heat-treatment, the surfactant micelles are

oxidized and burned off, leaving behind tunable, uniform pores within the aerogel.18,331 The

surfactant templating process is depicted in Figure 6. It was anticipated that by templating

aerogel pores with surfactants, pore structure and high surface area would be maintained

when aerogels were exposed to high temperatures as the resulting pore structure of the

aerogel was influenced by the type and concentration of the surfactant used during synthesis.

It should be noted that while surfactants aid in templating aerogel pores, not all pores are

templated from surfactant micelles and instead result from the aggregation of solid precursor

particles and the subsequent formation of the gel network. Surfactants are not required for

the synthesis of aerogels; however, surfactant templating can be used to influence the aerogel

pore structure.

Figure 6: Surfactant templating during sol-gel synthesis of aerogels. Following formulation
of the sol, precursors aggregate surrounding surfactant micelles, forming a solid gel network;
surfactants are removed from the aerogel network through washing, supercritical drying
and/or heat-treatment, leaving behind tunable, uniform pores.

As an example of surfactant templating, Chen et al. compared the usage of the cationic

surfactant cetrimonium bromide (CTAB), the anionic surfactant surfactant sodium dodecyl

sulfate (SDS), and the amphoteric surfactant surfactant lauramidopropyl betaine (Ralufon
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414) in silica hydrosol based aerogels.88 The hydrophilic heads of a cationic surfactant hold

a positive charge, anionic surfactant heads hold a negative charge, and amphoteric, also

called zwitterionic, surfactant heads hold both positive and negative charges. This study

determined that the cationic surfactant, CTAB, and the anionic surfactant, SDS, produced

more thermally stable, higher surface area aerogels than the amphoteric surfactant, Ralufon

414, at higher temperatures. This was due to pore structure collapse and coarsening of the

solid network at 600°C of the aerogel synthesized with Ralufon 414. Sai et al. determined

that CTAB and polyethylene glycol (PEG) inhibited cracking and increased monolithicity

in silica aerogels that were produced via ambient pressure drying.15 It was also found that

the optical transmission of the surfactant-templated aerogels decreased when the surfactant

concentration increased. While small amounts of CTAB increased the pore size and volume

of the aerogels, large amounts of CTAB caused a decrease in pore size and volume due to

large shrinkages following drying as CTAB decreased the skeleton strength of the aerogels. In

addition, PEG was found to increase the pore size and pore volume of the aerogels; however,

the pores were reduced when the amount of PEG was increased.

As an example pertaining to zirconia aerogels, Jung et al. used the cationic surfactant,

CTAB, and the non-ionic surfactants, Brij® S10 and Pluronic® P-123 (P-123), in the sol-gel

process of ambient pressure dried zirconia aerogels.18 It was determined that each of these

surfactants increased the specific surface areas of the aerogels; CTAB was shown to increase

the specific surface area by up to 89% due to the electrostatic attractive force between

CTAB and the zirconia matrix. The surfactants were also shown to enhance the thermal

stability of the aerogels because of the retention of large specific surface areas following

high-temperature exposure at 400°C. The addition of surfactants during the sol-gel process

inhibited pore structure collapse of the aerogels. The cationic surfactant, CTAB, exhibited

the highest effectiveness in preventing pore collapse due to the steric effects of the larger

molecular weight surfactant. Additionally, Bangi et al. synthesized zirconia aerogel powders

using Brij®-76; the aerogel powders demonstrated a well-ordered mesoporous structure and
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amorphous morphology without any heat-treatment.13

In this dissertation, we explored the use of surfactant templating agents to control the

porosity of yttria-stabilized zirconia (YSZ) aerogels following high-temperature exposure.

Zirconia aerogels were first known to be synthesized by a non-alkoxide, epoxide addition

sol-gel route by Chervin et al. in 2005.8 The zirconia aerogel system was chosen because,

although zirconia aerogels on average have lower surface areas and higher thermal conduc-

tivities than silica aerogels, the higher melting point of zirconium dioxide (2715°C) allows

zirconia aerogels to remain thermally stable between 600°C and 1000°C where silica aerogels

begin to sinter and densify.7,9–11 Adding yttrium to the zirconia system also makes these ma-

terials advantageous as, even when not in aerogel form, the YSZ system is thermally stable;

the addition of yttrium stabilizes the tetragonal zirconia phase, which prevents transfor-

mation to the monoclinic phase, thereby lowering the thermal conductivity of the system

(2.2 - 2.9 W/m·K).5,12 By making YSZ into aerogels, this thermal conductivity is further

decreased to be as low as 0.168 W/m·K by leveraging the high porosity and high surface

area properties of the aerogels. We anticipated that by adding surfactant to the formulation

of the aerogels during sol-gel synthesis, we could control the pore structure of the aerogels

and we could attenuate the negative effects, such as densification and decrease of surface

area, due to heat-treatment.

3.2 Experimental methods: Yttria-stabilized zirconia aerogels with

surfactant templates

A wide variety of surfactants (cationic, anionic, and non-ionic surfactants) can be used as

templating agents for aerogels, including cetrimonium bromide (CTAB), sodium dodecyl

sulfate (SDS), polyethylene glycol (PEG), Brij® S10, Brij®-76, and Pluronic® P-123 (P-

123).32,88,237,332 In this dissertation, the cationic surfactant cetrimonium bromide (CTAB),

the anionic surfactant sodium dodecyl sulfate (SDS), and the nonionic surfactant Pluronic®

P-123 (P-123) were used as templating agents for yttria-stabilized zirconia aerogels. Follow-
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ing gelation, drying, and heat-treatment, the aerogels were characterized using a variety of

techniques to determine the influence of surfactant on the pore structure, surface area, and

crystallite size.

Yttria-stabilized zirconia (YSZ) aerogels were synthesized, as depicted in Figure 6, using

a similar sol-gel procedure to the one used by Hurwitz et al.22 Zirconyl chloride octahydrate,

ZrOCl2 · 8 H2O, and yttrium(III) chloride hexahydrate, YCl3 · 6 H2O, were used as the zirco-

nium and yttrium precursors, respectively. The precursors were mixed at room temperature

with the solvents, ethanol and deionized water, to create the sol. To minimize experimental

variables, a value of 20 mol% for yttria content was chosen because this mole ratio retained

mesoporous structure and smaller particle size after high-temperature exposure compared

with lower dopant levels in prior work completed by Hurwitz et al.22 Higher yttria content

was also shown to increase the thermal stability of YSZ aerogels.333 Regarding water con-

tent, twice the stoichiometric amount (2x water) was chosen, as this water level was shown

to synthesize aerogels with higher surface area and pore volume at high temperature than

higher water levels following experimentation.

Prior to gelation, the surfactants chosen for this study, cetrimonium bromide (CTAB),

sodium dodecyl sulfate (SDS), or Pluronic® P-123 were added to the sol as a multiple of the

surfactant’s critical micelle concentration (CMC), the determination of which is discussed in

section 4.2, section 5.2, and section 6.2, respectively. To determine the influence of surfactant

on the aerogel pore structure, 0.5x and 2x the CMC of CTAB, 0.5x, 2x,and 3x the CMC

of SDS, and 0.5x, 2x,and 3x the CMC of P-123 were added to the formulations. Aerogels

without surfactant were also synthesized for comparison. The molar ratios of surfactant to

inorganic precursors used for each surfactant in the sol is further discussed in the following

sections. For CTAB aerogels, the sols were mixed for a couple of hours, while for SDS

and P-123 aerogels, the sols were mixed overnight to allow for complete dissolution of the

surfactants and precursors.

Following further mixing of the sol in an ice bath, the gelation agent, propylene oxide,
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was added to the chilled sol. Immediately after the addition of propylene oxide, the sol

was poured into the aerogel molds; gelation typically occurred within 10 minutes. After 24

hours of aging, the gel was washed in 200 proof ethanol for 5 - 8 days. The gel was then

supercritically dried using carbon dioxide. The supercritical drying process exchanged the

solvent in the gel’s pores with air, transforming the gel into an aerogel. Following drying, a

selection of the aerogels were heat-treated in high-purity alumina boats under flowing argon

at temperatures of 600°C, 1000°C, and 1100°C for 18 minutes. The ramp rate of the tube

furnace was 5°C/min.

3.3 Characterization methods: Yttria-stabilized zirconia aerogels

with surfactant templates

Following synthesis, as-dried and heat-treated aerogels were characterized using a variety

of techniques. As-dried shrinkage and density were determined through physical measure-

ment using a digital caliper. Scanning electron microscopy (SEM) was performed using

a Hitachi SU-70 FE-SEM (CTAB) and a Hitachi S-4700 FE-SEM (CTAB, SDS, and P-

123) to show, qualitatively, the effects of surfactant on microstructure. The SEM samples

were uncoated and imaged at 1 - 2 kV with a working distance of 4.5 - 9.0 mm. Nitro-

gen adsorption/desorption was conducted on a Micromeritics ASAP 2020 Plus instrument

(CTAB), a Micromeritics ASAP 2020 instrument (CTAB), and a Tristar II 3020 (Micromet-

rics Instrument Corporation) instrument (SDS and P-123) following degas at 80°C overnight;

the surface area of the aerogels was determined using the Brunauer–Emmett–Teller (BET)

method and the pore size distribution was determined from the desorption isotherm using

the Barrett-Joyner-Halenda (BJH) method, which accounts for open pores less than 100

nm in size only.325,326 Following the measurement, pore size distributions of the aerogel

samples were determined by plotting the pore volume (cm3/g) as a function of the pore

diameter (nm). An Empyrean Multipurpose X-ray diffractometer (CTAB) and a Bruker D8

Advance X-ray diffractometer (SDS and P-123) were used to determine surfactant effects
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on crystalline phase transformation and average crystallite size for heat-treated aerogels.

Cu Kα (1.54059 Å) radiation was used from 10°to 90° 2θ. Profile fitting in HighScore Plus

by Malvern Panalytical and the cubic phase YSZ powder diffraction file (PDF) reference

card were used to analyze the aerogel samples. To determine the average crystallite size for

each sample, the Scherrer equation, the Monshi-Scherrer (M-S) method, the Williamson-Hall

(W-H) method, and the Size-Strain-Plot (SSP) method were used.334 Transmission electron

microscopy (TEM) was conducted using a JEOL JEM-F200 Cold FEG Electron Microscope

(CTAB) and a FEI Talos TEM (SDS and P-123) with an accelerating voltage of 200 kV to

confirm the effects of surfactant on crystallite size.
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Chapter 4 Yttria-stabilized zirconia aerogels with sur-

factant templates, part I: Cationic surfac-

tant templating

The cationic surfactant, with a positively charged hydrophilic head, cetrimonium bromide

(CTAB), was used as a surfactant template in this dissertation. It was anticipated that

surfactant templating with CTAB would enable the retention of the pore structure and high

surface area of yttria-stabilized zirconia (YSZ) aerogels upon high-temperature exposure so

that the benefits of aerogel properties could be leveraged for use in thermal management sys-

tems. We predicted that the addition of CTAB would increase the surface area, pore volume,

and pore size of as-dried YSZ aerogels. In addition, it was anticipated that CTAB would

attenuate the decrease of the surface area and pore volume accompanying heat-treatment

of the aerogels. The mesoporous structure of YSZ aerogels suppresses gas convection due

to the small pore size, but the retention of open pore volume is critical for reducing solid

conduction through the material. Successful surfactant templating of YSZ aerogels would

improve the effectiveness of these materials when used in the expected use range of 600°C

to 1000°C.

Figure 7: Surfactant templating with CTAB. Surfactant templating of YSZ aerogels with
the cationic surfactant cetrimonium bromide (CTAB) to mitigate surface area decrease and
pore volume collapse following high-temperature exposure.

63



4.1 Cationic surfactant templating: CTAB templating

As an example of using CTAB as a surfactant template in zirconia aerogels, Jung et al. found

that in the synthesis of ambient pressure dried zirconia aerogels, the addition of CTAB

increased the specific surface area of the aerogels by up to 89%.18 High surface area was

retained after annealing at 400°C, indicative of an enhanced thermal stability of the aerogels

synthesized with CTAB. In the sol-gel synthesis of alumina-zirconia nanopowders, Rezaee et

al. determined that the addition of CTAB synthesized smaller nanoparticles with narrow size

distribution and higher surface areas as compared to nanoparticles synthesized with nonionic

surfactants.17 When dissolved in solvent, CTAB is known to release cations that can interact

with the zirconia matrix. The cationic charges lead to an induced repulsive force between

collections of zirconia during the drying process, which can prevent shrinkage of the pore

system caused by capillary forces. The repulsive forces between the cation and the zirconia

matrix are ultimately the cause of increased surface area in zirconia aerogels templated

with CTAB. The addition of CTAB also improves the emulsification of the sol, leading to a

more homogeneous resulting material. Additionally, CTAB discourages agglomeration and

controls particle geometry by adsorbing onto the surface of precursor particles.

However, the adsorption of CTAB on the aerogel matrix by electrostatic attraction has

been known to decrease the skeleton strength of the aerogel, which can lead to shrinkage

during drying. Interestingly, Sai et al. determined that small amounts of CTAB increased

pore size and volume of silica aerogels, while larger amounts of CTAB reduced pore size and

volume.15 Huang et al. demonstrated a similar result where larger concentrations of CTAB

led to smaller pores and weakened skeletons in silica aerogels.335 Therefore, in this work,

the amount of CTAB needed to be optimized to mitigate pore shrinkage, surface area loss,

densification, and sintering, which would enhance the mesoporous structure of the aerogel.

Here, it was determined that adding one-half times the critical micelle concentration of

CTAB increased the surface area of the aerogels by 72% and 41% and increased the pore

volume following exposure to 600°C and 1000°C, respectively. This level of CTAB had the
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greatest increase in surface area and pore volume as compared to aerogels without CTAB

or with twice the critical micelle concentration of CTAB. By optimizing the concentration

of CTAB, the thermal stability of YSZ aerogels can be enhanced to make these materials

more efficient when used as thermal management systems, specifically for aeronautics and

aerospace applications. The optimization of aerogels used in these applications will lead to

increased effectiveness and thermal stability of the systems up to temperatures of 1000°C.

4.2 Cationic surfactant templating: CTAB concentrations

Prior to gelation, the chosen surfactant, cetrimonium bromide, CTAB, was added to the

sol as a multiple of the surfactant’s critical micelle concentration (CMC). The CMC of

CTAB varied when ethanol was added to the solution; the CMC increased as the ethanol

volume fraction increased. This change in CMC was taken into account in the YSZ aerogel

formulations, as CMC values of CTAB at varying ethanol fractions were estimated from

a thermodynamic model.336 For the aerogel formulation used in this work, the CMC of

CTAB was estimated to be 0.230 M. The addition of the inorganic salts ZrOCl2 · 8 H2O and

YCl3 · 6 H2O was determined to have a negligible effect on the CMC of CTAB, as the decrease

in CMC due to the salt addition was shielded by the large increase of the CMC due to the

ethanol addition. For these experiments, the effect of ethanol on the CMC values of CTAB

was considered only. To determine the influence of different concentrations of CTAB on the

aerogel pore structure, 0.5x the CMC of CTAB and 2x the CMC of CTAB were added to

the formulations. The molar ratio of CTAB to inorganic precursors was 0.13 for 0.5x CTAB

and 0.50 for 2x CTAB, summarized in Table 3.
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Table 3: Molar ratios of surfactant CTAB to inorganic precursors. Molar ratios of the
surfactant cetrimonium bromide (CTAB) to the inorganic precursors, zirconia and yttria,
in the aerogel formulations at concentrations of 0.5x and 2x the CMC. The CMC of CTAB
used in the formulations is also included.

Molar Ratios

Surfactant CMC (M) 0.5x 2x

CTAB 0.230 0.13 0.50

4.3 Cationic surfactant templating: Results and discussion

Physical measurements taken after supercritical drying were used to determine the as-dried

shrinkage and density, displayed in Table 4 of the YSZ aerogels. The as-dried shrinkage was

the percent change of the as-dried aerogel monolith diameter with respect to the original

diameter of the gelation mold. It was determined that the as-dried shrinkage increased as

the CTAB level was increased. The shrinkage was 17 ± 1.1% for aerogels without CTAB, 20

± 1.1% for 0.5x CTAB aerogels, and 25 ± 1.1% for 2x CTAB aerogels. While added CTAB

increased the as-dried shrinkage, 2x CTAB was shown to have the greater increase. This effect

could have been the result of a reduction in the skeleton strength of the aerogel at higher

CTAB amounts, which is further elaborated below. The density remained approximately

constant when the amount of CTAB was changed: 0.261 ± 0.012 g/cm3 at 0x CTAB, 0.251

± 0.012 g/cm3 at 0.5x CTAB, and 0.252 ± 0.012 g/cm3 at 2x CTAB.

Table 4: Shrinkage and density of YSZ aerogels with varying CTAB levels. As-dried shrinkage
for YSZ aerogels with varying levels of CTAB determined through physical measurement.

