
A Dependency Tracking Storage
System for Optimistic Execution of

Serverless Applications

by

Suraj Singh

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2022

© Suraj Singh 2022

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contributions

I would like to acknowledge Senyu Fu for contributing to the research described in this
thesis. Senyu helped implement components of the Arbor system. Any components for
which Senyu was primarily responsible for have been omitted from this thesis.

iii

Abstract

Serverless computing has become an increasingly popular paradigm for building cloud
applications. There has been a recent trend of building stateful applications on top of
serverless platforms in the form of workflows composed of individual functions. As func-
tions are short-lived and state is not recoverable across function invocations, these appli-
cations typically store state that is used between functions in an external storage system.
Such storage systems should enforce concurrency control, as different workflow instances
may update overlapping state simultaneously. However, existing concurrency control algo-
rithms typically incur significant latency due to locking or read/write set validation. This
is undesirable, since execution latency is an important performance metric for workflow ap-
plications as each stage is executed sequentially. Furthermore, they can abort transactions
in a manner that is oblivious to application preferences.

In this thesis, we present Arbor, a sharded dependency-tracking storage system de-
signed for optimistic execution of serverless workflows while ensuring serializability. Arbor
introduces a two-round commit model where submitted client transactions are organized
in a dependency graph. Transactions are then processed in batches, off the critical path of
client execution, allowing clients to continue executing quickly without having to wait for
Arbor to validate each transaction. As Arbor processes transactions, it organizes them into
a tree where each branch is a serialized execution and conflicts result in new branches be-
ing created. It then commits one branch from this tree and prunes the rest. To minimize
re-executions, Arbor chooses the longest branch by default, but application developers
can implement their own policies. Pruning branches is simple with Arbor, since it can
re-execute the corresponding transactions by invoking the respective functions from the
serverless platform. Furthermore, Arbor is designed to be scalable. Data is partitioned by
key, but the metadata of its dependency graph is replicated. This design allows single-shard
transactions in each batch to be processed independently, while multi-shard transactions
are replicated and processed by each shard. Our evaluation on a cluster of machines shows
that Arbor’s two-round commit model reduces transaction execution latency by a me-
dian value of 1.26x when compared to a system that uses OCC and commits transactions
synchronously.

iv

Acknowledgements

I thank my supervisors Professor Bernard Wong and Professor Khuzaima Daudjee for their
guidance and support during my graduate studies. Khuzaima has always encouraged me
to think about the bigger picture and question the ‘why’ behind every design decision.
This has helped me arrive at a more focused and well-thought-out approach to research.
Bernard’s out-of-the-box approach to solving problems has inspired me to think of creative
solutions to the technical problems we faced along the way. Furthermore, both Khuzaima’s
and Bernard’s detailed feedback and comments have helped improve my technical writing
significantly. Through describing many of their own experiences and using some remarkable
analogies, they have helped me cultivate a resilient mindset to tackle problems in life. I
am extremely grateful for the experience of working with them.

I thank the readers of my thesis, Professor Ken Salem and Professor Ali Mashtizadeh for
their valuable comments on this work. I am also thankful to Senyu Fu for his collaboration
on this project. I have learned a lot from our discussions in the lab and reasoning about
the various bugs we encountered along the way. These experiences helped in bringing this
thesis to completion. I would also like to thank Dr. Xinan Yan. He was always willing to
listen to my ideas and gauge whether they made sense. He helped significantly in giving
this project a clear direction. I’d also like to thank other members of my lab and the
Shoshin group with whom I’ve had a great experience working with and that helped create
a positive environment.

With my program beginning in the middle of a global pandemic, my friends played a
pivotal role in my life as a graduate student. In particular, I’d like to thank Lasantha,
James, Kerem, Saksham, Sruthi, Matt, Joohan, Saraswathi, Mahir, and Sachit. I will
cherish our experiences and am grateful for them all. I also thank the staff at CSCF and
the CS Graduate Office for their help along the way. Carrying out this work would not
have been possible without them.

Finally, I want to thank my family for their constant support and love throughout my
graduate studies. They have always been there to listen, give advice and just talk to me
when I’ve needed it. I would especially like to thank my mother Archana for her love and
support.

v

Table of Contents

List of Figures viii

List of Tables x

1 Introduction 1

2 Background and Related Work 6

2.1 Serverless Computing . 6

2.2 Dependency Tracking Storage Systems . 8

2.3 Batch Transaction Processing . 10

3 Optimistic Execution Model 12

3.1 Overview . 12

3.2 Client Interface . 13

3.3 Transaction Processing in Practice . 14

4 Design 16

4.1 Workflow of Transaction Processing . 19

4.2 Lineage Addressing . 23

4.3 Concurrency Control . 25

4.3.1 Correctness of Distributed Transaction Processing 28

4.4 Branch Selection . 29

4.5 Implementation . 30

vi

5 Evaluation 32

5.1 Experimental Setup . 32

5.2 Performance Metrics . 33

5.3 Benchmark Workloads . 34

5.4 Evaluated Systems . 34

5.5 Results . 35

5.5.1 Single machine deployment . 36

5.5.2 Scalability . 39

5.5.3 Cross-Partition Transactions . 40

5.5.4 Skew . 42

5.5.5 Transaction Execution Latency for Applications 44

6 Conclusion 46

6.1 Future Research Directions . 47

6.1.1 Developing a Serverless Platform That Leverages Arbor 47

6.1.2 Improving Performance Under High Contention Scenarios 47

6.1.3 Durability and Fault Tolerance . 47

References 49

vii

List of Figures

3.1 Client interface . 14

3.2 Example of transaction processing in Arbor. We use the ’ symbol in the
figure to distinguish different versions of an object. For example, we label
the first version of key A. But when this object is updated, we label the new
version as A’. 15

4.1 System Architecture . 17

4.2 Illustration of the different mappings stored in each shard’s indexing layer. 19

4.3 Workflow of transaction processing in Arbor. 20

4.4 Illustration of how each Arbor shard deterministically aggregates the exe-
cution order of single-shard transactions finalized independently at different
shards. We use different colors to distinguish transactions finalized at differ-
ent shards. Transactions that are crossed out in the figure represent those
that are pruned during finalization. 22

4.5 Example showing the lineage addresses of the vertices in a finalized tree. . 23

4.6 Data-oriented overview of the transaction finalization process 27

4.7 Illustration of how Arbor uses the concept of conflict windows to detect con-
flicts. It defines a conflict window for each dependency of a transaction and
checks if any new versions of the corresponding key exist in each correspond-
ing window. In the figure, we see that a conflict exists for the dependency
to key a as a conflict exists within the window. 28

4.8 Customizable Branch Selection Policy Interface 29

4.9 Implemention of Longest Branch Selection Policy 30

viii

5.1 A comparison of throughput achieved with Arbor, OCC, and VoltDB’s on a
single machine. We report finalization throughput for Arbor along with the
transaction commit throughput for the other two systems. 36

5.2 Analyzing Arbor’s scalability using a YCSB+T workload consisting of single-
shard, multi-key RMW transactions with a uniform key distribution. . . . 38

5.3 Analyzing the OCC+2PC system’s scalability using a YCSB+T workload
consisting of single-shard, multi-key RMW transactions with a uniform key
distribution. 39

5.4 An analysis of cross-partition transactions effect on Arbor using a multi-key
RMW YCSB+T workload with uniform key distribution. Three shards are
deployed in all experiments. Each graph’s legend indicates the percentage
of cross-shard transactions in the corresponding workload. 41

5.5 An analysis of cross-partition transactions effect on the OCC+2PC system
using a multi-key RMW YCSB+T workload with uniform key distribution.
Three shards are deployed in all experiments. Each graph’s legend indicates
how many transactions are single-shard in the corresponding workload by
percentage. 41

5.6 Effect of skewed key distribution on Arbor. The workload consists of multi-
key RMW YCSB+T transactions with varying levels of Zipfian skew. The
values in each individual figure’s legend denotes the corresponding Zipfian
coefficient and a value of -1 indicates a uniform distribution. 43

5.7 Analyzing the effect of skewed key distribution on the OCC+2PC system
using a YCSB+T workload consisting of 5% cross-partition transactions and
a multi-key RMW access pattern. We vary the Zipfian coefficient across
experiments. 43

ix

List of Tables

5.1 Analysis of Arbor’s graph-commit latencies, and OCC and VoltDB’s commit
latencies (in milliseconds) in a closed-loop environment with 12 clients and a
single machine server deployment using a range of workloads. For the read-
only and write-only configurations, we issue two operations per transaction.
We report mean values along with the standard deviation taken from three
repetitions of each experiment. 45

x

Chapter 1

Introduction

Serverless computing has become an increasingly popular paradigm for building cloud
applications. In traditional ‘severful’ cloud platforms, developers must manually provision
resources (for example, AWS EC2 virtual machines). This can be problematic, as it can
lead to over-provisioning resources to account for bursty user traffic or under-provisioning
them and causing application slowdown [27]. On the other hand, serverless platforms
provide developers with a much simpler abstraction in which they can upload application
code as functions that end-users can invoke through various events (for example, uploading
an image to AWS S3 [1] or accessing a URL). Resources are provisioned and automatically
scaled by cloud vendors according to invocation load. Moreover, serverless platforms offer
a millisecond-granular pay-per-use billing model instead of having developers pay for the
resources provisioned. These aspects allow developers to deploy applications more easily
and at a lower cost.

Applications developed as stateless functions are particularly well suited to serverless
platforms. For example, a serverless function can be used in a social media application
to identify objects within an image and create thumbnails for different platforms (such
as desktop and mobile) [27, 11, 3]. Since such functions can be invoked independently,
cloud vendors can easily scale compute resources according to the invocation load, making
them an excellent choice for serverless platforms. Developing more complex applications
that involve manipulating global state or those that involve the coordination of multiple
functions is challenging because: (1) state is not persistent across multiple invocations
of the same function, (2) functions are not network addressable, preventing direct inter-
function communication and (3) functions have strict execution time limits [24]. However,
there is still an incentive to enable the execution of such complex applications on serverless
platforms due to the benefits of autoscaling resources and lower operating costs.

1

As a workaround, developers use external storage systems (such as AWS S3 and Dy-
namoDB [17]) to store application state and also as an intermediary to propagate output
between functions coordinating with each other [27]. Cloud providers formalized this ap-
proach through the introduction of serverless orchestration frameworks (such as AWS Step
Functions [4]) [24]. Such frameworks allow developers to compose workflows of functions
through the declaration of task graphs. Developers can embed conditional logic and create
cycles within a graph to represent loops. As an example of a stateful serverless workflow,
consider a social media website where a user can log in, view their timeline, and follow/un-
follow other users — each action can be implemented as a separate function in a workflow
that accesses/updates state stored in an external storage system [48, 22]. When such a
workflow is invoked, the cloud provider takes care of provisioning the required resources
and transferring the intermediate state between functions.

However, using external storage systems to enable the execution of stateful applications
on serverless platforms incurs significant latency. According to Hellerstein et al., [24] the
mean I/O latency (sequential write followed by read) for 1 KB of data for AWS S3 and Dy-
namoDB from an AWS Lambda function is 108 ms and 11 ms, respectively. Transactional
storage systems are particularly useful to support serverless workflows since functions can
make updates to global application state and consequently result in incorrect computa-
tion due to race conditions [36]. Due to their strong consistency guarantees, transactional
storage systems prevent these issues and make it easier to develop stateful applications.
Transactional storage systems can, however, exacerbate latency overhead for stateful ap-
plications since concurrency control often involves acquiring locks or analyzing read/write
sets of transactions. Such systems also commonly use distributed commit protocols such
as two-phase commit (2PC), which add further overheads due to inter-shard coordination
[15]. Application throughput is adversely affected by such overheads since interacting with
storage systems is on the critical path of execution.

