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Abstract

Trapped ion chains have shown promise in their application as quantum simulators.
However, the close proximity of ions in the trap leads to operations such as state detection
causing loss of coherence of other ions due to imperfect beam addressing and absorption
of scattered photons during neighbouring ion fluorescence. In the first part of my thesis I
consider a Ytterbium 171 ion trap and calculate the probability of neighbouring ion photon
absorption. I additionally show how to use the Lindblad master equation to simulate the
dynamics of an ion under an attenuated beam, and provide a review of determining the
detection fidelity through histograms of photon detection counts.

I then return to the more abstract setting of non-destructive quantum measurements,
which are instrumental for fault-tolerant quantum computers. These non-destructive quan-
tum measurements have both a quantum and classical output and hence must be described
through a quantum instrument as opposed to the typical representation of measurements
through POVM’s. It therefore becomes necessary to develop methods for evaluating quan-
tum instruments. In this thesis I show that the process fidelity and diamond distance as
figures of merits on unitary channels may be generalized to figures of merits on quantum
instruments. I show that these figures of merit adequately capture the errors associated to
non-destructive measurements, and they additionally provide upper and lower bounds for
each other. Several examples are also given of computing the figures of merit on quantum
instruments under various noise models.
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Chapter 1

Introduction

In this thesis we will be analyzing two separate albeit somewhat related problems involving
the characterization of errors in measurements on quantum computing systems. The first
problem is analyzed in Chapter 2 which provides a brief look at the errors that arise when
measuring the trapped ion qubits in a Ytterbium 171 ion chain. These errors arise due
to the close proximity of ions in the chain. There have been many methods developed
that seek to minimize these errors. One such method is ion shuttling [30, 10], in which
any time an operation is needed on an ion it is "shuttled” away from neighbouring ions,
the operation performed, and then the ion brought back to it’s original position. Another
possible solution is the use of multiple species [1, 0], where a trap may consist of a line of
ions alternating between two species. One species would be designated for memory and the
other designated for qubit operations. A measurement on a qubit can be performed by, for
example, transferring the state of the selected memory qubit to its designated neighbour
of a different species and then performing the measurement on the neighbour. This has
the benefit that operations such as state detection can made to be off-resonant with the
ions used for memory and hence limit their destructive effects. These methods require
additional overhead on the system and so it becomes necessary to develop tools to identify
when these method are needed. Chapter 2 will provide an analysis of errors in measurement
for strictly in situ ions.

The primary focus of this thesis however is in chapter 3, which takes a more abstract
approach. While there has been extensive research on evaluating unitary operations, the
research on evaluating measurements is not as extensive; in many contexts, errors in the
measurement process are often swept up into SPAM (state preparation and measurement)
and ignored. Moreover, most methods of evaluating measurements concentrate on eval-
uating destructive measurements. However, with the advent of quantum non-demolition



measurements which preserve the state of the system, it becomes necessary to develop
tools for evaluating these more general forms of measurement. Consequently, the represen-
tation of a measurement with a POVM, which has only classical output, is not sufficient.
Measurements can more generally be represented by quantum instruments [12, 27], which
have both quantum and classical output. In Chapter 3 we use the extensive literature
on evaluating unitary channels to develop figures of merit that may be used to evaluate
quantum instruments.



Chapter 2

Measurement in a Ytterbium Trap

As the qubit states in trapped ion systems are encoded in the electronic energy levels of an
ion, most qubit operations are performed by exposing the ion to light of various frequencies
in order to drive specific energy level transitions. Using light in this way imposes restrictions
on the maximum amount of ions that can be placed in the trap while still being able to
successfully perform the various qubit operations and preserving the states of the qubits.

The first limitation, referred to as the technical limit, is the simple requirement that
any beam meant to perform a single qubit operation will need to be focused on a single ion.
Assuming the beam being used is Gaussian it will obey an exponential decay in intensity.
This sounds favorable, however ions that are a few beam widths away from the target can
still have their states altered in a significant way if exposed to the beam for a sufficient
amount of time.

The second limitation, referred to as the fundamental limit, is that many of the qubit
operations will lead to the ion emitting a photon through its transition to a lower energy
level. In some cases this is actually desirable, e.g. state detection, or can simply be an
unavoidable byproduct, e.g. optical pumping. These emitted photons can be absorbed by
other ions in the trap causing any information they stored to be potentially destroyed.