CTAB Shrinkage (%) Density (g/cm3)

0x 17 ± 1.1 0.261 ± 0.012

0.5x 20 ± 1.1 0.251 ± 0.012

2x 25 ± 1.1 0.252 ± 0.012

Figure 8 displays the pore size distributions of the YSZ aerogels at different levels of

CTAB. Figure 8A is the pore size distribution for as-dried aerogels, Figure 8B is the pore

66



Figure 8: Pore size distributions of YSZ aerogels with varying CTAB levels and heat-
treatment. Pore size distributions of YSZ aerogels at 0x CTAB, 0.5x CTAB, and 2x CTAB
at heat-treatment conditions of A) as-dried, B) 600°C, and C) 1000°C.
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size distribution at 600°C, and Figure 8C is the pore size distribution at 1000°C. Three differ-

ent concentrations of CTAB are displayed on each plot and represented as different marker

shapes: 0x CTAB (circle), 0.5x CTAB (square), and 2x CTAB (diamond). Considering the

as-dried aerogel samples, the aerogel without CTAB had a pore size distribution between

0 nm and 40 nm, while the aerogels with 0.5x CTAB and 2x CTAB had wider pore size

distributions within 0 nm and 80 nm and within 0 nm and 55 nm, respectively. Figure 8

showed that aerogels heat-treated at 600°C had similar pore sizes, regardless of CTAB con-

tent. At 600°C, the pore size distributions ranged from 5 to 35 nm with major distributions

at 18 nm. For aerogels heat-treated at 1000°C, the pore size distributions ranged from 10 to

35 nm with the major pore size distributions shifting to smaller pore sizes with increasing

CTAB amount, from 28 nm (0x CTAB) to 22 nm (0.5x CTAB) and 18 nm (2x CTAB).

As a templating agent, the micelle size of CTAB can be affected by many factors, such as

concentration, temperature, and pH.337 CTAB forms micelles with diameters of 2 to 3 nm

in water. In this study, the precursor solution, prior to the addition of CTAB, had a pH of

1. At this pH, it was estimated according to the work reported by Patel et al. describing

the influence of solution pH on the size of CTAB micelles that the hydrodynamic diameter

of CTAB was approximately 25 nm, which was closer to the measured pore size distribution

of the aerogels.338 It should be noted that, since nitrogen physisorption only measures pores

less than 100 nm, the actual distribution could have included pores that were greater than

100 nm but were not measured by nitrogen physisorption. No macroporosity was observed

in the SEM images of the as-dried samples, which are not displayed here. Because of this,

it was determined that the distribution seen in nitrogen physisorption was representative of

the range of pore sizes in the sample.

The BET surface area (m2/g) and BJH desorption cumulative pore volume (cm3/g)

values of YSZ aerogels without and with CTAB are displayed in Figure 9A and Figure 9B,

respectively. The addition of CTAB was shown to increase the surface area of the as-dried

YSZ aerogels, with 0.5x CTAB increasing the surface area by 53% to 403 m2/g and 2x
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Figure 9: BET surface area and BJH desorption cumulative pore volume of YSZ aerogels
with varying CTAB levels and heat-treatment. A) BET surface area (m2/g) and B) BJH
desorption cumulative pore volume (cm3/g) for YSZ aerogels with varying concentrations of
CTAB at as-dried, 600°C, 1000°C, and 1100°C heat-treatment conditions.

CTAB increasing the surface area by 55% to 407 m2/g, as compared to the aerogel without

CTAB at 263 m2/g. Once the aerogels were heat-treated, the surface areas were shown to

decrease, which was indicative of sintering following high-temperature exposure. However,

the addition of CTAB was shown to increase the surface area of the aerogels at 600°C and

1000°C. At 600°C, the addition of 0.5x CTAB and 2x CTAB increased the surface area by

72% to 257 m2/g and by 21% to 181 m2/g, respectively, as compared to the aerogel without

CTAB at 149 m2/g. At 1000°C, the surface area increased by 41% to 52 m2/g with 0.5x

CTAB and by 27% to 47 m2/g with 2x CTAB as compared to the aerogel without CTAB at

37 m2/g.

Regarding cumulative pore volume, for the as-dried aerogels, the aerogel with 0.5x CTAB

had the highest pore volume of 1.95 cm3/g, while the aerogel with 2x CTAB had a pore

volume of 1.43 cm3/g. Compared to the aerogel without CTAB, with a pore volume of

0.97 cm3/g, the addition of CTAB was shown to increase pore volume. Aerogels with 0.5x

CTAB and 2x CTAB displayed a decrease in pore volume as heat-treatment temperature
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increased, which was expected due to sintering and densification. However, the aerogels

with 0.5x CTAB had larger pore volumes at 600°C and 1000°C (1.35 cm3/g and 0.36 cm3/g,

respectively) than the aerogels without CTAB (0.77 cm3/g and 0.20 cm3/g) and with 2x

CTAB (0.88 cm3/g and 0.21 cm3/g). Specifically, the addition of 0.5x CTAB was shown to

enable the retention of a measurably larger total pore volume following heat-treatment at

600°C and 1000°C than the aerogels without CTAB or with 2x CTAB.

The addition of 0.5x CTAB was shown to be more effective at inhibiting surface area

decrease and pore collapse following high-temperature exposure as aerogels with 0.5x CTAB

showed the overall highest surface area and pore volume following heat-treatment. The larger

pore volume would most likely lower the solid conduction of the aerogel, enhancing the use of

the aerogel as a thermal insulator. This result was surprising, as it was predicted that a larger

amount of CTAB would more effectively template the aerogel pores. This result could have

been influenced by the estimation of the critical micelle concentration of CTAB. The effect of

ethanol was considered when estimating the CMC values; however, other factors, including

the inorganic salt concentration, could have influenced the CMC, but were not considered

in the estimate. The pore size distribution in Figure 8 was narrower at 0.5x CTAB than

at 2x CTAB for as-dried aerogels, pointing to a more homogeneous pore structure during

synthesis, and suggesting that 0.5x CTAB may have been closer to the actual CMC.

Alternatively, the addition of 2x CTAB could have had a negative effect on the surface

area and pore volume of the heat-treated aerogels because a larger amount of surfactant was

detrimental to the aerogel structure. This was supported by the study conducted by Sai et

al. which determined that, at higher amounts, the polar head groups of CTAB may have

interacted with the zirconia domains, adsorbing onto the aerogel backbone by electrostatic

attraction.15,18 The steric hindrance caused by this adsorption could have constrained the

gelation reaction, causing a reduction of the skeleton strength of the gel and leading to

increased shrinkage during drying.

Scanning electron microscopy (SEM) was used to determine how the pore structure of

70



Figure 10: SEM images of YSZ aerogels with varying CTAB levels and heat-treatment. SEM
images of YSZ aerogels at two different heat-treatment conditions, 600°C (left) and 1000°C
(right), for aerogels with A) 0x CTAB, B) 0.5x CTAB, and C) 2x CTAB.
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the YSZ aerogels was affected by high-temperature exposure. Figure 10 displays SEM im-

ages of YSZ aerogels with 0x CTAB (Figure 10A, 0.5x CTAB (Figure 10B), and 2x CTAB

(Figure 10C) following heat-treatment at 600°C for 18 min (left) and at 1000°C for 18 min

(right). Sintering and densification of the aerogels without CTAB were evident following

high-temperature exposure, especially noticeable at 1000°C. This behavior was anticipated

and is typical for metal oxide materials exposed to high temperatures. With the addition

of CTAB, the aerogel structures were less dense or coarse than those without, especially at

1000°C. It was predicted that the addition of CTAB would template distinct pores within

the aerogel structure, even after exposure to 1000°C. However, while a slight shift in pore

size could be observed, it was difficult to assign statistical significance to the difference.

X-ray diffraction (XRD) was used to determine the crystalline phase transformation and

crystallite size following heat-treatment of YSZ aerogels with different amounts of CTAB.

Figure 11 displays the XRD patterns of YSZ aerogels at different surfactant levels and

heat-treatment conditions. The aerogel that was not heat-treated was non-crystalline or

amorphous; this was true for all as-dried samples, regardless of CTAB loading. The aero-

gel samples that were heat-treated at 600°C and 1000°C were all crystalline, regardless of

CTAB content. The XRD patterns in Figure 11 for the YSZ aerogels without CTAB showed

increased crystallinity with heat-treatment. The as-dried sample had very broad peaks, in-

dicative of an amorphous structure, while the sample heat-treated at 600°C displayed sharper,

more defined peaks, exhibiting some crystallization of the material. It was determined from

these patterns that the YSZ aerogel transformed from an amorphous structure to a crys-

talline structure by 600°C. When comparing to the sample at 600°C, the 0x CTAB sample

that was heat-treated at 1000°C displayed even sharper and more defined peaks, possibly

indicative of increased crystallite size following exposure to increased temperatures. When

considering Figure 9, it was determined that increasing crystallite size was accompanied by

a decrease of surface area and pore volume.
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Figure 11: XRD patterns of YSZ aerogels with varying CTAB levels and heat-treatment.
XRD patterns for YSZ aerogels with 0x CTAB, 0.5x CTAB, and 2x CTAB at various heat-
treatment conditions of as-dried, 600°C, and 1000°C. The Miller indices (hkl values) are
displayed at the top of the figure.
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Table 5: Average crystallite size of YSZ aerogels with varying CTAB levels and heat-
treatment. Average crystallite size values (Å) for 0x CTAB, 0.5x CTAB, and 2x CTAB
YSZ aerogels at 600°C and 1000°C determined through XRD and TEM analysis. Four dif-
ferent equations were used to determine the crystallite size following XRD analysis.

CTAB Temperature Crystallite Size Crystallite Size

Concentration (°C) via XRD (Å) via TEM (Å)

0x 600 62 ± 5 61 ± 13

1000 239 ± 37 270 ± 63

0.5x 600 61 ± 4 73 ± 14

1000 209 ± 13 216 ± 54

2x 600 59 ± 4 76 ± 17

1000 200 ± 6 214 ± 55

Following analysis, it was determined that the peaks for all the heat-treated samples

were indicative of the cubic YSZ crystalline phase. This was expected as, based on the YSZ

phase diagram, the cubic phase should be the primary phase for samples with 20 mol% Y at

temperatures up to 2500°C.339 There may have been small amounts of the tetragonal YSZ

phase mixed with the cubic phase; however, the cubic peaks overlapped with the tetragonal

peaks on the pattern, which made the presence of the tetragonal phase hard to determine.

The addition of CTAB was shown to have no effect on the crystalline phase of the YSZ

aerogels. Table 5 displays the average crystallite size of the YSZ aerogel samples in this

study. The Scherrer equation, the conventional method for determining the crystallite size of

particles, can only be utilized for crystallite sizes up to 1000 Å and often has error associated

with it due to the instrument signal and noise. Therefore, as a way to compare the results

of the Scherrer equation, the Monshi-Scherrer (M-S) method, the Williamson-Hall (W-H)

method, and the Size-Strain-Plot (SSP) method were also utilized.334 In Table 5, the XRD

analysis values for the average crystallite size are the average and standard deviation of these

four equations. At 600°C, the average crystallite size was smaller for each level of CTAB

than the crystallite size at 1000°C. At 1000°C, the crystallite size was the smallest in YSZ

aerogels with CTAB, as compared to the aerogel without CTAB.

Due to certain limitations and error associated with the XRD equations, TEM was con-
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Figure 12: TEM images of YSZ aerogels with varying CTAB levels and heat-treatment.
TEM images at 100k magnification of YSZ aerogels with A) 0x CTAB, B) 0.5x CTAB, and
C) 2x CTAB that have been heat-treated at 600°C and 1000°C (inset).

ducted to confirm the values estimated from the XRD analysis. Figure 12 displays the TEM

images of YSZ aerogels with 0x CTAB (Figure 12A), 0.5x CTAB (Figure 12B), and 2x CTAB

(Figure 12C) that were heat-treated at two different conditions: 600°C and 1000°C (inset).

The aerogels heat-treated at 600°C and 1000°C all appeared to display some crystallization,

with the aerogels at 1000°C displaying larger crystallites than the aerogels at 600°C. Analysis

of the TEM images determined that the average size of the crystallite particles, displayed

in Table 5, increased by 343% at 0x CTAB, 196% at 0.5x CTAB, and 182% at 2x CTAB

when the temperature was increased from 600°C to 1000°C, which further indicated that

exposure to higher temperatures increased the crystallite size. This behavior was expected

as heat-treatment is known to promote crystallization of the YSZ aerogels and to increase

growth of the crystallite particles. Additionally, in Figure 12, the aerogel without CTAB

appeared to have crystallites larger than the aerogels with CTAB at 1000°C. The TEM

analysis confirmed the XRD results, which determined that the average crystallite size was

smaller at 600°C than at 1000°C, as well as smaller in aerogels with CTAB than the aero-

gel without CTAB at 1000°C. It was determined that the addition of CTAB to the YSZ

aerogels inhibited crystallite growth at 1000°C, which may have hindered surface area and

pore volume decrease, as well as shrinkage, at high temperatures. YSZ aerogels with CTAB

may show increased effectiveness when used at high-temperature if crystallite growth, and
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accompanying surface area and pore volume decrease, can be impeded.

Figure 13: SEM images of YSZ aerogels at 1100°C with varying CTAB levels. SEM images
of YSZ aerogels with A) 0x CTAB and B) 2x CTAB that were heat-treated at 1100°C. BET
surface area and BJH desorption cumulative pore volume values are also displayed.

To further determine the effect of high-temperature exposure on aerogels without and

with CTAB, selected aerogel samples were heat-treated at 1100°C for 18 min. Figure 13

displays the SEM images of YSZ aerogel samples with 0x CTAB (Figure 13A) and 2x CTAB

(Figure 13B) that were heat-treated at 1100°C. The BET surface area and BJH desorption

cumulative pore volume values are displayed below each sample. Heat-treatment at 1100°C

was shown to cause further sintering and densification, in addition to larger particle growth,

of the aerogels, as compared to the heat-treatment at 600°C and 1000°C displayed in Figure

10. The effect of CTAB was not distinctly apparent in the SEM images of the 0x CTAB and

2x CTAB aerogels. The YSZ aerogels without CTAB had a surface area and pore volume
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of 11 m2/g and 0.01 cm3/g, respectively, following exposure to 1100°C. For aerogels exposed

to the same temperature with 2x CTAB, the surface area and pore volume were 21 m2/g

and 0.02 cm3/g, respectively. These results demonstrate that there was significant collapse

of the pore structure at 1100°C. In order to extend the use range for these materials, it

was determined that the formulation must be further optimized so that pore collapse and

subsequent densification are mitigated. This optimization included investigating different

surfactant types and concentrations to extend the use range of these materials above 1000°C.

Based on the study of the cationic surfactant CTAB, it was determined that 0.5x CTAB

was an effective amount of CTAB to use as a surfactant template in YSZ aerogels as compared

to 2x CTAB. This was in agreement with the study conducted by Sai et al. with silica

aerogels which determined that smaller amounts of CTAB increased the pore size and pore

volume of the aerogels.15 The surface area of aerogels with 0.5x CTAB was higher following

exposure to 600°C and 1000°C than aerogels without CTAB or with 2x CTAB. In addition,

the pore volume at 0.5x CTAB was larger for both as-dried and heat-treated (600°C and

1000°C) aerogels than the pore volume of aerogels without CTAB and with 2x CTAB. The

addition of CTAB releases cations, which attach to the zirconia aerogel network, inducing a

repulsive force and effectively reducing shrinkage of the pore structure during drying.18 The

mitigation of shrinkage overall increases the surface area and pore volume of the aerogels

following high-temperature exposure, allowing these materials to be used as effective thermal

insulators.

However, following this investigation, it was believed that at the increased level of 2x

CTAB, the higher concentration of cationic surfactant may have been negatively influencing

the pore structure, which could have included a reduction in surface area and pore volume.15

Cationic surfactants are known to adsorb onto the negatively charged surface sites of minerals

through electrostatic attractions, often forming a dense electrical double layer at the solid-

liquid interface.340 When the concentration of surfactant increases, the hydrocarbon chains

of the surfactants begin to aggregate and form two-dimensional structures called hemicelles.
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We hypothesized that at the higher concentration of CTAB, the strength of the gelled matrix

was decreased, making it more susceptible to shrinkage during drying and heat-treatment

and reducing the surface area and pore volume of the aerogels. Similar interactions have

been known to occur between CTAB and silica aerogels through settling of the polar head

groups of CTAB towards the silica domain.341,342 Additionally, CTAB was known to interact

with negatively charged copper(II) hydroxide during the templating of cuprite nano-whiskers;

this interaction influenced the structure and morphology of the final nano-materials.343 YSZ

aerogels with 2x CTAB exhibited decreased surface area and pore volume following high-

temperature exposure as compared to aerogels with 0.5x CTAB; this surprising behavior

may have been a result of the adsorption of CTAB, which may have impeded the extent of

the gelled network.