Several systems have been designed for stateful serverless applications [39, 25, 50, 48].
Boki [25] is a serverless platform developed on top of a shared log abstraction [9]. It in-
troduces the novel concept of a ‘metalog’ which allows it to provide strong consistency,
fault tolerance, and high scalability. However, transaction execution takes several millisec-
onds when using Boki’s shared log as a durable object store and can consequently limit
application performance. Moreover, Boki’s shared log increases execution latency by up
to 3x when providing exactly-once semantics and transactional guarantees for serverless
workflows using DynamoDB to store state.

In OLTP applications that can have a high degree of contention, validating transac-
tions on the critical path of client execution is preferable to limit the number of cascading
aborts. However, serverless applications generally consist of multiple workflows, each re-

2

quiring varying levels of consistency. For example, a social media application may include
workflows for updating user profile information (independent state updates), recommend-
ing other users to follow (analytics pipelines), and allowing users to create posts or unfol-
low/follow others (shared state updates). Such ‘hybrid’ workloads thus require a storage
system that provides serializability while not adding significant overhead to applications
since a lot of the operations are non-conflicting.

This thesis presents Arbor, a sharded dependency-tracking storage system designed for
optimistic execution of serverless workflows while ensuring serializability. To this end, Ar-
bor introduces a novel two-round commit model that splits the transaction commit phase
into graph-commit and finalization. As clients execute transactions, they can embed depen-
dency information into updates representing the data used to compute the corresponding
values. Arbor uses this information to organize data from client-submitted transactions
in a dependency graph. This graph-commits each transaction and allows functions within
a workflow to continue their execution quickly without waiting for Arbor to validate if
transactions are serializable.

Arbor validates transactions in batches as part of a finalization process. Here, Arbor re-
organizes transactions from its dependency graph into a validation tree, where each branch
represents a serialized execution of transactions. If Arbor detects conflicts between transac-
tions, it creates multiple branches of execution [16]; subsequent transactions are placed on
the same branch as their ancestors. After adding all transactions in batch to the tree val-
idation tree, as in blockchain-based systems [35], Arbor selects one branch of transactions
to commit and prunes the rest. By default, Arbor chooses the longest branch to minimize
re-executions, but it provides application developers with an interface to implement custom
branch selection policies. It re-executes transactions along pruned branches by invoking
the corresponding workflows from the serverless platform. Re-executed transactions may
be pruned again subsequently if they are not on the branch that Arbor commits. In this
case, Arbor will continue to re-execute them until they are.

Arbor’s approach of taking transaction processing off the critical path of client execution
can allow applications to execute quickly. This is particularly beneficial in the case of
serverless applications since each stage in a workflow executes sequentially; faster execution
of each stage allows for the subsequent stages to begin earlier and can consequently improve
application throughput. The increased completion latency may make Arbor unsuitable for
user-facing applications but this is a common characteristic of batch processing systems and
can work well for applications where throughput is a priority and individual transactions
are not latency sensitive. Furthermore, as in the case of the ‘hybrid’ workloads described
earlier, contention in serverless applications can be limited. As a result, abort rates with
Arbor would be low, limiting the overhead of re-executing transactions.

3

Arbor’s dependency-tracking data model allows it to create branches in response to
conflicts when processing transactions. This mechanism in turn gives applications more
control over conflict resolution than standard approaches such as OCC. Committing the
longest branch of transactions, for example, can reduce the number of re-executions. Al-
ternatively, suppose in a social media application, there is a conflict over which posts to
display on a user’s timeline. In that case, the application developer can implement a pol-
icy to pick the branch whose engagement is estimated to be the highest. However, this
dependecy-tracking data model introduces performance challenges as well. First, achieving
scalability through partitioning is non-trivial since each partition would hold a different
subset of the dependency graph. Second, unlike other transaction processing systems [33],
committing transactions within Arbor’s dependency graph is an intrinsically serial process
and can consequently limit throughput since the system must process transactions in their
topological order.

Arbor partitions data items by key, allowing it to scale with incoming graph-commit
requests. However, this results in each shard holding a different subset of the dependency
graph. When processing each batch of transactions, Arbor replicates the corresponding
metadata of the dependency graph (i.e., keys and edges) across all shards in the deployment.
Arbor’s commit protocol allows transactions that include keys from only a single shard to
commit independently on that shard. Cross-shard transactions, on the other hand, are
replicated across all shards and committed by all of them. The commit order of single-
shard transactions is disseminated across the shards and is deterministically aggregated
by each of them before cross-shard transactions within a batch are processed. This allows
each shard to arrive at the same state at the end of processing each batch of transactions.
This protocol for committing transactions allows Arbor to scale well in throughput with
the number of shards in workloads with a high percentage of single-shard transactions.

To optimize transaction processing, we implement a multi-stage pipeline where Arbor
can process multiple batches of transactions concurrently. The pipeline includes stages
for topologically sorting transactions, performing concurrency control, and aggregating
results from all data shards, respectively. Furthermore, to make detecting conflicts more
efficient, we implement a data indexing scheme called lineage addressing inspired by the
fork paths used in TARDiS [16]. We assign each transaction in Arbor’s validation tree a
lineage address that uniquely identifies its position in the tree. Arbor leverages lineage
addressing to efficiently detect conflicts between transactions and identify which branches
to add future transactions to.

When functions within a workflow graph-commit transactions, their descendants oper-
ate on potentially dirty data since Arbor may abort the corresponding transactions during
finalization. Thus, transactions reading graph-committed data operate at the read un-

4

committed isolation level [12] depending on the read policy that clients use. There is a
possibility of cascading aborts, but if the level of contention is moderate, this is a reason-
able trade-off since most transactions are likely to succeed. Using the YCSB+T workload
[18], our experiments show that even with moderate levels of contention (Zipfian coefficient
= 0.7), abort rates remained below 6%.

This thesis makes four main contributions:

• We introduce a novel two-round transaction commit model which enables faster ex-
ecution of application clients by taking transaction processing off the critical path of
client execution.

• We use a dependency-tracking data model to serialize transactions along different
branches of a validation tree. We provide an interface for developers to implement
custom policies for selecting which branch of transactions from the tree to commit.

• To achieve scalability in transaction processing, we introduce an architecture in which
data is partitioned by key, and metadata of Arbor’s dependency graph (i.e., keys
and edges) is replicated across all shards. This allows each shard to commit single
shard transactions independently, while cross-shard transactions are committed by
all shards.

• We present an experimental evaluation on Arbor to understand the impact of dif-
ferent access patterns and levels of skew. Additionally, we investigate Arbor’s scala-
bility by gauging the effect of adding more shards and the impact of cross-partition
transactions. Finally, we investigate the latency of graph-committing transactions in
different types of workloads and compare it to a system that commits transactions
synchronously.

The remainder of this thesis is organized as follows. Chapter 2 provides an overview of
the related work to this thesis. Chapters 3 and 4 describe the execution model and design
of Arbor, respectively. Chapter 5 explains the experimental methodology and presents our
evaluation of Arbor. Chapter 6 concludes the thesis and presents avenues for future work.

5

Chapter 2

Background and Related Work

This chapter will first provide a background on serverless computing and describe related
work on storage systems used in the space. Next, it will describe related dependency-
tracking storage systems. Finally, it will discuss the use of batching in database systems.

2.1 Serverless Computing

Cloud computing has greatly simplified the deployment of applications at scale. By virtu-
alizing physical resources, cloud platforms enable developers to provision virtual machines
with the resources they require and develop applications just as they would locally. How-
ever, user traffic can fluctuate [42], forcing developers to make trade-offs when provisioning
resources. If they allocate resources to account for bursts in traffic, it would result in un-
derutilization during other times and make them pay superfluous costs. Conversely, if they
only provision resources based on their expected mean traffic, their costs would be rela-
tively lower. Still, their infrastructure would be unable to handle sudden bursts of traffic,
resulting in application crashes or high latency. Furthermore, developers are responsible
for manually maintaining the resources they have reserved by updating their software and
installing the latest security patches.

With the introduction of AWS Lambda [2] in 2015, serverless computing has solved
many of these challenges. Serverless platforms provide developers with a much simpler
abstraction where they can upload application-level code in the form of functions triggered
based on events. Vendors automatically scale functions according to the invocation load.
Furthermore, serverless platforms offer millisecond-granular pay-per-use billing. These
aspects allow developers to deploy applications more easily and at a lower cost.

6

Serverless platforms are particularly well suited to execute stateless function invoca-
tions. An example of such an application would be a function for resizing images to
thumbnails for different platforms. (for example, desktop and mobile) [3]. Such applica-
tions can take advantage of the autoscaling capabilities of serverless platforms. However,
serverless platforms have the following disadvantages, which limit their applicability to
other applications that require coordination between functions or state to be persisted: (1)
state is not persistent across multiple invocations of the same function, (2) functions are
not network addressable, preventing direct inter-function communication and (3) functions
have strict execution time limits [24].

As a workaround, developers began using storage systems to store ephemeral state that
is propagated between functions and for persisting state that is required across different
function invocations [27]. Cloud vendors formalized this approach with the introduction of
serverless orchestration frameworks (such as AWS Step Functions [4]. Users can compose
workflows of functions (such as microservice-style applications [22, 48] by registering a
task graph with the frameworks. Subsequently, the orchestration frameworks take care of
provisioning resources and propagating state between functions. However, using external
systems to facilitate such workflows can incur significant latency for the application. For
example, Hellerstein et al. [24] state that the mean I/O latency (sequential write followed
by read) from an AWS Lambda function to S3 and DynamoDB are 108 ms and 11 ms,
respectively. As a result, optimizing for such overheads has been an important topic of
research.

Pocket [30] was one of the first systems built for facilitating the propagation of ephemeral
state between functions. It was designed specifically for use in big data analytics applica-
tions built on serverless platforms. Pocket’s controller allows developers to register their
jobs a priori, and it can significantly reduce running costs by allocating resources according
to the job’s requirements. Jiffy [29] is an improvement over Pocket and can reduce job
completion time by multiplexing multiple jobs on main memory to reduce the number of
accesses to slower persistent storage. Furthermore, it can dynamically change the job’s
storage allocation during runtime based on active data being used and as a result, further
save running costs. Ephemeral storage systems such as Pocket and Jiffy are not suited for
backend application storage systems as they provide no consistency guarantees for concur-
rent state updates. Shredder [50] reduces access latency to storage by executing functions
on storage nodes. It is, however not scalable, with its current deployment being limited to
only a single machine.

Another active area of development has been developing backend storage systems for
persisting serverless application state. One such system is Anna [8], a key-value storage
system that is elastic, and can scale across different tiers of storage based on application

7

requirements. It uses lattice-based structures to merge concurrent updates and can guar-
antee causal consistency. It is used as the backend storage in the Cloudburst [27] serverless
platform. Cloudburst addresses the latency overhead of using external storage by using the
model of ‘logical disaggregation and physical colocation’. It realizes this model by caching
‘hot’ application data on compute nodes. Caching can prevent external storage access,
allowing state to be propagated between functions on the same machine more quickly.
However, concurrent updates to data items at different cache sites can lead to inconsisten-
cies. HydroCache [45] uses vector clocks to provide transactional causal consistency (TCC)
guarantee for a set of functions that access data across multiple sites in Cloudburst. TCC
provides causal+ consistency [32] for all I/Os in a transaction, even if they are issued from
multiple sites. However, HydroCache would experience significant overhead when caches
are frequently updated. Additionally, Cloudburst’s consistency guarantees are unsuitable
for applications requiring serializable execution.

Boki [25], an extension of Nightcore [26], is a serverless runtime designed for stateful
applications. It is built on top of a shared log abstraction and introduces the concept of a
‘metalog’, allowing it to achieve strong consistency and fault tolerance. Boki can be used
with DynamoDB as a logging layer to provide transactional guarantees and exactly-one
semantics for serverless workflows (similar to Beldi [48]). However, it is up to 3.0x slower
than natively using DynamoDB in this use case. It can also be expensive to read objects
in Boki since it must replay the shared log to reconstruct the object’s state.

