
OppropBERT: An Extensible Graph
Neural Network and BERT-style

Reinforcement Learning-based Type
Inference System

by

Piyush Jha

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2022

© Piyush Jha 2022

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Built-in type systems for statically-typed programming languages (e.g., Java) can only
prevent rudimentary and domain-specific errors at compile time. They do not check for
type errors in other domains, e.g., to prevent null pointer exceptions or enforce owner-as-
modifier encapsulation discipline. Optional Properties (Opprop) or Pluggable type sys-
tems, e.g., Checker Framework, provide a framework where users can specify type rules
and guarantee the particular property holds with the help of a type checker. However,
manually inserting these user-defined type annotations for new and existing large projects
requires a lot of human effort. Inference systems like Checker Framework Inference pro-
vide a constraint-based whole-program inference framework. However, to develop such
a system, the developer must thoroughly understand the underlying framework (Checker
Framework) and the accompanying helper methods, which is time-consuming. Further-
more, these frameworks make expensive calls to SAT and SMT solvers, which increases
the runtime overhead during inference. The developers write test cases to ensure their
framework covers all the possible type rules and works as expected. Our core idea is to
leverage only these manually written test cases to create a Deep Learning model to learn
the type rules implicitly using a data-driven approach.

We present a novel model, OppropBERT, which takes as an input the raw code along
with its Control Flow Graphs to predict the error heatmap or the type annotation. The pre-
trained BERT-style Transformer model helps encode the code tokens without specifying
the programming language’s grammar including the type rules. Moreover, using a custom
masked loss function, the Graph Convolutional Network better captures the Control Flow
Graphs. Suppose a sound type checker is already provided, and the developer wants to
create an inference framework. In that case, the model, as mentioned above, can be refined
further using a Proximal Policy Optimization (PPO)-based reinforcement learning (RL)
technique. The RL agent enables the model to use a more extensive set of publicly available
code (not written by the developer) to create training data artificially. The RL feedback
loop reduces the effort of manually creating additional test cases, leveraging the feedback
from the type checker to predict the annotation better.

Extensive and comprehensive experiments are performed to establish the efficacy of
OppropBERT for nullness error prediction and annotation prediction tasks by comparing
against state-of-the-art tools like Spotbugs, Eclipse, IntelliJ, and Checker Framework on
publicly available Java projects. We also demonstrate the capability of zero and few-shot
transfer learning to a new type system. Furthermore, to illustrate the model’s extensi-
bility, we evaluate the model for predicting type annotations in TypeScript and errors

iii

in Python by comparing it against the state-of-the-art models (e.g., BERT, CodeBERT,
GraphCodeBERT, etc.) on standard benchmarks datasets (e.g., ManyTypes4TS).

iv

Acknowledgements

I would like to thank Professor Werner Dietl for sharing his expertise and for his con-
stant support, guidance, and valuable advice throughout my graduate program. I would
like to thank Professor Arie Gurfinkel and Professor Mark Crowley for reviewing the the-
sis and providing valuable feedback. I am thankful to all my colleagues in our research
group, especially Zhiping Cai, Haifeng Shi and Alex Liu for their generous help and support
throughout my graduate journey.

v

Dedication

The thesis is dedicated to my parents for their constant support and love.

vi

Table of Contents

List of Figures x

List of Tables xi

1 Introduction 1

1.1 Problem Statement . 2

1.2 Brief Overview of OppropBERT . 3

1.3 Contributions . 4

2 Background 6

2.1 Pluggable Type System . 6

2.1.1 Checker Framework . 6

2.1.2 Checker Framework Inference . 7

2.1.3 Nullness Checker . 8

2.1.4 Universe Type System and soft constraints 9

2.1.5 Checker Framework vs Bug-finding tools 11

2.2 Deep Learning . 12

2.2.1 Classification task . 13

2.2.2 Parameter updates . 15

2.2.3 Overfitting and Regularization . 15

2.2.4 Transformers and BERT Models . 15

vii

2.3 Graph Neural Network (GNN) training . 16

2.3.1 Mini-batching . 17

2.3.2 Regularization on GNN . 18

2.4 Reinforcement Learning . 19

2.4.1 Deep Q-Learning . 19

2.4.2 Proximal Policy Optimization (PPO) Algorithm 20

3 Overview 22

3.1 Annotation Prediction . 22

3.2 Reinforcement Learning fine-tuning . 27

3.3 Error Heatmap Prediction . 30

4 Implementation 32

4.1 Comparative tools . 32

4.2 Benchmarks . 33

4.3 Computational Environment . 35

4.4 Metrics . 35

4.5 Hyperparameters . 36

4.6 Effective training strategies . 37

5 Experiment and Results 40

5.1 Error heatmap and annotation prediction in Java 40

5.1.1 A few examples of test cases . 40

5.1.2 Ablation studies and comparative analysis 41

5.1.3 Transfer learning to security type system 44

5.1.4 False positive/negative in other tools 45

5.2 Type prediction in TypeScript . 47

5.3 Error prediction in Python . 48

viii

6 Related Work 51

6.1 Natural Language Processing (NLP) for code understanding tasks 51

6.2 Abstract Syntax Tree (AST) . 52

6.3 Control Flow Graph (CFG) . 53

6.4 Transformers and pre-trained models . 54

6.5 Graph Neural Networks (GNNs) . 55

7 Conclusion and Future Work 56

References 59

ix

List of Figures

2.1 A Neural Network . 14

3.1 Architecture diagram of OppropBERT for annotation prediction task. . . . 23

3.2 Architecture diagram of OppropBERT with Reinforcement Learning fine-
tuning . 28

3.3 Architecture diagram of OppropBERT for error heatmap prediction task . 30

5.1 Example of a heatmap prediction output. The darker shades of red denote
a higher probability of error. 43

x

List of Tables

4.1 Hyperparameter settings . 37

5.1 Impact of design choices: Ablation studies 42

5.2 Transfer learning on a simple security lattice 44

5.3 Accuracy Comparisons On ManyTypes4TypeScript 48

xi

Chapter 1

Introduction

Software bugs have led to trillion dollars losses to the worldwide economy [59] where
the glitches put a halt to the economy, expose the threat of ransomware attacks or data
breaches [78], and most importantly, can take human lives [82]. Researchers have developed
increasingly effective and robust testing and verification tools to prevent bugs that lead to
critical run-time errors. Programming languages such as Java have a weak built-in type
system that cannot avert notorious run-time errors. Type annotations can be inserted
into the programs and checked at compile time to prevent such bugs. However, manually
inserting these user-defined type annotations for large projects requires a lot of human
effort. Pluggable type systems such as Checker Framework [22, 64] provide a sound type
inference framework, but make expensive calls to SAT and SMT solvers, which increases
the run-time overhead during inference. Other static analysis tools accept unsoundness as
a trade-off for increased analysis speed. However, developing such tools takes considerable
time and manual effort, along with a thorough understanding of the underlying type checker
framework on top of which the developer would create the type inference system. Moreover,
such systems must undergo rigorous testing to ensure no bugs are present within these bug-
preventing tools.

Similarly, languages such as Python and TypeScript have dynamic typing, which pro-
vides flexibility to the developer, but on the other hand, are prone to run-time excep-
tions. Python and TypeScript introduced type annotations in their languages, helping
the developers to document and maintain the code better [42] along with providing better
error-detection capabilities. However, refactoring the existing dynamically typed projects
to incorporate type annotations is time-consuming, error-prone, and requires substantial
manual effort [37]. Static type inference techniques [26, 42] can be used to infer the sup-
ported annotations. Unfortunately, because of the dynamic features of the language and

1

over-approximation of the program behavior, they are often imprecise [60].

The software engineering community has started to observe a recent surge in Machine
Learning (ML) techniques inspired by the success of Natural Language Processing (NLP)
models [9, 21, 77]. The ML-based models have a few significant advantages over the non-
ML-based approaches. For example, the models are extensible and can be easily modified
to extend to different type systems. Another advantage is that these models can implicitly
learn the type rules from training examples (i.e., the test cases with annotations created
by the developer) without the human manually needing to define the specification. Being
data-driven approaches, we only need to modify the data it is getting trained on to infer for
a new type system. On the other hand, ML-based methods have a disadvantage that they
need a large set of training examples to accurately predict the type annotations so that the
program type checks and prevents run-time bugs. To solve this problem, Reinforcement
Learning (RL) can be used to fine-tune the model trained on only a few samples of test cases
created by the developer. Given an extensive set of publicly available code (unannotated or
partially annotated) and a sound type checker (to provide the feedback to the RL agent),
the RL-loop “artificially” creates training data to better predict the type annotations,
considerably reducing human effort and time.

1.1 Problem Statement

The problem addressed in this thesis is to create an ML-based type inference system
that takes as an input an unannotated or partially annotated program and outputs an
annotated program that is type adhering. Note that other static analysis-based methods
need a developer to explicitly define the type rules or the constraint rules on top of an
existing type checker to develop a type inference framework. In contrast, our model uses
merely the test cases to learn the correct type rules automatically.

Specifically, we require our inference model to have the following properties:

1. First, the model must be able to automatically learn, i.e., only using a small set of
test cases and type checker, the model must be able to predict annotations with no
additional labeled data from the developer. The developer does not need to define
the type inference rules explicitly.

2. Second, the model must be extensible, i.e., the user should be able to extend it to
other type systems with minimal human effort.

2

3. Third, the model must be type adhering, i.e., it should produce code that type checks
with high accuracy.

4. Fourth, the model must be efficient, i.e., the inference time should be less.

1.2 Brief Overview of OppropBERT

To address these challenges, this thesis presents OppropBERT, a Graph Neural Network
(GNN) and Bi-directional Encoder Representations from Transformers (BERT)-style RL-
based type inference model. Unlike traditional ML and non-ML-based techniques, our
model has all the above-mentioned features. Our model is built on top of two recent Ma-
chine Learning architectures, namely, Transformers [83] and Graph Neural Networks [90],
to capture the syntactical and semantic relations of the input.

The model takes as an input a program and a type checker corresponding to a specific
property and outputs an annotated code that type checks and prevents run-time bugs by
maintaining the chosen property. BERT-style models can better capture the interaction
between different parts of the code as compared to their recurrent counterparts. They can
learn the property the user wants to ensure without explicitly defining the type inference
rules. The structure-aware loss functions combining both the graphical structure and the
raw code helps learn the refinement rules effectively. Control-flow graphs (CFGs) represent
the semantic information of a given input code, unlike the Abstract Syntax Tree (AST),
which only represents the syntactical structure. Graph Neural Networks work well to
capture the graphical structure of CFGs effectively. All these advantages together make
the model type adhering and produce the annotated code with high accuracy. Supervised
fine-tuning with test cases created by the developer makes the model easy to develop
and extend to other forms of type inference rules. The developer-created test cases also
undergo a k-fold filtering process to provide feedback to the developer to double-check a
small subset of the test cases the algorithm found to be anomalous. Moreover, using an RL
loop, with the GNN and BERT-based model as an agent, helps fine-tune the model further
using publicly available datasets not created by the developer. Using the feedback from
the available type checker, the agent can learn to predict better annotations by learning
from a large and diverse set of examples without any additional manual effort, rendering
OppropBERT automatic.

The ability of the BERT-style model to capture the code interactions effectively makes
it easily extensible. The model can be extended to other type rules by first replacing the
supervised dataset in the initial fine-tuning step and, subsequently, the type checker for

3

the RL loop. The RL loop leverages the reward and penalty signals from the type checker
to fine-tune the annotation prediction model even further. The most appealing aspect of
our model is that the developer does not need to explicitly encode the type inference rules
or write a specific type inference framework for every type system. The agent learns the
representations using available test cases and RL feedback. The RL agent ensures that the
predicted type annotations adhere to the required type rules instead of suggesting random
permutations or using a stateless one that may not guarantee that the output program
type checks correctly. Moreover, the model can ‘transfer learn’ the currently learned type
inference rules to another type system, which has a small subset of the same rules as the
previous type system, but fewer test cases for those subset of rules.

1.3 Contributions

• This thesis presents OppropBERT, a novel GNN and BERT-based type inference
system model with structure-aware fine-tuning that is automatic, extensible, type-
adhering, and efficient. To the best of our knowledge, there has been no previous work
using a Reinforcement Learning (RL)-based approach for additional fine-tuning of a
supervised annotation prediction model, predicting type annotations for Java pro-
grams to prevent run-time bugs using a data-driven approach, and transfer learning
to a new type system with fewer training data.

• A new task of token-level error heatmap and annotation prediction for Java was
created using the publicly available test cases from a popular static analysis tool.

• Extensive and comprehensive experiments are performed to establish the efficacy of
OppropBERT for nullness error prediction and annotation prediction tasks by com-
paring against state-of-the-art tools such as Spotbugs, Eclipse, IntelliJ, and Checker
Framework on publicly available Java projects.

• To illustrate the model’s extensibility, we train and evaluate the model for predicting
type annotations in TypeScript and errors in Python and compare it against the state-
of-the-art models (e.g., BERT, CodeBERT, GraphCodeBERT, etc.) on standard
benchmarks datasets (e.g., ManyTypes4TS).

• Through the thorough experiments, we provide a detailed comparative analysis with
respect to different state-of-the-art techniques, perform ablation studies of the pro-
posed model, present false positive and false negative cases found in other tools, and
demonstrate zero and few-shot transfer learning capabilities of our model.

4

The rest of the thesis is structured as follows: Chapter 2 introduces the background, in-
cluding the pluggable type system, Deep Learning, Graph Neural Networks, and Reinforce-
ment Learning. Chapter 3 presents an overview of the architecture details of OppropBERT
in all the different settings. Chapter 4 includes details regarding the comparative tools and
models, benchmarks, metrics, and other implementation details. Chapter 5 presents the
experiment results. Chapter 6 reviews the related work, and lastly, we conclude our work
in Chapter 7.

5

Chapter 2

Background

2.1 Pluggable Type System

The built-in type systems in statically-typed programming languages prevent basic errors
at compile time. For example, the Java compiler can find errors related to incompatible
assignments, the use of variables without initialization, and unreachable code, to name a
few. These built-in type systems do not check for type errors in other domains, such as
preventing null pointer exceptions or enforcing owner-as-modifier encapsulation discipline.