4.4 Cationic surfactant templating: Conclusions

The addition of the cationic surfactant, cetrimonium bromide (CTAB), was shown to in-

fluence the mesoporous structure and surface area of 20 mol% Y, 2x H2O yttria-stabilized

zirconia (YSZ) aerogels. However, it was critical that the amount of CTAB used was opti-

mized so that it was used at an amount that was low enough to inhibit interactions with the

zirconia aerogel matrix that may have caused a reduction in surface area and pore volume yet

high enough to be advantageous for surfactant templating. It was established following this

study that 0.5x the critical micelle concentration (CMC) of CTAB was an ideal concentration

for effective surfactant templating. The addition of 0.5x CTAB synthesized aerogels with

higher surface area and pore volume following exposure to 600°C and 1000°C, as compared

to aerogels without CTAB or with 2x the CMC of CTAB. It was anticipated that optimized

surfactant templating would lead to the synthesis of YSZ aerogels with increased thermal

stability. These materials would then be more efficient when used in thermal management

systems in the expected use range of 600°C to 1000°C for a variety of applications, including

aeronautics and aerospace applications.
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Chapter 5 Yttria-stabilized zirconia aerogels with sur-

factant templates, part II: Anionic surfac-

tant templating

Anionic surfactants, with a negatively charged hydrophilic head, were also studied as part

of this dissertation. The anionic surfactants sodium dodecyl sulfate (SDS) was chosen as

a nonionic surfactant template for 20 mol% YSZ aerogels. SDS has been previously used

in silica aerogels and was shown to maintain high surface area and pore size in aerogels

heat-treated at 600°C.88 SDS has also been shown to lower the bulk density and thermal

conductivity of silica aerogels.330

5.1 Anionic surfactant templating: SDS templating

The anionic surfactant, sodium dodecyl sulfate (SDS), is an organic sodium salt that has

a wide scope of available literature, especially regarding the use of SDS as a detergent or

protein denaturant. Additionally, SDS has been reported for use as a surfactant template

in aerogels. At or above the critical micelle concentration (CMC) of SDS, the amphiphilic

surfactant molecule forms micelles in solution with a hydrophobic core and hydrophillic shell;

the micelles become embedded in the aerogel network through reactions involving hydroxyl

groups.88 The embedded SDS micelles influence the aerogel pore structure through steric

hinderance effects, as well as through electrostatic interactions between the metal ions of the

aerogel network and the negatively charged surfactant head groups. Similar to a cationic

surfactant, anionic surfactants also release ions when dissolved in solution that interact with

the zirconia aerogel matrix. The release of anions and subsequent induced repulsive force

between the zirconia particles influence the aerogel pore structure, reducing the shrinkage

and pore collapse of the aerogel caused by capillary forces during drying.331 As mentioned

previously, as a surfactant template, SDS also reduces the interfacial energy of the aerogel

system, which reduces shrinkage and pore collapse during drying, and controls nanoparticle
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growth, which inhibits agglomeration and increases surface area. As an example of SDS

templating aerogels, SDS was used in ambient-pressure dried silica aerogels and resulted

in larger pore volume and mean pore size.141 SDS was also used to increase the thermal

stability and surface area of silica aerogels exposed to 600 °C.88 Additionally, SDS was

shown to decrease density and thermal conductivity of silica aerogels.330 SDS was used with

a zirconia system in the synthesis of highly porous ceramic zirconia foams with low thermal

conductivity; increasing concentrations of SDS resulted in foams with increasing porosity.344

5.2 Anionic surfactant templating: SDS concentrations through

hydrodynamic radius measurements

Prior to the synthesis of the YSZ aerogels with SDS, the concentration of SDS that would

be added to the aerogel formulations was determined. SDS was to be added as multiples

(0.5x, 2x, and 3x) of the surfactant’s critical micelle concentration (CMC) value in the YSZ

sol. The CMC value was determined using a series of experiments where the surfactant was

added to the base sol, which was the 20 mol% yttria, 2x water YSZ sol formulation used

for all of the aerogels, at different concentrations prior to gelation. The surface tension and

hydrodynamic radius of the surfactant at each concentration was then determined.

The surface tension of each solution was determined using a Sinterface Profile Analysis

Tensiometer PAT1M. For SDS, there was determined to be no correlation between surfactant

concentration and surface tension value. Surface tension was determined to be too sensitive

of a measurement to see changes at the SDS concentrations analyzed.

The hydrodynamic radius of each solution was determined using dynamic light scattering

on an ALV/CGS-3 Compact Goniometer from ALV-GmbH utilizing a vertically polarized

633 nm 22 mW laser. There was a correlation between hydrodynamic radius value and SDS

concentration as seen in Figure 14. The hydrodynamic radius values were between 3.7 and

4.6 nm for SDS concentrations between 1 x 10-5 M and 1 x 10-2 M in the base sol. SDS

concentrations above 1 x 10-2 M were not measured as SDS would not dissolve into the base
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Figure 14: Theta (θ) as a function of surfactant concentration to determine the CMC of
SDS. θ values, defined as (R - Rmin)/(Rmax - Rmin) where R is the hydrodynamic radius, for
concentrations (M) of the surfactant SDS. The critical micelle concentration (CMC) of SDS
in the aerogel base sol was estimated from 50% θ (red dashed line) to be 1 x 10-3 M.
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sol, even with extended mixing times (> 3 days). Theta (θ), defined as (R - Rmin)/(Rmax -

Rmin) where R is the hydrodynamic radius, was plotted as a function of the concentration

of SDS in the aerogel base sol solution. By convention, the CMC of SDS was determined to

be 50% of the θ value; therefore, the CMC was determined to be 1 x 10-3 M in the aerogel

base sol, denoted by the red dashed line in Figure 14. This estimated value of the SDS

CMC in the aerogel base sol (an ethanol-water solvent system) was reasonable, as the CMC

of SDS in water at 25°C is 8 x 10-3; the CMC is known to increase with the addition of

ethanol, but decrease with the addition of salts, such as the inorganic zirconium and yttrium

precursors.345,346 For the aerogel formulations discussed in section 3.2, at 0x, 0.5x, 2x, and

3x the CMC of SDS, the CMC value of 1 x 10-3 M SDS was used; the molar ratios of SDS

to inorganic precursors in the aerogel formulations are given in Table 6.

Table 6: Molar ratios of surfactant SDS to inorganic precursors. Molar ratios of the surfac-
tant sodium dodecyl sulfate (SDS) to the inorganic precursors, zirconia and yttria, in the
aerogel formulations at concentrations of 0.5x, 2x, and 3x the CMC. The CMC of SDS used
in the formulations is also included.

Molar Ratios

Surfactant CMC (M) 0.5x 2x 3x

SDS 1 x 10-3 6 x 10-4 2 x 10-3 3 x 10-3

We mapped a predictive measurement, surfactant hydrodynamic radius, in the sol to final

properties of the synthesized aerogels. It was anticipated that a predictive measurement that

can be made in the sol, prior to gelation, drying, heat-treatment and characterization, could

save experimental time and resources by providing insight into final aerogel properties before

completion of the full aerogel synthetic pathway.

5.3 Anionic surfactant templating: Results and discussion

In the following paragraphs, YSZ aerogels with sodium dodecyl sulfate (SDS) at different

concentrations are compared following heat-treatment at 600°C, 1000°C, and 1100°C for

18 min. The SDS concentrations were determined through a predictive measurement of
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the sol; mapping this predictive sol measurement to aerogel properties may save valuable

experimental time in the future as insights into the final aerogel could be gained through

a sol measurement prior the completion of the full aerogel development lifecycle. It was

anticipated that the use of a surfactant template would retain the mesoporous structure and

high surface area of YSZ aerogels.

Table 7: Shrinkage and density of YSZ aerogels with varying SDS levels. As-dried shrinkage
for YSZ aerogels with varying levels of SDS determined through physical measurement.

SDS Shrinkage (%) Density (g/cm3)

0x 17 ± 0.30 0.254 ± 0.003

0.5x 17 ± 0.29 0.253 ± 0.005

2x 18 ± 0.41 0.237 ± 0.005

2.5x 17 ± 0.48 0.237 ± 0.011

3x 17 ± 0.50 0.254 ± 0.002

Following supercritical drying, physical measurements were taken to determine the as-

dried shrinkage (%) and density (g/cm3) for the synthesized YSZ aerogels. The as-dried

shrinkage was a measure of the percent change between the aerogel monolith following super-

critical drying and the syringe mold used during synthesis. For aerogels without surfactant,

the as-dried shrinkage was 17% and the density was 0.254 g/cm3. For aerogels with SDS, the

as-dried shrinkage and density remained approximately constant for the various amounts of

SDS at 17% and 0.248 g/cm3, respectively. The addition of SDS as a templating agent had

a negligible effect on the as-dried shrinkage and density, as compared to aerogels without

SDS.

Figure 15 shows scanning electron microscopy (SEM) images at 80kx magnification for

YSZ aerogels at various heat-treatment conditions, both with and without SDS. SEM was

used to qualitatively determine the influence of surfactant type and heat-treatment condition

on the aerogel pore structure. The SEM images represent aerogels with no templating agent

(Figure 15A) and with 3x SDS (Figure 15B) at four different heat-treatment conditions.
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Figure 15: SEM images of YSZ aerogels with varying SDS levels and heat-treatment. SEM
images (80kx magnification) of YSZ aerogels with A) no templating agent and B) 3x SDS at
four different heat-treatment conditions, left to right, as-dried, 600°C, 1000°C, and 1100°C.

As mentioned previously, sintering was expected following high-temperature exposure

due to polycondensation reactions and structural rearrangement; sintering often leads to

pore collapse and densification of the pore structure. In Figure 15, the aerogels kept the

mesoporous structure at 1000°C, however densification of the aerogel pore structure was

evident following exposure to 1100°C. Exposure to 1100°C resulted in larger voids present in

the SDS templated aerogel sample, which was visible in the SEM micrograph.

Regarding surfactant influence on the aerogel pore structure, differences in the aerogel

pore structure between aerogels without a templating agent (Figure 15A) and aerogels with

SDS (Figure 15B) were difficult to distinguish from SEM micrographs. The as-dried aerogel

with SDS (Figure 15B) did display a few larger voids that were not present in the as-dried

aerogel without a surfactant template. However, there was difficulty in assigning statistical

significance to the shifts in pore size that were observed in the SEM micrographs.

The pore size distributions for YSZ aerogels with SDS are displayed in Figure 16 for

concentrations of 0x (circle), 0.5x (square), 2x (diamond), and 3x (pentagon) the CMC of

SDS. Four different heat-treatment conditions are represented: as-dried (Figure 16A) , 600°C

(Figure 16B), 1000°C (Figure 16C), and 1100°C (Figure 16D).

It should be noted that, in the aerogels with SDS, the measured pore sizes were larger
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Figure 16: Pore size distributions of YSZ aerogels with varying SDS levels and heat-
treatment. Pore size distributions of YSZ aerogels at 0x SDS, 0.5x SDS, 2x SDS, and
3x SDS at heat-treatment conditions of A) as-dried, B) 600°C, C) 1000°C, and D) 1100°C.
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than the average diameter of the SDS micelles measured in the YSZ sol. However, the pores

were not all directly formed by the surfactant micelles as the surfactant only aided in pore

templating. The primary mechanism for the formation of aerogel pores was the aggregation

of the solid precursor and the resultant arrangement of the gel network.

The major pore size distributions were centered around 32 nm for all SDS concentrations

in the as-dried aerogels. These pore sizes were slightly larger compared to the as-dried

aerogel without SDS (0x SDS), which had a major pore size distribution centered around

28 nm. The addition of SDS promoted slightly larger pore sizes and volumes in as-dried

aerogels, possibly indicating that SDS was an effective surfactant template. The aerogel

without templating agent had the widest pore size distribution, from 0 nm to 93 nm, as

compared to the aerogels with SDS, which had pore size distributions from 0 to 45 nm (0.5x

SDS), 0 to 52 nm (2x SDS), and 0 to 42 nm (3x SDS). Surfactants are known to increase the

emulsification of the sol and prevent particle agglomeration, leading to a more homogeneous

aerogel.18 The addition of SDS led to a narrower pore size distribution for the aerogels by

potentially increasing the homogeneity of the pores. The presence of macropores (pores >

50 nm) was not evident in the as-dried pore size distribution for the aerogels with SDS;

primarily mesopores (pores between 2 and 50 nm) were formed. Larger pores were present

in the aerogel without a surfactant template, which could have potentially encouraged the

collision of air molecules, ultimately increasing the thermal conductivity of the as-dried

aerogel without SDS.

To maintain effectiveness as a thermal insulator, the formation of large pores should be

mitigated. Small mesopores inhibit gas convection as the pore diameter is small compared

to the mean free gas path, which can hinder the collision of air molecules. The large volume

of mesopores in the as-dried aerogels with SDS would have potentially lowered the thermal

conductivity of these aerogels as compared to the aerogel without SDS due to suppression

of gas convection. Enhanced control of the mesopore range in aerogels with SDS may have

resulted from increased electrostatic interactions present in the aerogels with the anionic
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surfactant template.

For the aerogels at 600°C, the aerogel without SDS had a wider pore size distribution

with a slightly larger major pore size as compared to the aerogels with SDS. Macropores

were also present in the aerogel without SDS. For the aerogels with SDS at 600°C, the pore

size distributions were similar, with 0.5x SDS having a slightly larger major pore size at 28

nm. The major pore size distributions were slightly less in the aerogels at 600°C than the

as-dried aerogels, except for the aerogel without SDS, which had a slightly larger major pore

size distribution at 600°C.

For the aerogels at 1000°C, the pore size distributions were very similar in aerogels with

SDS and the aerogel without SDS; the major pore size distribution was centered around 30

nm. However, the aerogel at 0.5x SDS displayed macropores. For the aerogels at 1100°C, the

aerogel with 2x SDS had a major pore size distribution centered around 30 nm, while the

aerogels with 0.5x SDS and 3x SDS, as well as the aerogel without SDS, displayed macropore

formation with very low pore volume.

It is important to note that nitrogen physisorption was only capable of measuring pores

less than 100 nm. Therefore, pores with diameters greater than 100 nm could have been

present in the synthesized aerogels. As an example, a few larger voids were observed in the

as-dried aerogel with 3x SDS (Figure 15B). For this sample, while a significant volume of

pores with diameters less than 50 nm were observed in the as-dried pore size distribution

(Figure 16A), the aerogel could have had pores greater than 100 nm that were not measured

through nitrogen physisorption.

The BET surface area (m2/g) and BJH desorption cumulative pore volume (cm3/g)

values are represented in Figure 17A and Figure 17B, respectively, for aerogels with SDS.

The surfactant concentrations 0x (circle), 0.5x (square), 2x (diamond), and 3x (pentagon)

are displayed for temperatures of as-dried, 600°C, 1000°C, and 1100°C.

For aerogels with SDS and aerogels without a surfactant template, there was a large

decrease in both surface area and pore volume following high-temperature exposure. A de-
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Figure 17: BET surface area and BJH desorption cumulative pore volume of YSZ aerogels
with varying SDS levels and heat-treatment. A) BET surface area (m2/g) and B) BJH
desorption cumulative pore volume (cm3/g) for YSZ aerogels with varying concentrations of
SDS at as-dried, 600°C, 1000°C, and 1100°C heat-treatment conditions.

crease in surface area and pore volume was anticipated due to the sintering and densification

of the aerogel pore structure at high-temperatures, seen in Figure 15. Larger voids were

not included in the measurement of the surface area and pore volume values displayed in

Figure 17 since nitrogen physisorption was only capable of measuring pores less than 100 nm.

However, the surface area and pore volume values at high-temperature, while much lower

than the as-dried values, indicated the retention of mesoporosity following high-temperature

exposure. The pore size distributions at high-temperature in Figure 16 also displayed this

retained mesoporosity.

For as-dried aerogels with SDS, 0.5x SDS and 3x SDS had higher BET surface area

values (in Figure 17A), at 445 m2/g and 449 m2/g, respectively than 2x SDS at 413 m2/g.

All concentrations of SDS had higher surface areas than the aerogel without a surfactant

template, with a surface area of 379 m2/g. For the heat-treated aerogels, the aerogels with

SDS and the aerogels without SDS all had approximately the same surface area value, with

a difference of 17 m2/g between the aerogels with or without SDS at 600°C, a difference of
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16 m2/g between the aerogels at 1000°C, and a negligible difference of 4 m2/g between the

aerogels at 1100°C.

The BET surface area of as-dried aerogels demonstrated an increase when using SDS

as a surfactant template at various concentrations, indicating that SDS potentially was

an effective templates for YSZ aerogels, as compared to the aerogel without a surfactant

template. It was determined that, following high-temperature exposure, the use of SDS did

not have a strong impact on aerogel surface area, as the differences in surface areas between

aerogels without a surfactant template and aerogels with SDS were negligible.