We designed Arbor to serve as a storage system to persist state for serverless appli-
cations. Arbor tackles the latency traditionally associated with using an external stor-
age system for this purpose by introducing an optimistic execution model. It buffers
incoming transactions as a dependency graph and performs concurrency control checks
asynchronously. It is developed to be scalable with its key-based partitioning of keys. Fur-
thermore, developers can create policies for choosing which branch to commit by forking
multiple branches of execution in response to conflicts rather than pessimistically aborting
transactions using fixed policies.

2.2 Dependency Tracking Storage Systems

Transaction processing storage systems generally reconcile conflicts through policies that
are indifferent to the specific semantics of the applications that are built on top of them. For
example, systems that enforce serializability using optimistic concurrency control (OCC)
[13] generally use the technique of timestamp-ordering to order transactions. In the case
of conflicts, transactions with smaller timestamps assigned to them can commit while the

8

others are aborted. In the case of COPS [32], a causally consistent geo-replicated storage
system, cross-replica conflicts are resolved using a deterministic writer-wins policy. Crooks
et al. [16] argue that storage systems should provide applications with a richer interface
whereby they are exposed to conflicts and can implement their own policies to resolve
them. For example, in the case of an e-commerce application built on top of a storage
system, if there is a conflict between two customers purchasing the last stock of a given
item, the application should be able to pick which customer’s order is successful using its
own policies such as selecting the customer with the larger cart, longer order history or the
one with a premium subscription.

To this end, the authors introduce TARDiS [16], a dependency-tracking storage system
that uses a novel branch-on-conflict concurrency control policy. TARDiS commits transac-
tions synchronously, and conflicts result in the system creating a new logical ‘fork’ for the
conflicting transactions. Each application client is given the view of sequential storage as
it can work along only one branch at a time. TARDiS provides an interface that exposes
branches to applications and allows developers to create application-specific merge func-
tions to reconcile branches. Furthermore, it allows applications to specify the isolation level
for each transaction, choosing from Serializability, Snapshot Isolation, or Read-Committed
[12]. TARDiS consists of a multi-master replicated architecture and ensure causal con-
sistency between replicas. It is intended for geo-distributed deployment. While TARDiS
offers a similar user interface to Arbor, its replicated architecture makes it unsuitable for
serverless computing, where a storage system must match the autoscaling nature of the
compute. Moreover, it provides only causal consistency between replicas which would be
insufficient for applications that require serializability.

ForkBase [43] is a multi-version key-value storage system for building ’forkable’ applica-
tions such as blockchains and collaborative analytics. Its design choices are geared towards
building blockchain-based applications, such as using a Structurally-Invariant Reusable
Index for providing tamper evidence and data deduplication. Like TARDiS, a conflict in
ForkBase results in a new fork for the object being created. However, forks are created
at a per-object level, and there is no multi-object transactional support. Ficus [23] and
Dynamo [17] also expose concurrent writes for users to resolve. However, this per-object
level of branching is limited in its applicability, similar to the case of ForkBase.

Rococo [34] is designed to increase the amount of concurrency when processing trans-
actions relative to standard protocols such as OCC and 2PL. A transaction is processed
in two rounds. A coordinator first breaks each transaction into individual pieces and sub-
mits them to each participating server. The servers return dependency information that
represents the relationship between other concurrently executing transactions that access
the same data items. Next, the coordinator aggregates this dependency information from

9

all servers and disseminates it to all the participating servers. Each server then reorders
the pieces if they detect conflicts through the dependency information of the transaction
and execute them. While this approach can increase throughput, it also adds latency to
process each transaction. When contention is low, this can be a significant overhead.

2.3 Batch Transaction Processing

Batch processing is a technique used in OLTP systems to achieve higher throughput. Such
systems buffer incoming transactions and process them in groups. During concurrency
control, operations can be applied to the entire batch, making the computation more
efficient. Usually, such systems trade off a long transaction completion time for high
transaction processing throughput.

Ding et al. [19] reduces conflicts within OCC by collecting transactions in batches
and reordering them both in the storage layer and during validation. Strife [38] is an
in-memory database that collects transactions in batches and dynamically partitions most
transactions into clusters that are executed in parallel without any concurrency control. It
then executes transactions that cannot be partitioned by enforcing concurrency control.

Another use-case of batching is in the category of deterministic databases. Such databases
usually consist of replicated architectures to ensure high availability. They prevent the need
for expensive commit operations such as 2PC by typically totally ordering transactions be-
fore executing them in that order at each shard, consequently eliminating the need for
concurrency control. Before executing, transactions in Calvin [41] acquire the required
read/write locks in the order of Calvin’s sequencer. Systems like BOHM [20] or PWV [21]
achieve determinism by creating a dependency graph of the transactions in the batch. In
such systems, it is vital to have prior knowledge of the read/write sets of transactions to
construct the dependency graph and acquire the locks needed for ordering transactions.
Aria [33] is a deterministic database that orders transactions only after they have been
executed. However, it lacks the scalability required by serverless platforms since it does
not partition data across machines.

Ding et al. and Strife are single-node implementations and do not meet the scalability
requirements of serverless applications. Furthermore, clients of these systems, along with
most deterministic databases, only submit transactions that the database reorders and
executes in batches, typically as stored procedures. Instead, our goal with Arbor is to
enable clients to issue interactive operations to the storage system and use the results
optimistically without waiting for the storage system to validate their transactions. The

10

systems described in this section are unsuitable for Arbor’s use case since they do not
support interactive client transactions.

11

Chapter 3

Optimistic Execution Model

This chapter presents Arbor’s execution model. We begin by describing the model, its
potential benefits, and how Arbor processes transactions in two rounds to enable this
model. We then present Arbor’s dependency-tracking client interface. Finally, we use an
example to illustrate how the execution model works in practice.

3.1 Overview

Developers that compose serverless workflows typically use external storage systems to
store application state [44, 25]. Platforms such as Beldi [48] and Boki [25] enable developers
to build such application workflows with added transactional guarantees. These guarantees
ensure that the application state remains consistent even if concurrent transactions make
conflicting updates.

We designed Arbor, a backend transactional storage system for serverless workflows,
to operate in an ‘optimistic’ model of client execution. In this model, functions within
serverless workflows continue executing without waiting for transaction commits to backend
storage to complete. Furthermore, the functions embed metadata within the transactions
they submit, allowing the storage system to track the lineage of updates. This metadata
identifies how data items depend on each other in terms of their read-write relationships.

The storage system uses this dependency information to organize the submitted transac-
tions in a dependency graph logically. At this stage, the transactions are graph-committed.
Their updates are globally visible to be read by other clients, but they can be aborted if the
system finds them to violate serializability. The storage system checks if the constituent

12

transactions of its dependency graph are serializable in a process called finalization. It fi-
nalizes transactions asynchronously, off the critical path of client execution by reorganizing
the graph into a tree, where each branch represents a serializable ordering of transactions.
The system forks new branches in the tree if it detects conflicting transactions. To arrive
at a final state of the application data, it must pick one of the branches in the tree to
commit and prune the rest. It can perform this branch selection based on custom policies
defined by application developers. Furthermore, it can re-execute transactions that lie
along pruned branches. The graph-commit and finalization steps collectively comprise a
two-round model of committing transactions.

The optimistic execution model has three potential advantages. Firstly, it enables
application clients to run quickly without added overheads due to the storage system en-
forcing concurrency control or executing a distributed commit protocol. This is because
the storage system does not block clients from continuing their execution while it validates
that each transaction is serializable. Consequently, this model can be particularly effective
when workload contention is low since most transactions are likely to succeed in commit-
ting. Secondly, asynchronously performing concurrency control permits batch processing
of transactions. This allows the storage system to process transactions more efficiently by
applying computationally expensive operations to a whole batch of transactions, result-
ing in a lower overall cost. Thirdly, allowing branches to form rather than preemptively
aborting conflicting transactions would give the system more context when deciding which
branch to commit. Consequently, application developers can use this added context to
implement dynamic branch selection policies. For example, in the case of an e-commerce
application, if two customers order a given item at the same time, the application can
decide which branch to commit based on which customer has the larger cart or a longer
order history [16].

3.2 Client Interface

Arbor provides a multi-versioned key-value interface with transactional semantics as shown
in Figure 3.1. Our modification to the read and write interfaces allows clients to embed
dependencies that capture read-write relationships between data items.

A client can execute a transaction by calling Begin from which it will receive a trans-
action object. The client can then read values using the Read function. The client must
include the key it wishes to read along with a policy which acts as a constraint on which
version of the key to return. If a value is found, the library returns it along with its
unique identifier. The default policy is for the client to read the latest version of the key.

13

Client Library
Begin() → Transaction Object
Transaction Object
Read(key, policy) → (value, id)
Write(key, val, dependencies) → id
Graph-commit() → OK
Abort()

Figure 3.1: Client interface

Consequently, this policy results in clients reading data that might not yet be commit-
ted. When issuing writes using the Write function, the client can embed dependencies as
metadata. The dependencies are a list of identifiers representing the data used to compute
the corresponding write. When the client is done executing the transaction, it can call
Graph-commit to submit the transaction to Arbor.

3.3 Transaction Processing in Practice

Figure 3.2 illustrates an example of how Arbor processes transactions. First, during ex-
ecution, clients create new versions of objects and embed dependency information into
the transactions they graph-commit to Arbor. Next, using the dependency information,
Arbor can organize the transactions using a dependency graph. After that, the finalization
process begins. The first step is reorganizing the dependency graph into a tree where each
branch represents a serializable execution order. We observe that concurrent updates to
the key A result in multiple branches being forked. The second step is to choose one of the
branches to commit and prune the rest. In this example, we choose the longer branch to
minimize the number of re-executed transactions. Transactions along pruned branches are
then re-executed until we are left with a single execution branch representing the order in
which the corresponding updates are applied.

14

T1
W(A)
W(B)

T2
W(C)

T3
R(A)
R(C)
W(A')

T4
R(A')
R(B)

W(A'')

T5
R(A')

W(A''')

A B C

A'

A'' A'''

A

T6
R(A'')
W(D)

D

B

C

A'

A'' A'''

D

A

B

C

A'

A''

D

A'''

Execution Dependency
Graph

Transaction
Validation

Finalized
Execution

Time

Figure 3.2: Example of transaction processing in Arbor. We use the ’ symbol in the figure
to distinguish different versions of an object. For example, we label the first version of key
A. But when this object is updated, we label the new version as A’.

15

Chapter 4

Design

Arbor is a dependency-tracking storage system that operates in the same data center as
its application clients. It partitions data by key across different shards, as shown in Figure
4.1. This allows it to scale to client requests while balancing load among its shards. Each
shard is, in turn, composed of four major components: a data layer, an indexing layer, a
communication layer, and a transaction processing engine.

Application clients that submit transactions to Arbor embed dependency information
within the corresponding updates they make. This information captures the read-write
relationships between data items. For example, the update corresponding to adding a new
post to a user’s timeline in a social media application will depend on the previous version
of the user’s timeline being updated and the data item corresponding to the post itself.
The client can capture this relationship by including the identifiers associated with the
two dependencies as arguments to the corresponding update they issue to Arbor. As we
discussed in Section 3.1, this dependency-tracking interface has three main benefits: (1) it
facilitates Arbor’s two-round commit model where it can add transactions that the client
has executed to a dependency graph quickly, thereby allowing clients to continue their
execution without waiting for Arbor to acquire locks or validate read/write sets, (2) it
allows Arbor to process transactions in batches, which can help reduce the overall cost of
processing transactions and (3) it allows Arbor to create multiple branches of execution
when validating transactions, and consequently, allow developers to implement policies for
deciding which transactions to commit with added context.