A pluggable type system [10] helps enhance the language’s type system in order to
provide additional static guarantees by enforcing stronger semantics. Such type systems
ingrain additional semantic understanding by providing a set of type qualifiers. Type
rules can help enforce custom semantics over the qualified types. In this way, developers
benefit by annotating the code with type qualifiers and using a pluggable type system to
find potential bugs that the standard language compiler can not prevent. Type Check-
ers guarantee the particular property holds, thereby proving the absence of the selected
domain-specific error.

2.1.1 Checker Framework

Checker Framework [22, 64] strengthens Java’s type system by letting software developers
detect and prevent errors in their Java programs. Checker Framework includes different
checkers, each specific to a type of error. These checkers are compile-time tools that alert

6

the developer about a selected domain-specific error and guarantee that such errors do not
occur.

Some of the checkers included in the Checker Framework are as follows:

• Nullness Checker for preventing null pointer exceptions.

• Map-Key Checker to track which values are keys in a map data structure.

• Regex Checker to avoid the use of syntactically invalid regular expressions.

• Lock Checker to prevent concurrency and lock errors.

• Units Checker to guarantee that the arithmetic operations are performed using cor-
rect units of measurement.

The type checker that comes with Java can identify and stop numerous problems. There
are some types of flaws, though, that it cannot detect. You can define the new type systems
and use them as a plug-in to the Java compiler with Checker Framework. For additional
details, readers can refer to the Checker Framework manual1.

Flow-sensitive type refinement

The checker can deduce the type of the expression to be more specific (i.e., its subtype)
than the declared or default one. Due to this flow-sensitive type refinement, developers do
not need to specify type qualifiers on local variables inside a method body.

For example, if we declare a variable @Nullable String var;, dereferencing it in the
next line would result in a warning from the Checker Framework highlighting a possible
dereferencing of null. However, if the dereferencing happens inside an if-block if (var !=

null) {...}, it will be treated as a @NonNull String within the body of the if block and
hence, would not result in any null deference warning.

2.1.2 Checker Framework Inference

It is often time-consuming to write all the type annotations in your code. Certain tools
can be developed to automatically infer the annotations and accordingly insert them into

1https://checkerframework.org/manual/

7

https://checkerframework.org/manual/

the user’s source code. For fields, method parameters, and method return types that lack a
developer-written type qualifier for the given type system, whole-program inference infers
the type qualifiers. In order to be consistent with all of its usage in the specified code, the
inferred type qualifier will be the most specific. In the case of a field, this would mean that
the inferred type would be the least upper bound of the kinds of expressions assigned to
this field.

The Checker Framework Inference tool takes as an input a partially annotated source
code along with library annotations to output a fully annotated source code [91]. The
source code with library annotations is fed into the parser to generate a partially annotated
Abstract Syntax Tree (AST). Constraint variables are created, and the AST is passed to
a constraint generation and solver. The solver can be a Boolean Satisfiability (SAT) or
Satisfiability Modulo Theory (SMT) solver. If the solver generates a satisfiable solution,
the inferred annotations are inserted into the input source code to create a fully annotated
source code.

2.1.3 Nullness Checker

The Nullness Checker in the Checker Framework guarantees that if no warnings are shown
for a given program, then no null pointer exception will occur during runtime, in other
words, the checker prevents all null pointer exceptions. The checker issues a warning if a
non-@NonNull type is dereferenced, as it might lead to a null pointer exception. It also
alerts if a @NonNull expression becomes null, as it could result in a misuse of the particular
type. One of the misuses could be that the resulting null value can be dereferenced later
on, but the checker does not complain about it. Similarly, the checker also gives a warning
when a @NonNull field is not initialized in the constructor.

The nullness hierarchy consists of the following two qualifiers:

1. @Nullable annotation indicates that the type contains a null value, e.g., in the case
of a @Nullable boolean variable, it could be True, False, or null.

2. @NonNull annotation indicates that the type does not include a null value, e.g., in
the case of a @NonNull boolean variable, it could either be True or False, but never
null. Therefore, dereferencing a @NonNull type would never result in a null pointer
exception.

The Nullness Checker also supports declaration annotations. Unlike type annotations,
such annotations are applied to the method instead of a type and are used to specify
method behavior.

8

1. @RequiresNonNull indicates a method pre-condition. When @RequiresNonNull an-
notation is present on a method, the method expects the specified variables to be
non-null during method invocation. Such annotations are useful for certain fields,
which are generally annotated as @Nullable, but some methods require this field to
be non-null.

2. @EnsuresNonNull indicates a method post-condition. @EnsuresNonNull is used to
ensure that the specified expressions are non-null after the method has returned.
Such annotations are useful for methods that initialize a field.

There are various error types associated with dereferencing a possibly-null reference.
Examples of such types of errors used in the Checker Framework are as follows:

• dereference.of.nullable: Dereference of possibly-null reference.

• iterating.over.nullable: Iterating over possibly-null reference.

• unboxing.of.nullable: Unboxing a possibly-null reference.

• throwing.nullable: Throwing a possibly-null throwable.

• condition.nullable: Condition on a possibly-null value.

• switching.nullable: Switching on a possibly-null value.

2.1.4 Universe Type System and soft constraints

Aliasing, i.e., having multiple references of the same object, makes it more challenging
to accurately create complicated object structures and guarantee certain invariants about
their behavior. One such example is to allow mutation of an object through one reference
that the other references can observe. It is a widespread problem in a lot of areas of
software engineering. In order to control aliasing, the heap hierarchy can be structured
using object ownership. Such an ownership guarantee can also enforce encapsulation, e.g.,
ensuring that its owner only initiates all the modifications of an object. Universe Type
System [23] helps solve this problem. The static inference creates a constraint system that
is provided to the SAT solver to find the appropriate annotations. The inference system
is tunable, i.e., the users can indicate a preference for specific annotations or ownership
structures by providing the weights to the solvers expressing the preference for certain

9

heuristics or by providing partial annotations for the input source code. One such example
of a heuristic could be to prefer deep ownership for fields. The ownership topology can
be expressed by writing the appropriate ownership modifiers on the reference types. The
ownership modifiers can express various ownership relations by adding them to the type
parameters or type use. Examples explaining the ownership type system can be found in
the Universe repository2. The ownership modifiers are as follows:

• @Peer: The referenced object is in the same context as the current object this.

• @Rep: The referenced object is owned by the current object.

• @Any: There exists no static information about the relationship of the two objects.

• @Lost: The two objects have a relationship that cannot be expressible as @Peer or
@Rep.

• @Self: The current receiver object this.

It is interesting to note that every unannotated code can be said to be a legally-
typed program if @Peer is used as default. Such a typing would denote a flat ownership
structure. However, a flat ownership structure imposes no guarantees about the program’s
operation. Developers are usually interested in a deeper ownership structure as it gives
better encapsulation and limits sharing. Another design consideration could be to influence
what clients may call a particular method and add annotations to the method parameters
accordingly. Therefore, the user needs to specify weights to some constraints so that the
type inference system can handle such design considerations. Apart from the mandatory
constraints in the type system, these breakable weighted equality constraints are added to
encode a preference for a particular solution.

Let’s look at how the type inference system works in this case. As described for Checker
Framework Inference in Section 2.1.2, the type inference system creates the constraint
variables, generates the constraints over these variables, and solves them to infer type
annotations. In the presence of breakable constraints, they are translated to a weighted
SAT formula. A weighted MaxSAT solver can be used in such a case to find out a solution
such that the hard type system constraints are satisfied and, at the same time, the breakable
constraints result in the maximum possible weight. The inferred typing for the program
is translated to a concrete ownership modifier for the generated constraint variables in the
program.

2https://github.com/opprop/universe

10

https://github.com/opprop/universe

However, note that such a tunable type inference problem that allows breakable con-
straints is NP-hard [41]. Moreover, a developer must have to play around with these weight
values and manually analyze the solutions to make sure of the strictness they wanted their
heuristic to be enforced. The process gets complicated if the developer is interested in
enforcing multiple such heuristics at once.

2.1.5 Checker Framework vs Bug-finding tools

A pluggable type-checker is a verification tool that prevents or detects all errors of a given
variety. If it issues no warnings, your code has no errors of a given variety. An alternate ap-
proach is to use a bug detector such as Error Prone3, FindBugs [32,33], SpotBugs4, Jlint [7],
PMD [19], or the tools built into Eclipse and IntelliJ. The NullAway5 and Eradicate6 tools
are more like sound type-checking than bug detection, but all of those tools accept un-
soundness — that is, false negatives or missed warnings — in exchange for analysis speed.
For example, here are the two popular bug-finding tools:

Eclipse

Eclipse comes with a null analysis7 to detect potential null pointer related errors in your
code. However, Checker Framework’s Nullness Checker is more precise, i.e., it gives fewer
false positives than Eclipse. Eclipse on the other hand with a tight IDE integration is
faster, mostly because it has fewer features than Checker Framework. This makes Eclipse
more useful for bug-finding than for verification. Moreover, Eclipse also does not support
a lot of features present in Checker Framework, such as pre- and post-conditions, polymor-
phism, and dataflow analysis, to name a few. Eclipse is also not extensible, while Checker
Framework supports over 20 type checkers.

NullAway

NullAway is a type-checker for null pointer errors. It is lightweight (hence, faster), but
unsound, i.e., no warnings does not mean that your code would not crash with a null

3https://errorprone.info/
4https://github.com/spotbugs/spotbugs
5https://github.com/uber/NullAway
6https://fbinfer.com/docs/next/checker-eradicate/
7http://help.eclipse.org/luna/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Ftasks%

2Ftask-using_null_annotations.htm

11

https://errorprone.info/
https://github.com/spotbugs/spotbugs
https://github.com/uber/NullAway
https://fbinfer.com/docs/next/checker-eradicate/
http://help.eclipse.org/luna/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Ftasks%2Ftask-using_null_annotations.htm
http://help.eclipse.org/luna/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Ftasks%2Ftask-using_null_annotations.htm

pointer exception. NullAway makes unchecked assumptions regarding getter methods and
also assumes that all objects are always fully initialized.

2.2 Deep Learning

The machine learning tasks can be categorized as supervised, unsupervised, or semi-
supervised learning [27]. In the case of supervised learning, a given set of input-output pairs
is used to train the model so that it can make predictions of an unseen dataset. Training a
model means that given an input feature vector, the model learns the underlying function
to map it to the corresponding target labels.

Classification and regression are two common tasks in the domain of supervised learn-
ing. For classification problems, the model’s objective is to predict the category C to
which the input belongs. The model learns a function f : Rn → {1, ..., C}, where n is the
dimension of each input data [27]. For example, the Twitter sentiment analysis problem
is a classification task, where the model is given a dataset of tweets along with the sender
details and other meta information and is required to predict whether the tweet has a
positive or negative sentiment.

Regression tasks, on the other hand, output numeric values. The model learns the
function f : Rn → Rm, where n and m are the dimension of the input and output data,
respectively [27]. For example, stock price prediction models are based on regression. The
model takes as an input the history of the particular stock along with other meta-data
about the company to output the stock price prediction.

In the case of unsupervised learning, the aim is to figure out the hidden patterns
from an unlabeled dataset. Usually, they either try to learn the probability distribution
of the dataset generator or find a way to segregate the dataset into different clusters.
Recommendation engines use clustering algorithms to suggest similar results (e.g., song
recommendation in the case of Spotify) to users with similar interests.

Another closely related approach to unsupervised learning is self-supervised learning,
which can be considered as an intermediate form between supervised and unsupervised
learning. Self-supervised learning is similar to unsupervised learning, except that the end
goal of a model trained using self-supervised learning is ultimately to help a supervised
learning algorithm.

In order to evaluate the performance of a machine learning algorithm, we would have
to use a performance measure. The choices usually depend on the task at hand. Since

12

our problem deals primarily with classification, we will focus more on that in the following
section. Most of the definitions in this section are based on the Deep Learning book [27],
and we refer the readers to this wonderful book for further reading.

2.2.1 Classification task

One of the most common metrics to measure the performance of classification models is
accuracy. Accuracy is defined as the percentage of correctly predicted labels over the total
number of predictions. Similarly, an error rate is the ratio of incorrectly predicted labels
over the total number of predictions. Given below, we define other popular metrics, namely,
precision, recall, and specificity:

The precision of a model is defined as follows:

Precision =
TP

TP + FP

The recall of a model is defined as follows:

Recall =
TP

TP + FN

The specificity of a model is defined as follows:

Specificity =
TN

TN + FP

Let us now define the abbreviations used in the above formulas. Consider the case of an
e-mail spam filter. True positive (TP) cases are where the filter predicts as spam (yes) and
the e-mail is actually spam. Similarly, true negative (TN) implies that the filter predicts
as not spam (no) and the e-mail is indeed not spam. A false positive (FP) is the case
where the filter predicts the e-mail to be spam, but the e-mail is not spam. Similarly, false
negative (FN) denotes that the filter does not predict the e-mail to be a spam, however,
the e-mail was indeed spam.

Depending on the use case, users tend to trade off on precision, recall, and specificity.
For example, if we want to avoid false positives, we would prefer high precision. However,
if we want higher coverage and do not want to miss a positive case, we would prefer a
higher recall, let’s say to test for a highly contagious virus such as COVID-19, as we aim

13

to minimize the infection rate. Similarly, if we want to avoid false alarms, we would prefer
optimizing specificity, e.g., cancer diagnosis, as it costs a lot of money to the patient and
there are side-effects to the treatment.

Note that the performance of machine learning algorithms should be evaluated on data
it has not seen before. In order to make this possible, standard practice is to split the
dataset into training and test sets, where the training set is usually the more prominent in
size. As the name suggests, the training set is used by the algorithm to train/learn, while
the test set is used to evaluate the performance of the machine learning model.

Training the model involves creating a loss function and then using an optimization
algorithm to find the best solution. In supervised learning, the objective is to minimize
the loss function, which measures the difference between the predicted and the ground
truth values. A higher loss signifies poor predictions, while a lower one implies that the
model is learning well. A popular choice of a loss function for classification tasks is the
cross-entropy loss, which is based on maximizing the log-likelihood estimation of data for
a given model.

Figure 2.1: A Neural Network

14

2.2.2 Parameter updates

Figure 2.1 shows a typical neural network with neurons connected in the form of an acyclic
graph. The network consists of distinct layers of neurons. The input layer receives the
input to the model, which is then passed on to the hidden layer(s) and finally to the
output layer. The neural network is initialized with random weights, which are updated
as the learning progresses.