Regarding the BJH desorption cumulative pore volume values in Figure 17B, the as-dried

aerogels using SDS as a surfactant template had a higher pore volume, at 2.00 cm3/g, 1.62

cm3/g, and 1.71 cm3/g for 0.5x SDS, 2x SDS, and 3x SDS, respectively, as compared to the

aerogel without a surfactant template at 1.39 cm3/g. As was the case with BET surface

area, the larger pore volume in as-dried aerogels with SDS indicated that SDS potentially

was an effective surfactant template. At 600°C, the aerogel without SDS and the aerogel

with 0.5x SDS both had higher pore volume, both at 1.01 cm3/g, than the aerogels with

higher surfactant content (2x SDS and 3x SDS) with pore volumes at 0.72 cm3/g. Following

heat-treatment at 1000°C and 1100°C, the pore volumes were approximately the same for

aerogels without a surfactant template and aerogels with SDS with a variation of 0.1 cm3/g

and 0.03 cm3/g, respectively.

The increased electrostatic interactions of the anionic surfactant with the aerogel matrix

may have increased the as-dried pore volume of the aerogels with SDS as compared to the

aerogels without a surfactant template. However, similar to the results for BET surface area,

following high-temperature exposure, the addition of SDS did not significantly enhance the

aerogel pore volume as compared to the aerogels without a surfactant template.

X-ray diffraction (XRD) was used to determine the effect of concentrations of SDS on

the crystalline structure of YSZ aerogels. The resulting XRD patterns from 10°to 80° 2θ are

displayed in Figure 18. For aerogels without a templating agent, patterns are displayed for
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the aerogel heat-treated at 600°C, 1000°C, and 1100°C. For aerogels at 0.5x SDS, 2x SDS,

and 3x SDS, patterns at 1100°C only are displayed.

Figure 18: XRD patterns of YSZ aerogels with varying SDS levels and heat-treatment.
XRD patterns from 10°to 80° 2θ for YSZ aerogels without surfactant and aerogels with SDS
at various heat-treatment conditions of 600°C, 1000°C, and, primarily, 1100°C. The Miller
indices (hkl values) are displayed at the top of the figure.

All synthesized as-dried aerogels, regardless of the presence or absence of SDS surfactant

templates, were non-crystalline or amorphous. However, all heat-treated aerogels exhibited

crystallinity, which increased with increasing heat-treatment temperature from 600°C to

1100°C, indicated by the presence of well-defined peaks in the XRD pattern. Following

analysis, it was determined that all heat-treated YSZ aerogels exhibited the cubic fluorite

crystalline phase, regardless of SDS concentration; the cubic phase is expected in 20 mol%

yttria YSZ aerogels up to 2500°C.339 The use of SDS a as surfactant template was found to

have no effect on the resulting crystalline structure of the YSZ aerogels.
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Table 8 displays the average crystallite size (Å) values for each aerogel sample at 600°C,

1000°C, and 1100°C. For the XRD analysis, the crystallite size values resulting from four dif-

ferent equations, the Scherrer equation, the Monshi-Scherrer (M-S) method, the Williamson-

Hall (W-H) method, and the Size-Strain-Plot (SSP) method were averaged.334 These four

equations were used together, as the Scherrer equation, traditionally used to determine crys-

tallite size, has restrictions above 1000 Å and often has error due to noise and instrument

signal. Due to the limitations and errors associated with the XRD equations, analysis of

images from transmission electron microscopy (TEM) was also used to confirm the average

crystallite size.

Table 8: Average crystallite size of YSZ aerogels with varying levels of SDS and heat-
treatment. Average crystallite size values (Å) for YSZ aerogels with varying levels of SDS
at 600°C, 1000°C, and 1100°C determined through XRD and TEM analysis. Four different
equations were used to determine the crystallite size following XRD analysis.334

SDS Temperature Crystallite Size Crystallite Size

Concentration (°C) via XRD (Å) via TEM (Å)

600 55 ± 19 -

0x 1000 246 ± 20 -

1100 529 ± 39 364 ± 161

600 58 ± 1 -

0.5x 1000 237 ± 23 -

1100 535 ± 19 411 ± 176

600 54 ± 14 -

2x 1000 197 ± 11 -

1100 605 ± 9 -

600 56 ± 22 -

3x 1000 244 ± 9 -

1100 535 ± 19 355 ± 128

Crystallite growth was evident following high-temperature exposure, especially at 1000°C

and 1100°C. This was expected as high-temperature is known to increase growth of crystallite

particles, promoting crystallization. At 1000°C, the average crystallite size determined via

XRD analysis was slightly lower in all aerogels with SDS than the aerogel without a surfactant

template; 2x SDS exhibited the lowest average crystallite size for aerogels with SDS at 197
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± 11 Å. At 1100°C, there was a different behavior as the aerogel without the surfactant

template had a slightly smaller average crystallite size of 529 ± 39 Å than the aerogels with

SDS, which had average crystallite sizes ranging from 535 Å to 605 Å.

At 1000°C, the presence of SDS was shown to decrease the average crystallite size com-

pared to the aerogel without a surfactant template. Due to a capping effect, surfactants are

known to control crystallite growth; the lower average crystallite size at 1000°C potentially

indicated that SDS was an effective surfactant template, inhibiting crystallite growth at

this high-temperature. At 1100°C, the SEM micrographs (Figure 15) displayed significant

densification, which was even more pronounced than in the aerogels heat-treated at 1000°C.

Increased densification was potentially indicative of a decrease in the effectiveness of SDS as

a surfactant template, which was further evidenced by a negligible impact of the surfactant

on the surface area and pore volume of the aerogels at 1100°C. The greater extent of den-

sification and the insignificant impact on the crystallite size at 1100°C may have indicated

that SDS was a more effective surfactant template at 1000°C than at 1100°C.

The TEM images are displayed for aerogels with no templating agent (Figure 19A),

aerogels at 0.5x SDS (Figure 19B), and aerogels at 3x SDS (Figure 19C) that were heat-

treated at 1100°C. The TEM images are displayed at 58k magnification.

Figure 19: TEM images of YSZ aerogels with varying SDS levels. TEM images at 58k
magnification for YSZ aerogels at 1100°C with A) no templating agent, B) 0.5x SDS, and
C) 3x SDS.

92



In Figure 19, it could be seen that crystallite particles with a distribution of sizes were

present in the aerogel samples. This was true for aerogels with SDS at varying concentrations,

as well as the aerogel without a surfactant template; differences in the TEM images were

difficult to distinguish. Crystallinity of the YSZ aerogels was evident following exposure to

high-temperature, 1100°C.

Figure 20: Distribution of crystallite sizes (Å) from TEM images of YSZ aerogels with varying
SDS levels. Histograms displaying the distribution of average particle sizes (Å) analyzed via
TEM for aerogels at 1100°C with A) no templating agent, B) 0.5x SDS, and C) 3x SDS. The
Freedman-Diaconis rule was used to determine the bin width. The average crystallite size
and standard deviation determined from each sample are displayed in Table 8.

The crystallite size values at 1100°C determined via TEM analysis in Table 8 for the

aerogel without a surfactant template and the aerogel at 3x SDS were similar at 364 Åand

355 Å, respectively. The aerogel with 0.5x SDS was higher at 411 Å. The average crystallite

size values determined via TEM were lower than the crystallite size values determined via

XRD. However, the standard deviations were large, between 128 Åand 176 Å. These large

standard deviations resulted from the wide variations in size of the crystallite particles in the

TEM images (Figure 19). Figure 20 includes the distribution of crystallite sizes displayed

in the TEM images. The size distribution was very broad for all of the samples. The larger

particles in Figure 19 could have been agglomerates of multiple crystallites, attributing to the

broad size distribution. It should be noted that for the aerogels with SDS, both at 0.5x and
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3x, the major crystallite size distributions were slightly smaller than for the aerogel without

a surfactant template, potentially demonstrating that adding SDS may have suppressed

crystallite growth even at 1100°C.

5.4 Anionic surfactant templating: Conclusions

For as-dried aerogels, it was determined that the anionic surfactant sodium dodecyl sulfate,

SDS, was an effective surfactant template, increasing the surface area, pore volume, and

pore size of YSZ aerogels, as compared to aerogels without a surfactant template. The

addition of SDS led to primarily mesopores in as-dried aerogels. This may have been due to

increased electrostatic interactions between the ions of SDS and the zirconia aerogel matrix,

leading to more control over pore formation. Aerogels with SDS also had narrow pore

size distributions, which could have indicated that SDS increased the homogeneity of the

aerogel pore structure. Following high-temperature exposure, the use of SDS as a surfactant

template did not have an influence on the aerogel surface area, pore volume, or crystalline

phase. However, at 1000°C, aerogels with SDS had smaller average crystallite sizes than the

aerogel without a surfactant template, indicative of the control of crystallite growth by the

surfactants via a capping effect. At 1100°C, the addition of SDS did not decrease crystallite

size; this may have indicated that SDS was more a effective surfactant template at 1000°C

than 1100°C, further evidenced by increased densification of the pore structure at 1100°C. At

higher temperatures, the advantages of SDS as a surfactant template may have diminished.
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Chapter 6 Yttria-stabilized zirconia aerogels with sur-

factant templates, part III: Nonionic sur-

factant templating

Nonionic surfactants, without charge, were also studied as part of this dissertation. Pluronic®

P-123 was chosen as the nonionic surfactant template. P-123 has been used as a surfactant

template in ambient-pressure dried silica aerogels and ambient-pressure dried zirconia aero-

gels, leading to surface area and thermal stability enhancement. The large molecular weight

(approximately 5800 g/mol) of P-123 has been known to improve the pore volume of aerogels.

6.1 Nonionic surfactant templating: P-123 templating

Pluronic copolymers are linear tri-block-copolymers of poly (ethylene oxide)-poly (propylene

oxide)-poly (ethylene oxide) (PEO-PPO-PEO). These copolymers form core-shell micelles

at or above the CMC. The hydrophobic PPO makes up the micelle core, with a corona

of hydrophilic PEO on the outside.347 In comparison to templating with CTAB or SDS,

there are differences between surfactant templating with surfactants with charge (ionic)

and nonionic surfactants. For example, charged surfactant micelles often embed into the

aerogel matrix through electrostatic interactions to influence pore formation, while nonionic

surfactants form hydrogen bonds between the zirconia aerogel matrix and the ether oxygens

of the surfactant.18,341,348 Additionally, while cationic and anionic surfactants release ions in

solution once dissolved, nonionic surfactants do not release ions. With nonionic surfactant

templating, the pore structure is primarily influenced by the hydrogen bonding and steric

hinderance effects of the surfactant micelles. The surfactant templating process with a

nonionic block copolymer is depicted in Figure 21.

In this dissertation, the nonionic copolymer Pluronic® P-123 was used as a surfactant

template of YSZ aerogels. P-123 is poly(ethylene glycol)-block-poly(propylene glycol)-block-

poly(ethylene glycol) with a number average molecular weight of 5800 g/mol. As an exam-
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ple, Sarawade et al. used P-123 as a structure directing agent during surface modification

of ambient pressure dried silica aerogels; the aerogels with P-123 exhibited increased sur-

face areas in both as-dried aerogels and aerogels following exposure to 600°C.349 Cao et al.

synthesized titania-silica aerogels with larger, ordered mesopores following the addition of

P-123.350 Additionally, Jung et al. used P-123 in the synthesis of ambient pressure dried

zirconia aerogels.18 The aerogels with P-123 exhibited increased surface area (by 35%), im-

proved thermal stability, and mitigation of pore collapse. Additionally, the large molecular

size of P-123 overall increased the pore volume of the resulting aerogels due to steric effects.

Figure 21: Surfactant templating with a nonionic block copolymer during aerogel synthesis.
The block copolymer is added to the sol and precursor particles aggregate around the sur-
factant micelles, gelling to form a solid network. Surfactants are removed from the aerogel,
either through washing, supercritical drying, or heat-treatment, leaving behind controllable,
uniform pores.

6.2 Nonionic surfactant templating: P-123 concentrations through

hydrodynamic radius measurements

The concentration of P-123 added to the aerogel formulations was determined prior to the

synthesis of the aerogels. P-123 was added as multiples (0.5x, 2x, and 3x) of the surfactant’s

critical micelle concentration (CMC) value in the 20 mol% YSZ sol. To determine the CMC

value, a series of experiments were conducted where P-123 was added to the base sol (the 20

mol% yttria, 2x water YSZ sol formulation used for all of the aerogels) at several different

concentrations. The surface tension and hydrodynamic radius of the surfactant was then
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determined.

A Sinterface Profile Analysis Tensiometer PAT1M was used to determine the surface

tension of each solution. For P-123, similar to SDS, there was determined to be no correlation

between surfactant concentration and surface tension, as surface tension was determined to

be too sensitive of a measurement.

Figure 22: Theta (θ) as a function of surfactant concentration to determine the CMC of
P-123. θ values, defined as (R - Rmin)/(Rmax - Rmin) where R is the hydrodynamic radius,
for concentrations (M) of the surfactant P-123. The critical micelle concentration (CMC) of
P-123 used in aerogel formulations was the value for P-123 in water, 3 x 10-4 M, as there
was not a correlation between hydrodynamic radius and P-123 concentration in this sol.

The hydrodynamic radius of each solution was determined using dynamic light scattering

on an ALV/CGS-3 Compact Goniometer from ALV-GmbH utilizing a vertically polarized

633 nm 22 mW laser. For P-123, the hydrodynamic radius values ranged from 3.6 nm to

4.8 nm for P-123 concentrations between 5 x 10-6 and 1 x 10-2 M P-123 in the base sol.

However, there was no correlation between θ and surfactant concentration, as seen in Figure
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22. Therefore, as a benchmark, the CMC of P-123 in water, a value of 3 x 10-4 M, was

used for the aerogel formulations discussed in section 3.2, at 0x, 0.5x, 2x, and 3x the CMC

of P-123.351 The molar ratios of P-123 to inorganic precursors in the aerogel formulations

are given in Table 9. It should be noted that, between 5 x 10-2 M P-123 and 1 x 10-1

M P-123, there was a large increase seen in hydrodynamic radius value from 7.67 nm to

22.02 nm. YSZ aerogels were made with a concentration of 1 x 10-1 M P-123, equaling

approximately 320x the CMC of P-123. However, the surface area of the as-dried aerogel at

this concentration was relatively low, 244 m2/g, compared to the other aerogels synthesized

with P-123. Therefore, this P-123 concentration was not included in the following discussion

of surfactant influence on aerogels.

Table 9: Molar ratios of P-123 surfactant to inorganic precursors. Molar ratios of the
surfactant Pluronic® P-123 to the inorganic precursors, zirconia and yttria, in the aerogel
formulations at concentrations of 0.5x, 2x, and 3x the CMC. The CMC of P-123 used in the
formulations is also included.

Molar Ratios

Surfactant CMC (M) 0.5x 2x 3x

P-123 3 x 10-4 2 x 10-4 7 x 10-4 1 x 10-3

In doing this, a predictive measurement, surfactant hydrodynamic radius, in the sol was

mapped to properties of the YSZ aerogels. This could provide insight into final aerogel

properties before completing the full aerogel lifecycle, saving time and resources.

6.3 Nonionic surfactant templating: Results and discussion

YSZ aerogels with Pluronic® P-123 (P-123) at different concentrations are compared in the

following paragraphs following heat-treatment at 600°C, 1000°C, and 1100°C for 18 min. We

anticipated that the use of surfactant templates would retain the high surface area and high

porosity of the YSZ aerogels.
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Table 10: Shrinkage and density of YSZ aerogels with varying P-123 levels. As-dried shrink-
age for YSZ aerogels with varying levels of P-123 determined through physical measurement.

P-123 Shrinkage (%) Density (g/cm3)

0x 17 ± 0.30 0.254 ± 0.003

0.5x 16 ± 0.25 0.226 ± 0.002

2x 16 ± 0.26 0.228 ± 0.002

3x 17 ± 0.24 0.233 ± 0.006

The as-dried shrinkage (%) and density (g/cm3) for the synthesized YSZ aerogels were

determined following supercritical drying. For aerogels without P-123, the as-dried shrinkage

was 17% and the density was 0.254 g/cm3. For aerogels with P-123, the as-dried shrink-

age and density remained approximately constant at 16% and at 0.229 g/cm3 for varying

surfactant levels. The as-dried shrinkage and density were slightly lower for aerogels syn-

thesized using P-123 than for aerogels synthesized without a templating agent. The density

was shown to decrease by 10% for aerogels with P-123 as compared to aerogels without

templating agent. This decrease in density may have been due to the high molecular weight

of P-123, approximately 5800 g/mol. As some of the surfactant was likely removed from the

aerogel system during drying due to washing via the supercritical solvents, aerogels synthe-

sized with the high molecular weight surfactant P-123 may have resulted in a lower density

as-dried aerogel as compared to the aerogel without a templating agent.

Figure 23 displays scanning electron microscopy (SEM) images at 80kx magnification

for YSZ aerogels, with and without P-123, at various heat-treatment conditions. SEM

qualitatively determines the influence of surfactant and heat-treatment on the aerogel pore

structure. The SEM images represent aerogels with no templating agent (Figure 23A) and

with 3x P-123 (Figure 23B) at four different heat-treatment conditions of as-dried, 600°C,

1000°C, and 1100°C.