Arbor utilizes the dependency information supplied by clients and stores data items
as a dependency graph in the data layer of each shard. Within the graph, each vertex
represents a data item, and edges represent dependencies between them. Because the data

16

Client Client Client

Replicate Metadata

Replication
Unit

Communication Layer

Indexing Layer

Key Versions

ID Data Item

Txn ID Txn Object

Branch Priority

Dependency
Graph

Transaction
Processing

Engine

Client
Handler

Data Layer

Txn reads / graph-commit

In-memory

Shard i

Local vertex

Replicted vertex

Local Dependency

Cross-shard dep

Interaction between components

Mapping

Figure 4.1: System Architecture

17

is partitioned, each shard holds the data of only a disjoint subset of the dependency graph.
Edges within the graph are directed from child vertices to parent vertices to account for
cross-shard dependencies. These unidirectional edges allow Arbor to record the dependency
information of vertices even if their parent nodes are not located on the same shard. To
finalize multi-shard transactions, the shards must all have the same global view of the
dependency graph to all arrive at the same validation tree. To this end, Arbor uses a
unique replication mechanism when processing transactions, replicating the dependency
graph metadata (i.e., keys and edges) of transactions within the batch being finalized
to all shards. Arbor processes each batch of transactions in isolation, so any incoming
transactions added to the dependency graph do not affect those being processed.

Directly looking up data in Arbor’s dependency graph would be inefficient since it
would require traversing the graph to find the relevant data. Furthermore, when servicing
read requests from functions within a workflow, Arbor should be able to return items
that lie on the same chain of dependencies as the function’s ancestors’ updates. If a
function uses versions of data from a different chain of dependencies, it can lead to non-
serializable computation. To this end, Arbor indexes data across multiple attributes and
holds these mappings in the Indexing Layer. As shown in Figure 4.2, include mapping
transaction objects to their constituent writes, keys to their corresponding versions, data
identifiers to their associated vertex in the graph, and keeping track of validated branches
of execution during the finalization process. The list of validated branches is sorted based
on a customizable priority, which developers can implement (see Section 4.4). In turn,
Arbor uses this list primarily for two reasons: (1) when selecting a branch to append
a transaction to, it chooses the branch with the highest priority that contains all the
transaction’s dependencies, and (2) after processing transactions in a batch, it finalizes the
branch with the highest priority and prunes the rest.

Both the data layer and the indexing layer are stored in memory. Compared to sec-
ondary storage, this allows fast access to data. However, due to the volatile nature of
memory, this design is not suitable for handling crashes or node failures. If data is too
large to store in memory, it can also limit the applications that can be supported. However,
data center machines typically have large memory sizes; for example, AWS EC2 virtual
machines can be provisioned with up to 192 GB of memory [25].

The communication layer is composed of a client handler and a replication unit. The
client handler serves client reads and graph-commits. When serving data reads, it uses the
key-to-version mapping within the indexing layer to return a version of data that satisfies
the client’s read policy. When handling graph-commits, it adds the corresponding trans-
action writes to the dependency graph and populates the tables in the indexing layer. It
then submits the transaction to the transaction processing engine, which finalizes trans-

18

a

b1

c

b2 d

b3 b4

e

f

g

Epoch n

Epoch n-1

Key Index
A:[1]

B:[1,2,3,4]

C:[1]

...

Identifier Index
0x5d3a: a

...

Branch Index
<Leaf: c, Length: 3>

Graph-commit

Finalized
Transaction Index
15278: {ws: {b4,e}}

...

Figure 4.2: Illustration of the different mappings stored in each shard’s indexing layer.

actions off the critical path of execution for clients. Based on input from the transaction
processing engine, the replication unit broadcasts sections of the local dependency graph
to other shards in the deployment. Additionally, it aggregates broadcasts received from
other shards and propagates them to the transaction processing engine.

Each shard’s transaction processing engine (TPE) finalizes transactions that have been
graph-committed to the system in batches. Internally, the TPE has multiple stages (see
Section 4.1) to process transactions, and all shards work in lockstep when processing each
batch. When processing each batch, each TPE first independently finalizes the single-
shard transactions within the batch. The TPEs then go through a broadcast and aggregate
stage where the metadata of the dependency graph of the current batch of transactions is
replicated to all shards. All the TPEs then finalize multi-shard transactions in the batch.
Since the dependency graph is replicated before the TPEs process multi-shard transactions,
and the finalization process is deterministic, the TPEs arrive at the same state of execution
without the need for distributed commit protocols such as 2PC (See Theorem 4.3.1 and
its proof).

4.1 Workflow of Transaction Processing

Figure 4.3 illustrates the transaction processing workflow in Arbor. When the client han-
dler receives graph-committed transactions, it populates the corresponding entries in the
indexing layer and adds the transaction’s writes to the dependency graph in the data layer.

19

Figure 4.3: Workflow of transaction processing in Arbor.

It then adds the transaction to the TPE’s input buffer (1 and 2 in Figure 4.3). The
buffer enables a producer-consumer paradigm of execution, where the TPE can dequeue
transactions that the client handler has appended. If the client handler appends transac-
tions to the buffer at a rate faster than the TPE can handle, then the clients that issued
those graph-commits are blocked until there is space in the buffer. This throttling mech-
anism is beneficial since it limits how much faster clients can graph-commit transactions
relative to the rate at which Arbor can finalize them. Suppose the number of unprocessed
transactions queued up grows significantly. In that case, it is more likely to suffer cascading
aborts as there is a larger window of time in which conflicts can occur.

The TPEs of all the shards collectively process transactions in batches and work in
lockstep. Each TPE reads a fixed size of transactions from the input buffer based on
the batch size configured during initialization (3 in Figure 4.3). The TPE defaults to a
timeout if insufficient transactions are available. Transactions that are read collectively by
all TPEs form the batch that they will process.

The transactions then enter a sorting unit where they are seggregated into groups
of single-shard and multi-shard transactions, respectively. Multi-shard transactions are
placed in a buffer for processing in a later step. The sorting unit iterates through the
group of single-shard transactions and aggregates the dependencies of their constituent
writes. It sets this aggregated list as the dependency of the transaction as a whole. As

20

a transaction’s writes are only visible to other transactions after it has completed its
execution, cyclic dependencies between transactions are not possible. It then sorts the
single-shard transactions topologically [28] based on their dependencies (4 in Figure 4.3).

As part of its finalization process, Arbor reorganizes sections of its dependency graph
to a validation tree where each branch represents a serialized execution, and conflicts
result in new branches being forked. Once topologically sorted, the group of single-shard
transactions enters a validation unit. Here, the TPE selects a branch from the validation
tree containing all of the transaction’s dependencies, and if it does not detect any conflicts,
it adds the transaction to the end of the branch. However, if conflicts exist with the
transaction being added to the branch, the validation unit forks a new branch and adds
the transaction to it (see Section 4.3). After adding all the transactions in the group to the
validation tree, it selects one of the branches to finalize based on their respective priorities.
The validation unit prunes other branches and propagates the corresponding transactions
to the re-execution unit asynchronously.

The group of finalized single-shard transactions are then added to the same unordered
buffer in which the multi-shard transactions were added to (5 in Figure 4.3). The TPE
then propagates the data in the buffer to the replication unit (6 in Figure 4.3). The
TPE only serializes the required metadata (transaction ID, keys and dependencies from
the transction’s write set) from this buffer and not the actual data values. In turn, the
replication unit broadcasts this data to all the other shards in the deployment. The TPE
is then blocked until it receives broadcasts from all other shards through the replication
unit (7 in Figure 4.3). This stage enables the shards to work in lockstep when processing
each batch, as they all must complete finalizing single-shard transactions before continuing
with their execution.

Once the TPE has received broadcasts from all its peers, it populates its dependency
graph in the data layer and the mappings in the indexing layer with the corresponding data
(8 in Figure 4.3). Since each shard finalizes multi-shard transactions without coordinating
with other shards, they must all be operating on the same state of data before proceeding.
To achieve this, all the shards deterministically aggregate the received branches of finalized
single-shard transactions into a single branch which represents a total order of execution
of these transactions. This is illustrated in Figure 4.4. Each TPE links the branches
of single-shard transactions together in an order that is configured when the system is
initialized.

The aggregation unit then propagates the unprocessed multi-shard transactions re-
ceived by all the shards in the current batch to the multi-shard transaction unit. Here,
they follow the same steps as single-shard transactions for finalization. They are first

21

Figure 4.4: Illustration of how each Arbor shard deterministically aggregates the execu-
tion order of single-shard transactions finalized independently at different shards. We use
different colors to distinguish transactions finalized at different shards. Transactions that
are crossed out in the figure represent those that are pruned during finalization.

topologically sorted and then subsequently added to a tree following a validation pro-
cess (see Section 4.3). The multi-shard transaction unit then adds the branch of finalized
transactions to the data layer. Any transactions that are aborted during this stage are
re-executed asynchronously. To prevent duplicate re-executions, only the shard at which
an aborted multi-shard transaction was graph-committed to will trigger the re-execution
of the transaction.

The process of finalizing transactions is an intrinsically serial one since Arbor must
validate each batch of transactions before it can add transactions from a future batch to
the validation tree. However, the architecture of the TPE allows some level of concurrency
between batches. Batches of transactions that will be processed in the future can be
segregated and topologically sorted (4 in Figure 4.3) concurrently while the current batch

of transactions is being finalized (5 - 10 in Figure 4.3).

22

a

b1

c
b2

d

b4 b3
e

f
b5

h

g

<Fork ID: 1,offset: 0>

<1,2>

<1,1>

<1,3>

<1,2><2,0>

<1,2><2,1>

<1,2><2,2>

<1,3><3,0>

<1,4>

<1,3><3,1>

<1,3><3,2>

<1,3><3,0><4,0>

read-write dependency

tree edge

Figure 4.5: Example showing the lineage addresses of the vertices in a finalized tree.

4.2 Lineage Addressing

During the finalization process, when Arbor reorganizes its dependency graph into a tree,
there is a requirement to efficiently identify if two given nodes lie on the same path in the
tree. This is because: (1) when adding a vertex to a branch, we must verify that all its
parent dependencies lie on that branch and (2) we must check if there are any conflicting
updates with the vertex’s transaction. To meet this need, we developed an addressing
mechanism called lineage addressing, inspired by TARDiS’s fork paths [16]. We will first
describe how the lineage addressing scheme works and then describe how it is different
from the scheme used in TARDiS.

Figure 4.5 illustrates an example of a tree created during the finalization process and
how lineage addresses are assigned to vertices. Each lineage address consists of a list of
(fork ID, offset) pairs. The lineage address of a vertex concisely represents the position of
the vertex relative to the root node. The path from the vertex to the root may contain
multiple fork points. The vertices between any two fork points constitute a ‘segment’ and
the entries in a vertex’s lineage address represent each of the segments in the path from
the vertex to the root. Consider the vertex f in Figure 4.5. There are two segments
corresponding to this node. One from node a to node c and the other from node d to node
f. These are captured by the entries in its lineage address. The first entry (1,2) represents
the section of the path until the first fork point, node c. The second entry (2,2) represents
the second section of its path, ending at the vertex f itself. When a new branch is forked,
the addresses of the existing branch do not change. This is why the addresses of nodes b2

23

and b3 do not have new entries added even though other branches were forked.

Algorithm 1 Branch Address Comparison

1: function CompareLineage(a, b) ▷ a and b are both Lineage Addresses
2: if len(a) == len(b) then
3: idx = len(a) - 1
4: return a[idx].ForkId == b[idx].ForkId
5: end if
6: var shorter, longer LineageId
7: if len(a) >len(b) then
8: idx = len(b) - 1
9: shorter = b[idx]
10: longer = a[idx]
11: else
12: idx = len(a) - 1
13: shorter = a[idx]
14: longer = b[idx]
15: end if
16: return (shorter.ForkId == longer.ForkId) and (shorter.Depth <= longer.Depth)
17: end function

Algorithm 1 illustrates how lineage addresses can be compared in constant time to
identify if two vertices lie on the same branch. If the lineage addresses of two vertices
have the same number of entries and their Fork ID’s match, then they are on the same
branch (lines 2-5). In cases where they have different numbers of entries, we only compare
the entry at the index that corresponds to the last element of the shorter lineage address.
When the Fork IDs match and the entry in the shorter lineage address has a smaller depth
than the corresponding entry in the longer lineage address, we can infer the two vertices
are on the same branch.