Gradient-based optimization algorithms can be used to minimize the loss of a predictive
model with regard to a training dataset. For calculating the gradients of the weights in
a neural network, a back-propagation algorithm can be used. Both gradient descent and
back-propagation algorithms are used together for training a neural network. Merely a
simple stochastic gradient descent cannot be used if we want to calculate the gradient of
the nodes in the hidden layer. Back-propagation is an efficient algorithm that implements
the chain rule to calculate the gradients for any parameter in the neural network. The
optimization algorithm then uses this gradient to update the model weights.

2.2.3 Overfitting and Regularization

By increasing the number of learnable parameters in a neural network, the model can often
better fit the training dataset. Overfitting is the phenomenon when there is a considerable
disparity between the training and test error. To prevent overfitting, different regulariza-
tion techniques can be used. One idea is to decrease the number of learnable parameters
or restrict the parameter range [27]. The notion of regularization is derived from Occam’s
razor. According to the principle, we choose the most straightforward hypotheses from
all the different ones that explain a particular observation equally well. From a Machine
Learning perspective, this means that more preference should be given to simple or, in
other words, sparse parameter sets and thus, penalizing highly complex models. L1 regu-
larization is one way to achieve this, as it favors sparse matrices. That’s why it can also be
viewed to perform feature selection. L2 regularization or weight decay is another popular
choice that makes use of the Frobenius norm on the weight matrices. Dropout can also be
used while training the neural network to prevent overfitting. In this method, the neurons
are randomly and temporarily disabled with some user-defined probability p.

2.2.4 Transformers and BERT Models

The input to our problem is in the form of a text. They are sequential and also have
variable lengths. Recurrent Neural Networks (RNNs) such as Long Short-Term Memory

15

(LSTM) with attention has been a popular choice for a long time to learn the long-range
temporal dependencies for varying length inputs. However, a recently evolved technique
called Transformers [83] uses an architecture relying entirely on self-attention without using
any sequence-aligned models.

We use a Bi-directional Encoder Representations from Transformers (BERT) model [83]
as an actor-critic agent in an RL setting. Transformer-based models are critical components
in the hugely successful Natural Language Processing models such as GPT-2 [68], GPT-
3 [12], and Google’s PALM [18] etc. More recently, they have been successfully applied in
the context of formal programming language applications such as code translation [43,58],
code synthesis [5, 14], code understanding [25,29,62].

Bi-directional Encoder Representations from Transformers (BERT) models are based
on the Transformer architecture [21,53]. BERT models take as input (textual) strings and
encode them into a vectorized representation. One aspect of BERT that is particularly
relevant to us is that they are able to learn representations of formal grammars, as can
be seen by their efficacy in above-mentioned applications such as code translation, code
synthesis, code repair, etc. For more details, we refer the reader to the paper by Bommasani
et al. for a comprehensive overview of BERT models [9]. For additional details and context,
we suggest reading papers by Devlin et al. [21] and Liu et al. [53].

The input text is represented as a vector of embeddings. Positional embeddings are
added to these embeddings to capture the positional aspects of the input with respect to
each other. A self-attention mechanism is used to compute the representation of the given
sequence by looking at different input sequence positions. In terms of RNNs, they can be
seen as the hidden states which represent the previous embeddings along with the current
one. The self-attention model integrates the interactions of the relevant words within the
present word. The attention function takes as input a query with a set of key-value pairs
to produce an output vector. The output is a weighted sum (as a function of the query and
the corresponding key) of the values. Additionally, a multi-head module runs the attention
mechanism multiple times in parallel. Using a multi-head structure allows the model to
project the input into different representation subspaces to encode additional contextual
information and relationships for each word.

2.3 Graph Neural Network (GNN) training

Graphs are ubiquitous and the definitions of actual world objects frequently depend on how
they link to other entities. A graph is a natural way to represent a collection of entities and

16

the relationships among them. Researchers have created neural networks utlilizing graph
data that are called Graph neural networks, or GNNs).

Let G = (V,E) denote a graph where V = {v1, v2, ..., vn} and n = |V | is the number
of nodes in the graph. Let the feature vector of node vi be xi. GNNs are designed to
learn how to represent nodes and graphs. Modern GNNs often use a learning schema that
aggregates the representations of a node’s first or higher-order neighbours to iteratively
alter the node representation.

2.3.1 Mini-batching

To train a deep learning model to scale to large amounts of data, mini-batch creation is
essential. A mini-batch aggregates a number of samples into a single representation so they
can be processed efficiently in parallel as opposed to being processed one at a time. This
process is often accomplished in the area of images or languages by padding or rescaling
individual examples into sets of equal-sized shapes, after which the examples are grouped
in another dimension. The length of this dimension is therefore known as the batch size
and is equal to the number of samples combined in a mini-batch.

We can employ mini-batching to manage a GNN’s memory footprint. In each batch,
it is intended to run the node-level message passing equations for a portion of the graph’s
nodes. Careful engineering can be used to make sure that we only compute the embedding
for each node in the batch a maximum of once. This method does have a huge drawback,
though. That is, message forwarding cannot be implemented directly on a subgraph with-
out information being lost. Every time a node is eliminated, its edges are also eliminated.
Therefore, even though two nodes are connected in the whole graph, it is feasible that
they are no longer connected in the subgraph. To get around this restriction, a number of
methods have been suggested, such as subsampling node neighborhoods. It is expensive
to just use the entire graph for training, especially for dense graphs. Additionally, because
each graph is unique, adding previously unknown nodes to a graph would need restarting
training.

The standard mini-batching approach is either impractical or may lead to excessive
memory consumption because graphs are one of the most general data structures and can
contain any number of nodes or edges. Using Pytorch Geometric, we choose a different
strategy to do parallelization over numerous cases. Here, adjacency matrices are stacked
diagonally to form a large graph that contains numerous isolated subgraphs, and the node
and target attributes are simply concatenated in the node dimension. Since messages still
cannot be sent between two nodes that are a part of different graphs, GNN operators that

17

rely on a message passing scheme do not need to be altered. Both computational and
memory overhead is eliminated. This batching method, for instance, functions flawlessly
without any padding of node or edge features. Adjacency matrices are saved sparsely,
containing only non-zero entries, or the edges, therefore there is no additional memory
overhead.

Following a convolution layer in convolutional neural networks (CNNs) is typically a
pooling layer. The goal of layer pooling is to obtain more universal features. Because CNNs
are very effective at handling images, there has been a lot of work done to adapt pooling
modules to graph structures. The node-wise aggregation operators, such as max, mean,
and sum, are still among the most common options for creating graph pooling modules
since they are a natural extension of CNNs.

Augmentation is the process where a graph is enriched by adding new nodes, edges, or
features. When the input graph lacks attributes, we can give each node a distinctive ID
(one-hot vector). We can manually add any additional properties that may be relevant,
such as node degrees, cycle counts, or clustering parameters. Contrarily, graph augmenta-
tion involves adding nodes or edges to existing graphs. The procedure of passing messages
via a sparse graph could be challenging. Then, all we need to do is add more virtual edges.

2.3.2 Regularization on GNN

Graphs can use several of the common regularization techniques, such as dropout and L2
regularization. Additionally, there are regularization techniques tailored specifically for
GNNs. One such technique is parameter sharing across layers. For a network with mul-
tiple layers, it is possible to share a specific set of parameters across layers. For instance,
the Gated Recurrent Units (GRUs) of different layers employ the same set of weight ma-
trices. The number of parameters increases linearly with the number of layers, making
training for large graphs challenging. Moreover, multi-relational GNNs frequently employ
this parameter-sharing strategy. The number of learnable parameters is further inflated
by the fact that the number of parameters in these GNNs rises linearly with the number
of relation types. The possibility of vanishing or exploding gradients must be carefully
considered while employing this method. Utilizing edge dropouts is an additional option.
In order to make the network more resistant to noise in the adjacency matrix, it is intended
to randomly mask edges during training.

18

2.4 Reinforcement Learning

2.4.1 Deep Q-Learning

There is a large literature on reinforcement learning, and we refer the reader to the excellent
book by Sutton et al. [80] for further reading. Deep Q-Learning is a Reinforcement Learning
algorithm in which control policies are learned by interacting with an environment E with
the help of an agent. Given a set of internal states and a predefined set of actions, the
agent performs a certain action A, in the given state S to transition to a new state S ′. By
performing this action, the agent will receive a certain reward R from the environment E.
The agent aims to maximize the cumulative reward by performing a sequence of actions. [30,
76]

These actions result in a set of transition tuples (S,A,R, S ′) of a Markov Decision
Process (MDP). Q-learning [87] is a popular model-free RL algorithm where the agent
tries to learn an optimal expected long-term reward of an action, denoted as the value
function Q(S,A). A model-free algorithm explores the environment and learns from the
outcomes of the actions without creating an internal model of the environment. Q-learning
is an off-policy algorithm and it estimates the reward for a given state-action pair using the
greedy optimal policy. The optimal action-value function is approximated independently
of the policy. Since Q-value relies on all the possible state-action pairs that would be
unpragmatic, a parametrized version of the function can be used to approximate Q(S,A).
The learned parameters can generalize over the states and actions involved in the given
environment [11, 79]. The advancement of Deep Learning techniques and their capability
of function approximation of a wide range of complex problems led to the introduction of
Deep Q-Network (DQN) [61]. The Q-values keep on updating by performing the actions
suggested by the present Q-value function.

In order to improve the agent’s knowledge, one needs to take care of the exploration-
exploitation trade-off. If the agent has not explored sufficiently and tries to exploit early,
it might give us rewards from a sub-optimal behavior. Exploration would help the agent
receive better rewards in the long run. The epsilon-greedy method to tackle this trade-off.
Furthermore, if the transitions from only the current input are used to train the Q-value
model, the model would overfit, and the same action would be repeated for any new input.
To avoid this correlation problem, we can randomly sample the transition tuples from a
pool of past and current replay memories. A target network can also been used to make
the learning process stable.

19

2.4.2 Proximal Policy Optimization (PPO) Algorithm

As mentioned in the previous sub-section, Deep Q Network (DQN) [61] has been one
of the most popular RL algorithms in which control policies are learned by interacting
with an environment with the help of an agent. DQN uses deep learning techniques for
function approximation of the optimal expected long-term reward of an action, i.e., the
Q function. For a large number of state-action pairs, it is difficult for DQN to learn the
Q function. Proximal Policy Optimization (PPO) was proposed by OpenAI [73], which
handles this drawback using a Clipped Surrogate Objective function. PPO provides a
better convergence and performance rate as compared to other techniques [73].

Let’s start by introducing the loss function for a simple policy gradient method. The
policy gradient loss in a policy objective function is defined as the expectation of the log
of policy times the advantage function. The policy is a model that produces an action for
a given state. The advantage value is the difference between the current state’s discounted
rewards and the predicted final return value. A positive advantage value shows that the
agent performed better than an expected average return. The gradient update would be
made so that agent would select the current action if we encounter this state. Similarly, a
negative advantage means that this action should not be taken in the future when you are
in this state.

LPG(θ) = Êt[log πθ(at|st)Ât] (2.1)

However, the major drawback of the policy gradient method is that it might converge
very slowly if the step size is small, and there will be a drastic variability in training for
a larger step size. A second drawback is that a single batch would ruin the policy and
would not be able to generalize properly if the new policy is drastically different from the
older one. To overcome the latter, a KL-divergence constraint was added by Trust Region
Policy Optimization (TRPO) [72], but this has a high computational cost involved with
the calculation of KL-divergence.

LCPI(θ) = Êt

[
πθ(at|st)
πθold(at|st)

Ât

]
= Êt[rt(θ)Ât] (2.2)

LCLIP (θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1 − ϵ, 1 + ϵ)Ât)] (2.3)

Here, the probability ratio rt(θ) denotes how likely the action is now compared to the
older policy. A value greater than 1 indicates that the action is more likely now than in

20

the older policy, and a value between 0 and 1 indicates that the action is less likely now.
Multiplying it by the advantage value would make the objective function LCPI similar to
TRPO. However, LCPI is unconstrained, and thus, it can give rise to large policy updates.
Now, by including clipping in LCLIP , the probability ratio is between 1− ϵ and 1 + ϵ. This
ensures that the update in the policy does not change it much from the older policy, leading
to less variance for a smooth training and ensuring that the agent does not wander off to an
unrecoverable path because of a drastic policy change. In order to give an intuition of why
it works, let’s consider the case that a certain action is less rewarding with the new policy
compared to the older one. Instead of bringing the likelihood down to zero with merely
one such instance and ruining the policy learned so far, limiting the gradient update would
be better and allow the agent to explore better. An entropy term is also usually added to
ensure that the agent has performed enough exploration.

Unlike replay memory, as used by DQN, PPO collects a small batch of transition
tuples to update the policy once per episode/epoch. In the next episode, the old batch is
discarded, and a new batch is collected with the policy updated in the last epoch. This is
why PPO is on-policy learning, unlike off-policy learning of DQN, because the accumulated
experience is only used once to update the current policy.

21

Chapter 3

Overview

In this section, we present an overview of the architecture details for the three differ-
ent settings: annotation prediction, Reinforcement Learning-based fine-tuning, and error
heatmap prediction.

3.1 Annotation Prediction

Given an input file and type hierarchy (if one exists) with preference constraints, Opprop-
BERT for annotation prediction produces a type-adhering annotated file. Leveraging the
data-driven idea of using test cases created by the developer to fine-tune the pre-trained
model in a supervised manner, OppropBERT can learn the type rules from the test cases
and predict type annotations with high accuracy. The architecture diagram is shown in
Figure 3.1.

Input: A program (the whole file or a block of code) written in a particular program-
ming language to be annotated is given as the input. The file could either be unannotated
or partially annotated. Additionally, the user provides the list of possible types in the
type system and the type hierarchy (if one exists). The user can also define preference
constraint weights for different locations, e.g., return types, parameter types, etc.

Output: An annotated file that adheres to the type rules so that it can guarantee a
defined property of choice and prevent run-time bugs.