In Figure 23, mesoporosity was retained at 1000°C; however, densification was evident

following exposure to 1100°C, which was expected due to polycondensation reactions and
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Figure 23: SEM images of YSZ aerogels with varying P-123 levels and heat-treatment. SEM
images (80kx magnification) of YSZ aerogels with A) no templating agent and B) 3x P-123 at
four different heat-treatment conditions, left to right, as-dried, 600°C, 1000°C, and 1100°C.

structural rearrangement following high-temperature exposure. Large voids were visible in

the SEM micrograph of the sample with P-123 at 1100°C. However, statistical significance

to the slight shifts in pore size that were observed in the SEM micrographs was difficult to

determine from SEM micrographs.

Figure 24 displays the pore size distributions for YSZ aerogels with P-123. Various

concentrations of 0x (circle), 0.5x (square), 2x (diamond), and 3x (pentagon) are represented.

Four different heat-treatment conditions are also displayed: as-dried (Figure 24A), 600°C

(Figure 24B), 1000°C (Figure 24C), and 1100°C (Figure 24D). Since the aerogel pores were

not only formed by the surfactant template, the measured pore sizes were larger than the

average diameters of the P-123 micelles that were measured in the sol prior to gelation.

The addition of higher concentrations of P-123 appeared to shift the as-dried major pore

size distribution to slightly larger pore sizes. In the as-dried aerogel without P-123 (0x P-

123), the major pore size distribution was centered around 28 nm, which shifted to slightly

higher pore sizes centered around 40 nm at 2x P-123 and 35 nm at 3x P-123. However,

at a smaller concentration of P-123 (0.5x P-123), the major pore size was slightly smaller

at 18 nm than in the aerogel without a templating agent. Larger pore sizes occurred only
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Figure 24: Pore size distributions of YSZ aerogels with varying P-123 levels and heat-
treatment. Pore size distributions of YSZ aerogels at 0x P-123, 0.5x P-123, 2x P-123, and
3x P-123 at heat-treatment conditions of A) as-dried, B) 600°C, C) 1000°C, and D) 1100°C.

101



above the critical micelle concentration (CMC) of P-123, potentially indicating that only

the presence of micelles led to larger pores in the as-dried aerogels with P-123 surfactant

templates. As-dried aerogels with P-123 had overall wide pore size distributions, from 0 nm

to 78 nm at 0.5x P-123 and from 0 nm to 95 nm at 2x P-123, which were approximately equal

to the as-dried pore size distribution in the aerogel without templating agent (0x P-123) at

0 nm to 93 nm. The large pore size distribution may have resulted from the large size of the

P-123 surfactant template. For the as-dried aerogel with 3x P-123, the pore size distribution

was narrower from 0 nm to 42 nm, which indicated the presence of mesopores only.

The as-dried aerogels with P-123 did contain macropores (pores > 50 nm) at 0.5x P-123

and 2x P-123. The presence of pores greater than 50 nm and wide pore size distribution

may have resulted in increased gas convection due to increased opportunity for air molecule

collision. The formation of large pores in P-123 could have been potentially caused by the

lack of electrostatic interactions that enhanced pore control in the aerogels templated with

cationic and anionic surfactants that were not prevalent in the aerogels templated with P-

123. Additionally, due to a wide pore size distribution, P-123 may have not been effective

in emulsification of the sol, leading to aerogels with non-homogeneous pore structure. The

as-dried aerogels with P-123 may have had a wide pore size distribution due to the large size

of the P-123 surfactant templates.

For all of the heat-treated aerogels, at each temperature (600°C, 1000°C, and 1100°C),

all of the pore size distributions were very similar for all P-123 concentrations as well as the

aerogels without P-123. At 600°C, the major pore size distributions were centered around 32

nm and macropores were present. At 1000°C, the major pore size distributions were centered

around 28 nm; no macropores were present. At 1100°C, the major pore size distributions

were centered around 30 nm with very low pore volume. Macropores were present in the

aerogels heat-treated at 1100°C. The addition of various concentrations of P-123 did not

seem to have much effect on the pore size distributions of the heat-treated aerogels.

Figure 25A and Figure 25B display the BET surface area (m2/g) values and the BJH
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desorption cumulative pore volume (cm3/g) values, respectively, for aerogels templated using

P-123. For heat-treatment conditions of as-dried, 600°C, 1000°C, and 1100°C, the P-123

concentrations 0x (circle), 0.5x (square), 2x (diamond), and 3x (pentagon) are represented .

Figure 25: BET surface area and BJH desorption cumulative pore volume of YSZ aerogels
with varying P-123 levels and heat-treatment. A) BET surface area (m2/g) and B) BJH
desorption cumulative pore volume (cm3/g) for YSZ aerogels with varying concentrations of
P-123 at as-dried, 600°C, 1000°C, and 1100°C heat-treatment conditions.

There was a large decrease in surface area and pore volume following exposure up to

1100°C for the aerogels with and without P-123. This behavior was expected as sintering

and densification of the aerogel pore structure often occurs at high-temperatures. Large voids

and densification were observed in the SEM micrographs (Figure 23) for the aerogels exposed

to high temperatures. As nitrogen physisorption was only capable of measuring pores less

than 100 nm, the larger voids were not measured and are thus not taken into account in the

values in Figure 25. However, the surface area and pore volume values, as well as the pore

size distributions in Figure 24, did indicate the retention of some mesoporosity following

exposure up to 1100°C.

The as-dried aerogels with P-123 in Figure 25A all had higher surface areas, at 436

m2/g, 453 m2/g, and 423 m2/g for 0.5x P-123, 2x P-123, and 3x P-123, respectively, than

103



the aerogel without a surfactant template at 379 m2/g. For the heat-treated aerogels, the

aerogels with P-123 and the aerogels without P-123 all had approximately the same surface

area value, with a difference of 19 m2/g between the aerogels with or without P-123 at 600°C,

a difference of 19 m2/g between the aerogels at 1000°C, and a difference of 17 m2/g between

the aerogels at 1100°C. A similar behavior was seen in the aerogels templated with SDS

discussed in section 5. It should be noted that at 600°C, the aerogel without P-123 had a

higher surface area of 156 m2/g than the surface areas at 140 m2/g, 140 m2/g, and 137 m2/g

of the aerogels at 0.5x P-123, 2x P-123, and 3x P-123, respectively. The increase in as-dried

surface area for the aerogels with P-123, as compared to the aerogels without a surfactant

template, may indicate that P-123 was an effective templating agent; however, there was

no influence on the surface area of heat-treated aerogels following the addition of the P-123

surfactant templates.

Considering the BJH desorption cumulative pore volume values (Figure 25B), the aerogel

with the lowest surfactant concentration, 0.5x P-123, had the lowest pore volume at 0.97

cm3/g, while the aerogel with the highest surfactant concentration, 3x P-123, had the highest

pore volume at 1.62 cm3/g. At 600°C, the aerogel without a surfactant template had the

highest pore volume at 1.01 cm3/g, as compared to the aerogels with 0.5x P-123, 2x P-123,

and 3x P-123 at 0.90 cm3/g, 0.85 cm3/g, and 0.81 cm3/g, respectively. For aerogels heat-

treated at 1000°C and 1100°C, the pore volumes were approximately the same in aerogels

without a surfactant template and aerogels with P-123; the variation of pore volume was

0.20 cm3/g at 1000°C and 0.17 cm3/g at 1100°C.

Concentrations of 2x and 3x P-123 increased the as-dried pore volume as compared to

the aerogel without a surfactant template. The pore volume at 0.5x P-123 was much lower

as compared to the other aerogels, both with or without P-123. This may have potentially

indicated that P-123 was an effective template only above the CMC. Additionally, due to

the high molecular weight of P-123, residual amounts of P-123 surfactant may have been

retained in the aerogel pore structure following the washing and drying processes. This
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may have resulted in the smaller pore volume for the as-dried aerogel with 0.5x P-123x,

as well as the overall lesser increase in pore volume following templating with P-123 as

compared to the anionic or cationic surfactants. Additionally, as with the BET surface area,

following exposure to high-temperature, P-123 did not increase pore volume as compared to

the aerogels without P-123.

To determine the influence of P-123 on the crystalline phase and crystallite size of YSZ

aerogels, X-ray diffraction (XRD) was used. Figure 26 displays the XRD patterns from 10°to

80° 2θ.

Figure 26: XRD patterns of YSZ aerogels with varying P-123 levels and heat-treatment.
XRD patterns from 10°to 80° 2θ for YSZ aerogels without surfactant and aerogels with
P-123 at various heat-treatment conditions of 600°C, 1000°C, and, primarily, 1100°C. The
Miller indices (hkl values) are displayed at the top of the figure.

The as-dried aerogels, with or without P-123, were amorphous or non-crystalline, while

all of the heat-treated aerogels displayed crystallinity. The crystallinity, indicated by sharp
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peaks on the XRD pattern, increased with increasing temperature up to 1100°C. All heat-

treated YSZ aerogels exhibited the cubic fluorite crystalline phase, which was expected in 20

mol% YSZ aerogels.339 Using P-123 as a surfactant template did not influence the crystalline

phase of the YSZ aerogels.

The average crystallite size (Å) values for aerogels with P-123 heat-treated at 600°C,

1000°C, and 1100°C are displayed in Table 11. The XRD analysis utilized four different equa-

tions to determine the average crystallite size: the Scherrer equation, the Monshi-Scherrer

(M-S) method, the Williamson-Hall (W-H) method, and the Size-Strain-Plot (SSP) method;

these equations were chosen due to certain restrictions and error associated with the conven-

tional Scherrer equation.334 Transmission electron microscopy (TEM) was used in addition

to the XRD analysis to support the determined crystallite sizes.

Table 11: Average crystallite size of YSZ aerogels with varying P-123 levels and heat-
treatment. Average crystallite size values (Å) for YSZ aerogels with varying levels of P-123
at 600°C, 1000°C, and 1100°C determined through XRD and TEM analysis. Four different
equations were used to determine the crystallite size following XRD analysis.334

P-123 Temperature Crystallite Size Crystallite Size

Concentration (°C) via XRD (Å) via TEM (Å)

600 55 ± 19 -

0x 1000 246 ± 20 -

1100 529 ± 39 364 ± 161

600 58 ± 25 -

0.5x 1000 202 ± 7 -

1100 349 ± 3 355 ± 135

600 54 ± 13 -

2x 1000 200 ± 16 -

1100 579 ± 18 -

600 57 ± 24 -

3x 1000 198 ± 5 -

1100 517 ± 32 347 ± 173

Exposure to high-temperature is known to promote crystallite growth, which was evident

at 1000°C and 1100°C. The aerogels with P-123 at 1000°C all exhibited a lower average

crystallite size than the aerogel without a surfactant template, with 3x P-123 having the
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lowest crystallite size at 198 ± 5 Å. At 1100°C, the average crystallite size in the aerogels

with 0.5x and 3x P-123 was lower than the crystallite size in the aerogel without a surfactant

template at 349 ± 3 and 517± 32, respectively. At 2x P-123, the average crystallite size

was larger at 579 ± 18. The presence of P-123 mitigated crystallite growth at 0.5x P-123

and 3x P-123; however, for the aerogel at 2x P-123, the crystallite size exhibited an increase

as compared to the aerogel without P-123. Surfactants can control crystallite growth due

to particle capping; the smaller crystallites at 1000°C and 1100°C potentially indicated that

P-123 was an effective surfactant template.

Figure 27A, Figure 27B, and Figure 27C display the TEM images for aerogels with no

templating agent, aerogels at 0.5x P-123, and aerogels at 3x P-123, respectively, that were

heat-treated at 1100°C. The TEM images were taken at 58k magnification. There was a

distribution of sizes for the crystallite particles in the TEM images, which was true for the

aerogel without a surfactant template and with aerogels with P-123.

Figure 27: TEM images of YSZ aerogels with varying P-123 levels. TEM images at 58k
magnification for YSZ aerogels at 1100°C with A) no templating agent, B) 0.5x P-123, and
C) 3x P-123.

In Table 11, at 1100°C, the crystallite sizes determined via TEM were all approximately

the same, ranging from 347 Å to 364 Å; the values determined via TEM were on average

lower than the crystallite sizes determined via XRD. Very large standard deviations were

present, however, between 135 Å and 173 Å, resulting from the large distributions in size
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of the crystallite particles in the TEM images in Figure 27. The distribution of crystallite

sizes of the TEM images is displayed in Figure 28. The aerogels show a wide distribution of

crystallite sizes, which most likely attributed to the standard deviations. The larger particles

could have been indicative of agglomerates of multiple crystallites. The major crystallite size

distributions were slightly smaller for the aerogels with 0.5x and 3x P-123 as compared to the

aerogel without P-123. This potentially indicates that using P-123 as a surfactant template

may have suppressed crystallite growth at 1100°C.

Figure 28: Distribution of crystallite sizes (Å) from TEM images of YSZ aerogels with
varying P-123 levels. Histograms displaying the distribution of average particle sizes (Å)
analyzed via TEM for aerogels at 1100°C with A) no templating agent, B) 0.5x P-123, and
C) 3x P-123. The Freedman-Diaconis rule was used to determine the bin width. The average
crystallite size and standard deviation determined from each sample are displayed in Table
11.

6.4 Nonionic surfactant templating: Conclusions

Using the nonionic surfactant Pluronic® P-123 did result in increased surface area, pore

volume, and pore size of as-dried YSZ aerogels; however, certain concentrations of the non-

ionic surfactant P-123 led to the formation of macropores, which may have been due to a

lack of electrostatic interactions. Following high-temperature exposure P-123 did not impact

the aerogel surface area, pore volume, or crystalline phase, although the resulting average

crystallite size at 1000°C and 1100°C was lowered using P-123.
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Chapter 7 Yttria-stabilized zirconia aerogels with sur-

factant templates, part IV: Comparison of

surfactant types

In this dissertation, three different surfactant templates were studied: the cationic surfactant

cetrimonium bromide (CTAB), the anionic surfactant sodium dodecyl sulfate (SDS) and the

nonionic surfactant Pluronic® P-123. The influence of each surfactant on the pore structure,

surface area, pore volume, and crystalline structure of 20 mol% YSZ aerogels was evaluated

for both as-dried and heat-treated aerogels.

The aerogels templated with CTAB and SDS had electrostatic interactions between the

positively and negatively charged surfactant head groups, respectively, as well as the released

ions in solution, and the zirconia aerogel matrix. These electrostatic interactions, while

not the only means of ionic surfactant templating, were a significant influence on aerogel

pore formation. In the aerogels with the nonionic P-123, electrostatic interactions were

not prevalent, as the pore structure was primarily influenced by the hydrogen bonding and

steric hinderance resulting from the nonionic surfactant interaction with the zirconia aerogel

matrix. The increased electrostatic interactions may have been the driving force behind

the enhanced pore structure control in the aerogels with CTAB and SDS, evidenced by the

formation of primarily mesopores with narrower size distributions and increased surface areas

and cumulative pore volumes in as-dried aerogels.

Both SDS and P-123 increased the surface area of as-dried aerogels as compared to

the aerogel without a surfactant template, as displayed in Figure 17A and Figure 25A,

respectively. The increase in surface area for the as-dried aerogels may have been indicative of

higher threshold operating limits for the surfactant-templated aerogels. However, increased

surface area was not demonstrated following high-temperature exposure at 600°C, 1000°C,

and 1100°C, as there was a negligible change in the surface area of aerogels with surfactant

and those without surfactant. Above temperatures of 350°C, the surfactants were most likely
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oxidized and removed from the aerogel system.331 Since the maximum temperature for the

supercritical drying process stayed below 100°C in this work, remnants of surfactant not

removed during the washing process were most likely still present in the as-dried aerogels;

however, during the heat-treatment process, well above 350°C, any remaining surfactant

was removed.22 The presence of remaining surfactant in the as-dried aerogels templated

with SDS and P-123 may have influenced the higher as-dried surface area, and the overall

higher pore volume in the case of SDS templated aerogels. However, following exposure to

temperatures above 600°C and full removal of surfactant from the aerogel system, the surface

area and pore volume of the aerogels with SDS and P-123 showed negligible differences when

compared to the aerogels without surfactant template. The advantages, reduction of pore

collapse and mitigation of densification, of the anionic and nonionic surfactant templates

were mostly eliminated following the removal of the surfactants. This was further evidenced

by the inhibition of crystallite growth at 1000°C, which was not apparent at 1100°C. At

higher temperatures, the advantages of the surfactant templates were diminished.

The behavior of surfactant-templated aerogels was much different for the aerogels tem-

plated with SDS (anionic surfactant) and P-123 (nonionic surfactant) as compared to when

using cetrimonium bromide, CTAB (cationic surfactant), as a template. A concentration of

0.5x CTAB increased the surface area (Figure 9) of YSZ aerogels by 72% and 41% following

exposure to 600°C and 1000°C, respectively, as compared to aerogels without CTAB.331 Pore

volume was also shown to increase at 0.5x CTAB by 75% and 80% at 600°C and 1000°C,

respectively. CTAB was shown to increase surface area and pore volume in heat-treated

aerogels, however, at 0.5x CTAB, the as-dried surface area was 403 m2/g, lower than any of

the as-dried aerogels using SDS and P-123 surfactant templates. Therefore, while SDS and

P-123 increased the as-dried surface area as compared to CTAB, there was not an enhance-

ment of surface area and pore volume at high-temperature for these surfactants as there was

for CTAB.