The natural solution to both of these problems is to simply move the ions sufficiently far
apart so that the above affects are negligible. However, this still leaves open the question of
exactly how large the ion separation should be: too far and you are unnecessarily reducing
the number of ions in the chain, but not far enough and then your qubit operations begin
to alter the states of other ions in the chain. Hence we need a way of characterizing the
effects of an operation such as state detection on the other non-target ions in the system.



In order to characterize the affect on a neighbouring ion of a state detection procedure
there are three relevant quantities we will look at:

1. The probability that a neighbouring ion will absorb a photon emitted during fluores-
cence of the target ion.

2. The state of the neighbouring ion after being exposed to an attenuated detection
beam for a specified length of time.

3. The probability of a successful state detection of a target ion given a specified detec-
tion time.

The first two quantities above will be used to characterize the affect on a neighbouring
ion during a detection procedure. The third quantity is necessary as there is a balancing
that must be done when selecting the detection time: the detection time needs to be long
enough to ensure a successful detection, while short enough to minimize the destructive
effects on the neighbouring ion.

While the three mentioned quantities above are not specific to using Ytterbium, for
simplicity this chapter will restrict itself to considering the case of Ytterbium 171 while
noting that many of the concepts discussed can easily be generalized to different species.
This chapter will proceed as follows Section 2.1 will review the use of a Ytterbium ion as
a qubit. Section 2.2 will describe how to approximate the probability a neighbouring ion
will absorb a photon during the fluorescence of the target ion. In section 2.3 details how
to simulate the attenuated detection beam leaking to the neighbouring using the Lindblad
master equation. Section 2.4 shows how to determine the probability of a successful state
detection of a target ion given a specified detection time. Then finally this chapter is
concluded in section 2.5 where we walk through an example using all three of these concepts.

2.1 Ytterbium as a qubit

This section is intended as a brief review of using Ytterbium 171 as a qubit. For a much
more detailed exploration see [13]. In figure 2.1 below we see the relevant energy levels and
decay paths for the Ytterbium ion. As seen in the figure, for the entirety of this article
the energy levels of the ion will be numbered in ascending order according to their energy.
Note that the states |0) and |2) are used as the qubit states of the ion, so the state |2)
correspond to the 1 qubit state. Figure 2.1 is again the energy level diagram of Ytterbium,
but with the relevant energy splittings indicated.
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Figure 2.1: Energy level diagram of Ytterbium with each state labeled, and the possible
transitions indicated. Note that several of the transitions, e.g. |0) — |4), are forbidden by
selection rules. FEach transition has a branching ratio of %
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Figure 2.2: The energy level diagram for Ytterbium 171 with relevant energy gaps in-
dicated. The frequencies for the hyperfine splittings are wyps = 27 12.6GHz and
wyrp = 21 2.1GH z. The value of the Zeeman splitting w, will vary.



A simple detection procedure consists of hitting the ion with 369.5nm light to drive the
|2) — |4) transition. This will cause the ion to fluoresce if it’s in the |2) state, and remain
dark if it’s in the |0). In this article we will always assume that the detection consists of
equal amounts of the three polarizations of light: 7, and o*. Therefore as short hand we
will refer to the three states |1), |2) and |3) as bright states, and |0) as the dark state.

2.2 Fundamental limit

Consider the case where a Ytterbium ion is undergoing a detection cycle (i.e. a beam of
a wavelength 396.5nm) for a time 7, with a neighbouring ion at a distance d and initially
in the state |2). Assume that the distance between the ions is small enough such that
the neighbouring ion will undergo decoherence through absorption of photons emitted by
the fluorescing ion. Under the assumption that if the neighbouring ion absorbs a single
photon that any information it contains is destroyed we may characterize the effect of this
decoherence by simply computing the probability that the ion absorbs a photon.