K-fold filtering for supervised fine-tuning: The model utilizes the developer-
created test cases with annotated code for fine-tuning the Deep Learning (DL) model to

22

Figure 3.1: Architecture diagram of OppropBERT for annotation prediction task.

predict the correct annotations. However, the developer-created dataset may have some
bugs due to human error. DL models are sensitive to noisy data, and thus, the developer
must make sure that the test cases to be used as the fine-tuning data must be perfect so
that the model learns the correct type rules. Utilizing a filtering mechanism to find such
anomalous test cases so that the developer can double-check a certain fraction of them can
help prevent any negative impacts on the model.

A k-fold cross-validation approach has been used to filter out the dataset. For our
experiments, we have chosen k to be 5. The dataset of the test cases is divided into k
non-overlapping subsets. On trial i, the i-th subset is used as the validation set, while
the remaining (k − 1) sets are used for training the error prediction model using the
OppropBERT model explained later. Post training, the validation set is used to find
the probability of error for each test case; let’s call the output to be ypred. The process
is repeated for all the folds. The developer can choose to double-check either the top n
percent of the validation data (i.e., the ones with the highest probability of error) or choose
from a certain threshold of ypred.

23

Furthermore, the training set was also deduplicated to avoid any bias using the method
proposed by Allamanis [2].

Preprocessing: We generalize the keywords present in the code similar to the obfusca-
tion process used by DOBF [44] as this helps the DL model not to create any bias from the
variable names in the developer-created test cases. The slots are created in the modified
code to represent the locations where annotation can be inserted. These slots are replaced
with the mask token so that the annotation prediction model only focuses on predicting the
annotations for the masked-out locations. The modified input code is fed into a Control
Flow Graph (CFG) generator. In the case of Java, we use the Checker Framework CFG
builder, which transforms the Abstract Syntax Tree (AST) of each method into a CFG.
Following this, a pre-trained GraphCodeBERT [29] tokenizer is used to tokenize the input
code and CFG nodes. The tokenizer also takes care of padding the mini-batch of input and
creates the attention mask to prevent the model from focusing on the padding tokens while
calculating the self and cross-attention scores. Lastly, all the pre-processed elements of the
code are stored in our multi-graph data structure. Apart from whole program inference,
we randomly mask a subset (25-50%) of the existing annotations to allow the model to
learn to predict the missing (i.e., masked out) annotations in the given partially annotated
code.

OppropBERT: The tokenized code and CFGs are fed into the OppropBERT. The
pre-trained GraphCodeBERT [29] model is used to create embeddings (feature vector rep-
resentation) for the nodes of the CFGs and the raw (masked) code. The node embeddings
of a graph are passed to Graph Convolution layers. Lastly, we obtain the graph embedding
using the Global Mean Pooling of all the nodes present in the graph. The same procedure
is repeated for all the available graphs for a particular program. The code and the graph
embeddings are concatenated together and passed to a fully connected layer to obtain the
required probability distribution across the possible annotations. Appropriate regulariza-
tion is used at every stage of the network, chosen with the help of the performance on the
validation set. During pre-training, GraphCodeBERT uses a standard masked language
modeling task [21] to learn the source code representations, data flow edge prediction to
learn the representation from the dataflow by predicting the masked out edges, and lastly,
a variable-alignment task across source code and dataflow.

Loss functions - The masked language modeling (MLM) task works as follows. We start
by randomly masking 15% of the tokens of the code and replacing them with the masked
token 80% of the time, with a random token 10% of the time, and leaving them as it
is the remaining 10%. Using the MLM objective, the model is trained to predict the
original tokens to learn the representation space better, as shown in [21,25,53]. We modify
the MLM objective to consider both the source code and the CFG nodes as depicted in

24

Equation 3.1. To solve the masked token classification problem, we use the Cross-Entropy
Loss function, a standard loss function for classification problems. We take into account
the class imbalance and masked token weights since we are interested in classifying only
a subset of tokens that are marked as masked. Additional user-defined heuristics, such as
preferring a subset of annotations for certain locations, preferring a particular code pattern,
or an ownership structure are also incorporated in the loss function.

Lcfg MLM = − 1

K

K∑
k=1

log p(xmask | Xcode, Xcfg; θ) (3.1)

We also introduce additional loss functions to learn the representation better:

1. Node-code association: To better learn the representation from CFG, a loss function
is defined that improves alignment between the source code and the CFG node, as shown
in Equation 3.2. Positive and negative samples are sampled equally to avoid any bias.
Anode code denotes all the association pairs between node-code. δ(anc ∈ Amask) is 1 if
the particular anc association exists between the CFG node and the source code, else 0.
panc is the probability of the association calculated by combining the embeddings from
OppropBERT.

Lassociation = −
∑

anc∈Anode code

[δ(anc ∈ Amask)logpanc+(1−δ(anc ∈ Amask))log(1−panc)] (3.2)

2. Flow-sensitive refinement: Flow-sensitive type refinement helps the type annotations
to be refined at different places in the code instead of assigning a single type annotation
for a particular variable throughout the code. The refinement depends on the use of the
variables at different locations of the code, which the CFG captures well. xπk

denotes the
mask token. Unlike the standard MLM described above, the flow-sensitive refinement loss
predicts the masked token only by looking at the nodes and source code before this masked
token.

Lflow = − 1

K

K∑
k=1

log p(xπk
| X−π; θ) (3.3)

Tokenizers - Word embeddings often represent words in the corpus and capture the se-
mantic and syntactic similarity of different words in a common subspace. However, there

25

are many out-of-vocabulary (OOV) words, as we cannot expect all the words possible in
a given language to be present in the training corpus. Also, the presence of rare words
does not allow the model to learn proper word embeddings. Character and sub-word level
representations can help address these drawbacks. Authors in [47] developed a character-
to-character model, which worked better than a word-to-word translation model because
of its ability to tackle OOV and rare words. However, it had limitations. The attention
layer’s computational cost increases quadratically with the increase in sentence length due
to using character-based tokens. Even at the encoder, the character-level encoder needs to
learn a complex non-linear function for a long sequence of characters and capture depen-
dencies over a longer time span. GraphCodeBERT [29] tokenizers are based on a BERT
tokenizer1 which uses WordPiece, first introduced by Schuster et al. [74]. WordPiece ini-
tializes the vocabulary and includes every character present in the training data. It then
progressively learns a given number of merge rules. Instead of choosing the most frequent
symbol pair (as used in Byte Pair Encoding [75]), it chooses the one that maximizes the
likelihood of the training data once added to the vocabulary. In other words, it evaluates
the loss by merging two symbols to ensure it’s worth it. We use the GraphCodeBERT
tokenizer as it is pre-trained on CodeSearchNet dataset [38], which includes 2.3 million
functions in six programming languages (Go, Java, JavaScript, PHP, Python, and Ruby).
Moreover, we also add the type qualifiers as single tokens in the tokenizer vocabulary so
that they do not split into multiple sub-words. Otherwise, it will create problems during
MLM due to the presence of multiple masks for the same slot location. Adding to the to-
ken embeddings means extending the embedding matrix to accommodate the new tokens
in the vocabulary. Instead of initializing them randomly, we take the average across the
individual tokens from the existing pre-training tokenizer.

Post-processing: During the post-processing stage, the predicted annotations by Op-
propBERT are mapped back to the source code locations to generate a file. By playing
around with the preference weights provided in the input, the final annotated file could be
made less or more conservative. If no solutions exist (the combined confidence score is low
for all the predictions), the model can remove existing annotations (added by the user in
their partially annotated code) to predict appropriate ones. Similarly, the user can prefer
a specific annotation to occur more frequently than others, e.g., @Rep in universe type
system [23] to enforce a deeper ownership structure. This can be done by giving a higher
weightage to predicting the preferred annotation while ensuring that the final program is
type-adhering.

Extending to other type systems: For a given programming language (let’s say
Java), if the type hierarchy and rules of the current type system on which the model is

1https://www.tensorflow.org/text/api_docs/python/text/BertTokenizer

26

https://www.tensorflow.org/text/api_docs/python/text/BertTokenizer

trained are similar or a superset of the new one with less training data, then the existing
model can transfer learn the new type system easily. Replacing the old annotation tokens
with the new ones in the vocabulary would preserve the embeddings associated with the
relative position and hence, the type rules associated with the old ones.

Extending to other programming languages: Since the pre-trained model is pro-
gramming language agnostic, the same model architecture can be easily extended to any
new programming language and its type system. We have chosen Python and TypeScript
to demonstrate this ability.

No fixed point iteration: Since we use a self-attention network, we can parallelly
obtain all the predictions for different slots. This especially helps us with annotation
prediction, where we do not need to iterate multiple times over the program as in the
case of fixed point iteration [35, 36]. In a fixed point iteration, unannotated variables are
initialized to the maximal set of qualifiers. The analysis would iterate over the program
statements refining the initial sets in every pass till the fixed point is reached. In our case,
we use beam search decoding to find the best possible combination of all the available
choices of annotations in a single pass.

3.2 Reinforcement Learning fine-tuning

In the previous section, we leverage the idea of using test cases created by the developer
to create a supervised fine-tuning model to predict type annotations. However, the limited
number of test cases might not be good enough to generalize for the entire type system.
Given additional unannotated code written in the programming language under considera-
tion and a type checker corresponding to the annotations of the property we are interested
in inferring, a Reinforcement Learning (RL) agent can be used to fine-tune the model de-
fined in the above section and predict annotated and type-checked files. The architecture
diagram is shown in Figure 3.2.

Input: Publicly available files from Google Big Query are used as seed file input to
the OppropBERT RL model. The goal here is for the OppropBERT model to automati-
cally learn a meaningful representation of the type rules and then predict the appropriate
annotations for the given input code. The user provides the list of possible types in the
type system and the type hierarchy (if one exists). The user can also define preference
constraint weights for different locations, e.g., return types, parameter types, etc.

Output: An annotated file that type checks so that it can guarantee a defined property
of choice and prevent run time bugs.

27

Figure 3.2: Architecture diagram of OppropBERT with Reinforcement Learning fine-
tuning

Preprocessing: The preprocessing steps are similar to Section 3.1

Actor-Critic PPO: The preprocessed tokenized source code and CFGs are passed
into the Actor-Critic Proximal Policy Optimization (PPO) agent. We use OppropBERT
(as described in Section 3.1) to serve as the building block for the Actor-Critic agent.
OppropBERT encodes the input code and CFGs into a vectorized representation. One can
view the agent’s actions as a set of predicted annotations at the required locations. The
RL agent selects the actions by sampling from a probability distribution and then provides
the predicted annotations (actions) at the masked locations to the annotation writer to
generate a candidate annotated file to be sent to the environment (i.e., the type checker).

Environment: We use a developer-created type checker to serve as feedback to the
Actor-Critic PPO RL agent. The type checker takes as an input a program and outputs a
binary output signifying whether the program type checks or not. A successful type-checked
program must follow the specified type rules and guarantee the particular property holds
to prevent the intended run-time bugs. In the case of Java, the Checker Framework type
checker uses the Java compiler’s parsed source code and produces an Abstract Syntax Tree
(AST) to invoke certain annotation processors and the type checker. The type checker
invokes the AST visitor (also known as Type Visitor) to determine the annotation and
check the validity of the annotated type according to the specified type rules of the type

28

system we are interested in. An adapter library is created to send the feedback to the
agent corresponding to whether the last predicted annotation(s) type checked successfully
or not.

If the type checker supports, the feedback could be fine-grained to the erroneous an-
notations or lines of code as it would better specify the reward/penalty signals. Using
such detailed signals, the RL agent can penalize only the incorrect annotations. On the
other hand, a binary signal does not provide any information about individual erroneous
locations, penalizing even the correct annotation for certain locations. In this way, the fine-
grained feedback can lead to a better reward signal and, thus, faster convergence. Lastly,
weak reward signals can also be obtained from a data-driven model trained for predicting
type errors in the absence of a developer-provided type checker. More details regarding
this can be found in Section 3.3.

Details of Reward and Penalty: In the presence of the fine-grained signal from the
type checker, the OppropBERT RL agent (Actor-Critic PPO) receives a vector of reward-
penalty signals corresponding to whether the annotations at the respective locations were
predicted correctly or not. The vector is transformed into a scalar value using the preference
weights if provided by the user, otherwise, it is weighted equally to generate a reward
signal. No transformation is required for a binary signal from the type checker, and we
can directly use this scalar value as a reward/penalty signal. In the case of a weak signal
from a data-driven type checker, the weights can be determined by the confidence of the
prediction values. Additional user-defined heuristics as mentioned in Section 3.1 are also
incorporated into the reward signals.

Putting it all together: Initially, a file is selected randomly from the list of seed
files (publicly available files that can be either annotated or unannotated) that are pre-
processed to create tokenized source code and CFGs. The preprocessed input is fed to
the pre-trained and fine-tuned (supervised) via an Actor-Critic PPO RL agent. The PPO
agent predicts the type-adhering annotations used to generate the candidate annotated
file. The candidate annotated file is passed to the type checker (environment) that sends
a reward/penalty signal back to the RL agent. Success is detected when the candidate
annotated file indeed type checks. In case of a reward (or penalty), the RL agent modifies
its probability distribution to prefer (or reject) the annotation for that state. The chosen
seed input file is again used for the PPO agent to predict a new candidate annotated file.
This loop is repeated a few times before discarding the current seed input file and choosing
a new one from the list of input files. The learning process terminates when the desired
timeout or epoch has been reached. In the testing phase, a successfully annotated and
type-checked file is returned as an output to the user.

29

Note that the predicting no annotations at a masked location corresponds to the default
annotation for that particular location based on how it has been defined in the type checker.
These default annotations might not be safe or the best option all the time. The model
aims to generate annotations that type checks and also abide by intended user-defined
heuristics.

3.3 Error Heatmap Prediction

Figure 3.3: Architecture diagram of OppropBERT for error heatmap prediction task

Given an input program, the error heatmap prediction model gives a token-level heatmap,
where the heatmap corresponds to the probability of error at different locations in the code
(Figure 3.3). Before type annotation prediction, the error heatmap prediction model can
be used to make sure that the unannotated or partially annotated code provided by the
user type checks or not. Moreover, in the absence of a type checker for the RL loop, as
described in the last section, the heatmap prediction model can also serve as a weak signal
for certain examples it is confident about.

30

Input: A file written in a particular programming language to be type-checked is given
as the input. The file could either be unannotated or annotated. The user provides the
list of possible types in the type system and the type hierarchy (if one exists).

Output: An error heatmap highlighting the locations with a high probability of type
error. The absence of errors signifies that the code adheres to the type rules to guarantee
with high accuracy that a defined property of choice holds and prevents run-time bugs.