Unlike Arbor, which can fork new branches from the middle of existing ones, TARDiS
only forks new branches as siblings to existing leaf nodes in its state tree. TARDiS’s fork
path scheme comprises a list of (i, b) pairs. Each entry in a given vertex’s fork path
represents that the vertex is a descendant of the bth child of the state i [16]. As a result,
when a new branch is forked from a given vertex for the first time, the fork path of the
existing branch must be updated with a new entry. If Arbor used this scheme as is, it
would require a recursive update of fork paths of all vertices present on the existing branch
that the new one is being forked from, thereby potentially adding significant overhead to

24

the fork operation. Instead, the semantics of using (fork ID, offset) pairs precludes the
need for such a recursive update, making forking new branches a computationally cheap
operation.

4.3 Concurrency Control

We now describe how Arbor’s transaction processing engine (Figure 4.3) validates whether
transactions within a batch are serializable. Figure 4.6 presents an overview of the pro-
cess. Arbor first picks a batch of graph-committed transactions. Rather than recursively
traversing through its dependency graph, Arbor selects transactions from the TPE’s input
buffer (as we discussed in Section 4.1). Next, it aggregates each transaction’s dependencies
and sorts them in topological order using the dependencies. Arbor then iterates through
the topologically sorted list of transactions and adds them to a branch of a validation tree
if they pass the required checks. If conflicts exist, Arbor forks a new branch and appends
the transaction to it. Each branch in the validation tree represents a serialized order of
transactions and edges between vertices reflect their ordering rather than read-write depen-
dencies. In cases where creating a branch is impossible, Arbor aborts and re-executes the
transaction. After adding all the transactions to the validation tree, Arbor picks one of the
branches to commit and prunes the remaining branches. It re-executes the corresponding
transactions and ends up with a single branch of transactions that reflects the serialized
order of execution.

Algorithm 2 illustrates how transactions are added to a branch. This process involves
determining the branch with the highest priority that contains all the transaction’s depen-
dencies, checking for conflicts, and either forking a new branch or adding the transaction
to the selected branch. We begin by iterating through each transaction within the topo-
logically sorted list and check if any of its dependent transactions have been aborted (lines
5-8). If so, we abort the current transaction and move on to the next one. When multiple
branches of execution exist, we check if all of the transaction’s dependencies lie on the same
branch and return the longest such branch if the condition is satisfied (lines 10-13). If not,
we abort the current transaction and move to the next one on the list. This is because
each branch represents a distinct serialized execution. If a transaction depends on data
from different branches, it cannot be placed on any single one.

Given a candidate branch from the previous step, we check if there are any conflicting
updates with the current transaction that we wish to add to the branch using the con-
flict window technique (lines 16-21). Finally, we append the transaction to the candidate
branch if we detected no conflicts. In case of conflicts, we create a new branch from the

25

Algorithm 2 Concurrency Control

1: abortList = []
2: function ConcurrencyControl(txnList) ▷ txnList is a topologically sorted list

of transactions
3: for txn in txnList do
4: if checkAbort(txn.dependencies) then
5: txn.Abort = True
6: abortList.append(txn)
7: continue
8: end if
9: branch, branchIdx, abort = checkSameBranch(txn.dependencies)
10: if abort == True then
11: txn.Abort = True
12: abortList.append(txn)
13: continue
14: end if
15: conflictPoint, abort = checkConflict(txn, branch)
16: if abort == True then
17: txn.Abort = True
18: abortList.append(txn)
19: continue
20: end if
21: if conflictPoint != None then
22: branch = createBranch(conflictPoint.Parent)
23: branchList.append(branch)
24: branchIdx = len(branchList - 1)
25: end if
26: setLineage(txn)
27: addTxn(txn, branch)
28: branchList.MaintainPriority(branchIdx)
29: end for
30: abortList.append(pruneBranches())
31: ReExecute(abortList)
32: end function

26

a

b

c

b' d

b'' b'''

e

f

g

d
b'
b''
g

b'''
e
f

a

b

c

b'

d

b'' b'''

e

f

g

a

b

c

b'

d

b''

b'''

e

f

g

Graph-commit

Epoch n

Topological
Sort

Collect
Transactions

Concurrency
Control

Finalized
Order

Finalized

Aborted

Epoch n-1

Figure 4.6: Data-oriented overview of the transaction finalization process

parent vertex of the earliest conflicting update and add the transaction to that branch.
Once a transaction is added to a branch, we must update the branch’s priority and its
position within the sorted list of branches (lines 22-26). We update the priority using the
policy implemented by the application developer (described in Section 4.5). Moving the
augmented branch to a new position in the list is an O(n) operation where n is the number
of branches, since the rest of the list is sorted correctly.

To detect conflicts within a branch, we use the notion of a ‘conflict window’ from Tango
[10] for each of the transaction’s dependencies. Unlike Tango, where a conflict window is
defined using BeginTX and EndTX records to define when the client is executing a given
transaction, we instead define a conflict window for each of the transaction’s dependencies
as the section of the selected branch starting from the leaf node till the dependency itself.
Within this window, if there are any new versions of the key corresponding to the dependent
vertex, then a conflict exists. This is because if we add the transaction as a new leaf node
to such a branch, the newer version of the dependent key will make the data used by the
transaction stale, so adding the transaction to the end of such a branch will not result in
serializable execution.

Consider Figure 4.7 where the transaction being added to the branch has two dependen-
cies, i.e, a and b’. We define two conflict windows, one for each dependency. The conflict
window for key b has no conflicting updates. On the other hand, there is a conflicting
update in the conflict window of key a. As a result, we cannot add the transaction at the

27

Figure 4.7: Illustration of how Arbor uses the concept of conflict windows to detect
conflicts. It defines a conflict window for each dependency of a transaction and checks
if any new versions of the corresponding key exist in each corresponding window. In the
figure, we see that a conflict exists for the dependency to key a as a conflict exists within
the window.

end of the branch and instead fork a new one at the parent vertex of the conflict. The last
step of the finalization process is for Arbor to select the highest priority branch created
during the transaction validation step and prune the rest.

4.3.1 Correctness of Distributed Transaction Processing

Theorem 4.3.1. After processing each batch of transactions, all shards arrive at the same
finalized branch.

Proof. (BY CONTRADICTION.) Let us assume, on the contrary, that the shards arrive
at different finalized branches after processing a given batch. There can be two causes
for this: (1) they have ordered single-shard transactions differently, or (2) they created
different validation trees when finalizating multi-shard transactions.

Each shard independently finalizes the single-shard transactions it is responsible for
within a batch. As shown in Figure 4.4, the shards then link the aggregated branches
together in an order defined when the system is initialized. Therefore, the shards cannot
arrive at different orders for the single-shard transactions within the batch.

28

type Priority interface {
AugmentPriority(leaf Priority, txnPriorityMetadata interface{})
ComparePriority(branchA, branchB Priority)

}

Figure 4.8: Customizable Branch Selection Policy Interface

Multi-shard transactions within the batch are replicated across all shards and finalized
by all. For the shards to create different validation trees when processing these transactions,
they must have either arrived at different topological orders or made different decisions
when detecting conflicts. Each shard first sorts the multi-shard transaction in ascending
order of their associated transaction identifiers and then uses Kahn’s algorithm [28] to
order them topologically. Sorting the transactions by their identifiers first ensures that in
Kahn’s algorithm, transactions that are logically siblings to each other in their dependency
relationship are ordered the same across all shards. Consequently, this ensures that all the
shards arrive at the same topological order for multi-shard transactions. When validating
multi-shard transactions, they are added to the same finalized tree across all shards and
use Algorithm 2 to detect conflicts, which is deterministic. As a result, it is impossible for
different shards to make decisions when adding multi-shard transactions to their validation
tree.

Hence, our assumption was incorrect, and all shards arrive at the same finalized branch
after processing each batch of transactions.

4.4 Branch Selection

For developers to implement custom branch selection policies, we implemented the interface
shown in Figure 4.8. The interface consists of two functions, namely AugmentPriority and
ComparePriority. This interface gives developers the freedom to implement the logic to
define a branch’s priority based on the semantics of their applications. As clients execute
transactions, they can embed metadata for Arbor to use when invoking the branch selection
policy. During finalization, Arbor invokes the developer’s AugmentPriority function that
can utilize this metadata to update the corresponding branch’s priority. After adding the
transaction to a branch, Arbor maintains its sorted list of branches using ComparePriority.

Consider Figure 4.9, which illustrates an implementation of a policy for selecting the
longest branch. When clients are done executing each transaction, they can embed the
length of the transaction’s write set as priorityMetadata. When a transaction is added

29

type LongestBranchPriority struct {
length int64

}

func NewLongestBranchPriority() ∗LongestBranchPriority {
return &LongestBranchPriority{length: 0}

}

func (lp ∗LongestBranchPriority) AugmentPriority(leaf Priority, txnPriorityMetadata interface{}) {
parentPriority := leaf .(∗LongestBranchPriority)
writeSetCount := txnPriorityMetadata.(int64)
lp .length = parentPriority.length + writeSetCount

}

func ComparePriority(branchA, branchB Priority) bool {
A := branchA.(∗LongestBranchPriority)
B := branchB.(∗LongestBranchPriority)
return A.length > B.length

}

Figure 4.9: Implemention of Longest Branch Selection Policy

to a branch, Arbor invokes the AugmentPriority function, which increments the branch’s
priority by the length of the transaction’s write set. When maintaining the sorted order
of branches (as described in Algorithm 2, Arbor utilizes the ComparePriority function,
which sorts the branches in descending order of their length. This interface is simple yet
powerful because it allows developers to define a branch’s priority based on its constituent
transactions’ characteristics.

4.5 Implementation

We implemented our prototype of Arbor in the Go programming language. The codebase
consists of approximately 5.2K lines of code. We implemented a custom TCP socket-based
RPC library for I/O between clients and servers as we found that gRPC was not able to
saturate 10 Gb/s network links. Rather than spawning a new Go routine on the server-
side for every RPC invocation, our custom RPC library establishes persistent connections
between clients and servers during the experiment. We used the msgp [6] library to marshal
and unmarshal data for communication over the network.

Our prototype of Arbor uses Go map objects to store the mappings of the indexing

30

layer. We implement a custom interface on top of standard map objects which shard data
across multiple maps for increased concurrency, and use a read/write mutex with each
individual map to prevent inconsistencies arising out of race conditions. Furthermore, we
maintain separate copies of the maps, one for serving client requests and the other for the
transaction processing engine. This decouples client requests from blocking background
transaction processing. We add data to the the copy that we use to serve client requests
when clients graph-commit transactions. On the other hand, we add data to the copy used
for background processing during the sorting and aggregation units of the TPE.

We implemented 4 read policies in our prototype of Arbor: (1) Latest : read the latest
submitted version of a key that can correspond to either a graph-committed or finalized
transaction, (2) Finalized : return the latest submitted version of a key that has been
finalized, (3) Versioned : return the version of the key corresponding to a version specified
as an additional argument and (4) Tagged : read the latest client submitted version of a
key corresponding to a user-defined tag specified as an additional argument.

31

Chapter 5

Evaluation

In this chapter, we present the results of our experiments comparing Arbor against related
systems using various deployment configurations and workload access patterns. We begin
by describing the experimental setup in Section 5.1 and the metrics we use to gauge Arbor’s
performance in Section 5.2. We then describe the workloads we use in Section 5.3 and the
evaluated systems in Section 5.4. Finally, we present our results in Section 5.5.

5.1 Experimental Setup

We conducted our experiments using nine machines from a local cluster. Each machine has
a 12-core Intel Xeon E5-2620 CPU that runs at 2.10 GHz with 64 GB of RAM and Ubuntu
20.04.3 LTS with kernel 5.11.0-34-generic. 10 Gb/s network links connect the machines.
We designated six machines for running clients in our experiments. We configured each
machine to run with at most ten concurrent transaction-issuing client threads to preclude
any performance bottlenecks from arising during the experiment.