To begin let R,. be the scattering rate of the fluorescing ion and f being the absorption
efficiency (i.e. the fraction of the emitted photons the neighbouring ion can absorb) we
have the following expression for the absorption rate

Rab = fRsc- (21)

For the scattering rate R,., we may assume the worst case scenario which corresponds to
the optimal scattering rate of the fluorescing ion. This occurs when the Rabi frequency
Q2 of the transition driven by the 369.5nm light is twice the Zeeman splitting wy. The
optimal scattering rate taking into account coherent dark states can be found in [25, 10].
Assuming no detuning of the detection beam we have

r So
Rsc =\ = s 2.2

where T' = 2719.6 M Hz is the spontaneous emission rate and sy = 202 /T'% = 8§2 /T2

Due to the fact the neighbouring ion is in the state |2), the only polarization of light
that can lead to excitation into the state |4) is m polarization. The absorption efficiency
f is then determined by two quantities: the fraction of all photons that pass through the
absorption cross section of the neighbouring ion f;,;, and the fraction of those that are =
polarization f.. And hence we have

f - ftotffr- (23)



The formula for the absorption cross section can be found in [7]

B N 2F +1
2 2F +1

Oab g, (24)
where )\ is the wavelength of the transition, F” is the total angular momentum of the
excited state, F is the total angular momentum of the ground state, and ¢ is the branching
ratio of excited state to ground state transition. Assuming that the cross section is circular
we let a be its radius. In our case A = 369.5nm, F' =0, ' =1, and ¢ = 1/3 and so we
have a = 27.7nm.

To determine f;,;, consider a sphere of radius r centered at the fluorescing ion and
extending so that the very edge of the absorption cross section of the neighbouring ion
is touching the surface of the sphere. The projection of the absorption cross section onto
the sphere creates a spherical cap of surface area 27r?(1 — cosa), where « is given by
tana = a/d where d is the ion separation. Assuming that the density of photons passing
through the sphere is constant along its surface, f;,; will be the ratio of the surface area of
the spherical cap to the surface area of the entire sphere, which is

For = %(1 _ cosa) (2.5)

or using the small angle approximation

Jrot & ioﬁ ~ i (g)z. (2.6)

To determine f, note an ion in the state |4) will decay equally to the three bright states,
while the transition to the dark state is forbidden. While the total intensity of all light
emitted is isotropic, the intensity of each individual polarization is not. Therefore we will
need to find an expression for the intensity of m polarization. We do so following section

3.8 of [7].

With the fluorescing ion set at the origin and the quantization axis set along 2z and
perpendicular to the ion chain. Let k be the propagation direction, which is radially
outward from the origin. Neglecting the existence of the neighbour ion, this system has
cylindrical symmetry and hence it is sufficient to just consider emission in the x — z plane.
We choose y and 0 = cosfi — sinf2 to be basis vectors orthogonal to the propagation
direction. The polarization vectors of the light are 2 and ey = \%(:ﬁ + 7).



We have the following relationships for the intensity of each polarization of light

I o |- 22410 - 2> = sin? 0 (2.7)
- 1
17 | erP+10-e> = S+ cos? 0) (2.8)
- . 1
I |g)-5_|2+|¢9-e_|2:5(14—60529). (2.9)

As previously stated, the amount of each polarization emitted by the fluorescing ion should
be equal. Therefore we can compute the proportionality constant for each intensity by
selecting a normalization condition and integrating all three equations separately over
the sphere. However, when doing this calculation it becomes clear the proportionality
constant will be the same in all three cases. Hence it is simpler and sufficient for our
purposes to forgo this step and use the above equations to determine relative amounts of
each polarization. In this instance we are strictly interested in the small 6 case where it
can be seen the amount of 7 polarized photons is approximately equal to the amount of o
polarized photons. Hence

1
== 2.10
fo=3 (2.10)
and we now have all we need to compute Rg,.

To determine the probability P(t) that the neighbouring ion will have absorbed a photon
after time ¢, note that absorption rate R, gives the expected number of photons absorbed
per second. In other words, 1/ R, is the average time needed in order for a single photon
to be absorbed. This should be constant in time and hence the probability distribution is

by definition exponential with a probability density function of R, e fe!. Integrating this
from 0 to 74 we find that the probability that the ion absorbs a photon after time 7, is

P(14) =1 — ¢ flabTa, (2.11)

2.3 Technical limit

In order to determine the effect of beam leakage on the neighbouring ion our goal is
to use the Lindblad master equation to allow us to solve directly for the state of the
neighbour. First we will need the Hamiltonian of our system. As in this instance we
are only considering the case of detection we will strictly consider a five state system
consisting of states |0) through |4). This will of course lead to a neglect of any off-resonant
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effects, however as we are considering the effect of the beam hitting the neighbouring ion,
which is already experiencing a severely attenuated beam, these effects can be considered
negligible. We also note here that while the following analysis considers only five states,
and the operation of detection. Generalizing to consider the entire P% shell as well as the
operation of optical pumping is straightforward.