Preprocessing: The preprocessing steps are similar to Section 3.1 except for the
annotation mask creation. Heatmap labels for the tokenized test cases are from the given
error line numbers by mapping the line numbers to the respective set of tokens.

OppropBERT: The model architecture remains the same as described in Section 3.1.

Post-processing: During the post-processing stage, the predicted token-level er-
ror probabilities by OppropBERT are mapped back to the source code to generate the
heatmap. The error probability can be token-level or line-level (by aggregating the token-
level probabilities for the particular line).

31

Chapter 4

Implementation

4.1 Comparative tools

For Java’s nullness type system dataset, we compare OppropBERT against 4 popular
nullness type checking or annotation inference tools (for more details, please refer to Section
2.1):

• Checker Framework [22,64]

• Spotbugs1

• Eclipse2

• IntelliJ3

We also create the following two baseline models for comparison:

• Genetic Algorithm: Using a fitness function based on the preference constraint to
find the best possible set of annotations.

1https://spotbugs.github.io/
2https://help.eclipse.org/latest/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Ftasks%

2Ftask-using_null_type_annotations.htm
3https://www.jetbrains.com/help/idea/inferring-nullity.html

32

https://spotbugs.github.io/
https://help.eclipse.org/latest/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Ftasks%2Ftask-using_null_type_annotations.htm
https://help.eclipse.org/latest/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Ftasks%2Ftask-using_null_type_annotations.htm
https://www.jetbrains.com/help/idea/inferring-nullity.html

• Random Baseline: Randomly assigning possible type annotations to the available
slots.

For the optional type prediction task, we compare against the following 7 benchmarks:

• BERT [21]: Bidirectional Encoder Representations from Transformers model pre-
trained using masked language modeling and next sentence prediction tasks.

• RoBERTa [53]: A robustly optimized BERT pre-training approach which is built
on top of BERT, but with modified hyperparameters, next-sentence pre-training
objective removed, and dynamic masking.

• CodeBERT [25]: A bi-modal pre-trained model for programming language (PL) and
natural language (NL) related tasks. The pre-training objectives include masked
language modeling and replaced token detection.

• CodeBERTa [89]: It is a RoBERTa-like model pre-trained on the CodeSearchNet
dataset [38] from GitHub.

• GraphCodeBERT [29]: An improved version of CodeBERT, where the authors use
data flow information in the pre-training stage by introducing two structure-aware
pre-training tasks to capture the inherent structure of code.

• PolyGot [1]: CodeBERT model with multi-lingual fine-tuning.

• GraphPolyGot [1]: GraphCodeBERT model with multi-lingual fine-tuning.

4.2 Benchmarks

We collect the Java test cases from Checker Framework nullness type system4. We gener-
alize their variable names and augment the Java files by including dummy function calls
and statements to increase the length of the program. We also mix and match with the
existing codebase to create more combinations. To create additional test cases, we mask all
possible slots where an annotation could be inserted and insert all possible combinations
of annotations at different slot locations. Since we have a Nullness type checker available

4https://github.com/opprop/checker-framework/tree/master/checker/src/main/java/org/

checkerframework/checker/nullness

33

https://github.com/opprop/checker-framework/tree/master/checker/src/main/java/org/checkerframework/checker/nullness
https://github.com/opprop/checker-framework/tree/master/checker/src/main/java/org/checkerframework/checker/nullness

in Checker Framework, we could feed the newly generated test cases to this type checker
to verify whether the test case type checks.

Furthermore, we use a deduplication tool popular in the literature [4] based on Jaccard
similarity to remove all the duplicate test cases. After augmentation, we have 3000 Java
files with 50163 lines of code and, on average, eight annotations in every file. We traverse
each file’s AST (abstract syntax tree) to extract the annotations. This way, we gather
the tokens and their type annotations on the AST nodes to create an aligned pair. If the
type annotation does not exist, we query the default annotation processor of the Checker
Framework to store the default annotation. The train-validation-test split is 70:10:20. The
division is done so that all the augmented files of a particular set of error types remain in
the same data split to avoid any leakage.

For testing the models, we use popular Java repositories also used by [22]. Note that
all the lines of code were calculated after ignoring the comments and blank lines:

• Daikon library5 with 117472 lines of Java code.

• Options library6 with 1915 lines of Java code.

• Lookup library7 with 274 lines of Java code.

The advantage of using our method is that for migrating to a new type system, one
would need to simply create the test cases with all possible combinations of annotations and
feed it to the model. Furthermore, they can use the filtering algorithm to find anomalous
test cases and double-check the presence of any errors in the test cases.

For the TypeScript type prediction task, we use the largest standard benchmark Many-
Types4TypeScript [39] with over 9 million type annotations, across 13953 projects and
539571 files. ManyTypes4TypeScript is also part of the popular CodeXGLUE [55] bench-
marks. Inspired by the growth of diversified benchmark datasets in the field of computer
vision and NLP, researchers from Microsoft Research Asia, Developer Division, and Bing
introduced a benchmark dataset for code intelligence called CodeXGLUE (General Lan-
guage Understanding Evaluation benchmark for CODE).

Lastly, for the Python type prediction task, we manually create a return-type warning
prediction dataset. A software developer often forgets to store a return value from a
method call that modifies the input arguments (e.g., inserting/deleting in a string/NumPy

5https://github.com/codespecs/daikon
6https://github.com/plume-lib/options
7https://github.com/plume-lib/lookup

34

https://github.com/codespecs/daikon
https://github.com/plume-lib/options
https://github.com/plume-lib/lookup

array/dataframe). Such a mistake usually happens when the user accidentally assumes the
method will perform an in-place operation instead of returning the modified object. On
the other hand, sometimes a developer might be interested in looking at the intermediate
output being printed in the method itself or merely printing the output to test out a
functionality (the IPython Notebook allows printing intermediate lines of code). Employing
a static analysis tool will generate a lot of false positive warnings because the warning
depends on user behavior rather than type rules. Therefore, given a user code, the body
of the method in question, the model can also predict whether the developer accidentally
missed the return value or intentionally did not store the modified return value.

4.3 Computational Environment

We implemented OppropBERT in over 2000 lines of Python 3 using Pytorch for imple-
menting the Deep Learning model. The code and benchmark would be available on my
GitHub repository and my homepage. We performed our experiments on Digital Research
Alliance of Canada computing service [8], a CentOS V7 cluster of Intel Silver 4216 Cascade
Lake running at 2.10 GHz with 32 GB memory and 4 Nvidia V100 Volta GPUs.

4.4 Metrics

The metrics used by us have been widely used in the field of type prediction [39, 60] that
serve as an important indicator for establishing the efficacy of type prediction models. We
evaluated the tools on the following criteria:

• Accuracy (Top-k): Ratio of correct type predictions to the total types predicted
by the model. A variation of this called the top-k accuracy considers that the model
predicted the correct type if the actual type (label) appears in one of the top k pre-
dictions from the model. Unless specified otherwise, simply saying accuracy implies
top-1 accuracy.

• Precision: Fraction of relevant instances among the retrieved instances.

• Recall: Fraction of retrieved relevant instances.

• F1 score: The harmonic mean of precision and recall.

35

• Mean Reciprocal Rank (MRR): The MRR is expressed as

MRR =
1

|N |

|N |∑
i=1

RR(i) (4.1)

where, N is the total number of prediction queries from the model, i is the predicted
type, and RR is the reciprocal rank which is given as:

RR(i) =

{
1
|ri| , if correct type annotation is predicted

0, otherwise
(4.2)

where, r is the rank of the correctly predicted type annotation in the ranked list.
Similar to Top-1 accuracy, a score of 1 is given when the Top-1 suggested type is
correct for a prediction. We refer to the MRR of Top-k prediction as MRR@k.

Lastly, regarding the heatmap prediction, we use a metric called Intersection over
Union (IoU) derived from bounding box object detection and recognition models in
Computer Vision [69]. IoU is a numeric value between 0 and 1 that would specify the
overlap between the predicted and the ground truth error heatmap tokens. An IoU of 0
signifies no overlap, while an IoU of 1 denotes a perfect overlap between the predicted and
actual error heatmap tokens.

4.5 Hyperparameters

We use grid search to find suitable hyperparameters by evaluating on the validation set.
WANDB was used as the hyperparameter tuning and experiment tracking platform. The
hyperparameter settings are given in Table 4.1. We use the AdamW optimizer [54], an
efficient version of the Adam optimizer with decoupled weight decay. Similar to the Trans-
formers implementation [83], we used a learning rate scheduler with a linear warmup. To
prevent overfitting, we used dropout, label smoothening, and early stopping with patience
of 50 epochs on the validation loss.

36

Hyperparameter Value

Latent Dimension 768

Optimizer AdamW

Weight Decay 0.01

Learning Rate 2e-5

GCN Aggregation Type Sum

GCN Combination Type Concatenation

GCN Layers 2

RL Policy Gamma 0.99

Policy Learning Rate 3e-5

Max Gradient Clipping 0.5

Table 4.1: Hyperparameter settings

4.6 Effective training strategies

Gradient Accumulation

Instead of calculating the gradients for the entire batch at once, we can break it down into
smaller steps. To do so, we need to calculate the gradients of smaller batches and iteratively
accumulate the gradients during the forward and backward passes. After a certain number
of these iterative accumulations, the optimizer step of the model can be performed. In this
manner, we can increase the effective batch size even though this effective batch size would
not fit in the GPU memory all at once. The tradeoff for a drastic reduction in the memory
overhead is a slight increase in the training time. The accumulation steps are chosen in
such a way that we can maximize GPU utilization.

37

Gradient Checkpointing

Gradient Accumulation, as mentioned above, does help in increasing the effective batch
size. However, there can be a case for large models where the GPU runs out of memory even
for a batch size of 1. This happens because all the activations from the forward pass are
saved to calculate the backward pass gradients, which increases the memory footprint. One
way to solve the problem is to remove all the activations computed during the forward pass,
and instead re-calculate those values on-demand during the backward pass. The drawback
of this approach is the significant increase in computational overhead, which would slow
down the training process. Gradient checkpointing leverages the tradeoff between memory
vs. time to judiciously save a subset of activations in the computational graph so that not
all activations need to be re-calculated during the backward pass for the gradients.

Mixed precision training and pinned memory

To increase the computation speed, the Huggingface library [89] offers mixed-precision
training where the variables are stored in half (16-bit) or full (32-bit) floating-point pre-
cision. However, there still exists a bottleneck. One of the critical requirements to reach
great training speed is the ability to feed the GPU at the maximum rate it can handle. By
default, everything happens in the main process, and it might not be able to read the data
from the disk fast enough, thus creating a bottleneck, leading to GPU under-utilization.
To enable faster transfer from the CPU to the GPU memory, the data can be pre-loaded
to the pinned memory of the CPU.

Class weights

In case of class imbalance, it is required to introduce class weights during loss calculation
so that the model remains unbiased and pays greater attention to the under-represented
classes. The class weights are inversely proportional8 to the distribution (percentage) in
the training set.

Distributed training

The training process can be distributed across multiple GPUs to speed up the training
process. We adopt the data parallelization process where initially, the model is replicated

8https://www.tensorflow.org/tutorials/structured_data/imbalanced_data#calculate_

class_weights

38

https://www.tensorflow.org/tutorials/structured_data/imbalanced_data#calculate_class_weights
https://www.tensorflow.org/tutorials/structured_data/imbalanced_data#calculate_class_weights

across all the GPUs, and each GPU takes its own mini-batch of data. During the backward
pass, the local gradients from every GPU are averaged across all the processes.

39

Chapter 5

Experiment and Results

In this section, we discuss the results of using OppropBERT for error heatmap prediction
and annotation prediction tasks in Java, type prediction in TypeScript, and error prediction
in Python.

5.1 Error heatmap and annotation prediction in Java

5.1.1 A few examples of test cases

We first look at a few examples of the test cases that were used for fine-tuning. Listing
5.1 shows a code snippet with a null-pointer exception (NPE) on the var 1.toString();

line outside the loop.

Listing 5.1: Test case with loop containing NPE

public class c l a s s 1 {
void method 1 () {

St r ing var 1 = ”m” ;
for (var 1 = null ; var 1 != null ; var 1 = ”m”) {

var 1 . t o S t r i n g () ;
}
var 1 . t o S t r i n g () ;

}
}

40

The initial expression of the loop sets the variable var 1 to null. Since the condition
expression is false, the program breaks out of the loop and dereferencing var 1 outside the
loop results in a null pointer exception.

On the other hand, Listing 5.2 shows an example where there is no null pointer exception
in the code. The while loop breaks if the variable var 1 is assigned null so it never gets
dereferenced.

Listing 5.2: Test case with loop that is free from NPE

public class c l a s s 1 {
void method 1 () {

St r ing var 1 = null ;
while (true) {

i f (var 1 == null) break ;
var 1 . t o S t r i n g () ;

}
}

}

Our test cases also have pre-condition and post-condition annotations present, as ex-
plained in Section 2.1.3. The pre-condition annotation indicates that the method expects
the specified expressions to be non-null when the annotated method is invoked. On the
other hand, the post-condition annotation indicates that the value expressions are non-null
just after a method call if the method terminates successfully.

5.1.2 Ablation studies and comparative analysis

We use the Java files from the test benchmarks and perform an ablation study to observe
how every component of the model plays an essential role in improving the predictions.

As shown in Table 5.1, we observe that introducing the Reinforcement Learning (RL)
feedback loop leads to the most significant (+4.5%) increase in Top-1 accuracy as the RL
loop is focused on predicting the best set of annotations. Using Graph Neural Network
(GNN) alone does not lead to a drastic improvement. However, pairing it with a custom
structure-aware loss function led to a significant increase in heatmap IoU (+6.9%), top-1
accuracy (+3.4%), and MRR (+5%).

In terms of the time taken, OppropBERT was faster than Eclipse and IntelliJ by 20%
for the annotation prediction task. Note that Checker Framework Inference and Spotbugs

41

Model
Heatmap IoU

(Error Prediction)

Top-1 Accuracy

(Annotation Prediction)

MRR@5

(Annotation Prediction)

Random 0 0.5% 3.2

GraphCodeBERT

(Baseline)
84.8 81.6% 83.0

+ GNN 85.3 82.8% 83.9

+ Custom loss 90.7 84.4% 87.2

+ RL feedback 90.2 88.9% 90.1

Table 5.1: Impact of design choices: Ablation studies

do not have a nullness type inference system. For the error prediction task, OppropBERT
is faster than Checker Framework’s nullness type checker by 85%. Figure 5.1 shows an
example of an error heatmap prediction output.