We configure Arbor to use a batch size of 5000 transactions. However, if an insufficient
number of transactions have been graph-committed to trigger transaction processing, we
default to a timeout of 300 ms from when Arbor began collecting transactions for the
current batch. We disable re-execution of aborted transactions. We run each experiment
for 140 seconds and exclude results from the experiments’ first 20 seconds to achieve steady
state. We continue to issue transactions from clients until all transactions from the 120-
second steady state period have been processed and end the experiment at this point. This
is done to keep each system in a steady state throughout the experiment. We repeated

32

each experiment three times, and the data points in our figures represent the mean value
from all repetitions, while error bars represent the 95% confidence intervals.

For executing workloads, we initially used Nightcore [26], a serverless platform opti-
mized for latency-sensitive applications. To evaluate its performance, we deployed it on
a local cluster of 4 machines and observed a peak throughput of only 17,000 invocation-
s/second when invoking a function that returns “Hello World” to the invoking client. The
limited throughput results from each function invocation having to propagate through a
gateway, dispatching queue, per-request tracking log, and, finally, the corresponding func-
tion container. As a result, if we used Nightcore, we would have insufficient load during our
experiments to saturate the storage systems in our evaluation. We assume that when using
a commercial serverless platform such as AWS Lambda [2] to deploy an application, the
cloud provider can scale compute resources sufficiently to match the function invocation
load.

5.2 Performance Metrics

Arbor’s performance is measured using the following metrics. Note that aborted transac-
tions are not included in any of the calculations.

• Finalization Throughput measures the rate at which Arbor finalizes submitted
transactions. To determine the finalization throughput, we first measure the time
between the beginning of the steady state (20 seconds after each experiment begins)
and when all transactions submitted during the steady state have been processed.
We then compute the throughput by dividing the number of finalized transactions
by this time duration.

• Finalization Latency Finalization latency measures the average time it takes for
a transaction to be finalized after it has been graph-committed. We record the
timestamps at which each transaction is graph-committed and finalized. After each
experiment, we calculate the finalization latency by finding the difference between
the two timestamps for each transaction and taking the average for all transactions
submitted during steady state.

• Graph-commit Throughput measures the rate at which transactions are graph-
committed during the steady state of the experiment.

• Graph-commit Latency measures the time between when a client starts executing
a transaction and when it has completed graph-committing it.

33

5.3 Benchmark Workloads

In our evaluation, we use the YCSB+T [18], and Retwis [31] workloads. YCSB+T is an
extension of YCSB [14], a popular workload used to evaluate key-value stores, with multi-
operation transactional semantics [49]. In most of our experiments that use the YCSB+T
workload, transactions are primarily configured to read, modify, and write (RMW) two
keys. With this multi-key RMW configuration, clients can embed dependency information
within writes, which is how we expect applications that use Arbor to construct transactions.
We pre-fill each system we evaluated with 10 million keys in our YCSB+T experiments as
done in Carousel [46]. Each value is 1 kilobyte in size.

Retwis is a Twitter-like workload with many-to-many relationships between users. Our
implementation of Retwis is similar to that of Augustus [37]. Each user has a follower list
(list of followers), a following list (list of other users that this user follows), and a timeline
consisting of posts from users they follow [37]. There is a maximum limit of 50 posts in
each user’s timeline (default value used in TARDiS [16]). The Retwis workload consists
of the following transactions: Follow, Post and Load Timeline. The Follow transaction
involves one user following another. It consists of two RMW operations with updates
to one user’s follower list, and the other user’s following list [37]. The Post transaction
involves creating a unique post for a given user and adding it to the timelines of the user’s
followers. Finally, the Load Timeline transaction involves reading all of the posts within
a given user’s timeline. The Retwis workload is a good candidate to evaluate Arbor since
each transaction involves updates to many keys, and unlike YCSB+T, transactions involve
dependency relationships between different objects. For example, in a Post transaction,
when adding a post to a follower’s timeline, the new version of the timeline depends on
the older version that the client read and the post object.

We use two configurations of Retwis in our experiments that are the same as those used
in the evaluation of TARDiS [16]. These include Post-Heavy, which consists of 65% Load
operations, 30% post operations and 5% follow operations and Load-Heavy consisting of
85% load operations, 10% post operations and 5% follow operations. We used the default
value in TAPIR [49] and Natto [47] and pre-fill each system we evaluated with 10 million
users in our Retwis experiments.

5.4 Evaluated Systems

We do not compare Arbor against some of the related systems we described in Chapter 2,
such as TARDiS [16] and Boki [25], as these systems store data on secondary storage. As a

34

result, it would be unfair to compare these systems to Arbor. Instead, we evaluate Arbor
against two other systems that are in-memory databases and enforce the serializability of
transactions.

The first system we compare against is VoltDB [40]. It is a popular in-memory SQL
database for production use. In contrast to Arbor, it does not support interactive oper-
ations within transactions since they are executed as stored procedures. As a result, the
client and server only need to make one network round-trip to issue a transaction. VoltDB
is optimized for workloads in which transactions either use keys belonging to only one
partition of a table or transactions which it can break up into smaller units that it can
independently execute at each partition. However, when executing other types of multi-
partition transactions, VoltDB’s transaction coordinator locks all partitions in the cluster,
regardless of how many partitions are participating in the transaction [5].

The second system we compare against is a transactional key-value store that uses op-
timistic concurrency control (OCC) and the two-phase commit (2PC) protocol to commit
cross-partition transactions. This system is derived from the implementation of the Span-
ner [15]-like system used in the evaluation of Natto [47]. This system commits transactions
synchronously and it executes the second phase of 2PC lazily.

For a fair comparison, we implemented the OCC+2PC system in the Go language and
configured it to use the same custom socket-based RPC library as Arbor. We used the Java
client for VoltDB instead of the Go language client since we found it was significantly faster
when using the same workloads. To maximize VoltDB’s performance, we followed its docu-
mentation [7] and configured clients to issue transactions asynchronously and implemented
callback functions to interpret if transactions are committed or aborted.

5.5 Results

We present our results from experiments on a single-machine deployment in Section 5.5.1.
This configuration eliminates the difference between single-shard and multi-shard transac-
tion processing in Arbor. We then present how Arbor scales in throughput by adding more
machines and partitioning data across them in Section 5.5.2, in a workload consisting of
only single-shard transactions. We illustrate the effects of cross-partition transactions in
Section 5.5.3 and skewed access patterns in Section 5.5.4. Finally, we show how Arbor’s
two-round commit model reduces execution time for applications that sequentially execute
transactions in Section 5.5.5.

35

(a) Single Key RMW (b) Multi-key RMW, Uniform (c) Multi-key RMW, Skew

(d) Retwis, Post-Heavy (e) Retwis, Load-Heavy

Figure 5.1: A comparison of throughput achieved with Arbor, OCC, and VoltDB’s on a
single machine. We report finalization throughput for Arbor along with the transaction
commit throughput for the other two systems.

5.5.1 Single machine deployment

We begin our evaluation by considering how a single-machine deployment of each system
performs under different access patterns.

Figure 5.1(a) illustrates results from experiments consisting of single-key RMWYCSB+T
transactions. This configuration favors VoltDB because each transaction can be executed
independently by each table partition, and consequently, there is a high degree of paral-
lelism. As a result, VoltDB can achieve 1.57x the peak throughput of Arbor. Despite the
optimizations in Arbor’s batch-processing pipeline, since it does not process transactions
within a batch in parallel, it cannot make up the deficit to VoltDB. Moreover, transactions
executed by Arbor and the OCC+2PC system involve an extra network round-trip per
read operation relative to VoltDB, where transactions are executed as stored procedures.
We found that deploying more Arbor shards on the same machine did not improve per-
formance, as the CPU is completely utilized even when using one shard. The benefits of
Arbor’s batch processing pipeline come to light when comparing Arbor to the OCC+2PC

36

system, where Arbor achieves a speedup of 1.54x in peak throughput.

We next consider the multi-key RMW configuration of YCSB+T with a uniform key
distribution (Figure 5.1(b)). In this case, VoltDB suffers from the coordination overhead
it must enforce for transactions that involve multiple table partitions. As we mentioned
before, VoltDB’s transaction coordinator locks all partitions in the cluster to commit such
transactions, regardless of how many partitions are participating in the transaction [5].
As a result, we observe a sharp drop in throughput for VoltDB relative to the single-
key RMW case, and the resultant peak throughput is 1003 transactions per second (tps).
Arbor’s peak throughput drops by 36.8% from 87.9K tps to 55.6K tps. This is because each
transaction has twice the number of dependencies as the previous case, which increases the
time taken to add transactions to the validation tree, as Arbor creates a conflict window
for each dependency of a transaction. The peak throughput of the OCC+2PC system falls
by 15.3%. The relatively modest decrease is because the major bottleneck for this system
is the synchronous processing of transactions. For this access pattern, Arbor achieves a
speedup of 55.4x and 1.47x relative to VoltDB and the OCC+2PC system.

In the case of a skewed key distribution (Zipfian coefficient = 0.8) as shown in Figure
5.1(c), we observe that Arbor’s peak throughput falls to 40.8K tps. The primary cause for
this is the increase in abort rates to 24.5% when Arbor reaches its peak throughput. In
the case of OCC, the abort rate goes up to only 1.9%. Arbor’s effective time to commit
a transaction ranges from 200-650 ms, whereas the OCC systems’s is up to 1.6 ms. This
means that the effective window for writes to become stale is much higher in the case of
Arbor and results in a much more significant rise in abort rates and, consequently, a drop
in throughput.

Finally, we consider the Retwis workload illustrated in Figures 5.1(d) and 5.1(e). Since
both configurations consist primarily of read-only transactions, the absolute throughput is
significantly higher for the Retwis workloads than for the RMW YCSB+T transactions.
However, as in the case of the YCSB+T experiments, we observe that Arbor has a speedup
in peak throughput relative to the OCC+2PC system in the post-heavy and load-heavy
configurations by 1.69x and 1.75x, respectively. VoltDB’s performance is similar to the
multi-key YCSB+T experiments. This is because all of the transactions in the Retwis
workload involve data from multiple partitions of the consistituent tables. Due to this,
VoltDB processes transactions relatively slowly since all table partitions have to be locked
when processing each transaction.

37

(a) Finalization Throughput (b) Graph-commit Throughput (c) Finalization Latency

(d) Graph-commit Latency (e) Collection Latency (f) Aggregation Latency

Figure 5.2: Analyzing Arbor’s scalability using a YCSB+T workload consisting of single-
shard, multi-key RMW transactions with a uniform key distribution.

38

(a) Throughput (b) Latency

Figure 5.3: Analyzing the OCC+2PC system’s scalability using a YCSB+T workload
consisting of single-shard, multi-key RMW transactions with a uniform key distribution.

5.5.2 Scalability

We next evaluate Arbor’s scalability by observing how performance changes based on the
number of shards used in the deployment. In the results illustrated in Figure 5.2, we deploy
each shard on different machines and use a multi-key RMW workload consisting of only
single-shard transactions (we will gauge the effect of multi-shard transactions in Section
5.5.3). We adjust the batch size used in each set of experiments so that the collective
batch size of all shards is the same. We use a batch size per shard of 5000 transactions
when deploying one shard, 2500 transactions using two shards, and 1666 transactions
using three shards. Due to the limited number of client machines available, we could not
saturate finalization latency in the two-shard deployment and finalization throughput in
the three-shard deployment.

We observe peak finalization throughput scales from 54K to 80K to 95.6K tps as we add
additional shards, as seen in Figure 5.2(a). Adding more shards enabled more concurrent
transaction processing as each shard can independently finalize submitted transactions.
There is, however, an associated cost with broadcasting and aggregating the finalized
branches across all shards when processing each batch of transactions. Figure 5.2(f) il-
lustrates this latency which converges to 33.3 ms in the case of 2 shards and 29.3 ms in
the case of 3 shards. The smaller batch size of each shard in the latter case explains the
lower convergence value. As a result of this overhead, the peak throughput does not scale
linearly with the number of shards. Additionally, Figure 5.2(d) shows that adding more
shards allows Arbor to serve more clients with graph-commit latency staying below 0.8 ms
for significantly more clients.