We hypothesized two reasons for the different behavior in the cationic surfactant tem-
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plated aerogels: the estimation of the critical micelle concentration (CMC) value for CTAB

and the strong interaction of the CTAB surfactant with the zirconia aerogel matrix. First,

prior to the gelation of the YSZ aerogels, CTAB was added in multiples of 0.5x and 2x

the CMC of CTAB. Unlike with the anionic and nonionic surfactants, where the CMC was

estimated from experimental measurements (Figure 14) or a literature value (Figure 22),

the value of CTAB used in the aerogel formulations was estimated from a thermodynamic

model.336 This thermodynamic model only considered the water and ethanol volumes in the

sol and did not take into account other factors, including the inorganic salt concentration.

Due to this estimation, the molar ratios of CTAB and the inorganic precursors in the aerogel

formulation were much higher (Table 3) compared to the molar ratios of SDS and P-123 (Ta-

ble 6 and Table 9, respectively). While there may have been problems with the estimation

of the CTAB CMC, the larger amount of CTAB in the YSZ aerogels may have had a larger

influence of the aerogel pore structure, in both as-dried and heat-treated aerogel samples, as

compared to the SDS and P-123 templated aerogels.

However, the larger amount of CTAB potentially had negative effects on the aerogel pore

structure. As discussed previously, larger amounts of CTAB (2x the CMC as compared

to 0.5x the CMC) resulted in lower surface areas and pore volumes of as-dried and heat-

treated aerogels. It was hypothesized that the higher concentration of CTAB led to increased

adsorption and a potential build-up of the surfactant onto the zirconia aerogel matrix, which

could have impeded the gelation reaction and caused subsequent shrinkage and pore collapse

during drying and heat-treatment. Therefore, while higher amounts of CTAB may have

positively influenced the surface area and pore volume of aerogels as compared to the lower

amounts of SDS and P-123, too much CTAB was shown to have a negative impact.

Regarding aerogels with SDS and P-123, larger amounts of both surfactants may have

positively impacted the surface area and pore volume of surfactant templated aerogels at

high-temperature. Larger concentrations of micelles, as well as increased electrostatic inter-

actions in aerogels with SDS, could have further decreased surface tension and prevented
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agglomeration, leading to reduced pore collapse and higher surface area. However, increased

amounts of surfactants may have potentially led to an excess of surfactant, causing gelation

impediment due to matrix adsorption in the case of SDS or due to steric effects in the case

of P-123 that could have resulted in negative impacts to surface area and pore volume.
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Chapter 8 Understanding structure/property-process

relationships in aerogels through informa-

tion architecture

Aerogels are mesoporous, high surface area materials with extensive synthetic and processing

conditions, as reviewed in section 2. To effectively synthesize aerogels, the impact of syn-

thetic pathways on resulting aerogel properties must be understood prior to experimental

investigation. To examine these relationships, we have developed two information archi-

tectures: the zirconia aerogel graph database (600 aerogels) and the silica aerogel graph

database (1000 aerogels). These property graph databases enabled rapid queries and visual-

ization of the impact of synthesis and processing conditions on final aerogel properties. Both

in current form and with further expansion, these developed graph databases could reduce

experimental dimensionality, time, and resources, enabling the successful synthesis of high

surface area aerogels, which are advantageous for applications including thermal insulation,

sorption media, and catalysis.

8.1 Information architecture metamodel

A property graph database can be a powerful tool as connections, such as those repre-

senting the varied relationships between structures, properties, and processes in materials

exploration, can be easily seen.352 Visualization of graph databases is often used when there

are large amounts of variables with many complex possible connections, as is the case in

the different synthetic and processing conditions of aerogels and the relationship of those

conditions to aerogel properties, including surface area. To understand the influence of

aerogel synthetic and processing variables, we developed the zirconia aerogel graph database

(ZrAGDB) and the silica aerogel graph database (SiAGDB). A visualization tool was used to

display queries of the graph databases as sets of nodes and edges that represented variables

and the relationships between them.353 Aerogel synthetic processes have a multitude of vari-
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ables that are hyper-connected; the graph databases represented the relationships between

aerogel synthesis, processing, and the final properties.

Figure 29: Metamodel of the silica aerogel graph database (SiAGDB). Synthetic and pro-
cessing variables are connected to the aerogel through edges representing the influence of
each variable on the final aerogel.

Here, the architecture of the metamodel for the SiAGDB (Figure 29) will be specifically

considered, although the metamodel for the ZrAGDB followed very similar conventions. Each

node, representing a feature of silica aerogel sol-gel synthesis or post-gelation processing,

connected to the central silica aerogel node through edges. Information stored on separate

nodes was useful for framing graph queries. For example, the central silica aerogel node

was connected to two nodes representing two final aerogel properties, crystalline phase and

porosity; these properties were represented as separate nodes as they resulted in 6 - 9 common

values and could be used to group aerogels together through queries. The central silica

aerogel node had attributes representing additional final aerogel properties, including surface

area, density, average pore size, pore volume, and thermal conductivity; these properties

were stored as node attributes as they resulted in unique values for each aerogel. While the

design of information architecture is subjective, these design decisions were made based on
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the utility of the SiAGDB for this work.

The graph database management system, Neo4j (https://neo4j.com/), was used to

represent the vast set of information contained in the aerogel graph databases. Neo4j’s data

visualization tool, Neo4j Bloom, displayed queries of the aerogel graph databases as sets of

nodes and edges that represented variables and the relationships between them.

8.2 Information architecture use case, part I: Zirconia aerogels

An objective of this dissertation was to optimize aerogel synthesis by creating and utilizing

tools such as property graph databases and machine learning models. It was anticipated

that these tools could improve the understanding of synthetic and processing variables and

increase the effectiveness of experimentation in aerogel synthesis by reducing experimental

time.

There are an extensive number of compositional and process variables that must be

considered in the synthesis and processing of zirconia aerogels. Each of these synthetic

pathways can influence the final properties of the zirconia aerogels, specifically the surface

area, mesoporous structure, density, thermal conductivity, and crystalline phase.

Here, we used an architected information structure to begin to mitigate the volume

of synthetic variables, which would aid in the understanding and enhancement of these

materials. It was anticipated that this information architecture could lead to a greater

knowledge of zirconia aerogels and a future optimized synthetic pathway of these materials.

In a broader aspect, this dissertation provides an example for ways in which data science

can be used to enhance colloidal chemistry, providing more efficient experimentation and

development of materials, specifically those with high experimental dimensionality. The

synthesis, processing, and characterization of 600 zirconia aerogel materials reported since

2014 was the focus of the information structure.1,4,5,11,13,18–51 Information from these sources

was organized in Python and Neo4j and the ZrAGDB was constructed.354 This zirconia

aerogel graph database (ZrAGDB) visually and dynamically connected the synthesis and
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processing of zirconia aerogels with the properties resulting from each synthetic pathway. The

ZrAGDB constructed contained 3,783 nodes, which represented unique variables describing

the synthesis and processing of each zirconia aerogel. In addition, the ZrAGDB contained

10,326 relationships connecting nodes together. The complete ZrAGDB, along with a color

legend for the most represented nodes, is displayed in Figure 30. The ZrAGDB was useful

for understanding the scope of zirconia aerogel synthesis.

Figure 30: Full zirconia aerogel graph database (ZrAGDB). The complete zirconia aerogel
graph database (ZrAGDB) showing the connection between aerogel properties and the syn-
thesis pathways used to produce them.

Here, the utility of the ZrAGDB using simple queries is demonstrated. First, rare earth
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dopants used in the synthesis of zirconia aerogels were considered. By querying the complete

ZrAGDB, Figure 31 displays the sub-graph which describes the synthesis of 214 zirconia

aerogels (Figure 31A) using nine various dopants (Figure 31B). The size of the zirconia

aerogel nodes compared the surface area values exhibited by the aerogels; the larger nodes

corresponded to higher surface area values, while the smaller nodes corresponded to smaller

surface area values or aerogels with unreported surface area values. A color gradient was

added to the zirconia aerogel nodes; purple nodes corresponded to as-dried aerogels without

heat-treatment and red nodes corresponded to aerogels heat-treated at 1200°C. By observing

the sub-graph, it could be seen that yttrium(III) chloride hexahydrate and yttrium(III)

nitrate hexahydrate were the most frequently used rare earth dopants in zirconia aerogel

synthesis. Gadolinium(III) nitrate hexahydrate, neodymium(III) nitrate hexahydrate, and

dysprosium(III) nitrate hydrate were seldom used in zirconia aerogel synthesis. It could also

be seen that yttrium(III) chloride hexahydrate and ytterbium(III) chloride hexahydrate were

often used in conjunction with one another, as were yttrium(III) nitrate hexahydrate and

cerium(III) nitrate hexahydrate. Select surface area values are also displayed in Figure 31.

Yttrium(III) nitrate hexahydrate, in combination with cerium(III) nitrate hexahydrate, was

shown to synthesize as-dried aerogels with the highest surface areas. It could also be seen

that heat-treatment was related to decreasing surface area of the zirconia aerogels. However,

the addition of dopant attenuated the extent of decrease in surface area and each dopant

had a different extent of decrease. This sub-graph allowed us to see immediately the most

frequently used dopants in the synthesis of zirconia aerogels as well as the effect of dopant

on the final surface area of the aerogels.

The second preliminary query of the ZrAGDB resulted in Figure 32, which displays the

sub-graph depicting the synthesis of 559 zirconia aerogels (Figure 32A) using 17 various

gelation agents (Figure 32). Similar to Figure 31, the sizes of the zirconia aerogel nodes

compared the surface area values, with larger nodes corresponding to aerogels with higher

surface areas. The purple to red color gradient was also present, with purple nodes rep-
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Figure 31: Dopant sub-graph of the zirconia aerogel graph database (ZrAGDB). Sub-graph
of the ZrAGDB examining A) zirconia aerogel synthesis using B) dopants. The purple to red
color gradient corresponds to the heat-treatment temperature of the aerogels from as-dried
to 1200°C. The larger nodes correspond to aerogels with higher resulting surface areas.
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resenting as-dried aerogels and red nodes representing aerogels heat-treated at 1200°C. By

observing the sub-graph, it could be determined that propylene oxide was the most frequently

used gelation agent in zirconia aerogel synthesis, synthesizing as-dried aerogels with both

high and low surface areas. This sub-graph also showed gelation agents that were used in

combination with one another, such as water glass and ammonia or mercaptosuccinic acid,

2,2-dimethoxy-2-phenylacetophenone, triethoxyvinylsilane, and ethanol. To view the effect

of gelation agent on surface area in a quantitative way, Table 12 is displayed, which shows

the gelation agent used in the synthesis of as-dried aerogels with surface areas that were in

the top 10th percentile in the ZrAGDB. Additionally, select surface area values are displayed

in Figure 32.

Table 12: Gelation agents for zirconia aerogels. Gelation agents used in the synthesis of
zirconia aerogels that had surface areas in the top 10th percentile in the zirconia aerogel
graph database (ZrAGDB).

Reference Gelation Agent Surface Area (m2/g)

Koval’ko, 201727 propylene oxide 878.5

Koval’ko, 201727 propylene oxide 815.5

Hu, 201721 propylene oxide 772.2

Benad, 201846 propylene oxide 709.0

Benad, 201846 propylene oxide 696.0

Xiong, 201440 propylene oxide 672.9

Liu, 20194 propylene oxide 651.0

Gao, 201849 water glass + ammonia 650.0

Xiong, 201440 propylene oxide 644.3

Liu, 20181 ammonium hydroxide 630.7

Ren, 201532 propylene oxide 619.0

He, 201619 propylene oxide 616.4

Liu, 20194 propylene oxide 603.0

Benad, 2018; Ren, 201532,46 propylene oxide 602.0

Liu, 20194 ammonium hydroxide 600.0

Benad, 201846 propylene oxide 599.0

The sub-graph also exhibited potentially unexplored synthesis pathways for zirconia aero-

gels with high surface areas. It could be observed that, although citric acid and ammonium
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Figure 32: Gelation agent sub-graph of the zirconia aerogel graph database (ZrAGDB).
Sub-graph of the ZrAGDB examining A) zirconia aerogel synthesis and B) the gelation
agent used. The purple to red color gradient corresponds to the heat-treatment temperature
of the aerogels from as-dried to 1200°C. The larger nodes correspond to aerogels with higher
resulting surface areas.
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hydroxide were not commonly used, these gelation agents synthesized as-dried aerogels with

high surface areas. In addition, while heat-treatment seemed to decrease aerogel surface area

with most of the gelation agents, the combination of water glass and ammonia was shown

to be used in the synthesis of heat-treated aerogels with high surface areas. While water

glass and ammonia were not frequently used, the use of this solvent system as a gelation

agent may be beneficial when synthesizing zirconia aerogels for thermal management appli-

cations. These examples showed ways in which the ZrAGDB could be useful in enhancing

the understanding and efficiency of zirconia aerogel synthesis prior to experiment.

Zirconia aerogels, unique mesoporous materials with high specific surface areas and low

thermal conductivities, can be useful in a wide range of thermal management systems, includ-

ing high-temperature applications in aerospace and aeronautics. However, it is important

to optimize the synthesis methods and processing conditions of these materials so that the

mesoporous structure is retained when the aerogel is exposed to temperatures above 1000°C.

Due to the large number of synthetic variables, this dissertation utilized an architected in-

formation structure to begin to analyze the synthesis, processing, and properties of zirconia

aerogels. The connection between the final properties of the zirconia aerogels and the syn-

thesis pathways used to produce them was displayed in the zirconia aerogel graph database

(ZrAGDB) in a visual and dynamic way. It was anticipated that the ZrAGDB would be

useful in the optimization of these materials, enhancing the understanding and efficiency

of zirconia aerogel synthesis. While the preliminary queries observed synthetic effects on

surface area, properties such as crystalline phase, pore structure, density, and thermal con-

ductivity could also be investigated. The influence of the combination of multiple synthesis

and processing parameters could also be explored. This information could be further ex-

tended for assisting in the synthesis of various other highly dimensional materials, leading

to improved elucidation in structure-properties-performance relationships.
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8.3 Information architecture use case, part II: Silica aerogels

While preliminary work was done in the development of the zirconia aerogel graph database,

this process was taken one step further in the development of the silica aerogel graph database

(SiAGDB). While zirconia aerogels were not synthesized until 1976, silica aerogels were

discovered by Samuel S. Kistler in 1931.190,355 Because they preceded zirconia aerogels by

over 40 years, the availability of literature documenting silica aerogels was much greater.

The SiAGDB included the synthesis and processing variables of approximately 1000 silica

aerogel materials.52–148 The SiAGDB was created from 97 manuscripts detailing the synthesis

of 997 silica aerogel materials. The manuscripts were selected based on a balance of research

impact and contemporary work. Using Web of Science, all journal articles resulting from the

topic search of “silica aerogel(s)” and published between 2016 and 2020 were reviewed for

relevance. All applicable information detailing the synthesis and properties of silica aerogels

was added to the SiAGDB. Following this initial manuscript screening, an additional search

was completed in Web of Science for the topic of “silica aerogel(s)”, which was sorted by

highest citation. The results were reviewed for relevance and all applicable manuscripts with

over 350 citations were included in the SiAGDB.

Each unique material in the SiAGDB had as many as 100 synthetic or processing vari-

ables associated with its lifecycle, as well as final aerogel properties reported. These variables

included elements of the sol-gel synthesis, such as silica precursor, solvents, dopants, surfac-

tants, and acid or base catalysts, along with the concentration of each material added to

the sol. Sol-gel synthesis variables also included hydrolysis times, stir times, and pHs. The

SiAGDB included information on post-gelation processing, such as aging, washing, and mod-

ification solvents and soak times. Drying and sintering parameters were also included, such

as temperatures, times, pressures, and cycles. Additionally, the SiAGDB included the final

properties reported for the aerogel samples, such as surface area, pore volume, average pore

size, average pore diameter, bulk density, crystalline phase, Young’s modulus and thermal

conductivity. We primarily focused on the property of resulting surface area as high surface
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area is one of the key features of silica aerogels. In most cases, as previously described,

surface area is characterized by the method of Brunauer, Emmett and Teller (BET).325

The final silica aerogel graph database (SiAGDB) curated more than 1000 aerogel in-

stances with more than 7500 nodes and 20,000 edges. The full SiAGDB is displayed in

Figure 33, with Figure 33A,B showing the influence of surfactant and base catalyst on the

aerogel surface area, respectively.

Figure 33: Sub-graphs of the silica aerogel graph database (SiAGDB). Influence of A) sur-
factant and B) base catalyst on aerogel surface area. Surfactant nodes and base catalyst
node represent 1) Ralufon 414, 2) Cetrimonium Bromide, 3) Sodium Dodecyl Sulfate, 4)
Cetyltrimethylammonium Chloride, and 5)Ammonium Hydroxide.