Comparison with Genetic Algorithm for preference constraints

Let’s start with a brief overview of the Genetic Algorithm. An initial population created
at random is the first step of the method. After that, the algorithm generates a series
of new populations. The algorithm builds the subsequent population at each stage using
members of the current generation. The method evaluates each member of the existing
population by calculating its fitness value before generating the new population. These raw
fitness scores have now been adjusted to create a more usable range of numbers, otherwise
known as expectation values. The parents are the members who are chosen based on
their expectations. The elite are some of the more physically fit members of the current
population. The subsequent population inherits these elite individuals. The offspring are
generated from the parents. Crossover is the process of mixing the vector entries of two
parents, while mutation produces random changes to a single parent. The children are
then used to create the next generation, replacing the current population. The algorithm
terminates when one of the stopping conditions is satisfied.

Recall that the predictions can be made more or less conservative with the help of

42

Figure 5.1: Example of a heatmap prediction output. The darker shades of red denote a
higher probability of error.

preference constraints. For a solver-based approach used by Checker Framework inference,
these preference (soft) constraints are considered as breakable constraints when translated
to a weighted SAT formula. A weighted MaxSAT solver can be used in such a case to find
out a solution such that the hard type system constraints are satisfied and, at the same
time, the breakable constraints result in the maximum possible weight. A developer must
play around with these weight values and manually analyze the solutions to ensure the
strictness they want their heuristic to be enforced. We developed a Genetic Algorithm-
based optimization for a MaxSAT solver to find the best soft constraint weights where the
fitness function was set with respect to the heuristic the user wants to be enforced (e.g.,
higher number of @Rep annotations for the Universe type system). Given enough iterations
(generations), the algorithm is able to converge to a set of “better” weights. However, it
takes a lot of time to explore the different sets of weights which involves calling the ex-
pensive MaxSAT solver for every chromosome in every generation’s population. Moreover,
the process is stateless, i.e., the set of weights is decided for a particular program without
having any encoding of the program as an input.

A BERT-style model like OppropBERT, on the other hand, can encode the program
under consideration along with the user-defined heuristic to suggest the annotations based
on the learned structure of the training and fine-tuning examples.

43

Model
Heatmap IoU

(Error Prediction)

Top-1 Accuracy

(Annotation Prediction)

MRR@5

(Annotation Prediction)

Zero-shot 42.8 57.3% 61.4

Few-shot 58.0 62.9% 65.5

Table 5.2: Transfer learning on a simple security lattice

5.1.3 Transfer learning to security type system

We use the OppropBERT model trained for nullness type system on a simple security lat-
tice1. The security type system has three new annotations that capture only the subtyping
relationships and ignores all the other intricate type rules in the nullness type system. In
this security lattice, @TopSecret is the top annotation, @Confidential is the subtype of
@TopSecret, and @Public is the subtype of @Confidential. Recall that the nullness type
system only has two annotations @Nullable, which is the top annotation, and @NonNull

which is the subtype of @Nullable.

It is interesting to note that by replacing the type hierarchy of the nullness type system
with the security type system and, thus, preserving the subtyping relationship rules, the
model can predict error heatmap and annotations with reasonable accuracy (Table 5.2) even
under zero-shot conditions (no training examples of the new type system are provided).
This is possible because OppropBERT can capture the understanding of the subtyping
relationships into the embedding representation of the annotations of the previous type
system and transfer them to the new type system. The model struggles the most to
accommodate for the third annotation being introduced, as the last system type only had
two. Moreover, fine-tuning the model with some additional examples (few-shot) helps the
model to predict slightly better, as shown in Table 5.2.

1https://github.com/opprop/security-demo

44

https://github.com/opprop/security-demo

Listing 5.3: Security lattice example

import s e c u r i t y . qual . TopSecret ;
import s e c u r i t y . qual . C o n f i d e n t i a l ;
import s e c u r i t y . qual . Publ ic ;

public class TypeCheck {

void topSecretFunc (@TopSecret S t r ing p) {}
void con f i d en t i a lFunc (@Conf ident ia l S t r ing p) {}
void publicFunc (@Public S t r ing p) {}

void parameter (@TopSecret S t r ing s1 ,
@Conf ident ia l S t r ing s2 ,
@Public S t r ing s3) {

topSecretFunc (s1) ; // OK
publicFunc (s1) ; // not a l l owed

}
}

Listing 5.3 shows a simple example to demonstrate the security type system. The
topSecretFunc() method only accepts a string of type @TopSecret or any subtype of
it. That is why the function call topSecretFunc(s1); is allowed. On the other hand,
publicFunc() accepts a string of type @Public or any subtype of it. Since the type of
s1, i.e., @TopSecret is not a subtype of @Public, the function call publicFunc(s1); is
forbidden and results in an error.

5.1.4 False positive/negative in other tools

Listing 5.4 shows a false negative in Spotbugs nullness type checker, i.e., Spotbugs does
not report the error for the assignment this.obj2 = this.obj1; on the last line of bar()
method. The assignment is not possible because the field obj2 is of type @NonNull but is
assigned a null object. OppropBERT does report an error for the program correctly.

45

Listing 5.4: Spotbugs issue

public class NullnessExample {

@Nullable Object obj1 ;
@NonNull Object obj2 ;

public void f oo () {

this . obj1 = new Object () ;
this . bar () ;

}

public void bar () {

this . obj1 = null ;
this . obj2 = this . obj1 ; // no error ra i s ed

}
}

Listing 5.5 shows a false positive in the Checker Framework nullness type checker. The
three if conditions consider all the possible scenarios where either s1 or s2 could be null
and then ends with a return statement for the respective then-branches. Therefore, the
last two dereferences of s1.toString() and s2.toString() must be safe as both are
guaranteed to be @NonNull. However, Checker Framework’s nullness checker issues errors
on these two lines, while OppropBERT does not raise any errors.

It would be interesting to see as a possible future work whether the Deep Learning
model is indeed able to understand the logical statements or if it is merely pattern matching
with some standard structure of if-else branches it saw in training set during the learning
process. One might argue that due to the use of CFG to represent the program, the CFG
nodes could capture the logical aspect and help the model make appropriate decisions.

46

Listing 5.5: Checker Framework issue

public class NullnessExample {

public stat ic void f oo () {

St r ing s1 = null ;
S t r ing s2 = null ;

i f (s1 == null && s2 == null) {
return ;

}
i f (s1 != null && s2 == null) {

System . out . p r i n t l n (s1 . t o S t r i n g ()) ;
return ;

}
i f (s1 == null && s2 != null) {

System . out . p r i n t l n (s2 . t o S t r i n g ()) ;
return ;

}
System . out . p r i n t l n (s1 . t o S t r i n g ()) ;
System . out . p r i n t l n (s2 . t o S t r i n g ()) ;

}
}

5.2 Type prediction in TypeScript

For the TypeScript type prediction task, we use the largest standard benchmark Many-
Types4TypeScript [39] (also part of the popular CodeXGLUE [55] benchmarks) with over
9 million type annotations, across 13953 projects and 539571 files. We find that Op-
propBERT outperforms all the other state-of-the-art models previously used for predicting
type annotations for TypeScript (Table 5.3). Therefore, we can say that our model can
be easily extended to another programming language (e.g., TypeScript) due to the ease of
pre-training and fine-tuning.

47

Model
Top 100

Precision Recall F1 score Accuracy

BERT [21] 80.04 81.5 80.76 84.97

CodeBERTa [89] 81.31 82.72 82.01 85.94

RoBERTa [53] 82.03 83.81 82.91 86.25

GraphPolyGot [1] 83.80 85.23 84.51 87.40

PolyGot [1] 84.45 85.54 84.95 87.72

CodeBERT [25] 84.58 85.98 85.27 87.94

GraphCodeBERT [29] 84.67 86.41 85.53 88.08

OppropBERT (ours) 85.22 86.90 86.05 88.39

Table 5.3: Accuracy Comparisons On ManyTypes4TypeScript

5.3 Error prediction in Python

We use OppropBERT to predict return-type warnings in Python. A software developer
often forgets to store a return value from a method call that modifies the input arguments
(e.g., inserting/deleting in a string/NumPy array/dataframe). Such a mistake usually
happens when the user accidentally assumes the method will perform an in-place operation
instead of returning the modified object. For instance, listing 5.6 demonstrates that the
user forgets to store the modified dataframe returned by df.drop duplicates() before
calling the df.head() method to view the modified dataframe. The corrected version of
Listing 5.6 is shown in Listing 5.7.

48

Listing 5.6: Error

##%
import pandas as pd

df = pd . DataFrame ({
' c lub ' : ['WUSA' , 'GSA ' , 'Jam Network ' , 'DSA ' , ' Fencing '] ,
' category ' : ['A ' , 'A ' , 'P ' , 'P ' , 'S '] ,
' r a t i n g ' : [4 , 4 , 4 . 5 , 5 , 4 . 5]
})

df . d r o p d u p l i c a t e s () # not an inp l a c e opera t ion
df . head ()

Listing 5.7: No Error

##%
import pandas as pd

df = pd . DataFrame ({
' c lub ' : ['WUSA' , 'GSA ' , 'Jam Network ' , 'DSA ' , ' Fencing '] ,
' category ' : ['A ' , 'A ' , 'P ' , 'P ' , 'S '] ,
' r a t i n g ' : [4 , 4 , 4 . 5 , 5 , 4 . 5]
})

df = df . d r o p d u p l i c a t e s () # OK
df . head ()

On the other hand, sometimes a developer might be interested in looking at the inter-
mediate output being printed in the method itself or merely printing the output to test out
a functionality, as shown in Listing 5.8 (the IPython Notebook allows printing intermediate
lines of code). Employing a static analysis tool will generate a lot of false positive warnings
because the warning depends on user behavior rather than type rules. Therefore, given
a user code, the body of the method in question, the model can also predict whether the
developer accidentally missed the return value or intentionally did not store the modified
return value.

49

Listing 5.8: No error

##%
import pandas as pd

df = pd . DataFrame ({
' c lub ' : ['WUSA' , 'GSA ' , 'Jam Network ' , 'DSA ' , ' Fencing '] ,
' category ' : ['A ' , 'A ' , 'P ' , 'P ' , 'S '] ,
' r a t i n g ' : [4 , 4 , 4 . 5 , 5 , 4 . 5]
})

##%
df . d r o p d u p l i c a t e s () # OK

We created a dataset with ten commonly used functions in Pandas, a popular Python
library used for data manipulation and analysis with the help of data frames. We trained
the OppropBERT model to predict the return-type warnings with 98% accuracy. A de-
veloper can easily extend the model to handle user-defined functions and other libraries
by feeding in the function definition and the program-under-test to predict the warnings
using the model.

50

Chapter 6

Related Work

6.1 Natural Language Processing (NLP) for code un-

derstanding tasks

In software engineering, there has been a surge of Machine Learning and other statistical
approaches for complex code understanding tasks in recent years. Inspired by the success
of large pre-trained models on natural language processing (NLP) [9, 21, 77], large sets of
programming language data have been used to create pre-trained models such as Intelli-
Code [81], and GraphCodeBERT [29]. CodeXGLUE [55] is a popular benchmarks that
provides such programming language data for code understanding and generation tasks
across different modalities, such as, code-code (e.g., clone detection, code completion, code
repair, translation), text-code (e.g., natural language code search), code-text (code sum-
marization), and text-text (documentation translation).

Many research groups have leveraged the availability of open-source code on GitHub to
solve various tasks using large-scale Deep Learning techniques. One of the recent popular
ones is AlphaCode [49] developed by OpenAI. It uses a generative model created to solve
competitive coding problems. It was pre-trained on a large database of open-source code
available on GitHub and fine-tuned on solutions obtained from CodeContest. Given an
unseen programming problem during inference, the model generates novel solutions that
perform at the median competitive programmer’s level.

Researchers started using standard NLP techniques to solve various code understanding
problems by applying them to raw code. DeepTyper [31] used a Bi-directional Gated
Recurrent Units (Bi-GRU) model on raw code to predict Javascript and Typescript type

51

assignments. Later on, manual feature selection using only a hand-picked subset of the
raw code gained some popularity. NL2Type [56] used a standard Long short-term memory
(LSTM)-based classification model to infer Javascript Function Types. It only considers
the raw code’s comments, function names, and parameter names to predict the types.
NLP-based models have also been used for software defect prediction. [13, 48,67,85,86]

6.2 Abstract Syntax Tree (AST)

As an Abstract Syntax Tree (AST) better captures the syntactical structure of the source
code, researchers eventually started using them along with the available raw code. One of
the earliest works of using Deep Learning with AST for vector representation of programs
is the work by Peng et al. [65] where they proposed a “coding criteria” to create learned
function, statement, and AST-node-level vector representations. Their idea of creating
node-level representation was similar to the node-updation rules of recently popularized
GCN models. The current node vector is a combination of its child node(s) passed through
a feed-forward layer. These representations were used to solve program classification tasks.
ASTs have also been used to create formal program specifications. C2S [93] uses the
function’s natural language comments, and an intermediate representation IR translator is
used to generalize a text-based JML specification to a parsed AST to create specifications,
improving the static taint analysis. Code2Seq [6] encodes an AST using a bidirectional
Long Short-Term Memory (Bi-LSTM) network. It encodes by concatenating all the paths
and the respective tokens. Using such a syntactic encoding of code, they display clear
effectiveness of this compositional encoding by treating, let’s say, a ‘For’ and a ‘While’
loop identically.

DeepAnna [52] uses another commonly used recurrent model, Bi-directional Gated Re-
current Units (Bi-GRU), for annotation recommendation for popular Java frameworks,
such as Spring and Hibernate. DeepAnna is meant for developers who often need help
determining the correct annotations to use due to many similar-behaving annotations de-
fined by these frameworks. Rather than being an annotation recommender, OppropBERT
is meant for inserting annotations in the code to prevent runtime errors. DeepAnna uses
an AST traversal algorithm to convert the AST into a sequential representation. Moreover,
the DeepAnna annotation prediction task only predicts annotation at the class and method
level, where they would only have to predict one annotation per input code snippet. In
contrast, OppropBERT predicts for all possible annotation locations, such as fields, pa-
rameters, local variables, etc., where multiple annotations need to be predicted for a given
input program. Also, using an N-independent binary classification approach makes the

52

DeepAnna inference slow during training and testing. All these techniques do not use the
graphical nature of the ASTs and instead use a simplified sequential transformation of
the same. OppropBERT, on the other hand, uses the graphical structure of the Control
Flow Graph (CFG) using a Graph Neural Network (GNN) along with a BERT-style model
making it more structure-aware.