Figure 5.2(c) illustrates that finalization latency first decreases as the number of clients

39

increases. The reason is that when there are few clients, the transaction graph-commit rate
from clients is the limiting factor. Figure 5.2(e) corroborates this explanation, which shows
the average time taken to collect a batch of transactions from the graph-commit queue on
the server side. We observe that the finalization latency for the single-shard deployment
begins to plateau at 36 clients. We throttle clients from executing if the size of a shard’s
input queue exceeds two batch sizes. This mechanism prevents finalization latency from
becoming too large to the point where cascading aborts become significant. This throttling
is why the finalization latency plateaus rather than exponentially rising.

Figure 5.3 illustrates the scalability of the OCC+2PC system using the same workload
as the Arbor experiments. The peak throughput scales from 37.8K tps with one shard
to 63.4K tps and 87.1K tps with two and three shards, respectively. Since the workload
consists of only single-shard transactions, there is no coordination between shards required
to process transactions. As a result, the relative scalability is higher than that of Arbor.
However, the peak throughput values in each configuration is lower than Arbor.

5.5.3 Cross-Partition Transactions

We now consider the effect of cross-partition transactions on the performance of Arbor
and the OCC+2PC system. We deploy each system using three shards, each on different
machines. We use the multi-key RMW YCSB+T workload and vary the portion of cross-
partition transactions in the workload. Figures 5.4 and 5.5 illustrate the results of our
experiments. We observe that in both Arbor and the OCC+2PC system, the percentage of
cross-shard transactions increases, throughput decreases, and latency increases. Compared
to the OCC+2PC system, Arbor achieves a relatively higher finalization throughput for
all workload configurations with less than or equal to 20% of cross-partition transactions.
In the case of 50% cross-partition transactions, the OCC+2PC system achieves a speedup
of 1.07x over Arbor in peak throughput.

Arbor suffers from a relatively higher reduction in throughput as we increase the portion
of cross-partition transactions in the workload. The bottleneck in Arbor is that all shards
replicate and process cross-shard transactions. This processing stage limits the benefits of
different shards processing single-shard transactions in parallel. Figure 5.4(e) shows the
latency of processing cross-shard transactions in each batch of transactions. We observe
that this latency grows at a constant rate of 6 ms for every increase of 5% of multi-shard
transactions and peaks at about 60 ms for the 50% cross-shard workload.

This overhead is intrinsic to Arbor’s design because each shard first processes transac-
tions independently, and then all shards aggregate the results to form a single execution

40

(a) Finalization Throughput (b) Graph-commit Throughput (c) Finalization Latency

(d) Graph-commit Latency (e) Multi-shard Transaction
Processing Latency

(f) Abort Rate

Figure 5.4: An analysis of cross-partition transactions effect on Arbor using a multi-key
RMW YCSB+T workload with uniform key distribution. Three shards are deployed in all
experiments. Each graph’s legend indicates the percentage of cross-shard transactions in
the corresponding workload.

(a) Throughput (b) Latency

Figure 5.5: An analysis of cross-partition transactions effect on the OCC+2PC system
using a multi-key RMW YCSB+T workload with uniform key distribution. Three shards
are deployed in all experiments. Each graph’s legend indicates how many transactions are
single-shard in the corresponding workload by percentage.

41

branch. Cross-shard transactions cannot be processed the same way because, after aggre-
gation, there could be conflicting updates in a cross-shard transaction’s conflict window
from transactions processed at a different shard. Consequently, this would lead to a non-
serializable execution. As a result, we opted for a design where all shards process cross-
shard transactions after collectively determining the order of single-shard transactions.

The OCC+2PC system commits cross-shard transaction using 2PC which adds over-
head due to the network roundtrip required between the participating shards. The second
phase of 2PC is executed lazily in this system. As a result, the transaction coordinator
returns the commit/abort decision to the client before the updates of the transaction are
made visible. This optimization reduces the overhead of processing cross-shard transac-
tions.

5.5.4 Skew

We now analyze the effect of skew on Arbor and the OCC+2PC system. We deploy each
system using three shards and use the multi-key RMW YCSB+T workload with a Zipfian
key distribution and configure the number of cross-partition transactions in the workload
to 5%. We vary the Zipf coefficient of the distribution to alter the level of skew and present
our results in Figure 5.6 and Figure 5.7.

We observe that as the level of contention increases with higher Zipfian coefficient
values, the throughput of Arbor decreases. Furthermore, as the Zipfian coefficient increases
beyond 0.6, Arbor’s throughput decreases as we add more clients after reaching the peak
throughput. We found that the primary reason for this drop in performance of Arbor with
0.7 and 0.8 Zipfian coefficients is that the shards receive an unbalanced number of graph-
committed transactions. As a result, it takes longer for the shards with a smaller share
of requests to receive enough transactions to begin processing a batch of transactions. In
turn, the shards receiving a larger share of the requests are blocked during the broadcast
and aggregate stage of processing by having to wait for the other shards.

To address this problem, we implemented an optimization where each shard makes
an asynchronous RPC to notify the other shards of when it begins to process a batch of
transactions. The results are presented in Figure 5.6 with the opt suffix added to the
respective experiments’ legend in the graph. We find that since the ‘hot’ shards are no
longer slowed down by the other shards, the drop in performance is not as significant. A
secondary effect of this optimization is that since shards are blocked for lesser time, the
overall finalization latency for the optimized experiments is lower as presented in Figure

42

(a) Finalization Throughput (b) Graph-commit Throughput (c) Graph-commit Latency

(d) Finalization Latency (e) Abort Rate

Figure 5.6: Effect of skewed key distribution on Arbor. The workload consists of multi-
key RMW YCSB+T transactions with varying levels of Zipfian skew. The values in each
individual figure’s legend denotes the corresponding Zipfian coefficient and a value of -1
indicates a uniform distribution.

(a) Throughput (b) Latency (c) Abort Rate

Figure 5.7: Analyzing the effect of skewed key distribution on the OCC+2PC system
using a YCSB+T workload consisting of 5% cross-partition transactions and a multi-key
RMW access pattern. We vary the Zipfian coefficient across experiments.

43

5.6(d). The remaining factor for the lower throughput compared to the uniform distribution
case is the higher abort rates as shown in Figure 5.6(e).

Figure 5.7 illustrates the results for the OCC+2PC system for the same set of experi-
ments. We find that the abort rate increases with the level of skew, but to a lesser extent
than Arbor. This is because the window of time for conflicts to occur is much smaller.
Transactions are processed in the order of a few milliseconds compared to hundreds of
milliseconds in Arbor. As a result, there is a higher chance for conflicts to take place.
With the optimizations we made, Arbor is able to achieve higher peak throughput than
the OCC+2PC system for workloads with up to 0.7 Zipfian coefficient.

5.5.5 Transaction Execution Latency for Applications

Our evaluation has primarily comprised of experiments with fixed workload configurations
and a varying number of clients. This evaluation method allows us to saturate each system
to determine their respective peak performance. However, invocation load in real-world
workloads fluctuate, and as a result, the storage system would not always be saturated.
If we consider workflow-like applications that consist of a number of stages, where the
output of one stage is used by the next, then the amount of parallelism is limited and the
performance is largely determined by the execution latency.

To evaluate the performance on such workloads, we consider a closed-loop setting con-
sisting of 12 clients that sequentially execute transactions using a single-shard deployment
of Arbor, VoltDB and the OCC+2PC system. In the case of VoltDB, unlike the exper-
iments shown in Section 5.5.1, clients invoke stored procedures synchronously. If they
instead invoked stored procedures asynchronously, they would not have the results of the
transaction to use in subsequent computation.

Table 5.1 illustrates the mean transaction execution latency for each system along with
the speedup for Arbor relative to the other systems. We observe that Arbor is faster
than OCC and VoltDB in all cases, demonstrating the usefulness of its two-round commit
model. The read-only latency is higher than the write-only latency for Arbor and the
OCC system since each read requires a network round trip whereas writes are buffered
on the client until it finishes executing a transaction. Although graph-commits do not
provide the same guarantees as synchronous commits, all systems result in a serializable
execution of transactions. The primary difference is that with the synchronous commits
of the OCC+2PC system and VoltDB, an application client immediately knows whether
a transaction committed or aborted. On the other hand, in Arbor, this result is realized

44

Workload Arbor latency
VoltDB OCC

Latency Arbor speedup Latency Arbor speedup
Read-only 0.239± 0.007 0.540± 0.016 2.26 0.333± 0.003 1.39
Write-only 0.191± 0.0002 0.560± 0.009 2.93 0.216± 0.004 1.13
1xRMW 0.282± 0.003 0.582± 0.009 2.06 0.345± 0.002 1.22
2xRMW 0.442± 0.008 11.536± 0.332 26.1 0.531± 0.007 1.20
Retwis Load-Heavy 0.156± 0.002 7.302± 0.839 46.8 0.219± 0.0004 1.40
Retwis Post-Heavy 0.216± 0.0003 8.896± 0.061 41.18 0.284± 0.0009 1.31

Table 5.1: Analysis of Arbor’s graph-commit latencies, and OCC and VoltDB’s commit
latencies (in milliseconds) in a closed-loop environment with 12 clients and a single ma-
chine server deployment using a range of workloads. For the read-only and write-only
configurations, we issue two operations per transaction. We report mean values along with
the standard deviation taken from three repetitions of each experiment.

only after a batch of transactions has been processed several milliseconds after the client
submitted the transaction and continued with its execution.

45

Chapter 6

Conclusion

Applications developed on serverless orchestration frameworks typically store global appli-
cation state on an external storage system. Such storage systems should offer concurrency
control since different workflow instances can update overlapping state simultaneously.
However, existing concurrency control algorithms can incur significant overhead due to
acquiring locks or analyzing read/write sets combined with executing 2PC. This is detri-
mental to application throughput since storage accesses are on the critical path of client
execution.

This thesis presented Arbor, a sharded storage system designed for optimistic execution
of serverless workflows while ensuring serializability. Arbor uses a two-round commit model
where clients first submit transactions that are added to a dependency graph, and they are
then processed in batch off the critical path of client execution. As a result, clients using
Arbor can execute at high throughput. Our experiments showed that this commit model
can achieve a median speedup in execution latency of 1.26x compared to the synchronous
commits of a system that uses OCC+2PC.

To enable this commit model, Arbor uses dependencies included in transactions by
clients to track the lineage of updates. It stores data in a dependency graph and reor-
ganizes batches of transactions from it to a validation tree during finalization. Creating
branches gives Arbor additional context to decide which transactions to commit relative to
approaches that pessimistically abort conflicting transactions. Developers can implement
custom policies to select which branch from the validation tree to commit.

Arbor uses a novel approach of partitioning data by key and replicating metadata (i.e.,
keys and dependencies) of its dependency graph across all partitions. This allows each
shard to independently process single-shard transactions while multi-shard transactions

46

are replicated and processed by all shards. We found Arbor’s performance to scale by
1.48x and 1.77x when using two and data three shards, respectively. Furthermore, we
found that Arbor outperformed an OCC+2PC-based approach in workloads with up to
20% cross-partition transactions.

6.1 Future Research Directions

6.1.1 Developing a Serverless Platform That Leverages Arbor

Our evaluation demonstrated that Arbor has characteristics is scalable and can lower ex-
ecution latency for applications. These characteristics would be beneficial in serverless
workflow applications. A future step that we can take is to develop a serverless platform
that uses Arbor as its backend storage. This platform could allow developers to compose
applications that execute optimistically and take advantage of Arbor’s dependency-tracking
interface. Such applications could consist of concurrently running functions that work to-
gether that end up with a serializable execution without using expensive coordination or
synchronization primitives.

6.1.2 Improving Performance Under High Contention Scenarios

While Arbor’s two-round commit model allows clients to continue their execution with
low overhead, it suffers when contention is high. This is because transactions are first
executed, collected in a batch and then validated asynchronously. In a high contention
scenario, this model can suffer from cascading aborts as data is susceptible to becoming
stale, leading to a significant number of conflicts. For applications that have relaxed
consistency requirements, one solution might be to allow merging of branches during the
finalization process.