In Figure 33, the graph was reduced to amplify the impact of specific synthesis or pro-

cessing conditions on silica aerogel properties. The surface area reported for each aerogel was

represented by a gradient (Figure 33A,B) and the initial concentration of the base catalyst

was represented by thicker edges for higher concentrations (Figure 33B). The utility of node

and edge manipulations as well as the necessity of performing smaller queries is evident in

Figure 33. The central figure shows the entire collection of data from all 1000 aerogels, while
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the sub-graphs provide examples of how the SiAGDB can be queried for smaller groups

of samples for easier visualization. Consider Figure 33A, which shows all aerogels with a

surfactant template. The resulting figure is far more manageable than the entire SiAGDB

and gives information upon observation about which surfactants were used in aerogels with

higher surface areas. For example, cetyltrimethylammonium chloride led to more aerogels

with higher surface areas as compared to cetrimonium bromide. In Figure 33B, each aerogel

was synthesized using a surfactant and the base catalyst ammonium hydroxide, NH4OH.

This figure displays which surfactant used in combination with NH4OH might yield the

largest surface area as the aerogels with the top five highest surface areas were synthesized

using cetrimonium bromide, determined when further expanding the aerogel node proper-

ties. The line thickness in Figure 33B also gives insight into which initial concentrations of

NH4OH to use as high surface area aerogels were synthesized using NH4OH with an initial

concentration of 0.5 M. Both sub-graphs show the product of queries to the SiAGDB re-

sulting in useful insights into surfactant and base catalyst selection as it influenced aerogel

surface area.
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Chapter 9 Understanding structure/property-process

relationships in aerogels through machine

learning

The complex synthetic pathways to aerogels result in a large number of synthetic and pro-

cessing variables, making effective aerogel synthesis often time-consuming and difficult. The

synthetic and processing variables used in aerogel synthesis must be understood and care-

fully determined, as each variable can influence the final properties of the aerogel including

surface area, porosity, and density.10,152 However, each synthetic and processing variable has

a certain level of uncertainty attributed to it due to variations in experimental precision.

Therefore, to reduce experimental dimensionality within synthetic and processing conditions

of aerogels, we have developed a supervised machine learning neural network regression

model.

We focused on the final surface area of the aerogels, as surface area is a commonly

reported property and aerogels with high surface area are effective for many applications.

Following the development of the SiAGDB, discussed previously in section 8.3, and data

cleaning methods, we used a neural network model to predict the surface area of silica

aerogels from synthetic and processing conditions, as shown in Figure 34. Machine learning

models have been used in tandem with experimental results as a way to screen and validate

choices of synthetic and processing parameters, as well as to accurately predict adsorption

isotherms in nanoporous materials.356–359

We explored the neural network regression model through a variety of silica aerogel

sub-regions contained in the SiAGDB, including silica precursor, base catalyst, and drying

method. We demonstrated that predictive relationships between synthesis and processing of

silica aerogels and the resulting properties, specifically surface areas, could be established.

This increased understanding could be used to reduce experimental dimensional complexity

and to recommend synthesis and processing conditions to achieve a silica aerogel target.
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Figure 34: Utilization of the silica aerogel graph database (SiAGDB) and machine learning.
Machine learning models are used with the SiAGDB to predict the BET surface area of silica
aerogels from synthetic and processing conditions.

9.1 Machine learning by neural network for prediction of aerogel

surface area

Machine learning models have been used to screen choices of synthetic and processing param-

eters, determining candidate materials that should be investigated experimentally following

an initial computational analysis.356,357 Figure 35 is a summary of the modeling and data

cleaning workflow. The machine learning algorithm was a Keras Sequential Neural Net-

work.360 Several parameters could be modified to improve the model, including number of

layers, number of nodes in each layer, etc. Hypertuning was used to find the best parameters

for a given model and split. The process outlined below was applied to all the splits in this

dissertation.

The Random Search method was used to randomly select values for each parameter.

Parameters were randomly selected 15 times (15 trials). In each trial, following the selection

of random parameters, the model was trained and it was observed how well the model
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Figure 35: Modeling workflow. The utilization of machine learning models, with the silica
aerogel graph database (SiAGDB), to clean silica aerogel experimental data prior to the
development of the final neural network regression model, which uses a 10% test set and a
90% training set.

predicted on the validation set. The trial with the lowest value of mean squared error

(MSE) was the trial that the final parameters were pulled from. In these models, there were

[0, 9] hidden layers between the input and output layers. There were [10, 200] neurons in

each hidden layer with a step of 10. The dropout for each hidden layer was [0.15, 0.4] with

a step of 0.02. Dropout represents the odds of a given neuron being forced to zero in each

layer during training; this parameter reduces overfitting and trades training accuracy for

validation accuracy. There were 100 epochs, number of times that the entire dataset was

cycled through the algorithm. In this hypertuning pipeline, no early stopping was used.

Prior to model training and validation, it was ensured that all of the data within the

SiAGDB was machine-readable and that samples contained in the SiAGDB that were clas-

sified as xerogels or did not have a reported surface area were removed. Of the 997 samples

contained in the SiAGDB, 119 were classified as xerogels and 94 did not have a reported

surface area value; these samples were dropped prior to training any of the machine learning

models. Attribute values in the model included both numerical data, such as sol concentra-

tions, aging, or drying temperatures, and non-numerical data, such as precursors, solvents, or

surfactants. For use in the neural network, non-numerical molecular data was converted to a
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feature representation using RDKit; RDkit fingerprints contain information about molecules

in a 1D bit-vector array and can be used to compare different synthetic compounds.361

Additionally, categorical data was encoded to a one-hot numeric array.362 Numerical data

describing the synthesis and processing of silica aerogels contained in the SiAGDB was then

used by initial models, utilizing K-fold cross-validation, to predict the resulting aerogel sur-

face area. The results of the models were quantified using the absolute error of the predicted

surface area value and the actual surface area value, which was found to be a better metric

when quantifying the results as compared to percent error. Data cleaning, further described

in section 9.2, was conducted to enhance the prediction capabilities of the models.

Following data cleaning by the removal of aerogels with high prediction error, a supervised

machine learning neural network regression model was developed for the whole range of

cleaned data, using 10% of the aerogels as a test set and 90% of the aerogels as a training

set. The resulting model had an average surface area predicted error of 109 ± 84 m2/g. The

PVA graph (Figure 36) had an R2 value of 0.731, with MSE and RMSE values of 0.014 and

0.118, respectively, demonstrating moderate predictive capabilities for aerogel surface area.

This neural network model was used to map synthetic and processing conditions of SiAGDB

sub-regions to the aerogel BET surface area, establishing predictive relationships between

synthetic variables and a final aerogel property.

In the SiAGDB, a link to the model that predicted the surface area for each aerogel

was stored as a node property for each aerogel contained in the test set. The raw sil-

ica aerogel data, the code to create the SiAGDB, and the code used to train and test

the models have been included in the following GitHub repository: https://github.com/

jameskferri/Aerogel_ML_Neo4j.git.

9.2 Machine learning by neural network for data cleaning

Prior to the development of the neural network regression model, data cleaning was con-

ducted to decide which data sets should be included to aid in prediction. As an example,
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Figure 36: Results of the final neural network regression model. Normalized predicted versus
actual (PVA) graph for the surface areas of all aerogels in the model.

Zhang et al. utilized data cleaning to improve predictions of structural properties and ad-

sorption isotherms of carbide-derived carbons which concurred with experimental results.363

Data cleaning was also utilized by Kojima et al. in the modeling of adsorption isotherms in

nanoporous adsorbents to determine deviations between experimental and simulated data.364

Reproducibility of experimental data is known to be an issue in materials chemistry re-

search.365 While the number of replicate measurements was often lacking, meta-analyses

have described the inconsistency with replicate measurements of approximately 20% of re-

ported adsorption isotherms for porous materials.366–369 Additionally, considering the repro-

ducibility of the BET measurement of surface area, a possible spread of at least 300 m2/g

for identical materials was reported by Osterrieth et al.370 The reasoning behind deviations

was not always directly identified; however, outliers may have pointed to the reproducibil-

ity of experimental conditions and results, low experimental precision, or inconsistency in

measurement calculations.

Similarly, due to experiments with high error or results with low precision, not all reported
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synthesis and processing conditions of silica aerogels may be reliable or reproducible. By

using the developed models to identify aerogels with high prediction error, data cleaning

was beneficial for determining unreliable experimental data that may have been difficult to

classify a priori. We anticipated that, following data cleaning methods, the developed neural

network regression model could be used to predict aerogel surface area from synthesis and

processing conditions with precision. However, we recognized that high prediction error may

also have pointed to unique or unconventional processes reported in the SiAGDB, previously

unseen by the model.

Prior to data cleaning, a control set of models was considered; the aerogels had an

average surface area predicted error of 135 ± 119 m2/g. As a benchmark, a simple data

cleaning protocol of removing statistical outliers only, aerogels with a reported surface area

above or below two standard deviations of the mean surface area, was used. Following data

cleaning by statistical outliers, the aerogels had an average predicted error of 125 ± 106

m2/g. Compared to the control models, removing statistical outliers decreased the average

error by 7%.

Data cleaning by statistical outliers is a primitive method, as there were still persistent

low-resolution experiments that were being used in the models; therefore, a second method of

data cleaning was utilized to improve the models. Data cleaning by prediction error removed

statistical outliers and removed aerogels with a resulting prediction error greater than one

standard deviation from the average absolute error following the previous models. Using

data cleaning by prediction error, the aerogels had an average surface area prediction error

of 76 ± 55 m2/g. By removing high error samples, the average error decreased by 39% as

compared to just removing statistical outliers. Dropping aerogels with high prediction error

overall improved the models and kept the prediction error relatively constant across samples.

Data cleaning by prediction error was determined to be the most effective method, as further

seen in Figure 37 and Figure 38.

Predicted versus actual (PVA) graphs, normalized using min-max scaling, are displayed
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Figure 37: Normalized predicted versus actual (PVA) graphs for all aerogels using K-fold
cross-validation. The PVA graphs represent A) control models, B) data cleaning by statistical
outliers, and C) data cleaning by machine learning prediction error.
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for the surface areas of all aerogels used in the control models (Figure 37A), the models in

which statistical outliers were removed (Figure 37B), and the models in which high error

samples were removed (Figure 37C). The uncertainty of each sample represents the standard

deviation of the predicted surface area values. The R-squared (R2), mean squared error

(MSE), and root mean squared error (RMSE) values described the goodness of fit between

the predicted and actual surface area values. An increasing R2 value and deceasing MSE

and RMSE values, as well as a closer fit to the y = x line, indicated that a model was

predicting surface area more accurately. A priori removal of statistical outliers alone (Figure

37B) resulted in negligible improvement of model prediction as compared to control models

(Figure 37A). However, successive, serial removal of aerogels with high prediction error

(Figure 37C) resulted in significant improvement of model prediction.

Figure 38 displays the average surface area prediction error for all aerogels across a

manuscript following data cleaning by statistical outliers (Figure 38A) and following data

cleaning by prediction error (Figure 38B). The average surface area prediction error was

represented with a gradient, while tan nodes indicated manuscripts that were not included

in the models, as they either contained aerogels with unreported surface areas, contained

information only relating to xerogels, or contained only aerogels with surface area values

that were statistical outliers. It could be seen from Figure 38 that prediction error decreased

following data cleaning by prediction error for most of the manuscripts; additionally, a few

manuscripts were removed from the model due to data cleaning. The change in prediction

error is represented in Figure 38C. A large average change in prediction error indicated

that data cleaning by prediction error decreased the average prediction error significantly as

compared to data cleaning by statistical outliers. A minimal change between data cleaning by

statistical outliers and data cleaning by prediction error or, in a few cases, a negative change

in prediction error indicated that the error increased in data cleaning by prediction error as

compared to data cleaning by statistical outliers. For these manuscripts, dropping the high

error samples did not overall decrease the prediction error; this may have been due to the
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prediction capabilities of the models, which may have struggled predicting the surface areas

of certain aerogels either based on unique experimental conditions, experimental precision,

or experimental uncertainty. Figure 38 shows that data cleaning by prediction error resulted

in a lower prediction error overall.

Figure 38: Surface area prediction error by manuscript. The sub-graphs represent A) data
cleaning by statistical outliers, B) data cleaning by prediction error, and C) prediction change
between data cleaning methods.

Samples with higher error were harder for the model to accurately predict surface area.

This could potentially have been caused by a number of reasons, including experimental

precision and reproducibility or unique experimental conditions previously unseen by the

model. As an example, one sample with high error following data cleaning by statistical

outliers was reported with only two other samples, and while it was dried via ambient pressure

drying, the other samples were dried via autoclave and classified as xerogels; therefore, this

sample was the only sample to be included in the model from this manuscript. This particular

sample was also sintered, which is relatively infrequent for silica aerogels, as only about 20%

of samples in the SiAGDB had reported sintering conditions. This sample was dropped from

the model due to high prediction error. As another example, the sample with the highest

uncertainty following data cleaning by statistical outliers was reported in a manuscript that

detailed an unconventional formation method for the sols; 95% of the SiAGDB reported

the sol-gel method as the primary formation method, while this manuscript detailed laser

exposure of the sols as the formation method. This sample was not dropped from the models,
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as the resulting error was not within the high error values that were dropped during data

cleaning, and the sample’s prediction error decreased in subsequent models.

Following data cleaning by machine learning prediction error, the supervised machine

learning neural network regression model was developed using a 10% test set; the model had

an average surface area predicted error of 109 ± 84 m2/g, demonstrating moderate predictive

capabilities for aerogel surface area.

9.3 Synthesis optimization by machine learning with the silica

aerogel graph database

We considered machine learning methods to predict thermophysical properties, such as sur-

face area, of silica aerogels in this dissertation due to the sheer number of synthetic and

processing variables. We anticipated that machine learning could be used as a guide to find

valuable experiments, saving time and resources by avoiding arbitrary experimentation.

As discussed previously, base catalysts are an important component of the silica aerogel

sol and should be chosen deliberately. We used the developed silica aerogel graph database

(SiAGDB) and predictive neural network model to further investigate the base catalyst sub-

region of silica aerogel synthesis (Figure 39). The model mapped the synthetic condition of

base catalyst to the final aerogel property of surface area.

Utilization of the SiAGDB with the base catalyst sub-region is displayed in Figure 39A,B,

showing the influence of base catalyst on aerogel surface area and surface area prediction er-

ror, respectively. In Figure 39A and Figure 39B, the surface area and surface area prediction

error, respectively, were represented by a gradient; gray nodes represented unreported surface

areas in Figure 39A and aerogels dropped from the models in Figure 39B. Figure 39A also

shows the relationship between initial base catalyst concentration and surface area; edges

with reported initial concentrations were thicker for larger concentrations. The remaining

sub-graphs followed the same formatting.

From Figure 39A, observations on which base catalyst and initial concentrations led
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Figure 39: Influence of base catalyst on BET surface area of silica aerogels. Synthesis con-
dition (base catalyst) sub-graphs of the silica aerogel graph database (SiAGDB) displaying
the influence of base catalyst on A) surface area and B) surface area prediction error follow-
ing machine learning. Base catalyst nodes represent 1) Amine, 2) Potassium Hydroxide, 3)
Lithium Hydroxide, 4) Tetramethylammonium Hydroxide, 5) Ammonium Fluoride, 6) Am-
monia, 7) Ammonium Hydroxide, 8) Water Glass, and 9) Sodium Hydroxide. C) Normalized
PVA graph of the base catalyst sub-region.
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to higher surface areas can be seen. For example, ammonium hydroxide was the most

commonly used base catalyst and created aerogels with both low and high surface areas;

however, tetramethylammonium hydroxide was less widely used but led to high surface area.

Sodium hydroxide was also a less frequently used base catalyst but led to mid-range surface

area values. Determination of base catalyst initial concentration influence on surface area

was more difficult, potentially since base catalyst concentration had less of an impact on

surface area than other synthetic variables. For example, when using ammonium hydroxide

and when using ammonia, high initial concentrations (10 M) led to both low and high surface

areas.

In Figure 39B, it did appear that the base catalyst had an effect on the prediction error

following data cleaning. For example, the aerogels using sodium hydroxide and tetram-

ethylammonium hydroxide had a lower prediction error than the aerogels with ammonium

hydroxide and amine. However, this could have been due to other factors such as the wide

variety of reported experimental conditions in the case of ammonium hydroxide or due to

the sparseness of available data in the case of amine.

The normalized predicted versus actual (PVA) graph for the surface area values of aero-

gels using a base catalyst in the model (10% test set) is displayed in Figure 39C. The model

was shown to have moderate surface area predictive capabilities on the base-catalyst sub-

region. A few samples were still difficult for the model to predict on; this could have been

attributed to a number of different factors, including unique experimental techniques previ-

ously unseen by the models and varying levels of uncertainty in the experimental conditions

or reported final properties.

9.4 Processing optimization by machine learning with the silica

aerogel graph database

Drying is an important step in silica aerogel processing, transforming wet gels into aerogels.