To handle the open-vocabulary issue (certain user-defined types not available on the
training set but appear in the test set) of predicting type annotations, a representation
learning combined with a clustering approach was proposed by Type4Py [60]. They use
code context and visible type hints extracted from the AST to infer optional type annota-
tions, introduced by PEP 484 in Python. Since there can be many possible type annota-
tions (built-in and user-defined), creating a classification model with a certain number of
classes won’t be able to generalize well. Instead of treating it as a classification problem,
Type4Py assigns the nearest type clusters (handling one annotation at a time) learned
during training. On the other hand, Typilus [3] adopted a k-Nearest Neighbours approach
on top of the Graph neural networks (GNN)-based encoding created by integrating in-
formation from identifiers, syntactical structure, and dataflow to infer type annotations
for Python. However, it requires a sophisticated source code analysis to create its graph
representations.

6.3 Control Flow Graph (CFG)

A Control Flow Graph (CFG) provides a graphical representation of a program’s control
flow during its execution. So, for the tasks that rely more on the program’s execution
flow than its syntactical structure, incorporating CFGs as input to the model seems to
improve the results. Convolutional Neural Networks (CNNs) have been used as a popular
choice to represent AST and CFG. Phan et al. [66] used CNNs to better predict software
defects by capturing the appropriate semantics of the given assembly code. Mou et al. [62]
extended the idea of a CNN to tree-based inputs to identify specific code patterns from
an AST representation of the input code. Liang et al. [51] used both AST and CFG to
detect malicious JavaScript using CNNs, capturing both the abstract syntactic structures
and execution processes.

53

6.4 Transformers and pre-trained models

Transformer model [83] was a breakthrough in the NLP domain because of a faster par-
allelized multi-head self-attention approach that provided better feature representations
than their recurrent predecessors. Bi-directional Encoder Representations from Trans-
formers (BERT) [21, 53] architectures, as the name suggests, make use of Transformers
along with valuable pre-training objectives to improve the encoder representations. The
increased popularity of BERT-style models soon paved its path in the software engineering
community. Mashhadi and Hemmati [57] used raw code and a pre-trained BERT-style
model to find simple bugs in Java from a curated dataset. TypeBERT [40] predicts type
annotations for Typescript language using a BERT-style model with raw code as input out-
performing the previous state-of-the-art LambdaNet [88]. They found that given enough
data, we do not need sophisticated inductive biases to develop a type prediction model.

The use of creative pre-processing and pre-training objectives focused on the program-
ming languages under consideration have also been seen to help improve the models to
generalize across different tasks as they can create better feature vector representations
for the code. CodeBERT [25] is one such encoder-only bi-modal model for better Natural
Language (comments) - Programming Language representation. It includes the Replaced
Token Detection (RTD) pre-training objective apart from the Masked Language Modeling
(MLM). CodeBERT makes use of WordPiece to tokenize the code blocks. WordPiece works
by finding a symbol pair whose probability, when divided by the product of the probabili-
ties of the two symbols separately, is the greatest among all the available symbol pairs. In
this way, unlike Byte-Pair Encoding (BPE), WordPiece makes sure that merging the two
symbols is worth it by evaluating the loss from the merge. GraphCodeBERT [29], unlike its
predecessor CodeBERT, considers Abstract Syntax Tree (AST) to gather variable relation
to create a dataflow graph. The model can now use this dataflow graph effectively by utiliz-
ing the node alignment and edge prediction pre-training objectives. For the next iteration,
the authors developed UniXCoder [28] to create a unified cross-modal pre-trained model
which works in an encoder-only, decoder-only, and encoder-decoder setting. Similarly,
researchers at Facebook AI Research developed several iterations of an encoder-decoder
model [44, 70, 71] for translating between programming languages making use of different
pre-training objectives, e.g., cross-lingual MLM, denoising, keyword-focusing masked lan-
guage modeling, and unit-test verified back translation. However, none of these models
leverage the graph representation of AST or CFG using a Graph Neural Network-based
approach.

54

6.5 Graph Neural Networks (GNNs)

Graph neural networks (GNNs) have gained much popularity over the past few years.
Deep Learning models for software engineering have started using GNNs to solve program-
ming language tasks. One of the earliest works using GNNs is the gated graph neural
network (GGNN) [50], where the authors extended the GNNs by adding GRU layers [17]
for updating the hidden states of the graph nodes to solve a program verification task by
approximating reachable program states. Later on, Allamanis et al. [4] used GNNs for
predicting variable names and selecting the correct variables by using the graphs derived
from ASTs for the GNN-based model outperforming the recurrent neural network models
that merely used raw source code. One of the popular GNN models, Graph Convolution
Network (GCN), has also been used for malware classification problems. Previously, the
researchers used to rely a lot on handcrafted rules and features. However, authors in [92]
have found that representing a program as a CFG and making use of a GCN does help
to classify malware better. Hua et al. [34] converted assembly code call instructions to
CFG and used GCN to classify malware. FUNDED [84] used graph-based models for code
vulnerability detection. ShadowGNN [15] combines both the natural language and SQL
schema in a GCN followed by a Transformer structure to create a Text-to-SQL parser,
improving the generalization capability of the model on rare and unseen schema. Dinella
et al. [24] used a graph-based representation of Javascript programs to predict the position
of buggy nodes and the required graph modifications to fix them. LambdaNet [88] creates
a type dependency graph and then uses a GNN-based approach along with some hand-
crafted logical constraints and contextual hints (e.g., variables assignments and names)
for predicting types for TypeScript programs. Researchers have also started to use GNNs
for other code understanding tasks such as program similarity [63], software vulnerability
detection [16,94], code completion [20], and code summarization [46]. For a comprehensive
overview of GNNs, we refer the readers to Wu et al. [90], where they provide a thorough
review and comparisons of different GNN models. Most GNN models rely on handcrafted
feature extraction, limiting their generalization capabilities to different tasks. Further-
more, they do not leverage an unsupervised learning approach with pre-training objectives
focused on the graphical representation of the source code.

There has been no previous work for predicting type annotations for Java programs
to prevent run-time bugs using a data-driven approach using a structure-aware custom
loss function, transfer learning to a new type system with fewer training data, or using
a Reinforcement Learning (RL)-based approach for additional fine-tuning of a supervised
annotation prediction model.

55

Chapter 7

Conclusion and Future Work

In this thesis, we present OppropBERT, a novel GNN and BERT-style RL-based type
inference system. OppropBERT is the first Machine Learning based type inference system
that uses developer-written test cases and an RL feedback loop without requiring explicit
and manually crafted type inference rules. Via an extensive empirical evaluation against
state-of-the-art models and tools, we show that our model OppropBERT is automatic,
extensible, type-adhering, and efficient. Our model will be most helpful to developers who
are developing a type checker or a type inference tool from an available type checker, as the
traditional process is time-consuming, error-prone, and expensive. Using OppropBERT,
the user does not need to explicitly encode the type inference rules or write a specific type
inference framework for every type system. The model learns the type rules implicitly
using a data-driven approach. We also define a new token-level error heatmap and annota-
tion prediction task for Java where OppropBERT demonstrates zero and few-shot transfer
learning capabilities for other type systems. Furthermore, we show that the model is also
extensible to other programming languages, such as TypeScript and Python.

In future work, the model can be extended with a decoder to solve code repair tasks.
Code repair is required for programs that cannot be corrected by simply inserting the an-
notation but require additional repairs in the code structure. Additional information from
Javadoc or comments can also be incorporated into the model to make better predictions.

Let us consider Listing 7.1 for the security type system. @Public is the default annota-
tion in the hierarchy. The method call method2(s2); is invalid because method2 expects
a @Public string. The inference framework can easily fix this by changing the method
signature to void method2(@TopSecret String p).

56

Listing 7.1: Fixable issues using the inference tool

import s e c u r i t y . qual . TopSecret ;
import s e c u r i t y . qual . C o n f i d e n t i a l ;
import s e c u r i t y . qual . Publ ic ;

public class Parameter {

void method1 (St r ing p) {}
void method2 (St r ing p) {}

void parameter (@Public S t r ing s1 , @TopSecret S t r ing s2) {
method1 (s1) ;
// : : f i x a b l e −error : (argument . type . incompa t i b l e)
method2 (s2) ;

}
}

However, if we look at the example in Listing 7.2, the only way to prevent a null-pointer
exception is by enclosing the var 1.toString(); dereferencing under an if-block which
checks if var 1 is not null. Such cases cannot be resolved by using an inference tool.
Instead, we need code repair models as mentioned above.

Listing 7.2: Example that the inference tool cannot fix

public class c l a s s 1 {
void method 1 () {

St r ing var 1 = null ;
.
// some code b l o c k
.
var 1 . t o S t r i n g () ;
}

}
}

Similarly, for Listing 5.5, it would be interesting to see how well the ML-based inference
framework can understand logical statements. Handling penalties and UNSAT cases based

57

on different types of errors for inference or classifying different error types, as mentioned
in Section 2.1.3, during error heatmap type checking would be another extension worth
exploring in the future. Moreover, the model can also be extended to type systems with
a complex representation of types, such as expressive units of measurement types [91] or
more expressive type systems, such as Property types [45].

58

References

[1] Toufique Ahmed and Premkumar Devanbu. Multilingual training for software engi-
neering. In Proceedings of the 44th International Conference on Software Engineering,
pages 1443–1455, 2022.

[2] Miltiadis Allamanis. The adverse effects of code duplication in machine learning
models of code. In Proceedings of the 2019 ACM SIGPLAN International Symposium
on New Ideas, New Paradigms, and Reflections on Programming and Software, pages
143–153, 2019.

[3] Miltiadis Allamanis, Earl T Barr, Soline Ducousso, and Zheng Gao. Typilus: Neural
type hints. In Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 91–105, 2020.

[4] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. Learning to repre-
sent programs with graphs. In International Conference on Learning Representations,
2018.

[5] Miltiadis Allamanis and Charles Sutton. Mining source code repositories at massive
scale using language modeling. In 2013 10th working conference on mining software
repositories (MSR), pages 207–216. IEEE, 2013.

[6] Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. Code2seq: Generating se-
quences from structured representations of code. arXiv preprint arXiv:1808.01400,
2018.

[7] Cyrille Artho. Finding faults in multi-threaded programs. Master’s thesis, ETH
Zurich, 2001.

[8] Susan Baldwin. Compute Canada: Advancing computational research. In Journal of
Physics: Conference Series, volume 341, page 012001. IOP Publishing, 2012.

59

[9] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Syd-
ney von Arx, Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brun-
skill, et al. On the opportunities and risks of foundation models. arXiv preprint
arXiv:2108.07258, 2021.

[10] Gilad Bracha. Pluggable type systems. In OOPSLA Workshop on Revival of Dynamic
Languages, 2004.

[11] SRK Branavan, David Silver, and Regina Barzilay. Learning to win by reading manuals
in a monte-carlo framework. Journal of Artificial Intelligence Research, 43:661–704,
2012.

[12] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners. Advances in neural information processing
systems, 33:1877–1901, 2020.

[13] Deyu Chen, Xiang Chen, Hao Li, Junfeng Xie, and Yanzhou Mu. Deepcpdp: Deep
learning based cross-project defect prediction. IEEE Access, 7:184832–184848, 2019.

[14] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brock-
man, et al. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374, 2021.

[15] Zhi Chen, Lu Chen, Yanbin Zhao, Ruisheng Cao, Zihan Xu, Su Zhu, and Kai Yu.
Shadowgnn: Graph projection neural network for text-to-sql parser. arXiv preprint
arXiv:2104.04689, 2021.

[16] Xiao Cheng, Haoyu Wang, Jiayi Hua, Guoai Xu, and Yulei Sui. Deepwukong: Stati-
cally detecting software vulnerabilities using deep graph neural network. ACM Trans-
actions on Software Engineering and Methodology (TOSEM), 30(3):1–33, 2021.

[17] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio.
On the properties of neural machine translation: Encoder-decoder approaches. arXiv
preprint arXiv:1409.1259, 2014.

[18] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian
Gehrmann, et al. Palm: Scaling language modeling with pathways. arXiv preprint
arXiv:2204.02311, 2022.

60

[19] Tom Copeland. PMD applied, volume 10. Centennial Books, San Francisco, 2005.

[20] Milan Cvitkovic, Badal Singh, and Animashree Anandkumar. Open vocabulary learn-
ing on source code with a graph-structured cache. In International Conference on
Machine Learning, pages 1475–1485. PMLR, 2019.

[21] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

[22] Werner Dietl, Stephanie Dietzel, Michael D. Ernst, Kivanç Muşlu, and Todd W.
Schiller. Building and using pluggable type-checkers. In Proceedings of the 33rd
International Conference on Software Engineering, pages 681–690, 2011.

[23] Werner Dietl, Michael D. Ernst, and Peter Müller. Tunable static inference for Generic
Universe Types. In ECOOP 2011 — Object-Oriented Programming, 25th European
Conference, pages 333–357, Lancaster, UK, July 2011.

[24] Elizabeth Dinella, Hanjun Dai, Ziyang Li, Mayur Naik, Le Song, and Ke Wang.
Hoppity: Learning graph transformations to detect and fix bugs in programs. In
International Conference on Learning Representations (ICLR), 2020.

[25] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. Codebert: A pre-trained model
for programming and natural languages. arXiv preprint arXiv:2002.08155, 2020.

[26] Michael Furr, Jong-hoon An, Jeffrey S Foster, and Michael Hicks. Static type inference
for ruby. In Proceedings of the 2009 ACM symposium on Applied Computing, pages
1859–1866, 2009.

[27] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[28] Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming Zhou, and Jian Yin. Unix-
coder: Unified cross-modal pre-training for code representation. arXiv preprint
arXiv:2203.03850, 2022.

[29] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long Zhou,
Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, et al. Graphcodebert: Pre-training
code representations with data flow. arXiv preprint arXiv:2009.08366, 2020.