6.1.3 Durability and Fault Tolerance

Our current prototype of Arbor is an in-memory storage system and does not persist data
in secondary storage. A future step would be to persist finalized transactions to provide
crash consistency. Furthermore, our prototype does not replicate data items across multiple
machines. As a result, if any of the data shards were to fail, then the system would not
be able to continue finalizing transactions, nor would it be able to service client requests

47

for data belonging to the failed shard(s). Developing a replication mechanism where each
data partition consists of multiple replicas would be useful. To accommodate this design
change, only one replica in each partition (perhaps the leader) could participate in the
broadcast and aggregate stage of processing each batch of transactions.

48

References

[1] Amazon Simple Storage Service. https://aws.amazon.com/s3/. [Online; accessed
30-August-2022].

[2] AWS Lambda. https://aws.amazon.com/lambda/. [Online; accessed 20-July-2022].

[3] AWS Lambda Customer Case Studies. https://aws.amazon.com/lambda/

resources/customer-case-studies/. [Online; accessed 2-October-2022].

[4] AWS Step Functions. https://aws.amazon.com/step-functions/. [Online; ac-
cessed 27-June-2022].

[5] H-Store FAQ. https://hstore.cs.brown.edu/documentation/faq/. [Online; ac-
cessed 24-August-2022].

[6] msgp library. https://github.com/tinylib/msgp. [Online; accessed 19-July-2022].

[7] VoltDB Guide to Performance and Customization. https://docs.voltdb.com/

PerfGuide/Hello2Async.php. [Online; accessed 27-August-2022].

[8] Muthukaruppan Annamalai, Kaushik Ravichandran, Harish Srinivas, Igor Zinkovsky,
Luning Pan, Tony Savor, David Nagle, and Michael Stumm. Sharding the shards:
managing datastore locality at scale with akkio. In 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 18), pages 445–460, 2018.

[9] Mahesh Balakrishnan, Dahlia Malkhi, Vijayan Prabhakaran, Ted Wobbler, Michael
Wei, and John D Davis. {CORFU}: A shared log design for flash clusters. In 9th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 12),
pages 1–14, 2012.

49

https://aws.amazon.com/s3/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/resources/customer-case-studies/
https://aws.amazon.com/lambda/resources/customer-case-studies/
https://aws.amazon.com/step-functions/
https://hstore.cs.brown.edu/documentation/faq/
https://github.com/tinylib/msgp
https://docs.voltdb.com/PerfGuide/Hello2Async.php
https://docs.voltdb.com/PerfGuide/Hello2Async.php

[10] Mahesh Balakrishnan, Dahlia Malkhi, Ted Wobber, Ming Wu, Vijayan Prabhakaran,
Michael Wei, John D Davis, Sriram Rao, Tao Zou, and Aviad Zuck. Tango: Dis-
tributed data structures over a shared log. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, pages 325–340, 2013.

[11] Ioana Baldini, Paul Castro, Kerry Chang, Perry Cheng, Stephen Fink, Vatche
Ishakian, Nick Mitchell, Vinod Muthusamy, Rodric Rabbah, Aleksander Slominski,
et al. Serverless computing: Current trends and open problems. In Research advances
in cloud computing, pages 1–20. Springer, 2017.

[12] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick
O’Neil. A critique of ansi sql isolation levels. ACM SIGMOD Record, 24(2):1–10,
1995.

[13] Philip A Bernstein and Nathan Goodman. Concurrency control in distributed
database systems. ACM Computing Surveys (CSUR), 13(2):185–221, 1981.

[14] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. Benchmarking cloud serving systems with ycsb. In Proceedings of the 1st ACM
symposium on Cloud computing, pages 143–154, 2010.

[15] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost,
Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter
Hochschild, et al. Spanner: Google’s globally distributed database. ACM Transactions
on Computer Systems (TOCS), 31(3):1–22, 2013.

[16] Natacha Crooks, Youer Pu, Nancy Estrada, Trinabh Gupta, Lorenzo Alvisi, and Allen
Clement. Tardis: A branch-and-merge approach to weak consistency. In Proceedings
of the 2016 International Conference on Management of Data, pages 1615–1628, 2016.

[17] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and
Werner Vogels. Dynamo: Amazon’s highly available key-value store. ACM SIGOPS
operating systems review, 41(6):205–220, 2007.

[18] Akon Dey, Alan Fekete, Raghunath Nambiar, and Uwe Röhm. Ycsb+ t: Benchmark-
ing web-scale transactional databases. In 2014 IEEE 30th International Conference
on Data Engineering Workshops, pages 223–230. IEEE, 2014.

50

[19] Bailu Ding, Lucja Kot, and Johannes Gehrke. Improving optimistic concurrency
control through transaction batching and operation reordering. Proceedings of the
VLDB Endowment, 12(2):169–182, 2018.

[20] Jose M. Faleiro and Daniel J. Abadi. Rethinking serializable multiversion concurrency
control. Proc. VLDB Endow., 8(11):1190–1201, jul 2015.

[21] Jose M Faleiro, Daniel J Abadi, and Joseph M Hellerstein. High performance trans-
actions via early write visibility. Proceedings of the VLDB Endowment, 10(5), 2017.

[22] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki,
Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, et al. An open-source
benchmark suite for microservices and their hardware-software implications for cloud
& edge systems. In Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems, pages 3–
18, 2019.

[23] Richard G Guy, John S Heidemann, Wai-Kei Mak, Thomas W Page Jr, Gerald J
Popek, Dieter Rothmeier, et al. Implementation of the ficus replicated file system. In
USENIX Summer, pages 63–72, 1990.

[24] Joseph M. Hellerstein, Jose M. Faleiro, Joseph Gonzalez, Johann Schleier-Smith,
Vikram Sreekanti, Alexey Tumanov, and Chenggang Wu. Serverless computing: One
step forward, two steps back. In 9th Biennial Conference on Innovative Data Systems
Research, CIDR 2019, Asilomar, CA, USA, January 13-16, 2019, Online Proceedings,
2019.

[25] Zhipeng Jia and Emmett Witchel. Boki: Stateful serverless computing with shared
logs. In Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems
Principles, pages 691–707, 2021.

[26] Zhipeng Jia and Emmett Witchel. Nightcore: efficient and scalable serverless comput-
ing for latency-sensitive, interactive microservices. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems, pages 152–166, 2021.

[27] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag Khan-
delwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl Krauth, Neeraja Yadwadkar,
et al. Cloud programming simplified: A berkeley view on serverless computing. arXiv
preprint arXiv:1902.03383, 2019.

51

[28] Arthur B Kahn. Topological sorting of large networks. Communications of the ACM,
5(11):558–562, 1962.

[29] Anurag Khandelwal, Yupeng Tang, Rachit Agarwal, Aditya Akella, and Ion Stoica.
Jiffy: elastic far-memory for stateful serverless analytics. In Proceedings of the Seven-
teenth European Conference on Computer Systems, pages 697–713, 2022.

[30] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle, and
Christos Kozyrakis. Pocket: Elastic ephemeral storage for serverless analytics. In 13th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 18),
pages 427–444, 2018.

[31] Costin Leau. Spring data redis-retwis-j, 2013.

[32] Wyatt Lloyd, Michael J Freedman, Michael Kaminsky, and David G Andersen. Don’t
settle for eventual: Scalable causal consistency for wide-area storage with cops. In
Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles,
pages 401–416, 2011.

[33] Yi Lu, Xiangyao Yu, Lei Cao, and Samuel Madden. Aria: a fast and practical deter-
ministic oltp database. 2020.

[34] Shuai Mu, Yang Cui, Yang Zhang, Wyatt Lloyd, and Jinyang Li. Extracting more
concurrency from distributed transactions. In 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14), pages 479–494, 2014.

[35] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Decentralized
Business Review, page 21260, 2008.

[36] Robert HB Netzer and Barton P Miller. What are race conditions? some issues and
formalizations. ACM Letters on Programming Languages and Systems (LOPLAS),
1(1):74–88, 1992.

[37] Ricardo Padilha and Fernando Pedone. Augustus: Scalable and robust storage for
cloud applications. In Proceedings of the 8th ACM European Conference on Computer
Systems, pages 99–112, 2013.

[38] Guna Prasaad, Alvin Cheung, and Dan Suciu. Handling highly contended oltp work-
loads using fast dynamic partitioning. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data, pages 527–542, 2020.

52

[39] Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann Schleier-Smith,
Joseph E. Gonzalez, Joseph M. Hellerstein, and Alexey Tumanov. Cloudburst: State-
ful functions-as-a-service. Proc. VLDB Endow., 13(12):2438–2452, jul 2020.

[40] Michael Stonebraker and Ariel Weisberg. The voltdb main memory dbms. IEEE Data
Eng. Bull., 36(2):21–27, 2013.

[41] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip Shao,
and Daniel J Abadi. Calvin: fast distributed transactions for partitioned database
systems. In Proceedings of the 2012 ACM SIGMOD International Conference on
Management of Data, pages 1–12, 2012.

[42] Guido Urdaneta, Guillaume Pierre, and Maarten Van Steen. Wikipedia workload
analysis for decentralized hosting. Computer Networks, 53(11):1830–1845, 2009.

[43] Sheng Wang, Tien Tuan Anh Dinh, Qian Lin, Zhongle Xie, Meihui Zhang, Qingchao
Cai, Gang Chen, Beng Chin Ooi, and Pingcheng Ruan. Forkbase: An efficient
storage engine for blockchain and forkable applications. Proc. VLDB Endow.,
11(10):1137–1150, jun 2018.

[44] Chenggang Wu, Jose M Faleiro, Yihan Lin, and Joseph M Hellerstein. Anna: A kvs
for any scale. IEEE Transactions on Knowledge and Data Engineering, 33(2):344–358,
2019.

[45] Chenggang Wu, Vikram Sreekanti, and Joseph M Hellerstein. Transactional causal
consistency for serverless computing. In Proceedings of the 2020 ACM SIGMOD In-
ternational Conference on Management of Data, pages 83–97, 2020.

[46] Xinan Yan, Linguan Yang, Hongbo Zhang, Xiayue Charles Lin, Bernard Wong, Ken-
neth Salem, and Tim Brecht. Carousel: Low-latency transaction processing for
globally-distributed data. In Proceedings of the 2018 International Conference on
Management of Data, pages 231–243, 2018.

[47] Linguan Yang, Xinan Yan, and Bernard Wong. Natto: Providing distributed trans-
action prioritization for high-contention workloads. In Proceedings of the 2022 Inter-
national Conference on Management of Data, pages 715–729, 2022.

[48] Haoran Zhang, Adney Cardoza, Peter Baile Chen, Sebastian Angel, and Vincent Liu.
Fault-tolerant and transactional stateful serverless workflows. In 14th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI 20), pages 1187–1204,
2020.

53

[49] Irene Zhang, Naveen Kr Sharma, Adriana Szekeres, Arvind Krishnamurthy, and
Dan RK Ports. Building consistent transactions with inconsistent replication. ACM
Transactions on Computer Systems (TOCS), 35(4):1–37, 2018.

[50] Tian Zhang, Dong Xie, Feifei Li, and Ryan Stutsman. Narrowing the gap between
serverless and its state with storage functions. In Proceedings of the ACM Symposium
on Cloud Computing, pages 1–12, 2019.

54

	List of Figures
	List of Tables
	Introduction
	Background and Related Work
	Serverless Computing
	Dependency Tracking Storage Systems
	Batch Transaction Processing

	Optimistic Execution Model
	Overview
	Client Interface
	Transaction Processing in Practice

	Design
	Workflow of Transaction Processing
	Lineage Addressing
	Concurrency Control
	Correctness of Distributed Transaction Processing

	Branch Selection
	Implementation

	Evaluation
	Experimental Setup
	Performance Metrics
	Benchmark Workloads
	Evaluated Systems
	Results
	Single machine deployment
	Scalability
	Cross-Partition Transactions
	Skew
	Transaction Execution Latency for Applications

	Conclusion
	Future Research Directions
	Developing a Serverless Platform That Leverages Arbor
	Improving Performance Under High Contention Scenarios
	Durability and Fault Tolerance

	References