We utilized the developed SiAGDB and predictive neural network model for the supercriti-
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cal drying sub-region and the ambient pressure drying sub-region, the two most used drying

methods in the SiAGDB (Figure 40 and Figure 41, respectively). The model mapped pro-

cessing condition, drying method, to the final aerogel property, surface area. The sub-graphs,

grouped by the ten most frequently used silica precursors for each drying method, provided

insight into which silica precursors were commonly used with each drying method as well as

which precursors led to higher surface area and lower prediction error. The normalized PVA

graphs for each drying method are also displayed, which show that the model had moderate

predictive capabilities following data cleaning by prediction error.

Figure 40A,B display sub-graphs of the influence of precursor on the surface area and pre-

diction error, respectively, of supercritically dried silica aerogels. Tetramethyl orthosilicate

(TMOS) and tetraethyl orthosilicate (TEOS) were the most commonly used precursors for

supercritically dried silica aerogels, leading to aerogels with both low and high surface areas.

There were several common precursors that were used in combination with one another, such

as TMOS and (3-aminopropyl)triethoxysilane (APTES). (3-aminopropyl) trimethoxysilane

(APTMS) and vinylmethyldimethoxysilane (VMDMS) were used in combination and, while

not used frequently, led to high surface area aerogels. In Figure 40B, it can be seen that

the majority of the silica precursors, specifically the most commonly used precursors, TMOS

and TEOS, had aerogels with both low and high prediction errors. This was most likely

due to the larger number of samples and the spread of synthetic and processing variables

reported. However, the precursor polyethoxydisiloxane (PEDS) was used in aerogels with

relatively low prediction error, indicating that the models did better predicting the surface

area values for aerogels using PEDS than for aerogels using other silica precursors.

The normalized PVA graph for the surface area values of aerogels used in the model (10%

test set) that were dried using supercritical drying is displayed in Figure 40C.

Figure 41A,B display sub-graphs of the SiAGDB with ambient pressure dried silica aero-

gels. The most commonly used silica precursors for ambient pressure dried aerogels were

tetraethyl orthosilicate (TEOS), polyethoxydisiloxane (PEDS), and water glass. Regarding
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Figure 40: Influence of silica precursor and supercritical drying on BET surface
area of silica aerogels. Processing condition (supercritical drying) sub-graphs of the
silica aerogel graph database (SiAGDB) displaying the influence of silica precursor
and drying method on A) surface area and B) surface area prediction error follow-
ing machine learning. Silica precursor nodes represent 1) Tetramethyl Orthosilicate,
2) (3-aminopropyl)triethoxysilane, 3) Methyltrimethoxysilane, 4) Polyethoxydisiloxne, 5)
Vinyltrimethoxysilane, 6) Vinyltriethoxysilane, 7) Tetraethyl Orthosilicate, 8) Methyltri-
ethoxysilane, 9) (3-aminopropyl)trimethoxysilane, and 10) Vinylmethyldimethoxysilane. C)
Normalized PVA graph of the supercritical drying sub-region.
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Figure 41: Influence of silica precursor and ambient pressure drying on BET surface area of
silica aerogels. Processing condition (ambient pressure drying) sub-graphs of the silica aero-
gel graph database (SiAGDB) displaying the influence of silica precursor and drying method
on A) surface area and B) prediction error following machine learning. Silica precursor
nodes represent 1) Silica Hydrosol, 2) Methyltriethoxysilane, 3) Tetrapropoxysilane, 4) Rice
Husk Ash, 5) Vinyltrimethoxysilane, 6) Hexamethyldisilazane, 7) Tetraethyl Orthosilicate,
8) Methyltrimethoxysilane, 9) Water Glass, and 10) Polyethoxydisiloxane. C) Normalized
PVA graph of the ambient pressure drying sub-region.
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the influence of silica precursor on the BET surface area, the precursor TEOS led to higher

surface area than water glass. The precursors rice husk ash and methyltrimethoxysilane

(MTMS), while not commonly used, often led to aerogels with low surface areas. When

hexamethyldisilazane (HMDZ) was used with TEOS, high surface area aerogels resulted. In

Figure 41B, it can be seen that the commonly used silica precursors, water glass and TEOS,

led to aerogels with both low and high prediction error. This was most likely due to the large

number of synthetic processes reported. The silica precursor polyethoxydisiloxane (PEDS)

overall led to aerogels with low prediction error, which was also true for supercritically dried

aerogels.

The normalized PVA graph for the surface area values of aerogels used in the model that

were dried using the ambient pressure drying method is displayed in Figure 41C. The model

had moderate predictive capabilities for resulting surface areas in both the supercritical

drying and the ambient pressure drying sub-region. It was anticipated that expansion of the

SiAGDB may potentially aid in further understanding of the relationships between synthetic

and processing conditions and final properties of silica aerogels.

9.5 Experimental application of machine learning with the silica

aerogel graph database

When considering an experimentalist, the developed SiAGDB and predictive neural network

model described in this work could be highly useful. An experimental chemist, creating silica

aerogels with target properties such as high surface area, is faced with a vast set of exper-

imental synthesis and processing conditions, which exponentially increase as the synthetic

pathway proceeds. The developed SiAGDB contained approximately 100 unique synthetic

and processing variables for each aerogel. Silica aerogels also have a long development life-

cycle; aerogel synthesis, from initial sol formulation to final characterized product, takes on

average 7 days, with a maximum of 20 days reported in the SiAGDB.

Due to the lengthy experimental time required for aerogel synthesis, arbitrary experi-
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mentation or tedious replicate experiments are not feasible. Therefore, understanding the

influence of each synthetic pathway on final surface area, and additional properties, of the

silica aerogels would be advantageous prior to experimentation. This is where the utility of

the developed SiAGDB and neural network regression model is made evident, as these tools

represent a new methodology for an experimentalist to digitally design silica aerogels.

Following preliminary considerations of initial starting materials and processing methods

that are readily available, an experimentalist would use sub-graphs of the SiAGDB to visually

see the relationships between the selected starting materials and processing methods and

the final silica aerogel surface area, or another target property, reducing the experimental

dimensionality of aerogel synthesis. The experimentalist could then utilize the neural network

regression model to further refine the experimental variables by determining if the chosen

synthetic pathway can be easily predicted on. Synthesis and processing variables that lead to

the model having difficulty in prediction may point to experimental conditions that should

be further scrutinized or novel experimental techniques previously unseen by the model.

The new methodology detailed in this work would be useful to an experimentalist by

reducing experimental dimensionality through increased understanding of the influence of

synthetic and processing variables on the surface area of silica aerogels or other target prop-

erties. Increased understanding of these relationships would begin to reduce experimental

time and resources, allowing for additional synthesis trials or replicate experiments.
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Chapter 10 Conclusions and perspectives

Aerogels are unique, highly porous materials with a wide variety of extreme material proper-

ties, including high specific surface area, low density, and low thermal conductivity. Aerogels,

first introduced in 1932, are gels which have been isolated from their liquid component, as

a gas replaces all of the gel’s liquid through a drying process.371 Aerogels are composed of

95 - 99% air by volume and are the lightest solid material in the world.149 Due to their

material properties, aerogels can be useful in a range of applications, such as catalysis,

thermoresisters, sorption media, sensors, electrodes in solid oxide fuel cells, and drug deliv-

ery.1,13,171,173,177,186,188 The high specific surface area and low thermal conductivity enables

the effective use of aerogels as thermal management systems, including in aerospace and

aeronautics applications.158–161

Zirconia (ZrO2) aerogels have special interest for high-temperature applications due to

the high melting point of ZrO2 (2715°C) and stability between 600°C and 1000°C, where

other aerogel systems, such as silica, often begin to sinter and densify. To further increase

the thermal stability of zirconia aerogels, yttria-stabilized zirconia (YSZ) aerogels are often

used as the addition of yttrium to the zirconia system stabilizes the tetragonal zirconia phase.

However, exposure of YSZ aerogels to high-temperature often leads to pore structure

collapse and surface area decrease due to structural rearrangement and polycondensation

reactions.6,7 Pore structure collapse increases thermal conductivity of the aerogels, inhibiting

their use at high-temperature; therefore, to effectively use aerogels in thermal management

systems, collapse of pore structure and decrease of surface area must be mitigated. Surfactant

templates are known to influence the pore structure of aerogels, increasing surface area and

reducing pore collapse following high-temperature exposure.

To determine the effect of surfactants with different charges on the pore structure of

aerogels, we considered cationic (positively charged), anionic (negatively charged) and non-

ionic (without charge) surfactants as templates for 20 mol% YSZ aerogels in this work. The
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cationic surfactant cetrimonium bromide (CTAB), the anionic surfactant sodium dodecyl sul-

fate (SDS) and the nonionic surfactant Pluronic® P-123 were chosen as templating agents

for YSZ aerogels. The aerogels were heat-treated at temperatures up to 1100°C to determine

the effect of the surfactants on the thermal stability of the aerogels. Further optimization

of the aerogel formulation using surfactant templates may enable the effective use of YSZ

aerogels at temperatures up to 1100°C.

We used the cationic (positively charged) surfactant cetrimonium bromide, CTAB, as

a templating agent for 20 mol% yttria-stabilized zirconia (YSZ) aerogels.331 As compared

to aerogels without CTAB, it was determined that 0.5x the CMC of CTAB increased the

surface area of YSZ aerogels by 72% and 41% following high-temperature exposure to 600°C

and 1000°C, respectively. Additionally, at 0.5x CTAB, the aerogel pore volume was shown

to increase by 75% and 80% at 600°C and 1000°C, respectively. When compared to a

concentration of 2x the CMC of CTAB, the concentration of 0.5x had a greater increase in

surface area and pore volume. We hypothesized that the higher concentration of CTAB may

have negatively influenced gelation of the YSZ sol due to adsorption of the cationic surfactant

onto the charged surface sites of the zirconia matrix and subsequent impediment to gelation.

This may have decreased the strength of the YSZ gel, leading to increased shrinkage during

drying and heat-treatment, and ultimately causing pore collapse and surface area reduction.

Following surfactant templating with CTAB, the anionic surfactant SDS was used as a

surfactant template. It was determined that the addition of SDS increased the surface area

and pore volume of as-dried aerogels and suppressed crystallite growth at high temperatures.

SDS also lead to the formation of a larger volume of mesopores in as-dried aerogels. However,

the impact of SDS on the surface area and pore volume of heat-treated aerogels was negligible,

potentially due to low concentrations of surfactant and the removal of the surfactant following

high-temperature exposure.

The nonionic surfactant, Pluronic® P-123, was then used as a templating agent. Similar

to SDS, P-123 surfactant templating resulted in higher surface areas and pore volumes for
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as-dried YSZ aerogels. Macropores were formed in the as-dried aerogels, which may have

potentially increased the thermal conductivity of the aerogels due to larger pore size. Unlike

the cationic and anionic surfactants, electrostatic interactions were not prevalent when the

nonionic surfactant P-123 was used, which may have led to less control over pore formation

than when using CTAB or SDS. At high-temperature, P-123 did not enhance the surface

area and pore volume of the aerogels; however, the average crystallite size of the aerogels

was lowered with the addition of P-123 at 1000°C and 1100°C.

Additionally, we demonstrated the use of a predictive measurement, surfactant hydro-

dynamic radius, to map the behavior of surfactants in the sol prior to gelation to the final

properties of YSZ aerogels. By synthesizing aerogels at surfactant concentrations deter-

mined through this measurement, the influence of these surfactant concentrations on the

final aerogel properties, including surface area, pore volume, and crystallite size, was seen.

The use of this predictive measurement could potentially save experimental time as insights

into the final properties of aerogels could be gained from measurements of the sol, prior to

the completion of the full aerogel development lifecycle.

High surface area aerogels are experimentally favored; however, the abundance of syn-

thetic and processing conditions for aerogels, and the high level of experimental uncer-

tainty associated with these variables, often makes successful synthesis difficult and time-

consuming. In this work, we applied an information architecture and a machine learning

neural network regression model to enhance knowledge of aerogel synthesis by further un-

derstanding the relationships between chosen synthetic variables and final surface area.

A zirconia aerogel graph database (ZrAGDB) and a silica aerogel graph database (SiAGDB)

were used to visually display the connections between aerogel properties, such as surface area,

and the synthesis and processing pathways used to produce them. While purely a visual-

ization tool, sub-graphs of the ZrAGDB and SiAGDB began to show which conditions may

be optimal for aerogel synthesis. This work resulted in a queriable database that enabled

search and retrieval in a highly efficient way. Machine learning models were then used to
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further understand the influence of synthetic and processing conditions on silica aerogel sur-

face area. The developed model mapped from synthetic and processing conditions to predict

the aerogel property, BET surface area, with precision. Removing statistical outliers and

aerogels with high prediction error enhanced the model, leading to the prediction of aerogel

surface area with an average error of 109 ± 84 m2/g. The utilization of these digital design

tools by an experimentalist could reduce experimental dimensionality, ultimately reducing

time and resource consumption. With further expansion of the SiAGDB, the model could be

improved for potential optimization of silica aerogel synthesis, efficiently creating aerogels

with high surface area, which are advantageous in applications including thermal insulation,

sorption media, drug delivery, and catalysis.87,154,156,157,163,164,169,170,175,179,189
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ultra-lightweight concrete using expanded glass aggregate, silica aerogel, and prefab-

ricated plastic bubbles. Journal of building engineering 2020, 31, 101399.

(155) Wang, Q.; Yu, H.; Zhang, Z.; Zhao, Y.; Wang, H. One-pot synthesis of polymer-

reinforced silica aerogels from high internal phase emulsion templates. Journal of Col-

loid and Interface Science 2020, 573, 62–70.

(156) Zhao, C.; Li, Y.; Ye, W.; Shen, X.; Yuan, X.; Ma, C.; Cao, Y. Performance regulation

of silica aerogel powder synthesized by a two-step sol-gel process with a fast ambient

pressure drying route. Journal of Non-Crystalline Solids 2021, 567, 120923.

(157) Marszewski, M.; King, S.; Galy, T.; Kashanchi, G.; Dashti, A.; Yan, Y.; Li, M.;

Butts, D.; Mcneil, P.; Lan, E.; Dunn, B.; Hu, Y.; Tolbert, S.; Pilon, L. Transparent

silica aerogel slabs synthesized from nanoparticle colloidal suspensions at near ambient

conditions on omniphobic liquid substrates. Journal of Colloid and Interface Science

2021, 606, 884–897.

165



(158) Koebel, M.; Rigacci, A.; Achard, P. Aerogel-based thermal superinsulation: An

overview. Journal of Sol-Gel Science and Technology 2012, 63, 315–339.

(159) Cuce, E.; Cuce, P. M.; Wood, C. J.; Riffat, S. B. Toward aerogel based thermal

superinsulation in buildings: A comprehensive review. Renewable and Sustainable En-

ergy Reviews 2014, 34, 273–299.

(160) Thapliyal, P. C.; Singh, K. Aerogels as promising thermal insulating materials: An

overview. Journal of Materials 2014, 2014, 1–10.

(161) Jelle, B. P.; Baetens, R.; Gustavsen, A. Aerogel insulation for building applications.

The Sol-Gel Handbook 2015, 3-3, 1385–1412.

(162) Jones, S. M. Non-silica aerogels as hypervelocity particle capture materials. Meteoritics

and Planetary Science 2010, 45, 91–98.

(163) Lamy-Mendes, A.; Pontinha, A. D. R.; Alves, P.; Santos, P.; Durães, L. Progress in
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aerogel and core/shell nanoparticles for controlled drug delivery: A review. Materials

Science and Engineering C 2019, 96, 915–940.

(287) Leventis, N. Three-dimensional core-shell superstructures: Mechanically strong aero-

gels. 2007; https://pubs.acs.org/doi/abs/10.1021/ar600033s.

(288) Leventis, N.; Vassilaras, P.; Fabrizio, E. F.; Dass, A. Polymer nanoencapsulated rare

earth aerogels: Chemically complex but stoichiometrically similar core-shell super-

structures with skeletal properties of pure compounds. Journal of Materials Chemistry

2007, 17, 1502–1508.

180

https://pubs.acs.org/doi/abs/10.1021/ar600033s


(289) Duan, G.; Zhang, C.; Li, A.; Yang, X.; Lu, L.; Wang, X. Preparation and characteri-

zation of mesoporous zirconia made by using a poly (methyl methacrylate) template.

Nanoscale Research Letters 2008, 3, 118–122.

(290) Teo, N.; Gu, Z.; Jana, S. C. Polyimide-based aerogel foams, via emulsion-templating.

Polymer 2018, 157, 95–102.

(291) Scherer, G. W. Aging and drying of gels. Journal of Non-Crystalline Solids 1988, 100,

77–92.

(292) Omranpour, H.; Motahari, S. Effects of processing conditions on silica aerogel during

aging: Role of solvent, time and temperature. Journal of Non-Crystalline Solids 2013,

379, 7–11.

(293) He, F.; Zhao, H.; Qu, X.; Zhang, C.; Qiu, W. Modified aging process for silica aerogel.

Journal of Materials Processing Technology 2009, 209, 1621–1626.
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