61

http://www.deeplearningbook.org

[30] Hongyu Guo. Generating text with deep reinforcement learning. arXiv preprint
arXiv:1510.09202, 2015.

[31] Vincent J Hellendoorn, Christian Bird, Earl T Barr, and Miltiadis Allamanis. Deep
learning type inference. In Proceedings of the 2018 26th ACM Joint Meeting on Euro-
pean Software Engineering Conference and Symposium on the Foundations of Software
Engineering, pages 152–162, 2018.

[32] David Hovemeyer and William Pugh. Finding bugs is easy. In Companion to the
19th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), pages 132–136, Vancouver, BC, Canada,
October 2004.

[33] David Hovemeyer, Jaime Spacco, and William Pugh. Evaluating and tuning a static
analysis to find null pointer bugs. In Proceedings of the 6th ACM SIGPLAN-SIGSOFT
workshop on Program analysis for software tools and engineering, pages 13–19, 2005.

[34] Yakang Hua, Yuanzheng Du, and Dongzhi He. Classifying packed malware repre-
sented as control flow graphs using deep graph convolutional neural network. In 2020
International Conference on Computer Engineering and Application (ICCEA), pages
254–258. IEEE, 2020.

[35] Wei Huang, Werner Dietl, Ana Milanova, and Michael D. Ernst. Inference and check-
ing of object ownership. In ECOOP 2012 — Object-Oriented Programming, 26th
European Conference, pages 181–206, Beijing, China, June 2012.

[36] Wei Huang, Ana Milanova, Werner Dietl, and Michael D. Ernst. Reim & reiminfer:
Checking and inference of reference immutability and method purity. ACM SIGPLAN
Notices, 47(10):879–896, 2012.

[37] Marianne Huchard, Christian Kästner, and Gordon Fraser. Proceedings of the 33rd
acm/ieee international conference on automated software engineering (ase 2018). In
ASE: Automated Software Engineering. ACM Press, 2018.

[38] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc
Brockschmidt. Codesearchnet challenge: Evaluating the state of semantic code search.
arXiv preprint arXiv:1909.09436, 2019.

[39] Kevin Jesse and Premkumar T. Devanbu. ManyTypes4TypeScript: A comprehensive
TypeScript dataset for sequence-based type inference. In Proceedings of the 19th

62

International Conference on Mining Software Repositories, MSR ’22, page 294–298,
New York, NY, USA, 2022. Association for Computing Machinery.

[40] Kevin Jesse, Premkumar T. Devanbu, and Toufique Ahmed. Learning type annota-
tion: is big data enough? In Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software En-
gineering, pages 1483–1486, 2021.

[41] Nahid Juma, Werner Dietl, and Mahesh Tripunitara. A computational complexity
analysis of tunable type inference for generic universe types. Theoretical Computer
Science, 814:189–209, 2020.

[42] Sebastian Kleinschmager, Romain Robbes, Andreas Stefik, Stefan Hanenberg, and
Eric Tanter. Do static type systems improve the maintainability of software systems?
an empirical study. In 2012 20th IEEE International Conference on Program Com-
prehension (ICPC), pages 153–162. IEEE, 2012.

[43] Marie-Anne Lachaux, Baptiste Roziere, Lowik Chanussot, and Guillaume Lample. Un-
supervised translation of programming languages. arXiv preprint arXiv:2006.03511,
2020.

[44] Marie-Anne Lachaux, Baptiste Roziere, Marc Szafraniec, and Guillaume Lample.
Dobf: A deobfuscation pre-training objective for programming languages. Advances
in Neural Information Processing Systems, 34:14967–14979, 2021.

[45] Florian Lanzinger, Alexander Weigl, Mattias Ulbrich, and Werner Dietl. Scalabil-
ity and precision by combining expressive type systems and deductive verification.
Proceedings of the ACM on Programming Languages, 5(OOPSLA):1–29, 2021.

[46] Alexander LeClair, Sakib Haque, Lingfei Wu, and Collin McMillan. Improved code
summarization via a graph neural network. In Proceedings of the 28th international
conference on program comprehension, pages 184–195, 2020.

[47] Jason Lee, Kyunghyun Cho, and Thomas Hofmann. Fully character-level neural ma-
chine translation without explicit segmentation. Transactions of the Association for
Computational Linguistics, 5:365–378, 2017.

[48] Jian Li, Pinjia He, Jieming Zhu, and Michael R. Lyu. Software defect prediction
via convolutional neural network. In 2017 IEEE international conference on software
quality, reliability and security (QRS), pages 318–328. IEEE, 2017.

63

[49] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi
Leblond, Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al.
Competition-level code generation with alphacode. arXiv preprint arXiv:2203.07814,
2022.

[50] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph se-
quence neural networks. arXiv preprint arXiv:1511.05493, 2015.

[51] Hongliang Liang, Yuxing Yang, Lu Sun, and Lin Jiang. Jsac: A novel framework
to detect malicious javascript via cnns over ast and cfg. In 2019 International Joint
Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2019.

[52] Yi Liu, Yadong Yan, Chaofeng Sha, Xin Peng, Bihuan Chen, and Chong Wang. Deep-
anna: Deep learning based java annotation recommendation and misuse detection.
In 2022 29th IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 2022.

[53] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly
optimized bert pretraining approach. arXiv preprint arXiv:1907.11692, 2019.

[54] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In Inter-
national Conference on Learning Representations, 2019.

[55] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco,
Colin Clement, Dawn Drain, Daxin Jiang, Duyu Tang, et al. Codexglue: A machine
learning benchmark dataset for code understanding and generation. arXiv preprint
arXiv:2102.04664, 2021.

[56] Rabee Sohail Malik, Jibesh Patra, and Michael Pradel. Nl2type: inferring javascript
function types from natural language information. In 2019 IEEE/ACM 41st Interna-
tional Conference on Software Engineering (ICSE), pages 304–315. IEEE, 2019.

[57] Ehsan Mashhadi and Hadi Hemmati. Applying codebert for automated program repair
of java simple bugs. In 2021 IEEE/ACM 18th International Conference on Mining
Software Repositories (MSR), pages 505–509. IEEE, 2021.

[58] Antonio Mastropaolo, Simone Scalabrino, Nathan Cooper, David Nader Palacio,
Denys Poshyvanyk, Rocco Oliveto, and Gabriele Bavota. Studying the usage of
text-to-text transfer transformer to support code-related tasks. In 2021 IEEE/ACM

64

43rd International Conference on Software Engineering (ICSE), pages 336–347. IEEE,
2021.

[59] Alex McPeak. What’s the True Cost of a Software Bug? https://smartbear.com/

blog/software-bug-cost/, 2017. [Online; accessed 07-October-2022].

[60] Amir M Mir, Evaldas Latoškinas, Sebastian Proksch, and Georgios Gousios. Type4py:
practical deep similarity learning-based type inference for python. In Proceedings of
the 44th International Conference on Software Engineering, pages 2241–2252, 2022.

[61] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg
Ostrovski, et al. Human-level control through deep reinforcement learning. Nature,
518(7540):529–533, 2015.

[62] Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. Convolutional neural networks over
tree structures for programming language processing. In Thirtieth AAAI conference
on artificial intelligence, 2016.

[63] Aravind Nair, Avijit Roy, and Karl Meinke. funcgnn: A graph neural network ap-
proach to program similarity. In Proceedings of the 14th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM), pages 1–
11, 2020.

[64] Matthew M Papi, Mahmood Ali, Telmo Luis Correa Jr., Jeff H. Perkins, and
Michael D. Ernst. Practical pluggable types for java. In Proceedings of the 2008
international symposium on Software testing and analysis, pages 201–212, 2008.

[65] Hao Peng, Lili Mou, Ge Li, Yuxuan Liu, Lu Zhang, and Zhi Jin. Building program
vector representations for deep learning. In International conference on knowledge
science, engineering and management, pages 547–553. Springer, 2015.

[66] Anh Viet Phan, Minh Le Nguyen, and Lam Thu Bui. Convolutional neural networks
over control flow graphs for software defect prediction. In 2017 IEEE 29th Interna-
tional Conference on Tools with Artificial Intelligence (ICTAI), pages 45–52. IEEE,
2017.

[67] Lei Qiao, Xuesong Li, Qasim Umer, and Ping Guo. Deep learning based software
defect prediction. Neurocomputing, 385:100–110, 2020.

65

https://smartbear.com/blog/software-bug-cost/
https://smartbear.com/blog/software-bug-cost/

[68] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
et al. Language models are unsupervised multitask learners. OpenAI blog, 1(8):9,
2019.

[69] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look
once: Unified, real-time object detection. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 779–788, 2016.

[70] Baptiste Roziere, Marie-Anne Lachaux, Lowik Chanussot, and Guillaume Lample.
Unsupervised translation of programming languages. Advances in Neural Information
Processing Systems, 33:20601–20611, 2020.

[71] Baptiste Roziere, Jie M Zhang, Francois Charton, Mark Harman, Gabriel Synnaeve,
and Guillaume Lample. Leveraging automated unit tests for unsupervised code trans-
lation. arXiv preprint arXiv:2110.06773, 2021.

[72] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.
Trust region policy optimization. In International conference on machine learning,
pages 1889–1897. PMLR, 2015.

[73] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[74] Mike Schuster and Kaisuke Nakajima. Japanese and korean voice search. In 2012
IEEE international conference on acoustics, speech and signal processing (ICASSP),
pages 5149–5152. IEEE, 2012.

[75] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of
rare words with subword units. arXiv preprint arXiv:1508.07909, 2015.

[76] David Silver, Richard S. Sutton, and Martin Müller. Reinforcement learning of local
shape in the game of go. In IJCAI, volume 7, pages 1053–1058, 2007.

[77] Irene Solaiman, Miles Brundage, Jack Clark, Amanda Askell, Ariel Herbert-Voss, Jeff
Wu, Alec Radford, Gretchen Krueger, Jong Wook Kim, Sarah Kreps, et al. Release
strategies and the social impacts of language models. arXiv preprint arXiv:1908.09203,
2019.

[78] Martina Stojmanovska. 10 Biggest Software Bugs and Tech Fails of 2021. https:

//www.testdevlab.com/, 2021. [Online; accessed 07-October-2022].

66

https://www.testdevlab.com/
https://www.testdevlab.com/

[79] Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction.
Robotica, 17(2):229–235, 1999.

[80] Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction.
MIT press, 2018.

[81] Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu, and Neel Sundaresan. Intelli-
code compose: Code generation using transformer. In Proceedings of the 28th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pages 1433–1443, 2020.

[82] Harold Thimbleby. Inside medical software: When programming errors cost lives.
ITNOW, 60(2):50–52, 2018.

[83] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances
in neural information processing systems, pages 5998–6008, 2017.

[84] Huanting Wang, Guixin Ye, Zhanyong Tang, Shin Hwei Tan, Songfang Huang, Dingyi
Fang, Yansong Feng, Lizhong Bian, and Zheng Wang. Combining graph-based learning
with automated data collection for code vulnerability detection. IEEE Transactions
on Information Forensics and Security, 16:1943–1958, 2020.

[85] Song Wang, Taiyue Liu, Jaechang Nam, and Lin Tan. Deep semantic feature learn-
ing for software defect prediction. IEEE Transactions on Software Engineering,
46(12):1267–1293, 2018.

[86] Song Wang, Taiyue Liu, and Lin Tan. Automatically learning semantic features for
defect prediction. In 2016 IEEE/ACM 38th International Conference on Software
Engineering (ICSE), pages 297–308. IEEE, 2016.

[87] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-
4):279–292, 1992.

[88] Jiayi Wei, Maruth Goyal, Greg Durrett, and Isil Dillig. Lambdanet: Probabilistic
type inference using graph neural networks. arXiv preprint arXiv:2005.02161, 2020.

[89] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Hug-
gingface’s transformers: State-of-the-art natural language processing. arXiv preprint
arXiv:1910.03771, 2019.

67

[90] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu
Philip. A comprehensive survey on graph neural networks. IEEE transactions on
neural networks and learning systems, 32(1):4–24, 2020.

[91] Tongtong Xiang, Jeff Y Luo, and Werner Dietl. Precise inference of expressive
units of measurement types. Proceedings of the ACM on Programming Languages,
4(OOPSLA):1–28, 2020.

[92] Jiaqi Yan, Guanhua Yan, and Dong Jin. Classifying malware represented as con-
trol flow graphs using deep graph convolutional neural network. In 2019 49th an-
nual IEEE/IFIP international conference on dependable systems and networks (DSN),
pages 52–63. IEEE, 2019.

[93] Juan Zhai, Yu Shi, Minxue Pan, Guian Zhou, Yongxiang Liu, Chunrong Fang, Shiqing
Ma, Lin Tan, and Xiangyu Zhang. C2s: translating natural language comments to
formal program specifications. In Proceedings of the 28th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, pages 25–37, 2020.

[94] Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu. Devign:
Effective vulnerability identification by learning comprehensive program semantics
via graph neural networks. Advances in neural information processing systems, 32,
2019.

68

	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Brief Overview of OppropBERT
	Contributions

	Background
	Pluggable Type System
	Checker Framework
	Checker Framework Inference
	Nullness Checker
	Universe Type System and soft constraints
	Checker Framework vs Bug-finding tools

	Deep Learning
	Classification task
	Parameter updates
	Overfitting and Regularization
	Transformers and BERT Models

	Graph Neural Network (GNN) training
	Mini-batching
	Regularization on GNN

	Reinforcement Learning
	Deep Q-Learning
	Proximal Policy Optimization (PPO) Algorithm

	Overview
	Annotation Prediction
	Reinforcement Learning fine-tuning
	Error Heatmap Prediction

	Implementation
	Comparative tools
	Benchmarks
	Computational Environment
	Metrics
	Hyperparameters
	Effective training strategies

	Experiment and Results
	Error heatmap and annotation prediction in Java
	A few examples of test cases
	Ablation studies and comparative analysis
	Transfer learning to security type system
	False positive/negative in other tools

	Type prediction in TypeScript
	Error prediction in Python

	Related Work
	Natural Language Processing (NLP) for code understanding tasks
	Abstract Syntax Tree (AST)
	Control Flow Graph (CFG)
	Transformers and pre-trained models
	Graph Neural Networks (GNNs)

	Conclusion and Future Work
	References