Now, we move on to construct our Hamiltonian. The diagoanl terms will of course
consist of the five energy levels of the states |0) through [4). The off-diagonal terms of the
Hamiltonian will have generic form of %e‘i‘“t, where w is the angular frequency of the laser
driving the transition and €2 is the Rabi frequency. The Rabi frequency for the transition
can be computed, assuming the intensity of the laser is known, through the identity

I 2002

= — 2.12
[sat F2 7 ( )

where [ is the intensity of the laser, I, is the saturation intensity, and I is the spontaneous
emission rate of the transition. As we are considering detection, the laser will be driving
the excitations of the bright states to |4). Hence the Hamiltonian may be expressed as

Wo 0 0 0 0
0 wi 0 0 1Q, eiwat

H=1|0 0 W 0 s Qe | (2.13)
o 0 0 w3 S eiwat
0 %Q;eiwdt %Qgeiwdt %Qgeiwdt Wy

where w; is the energy level for the i-th state. Since wy is our lowest energy state we may
set wp = 0. We also note that the difference in energy between the states [1),]|2),|3) is
on the order of MHz, whereas the energy of the excitation is several orders of magnitude
larger, and so all three Rabi frequencies will be approximately the same and so we set

Q; =~ Q) ~ Qf =~ Q. (2.14)
Therefore our Hamiltonian is now
0 0 0 0 0
0 w1 0 0 %Qeiiwdt
H=|0 0 wa 0 SQetwat | (2.15)
0 0 0 wy 5 Qedt
O % Qeiwdt % Qeiwdt % Qeiwdt Wy

Note that the Hamiltonian will of course be time dependent, however, for our purposes,
it will be useful to remove the time dependence through a rotating transform. The rotating



transform is a unitary matrix U(t), which we emphasize will depend on time, such that
the resulting matrix UHUT has no time dependence. In other words, we wish to transform
to a time dependent basis where our Hamiltonian in this new basis is time independent.
The Hamiltonian of our system in the rotated basis is given by

d
H,, =UHUT — iUEUT. (2.16)

Due to the simplicity of our Hamiltonian, U can be found by simple inspection or
through a small amount of trial and error with the assistance of computer software. How-
ever in more general cases such having both detection and optical pumping beams on
simultaneously U may not be as obvious. Hence below we will describe a more algorithmic
approach to determine U that should be suitable in most cases.

We begin by first assuming that U is diagonal, an assumption that can be justified by
showing that it leads to an appropriate U. Hence for our basis states {|k) }xez, the action
of U on each basis state can be described by

Ulk) = ug|k) (2.17)

where {ug(t) }rez,, the diagonal entries of U, are some functions of time. As U is intended
to remove the time dependence from H we generate the following three equations that
need to be solved

1 . 1 , 1
§Qe_’wdtU 14| UT = §Qe_zwdtu1u1 11)(4]| = 59 |1)(4] (2.18)
1 . 1 : 1
Qe U [2)4) Ut = §Qe*wu2u§1 [2)X4] = S [2)4) (2.19)
1 , 1 , 1
§Qe‘wdtU 13)4| UT = §Qe—wdtu3uz [3)4] = 52 [3)4] (2.20)

Therefore equivalently we have

e~ Watyy ) = (2.21)
e~ @byl =1 (2.22)
emalygyl = 1. (2.23)

(2.24)

10



—iwdt

It is obvious now that these equations may be satisfied when uy = € and all other wuy

are 1. Hence U in this instance is given by

1 000 0
0100 0
U=1]10 01 0 0 (2.25)
0 001 0
0 0 0 0 e iwa
Our rotated Hamiltonian therefore is
0O 0 0 O 0
d 0O wi 0 O %Q
Hoy=UHU —iU—-U'=|0 0 w, 0 10 (2.26)
dt 00 0 w 10
0 %Q %Q %Q W4 — Wy

From this we see that we may remove the time dependence of the Hamiltonian by perform-
ing an appropriate energy shift. With the added assumption that our detection beam is on
resonance we have the final form of our Hamiltonian in terms of more physically relevant
variables we have

0 0 0 0 0
0 WHF — Wz 0 0 %Q
Hrot = 0 0 wWHF 0 %Q (227)
0 0 0 wyr+wz 39
0 0 o 10 wgr

In the case of the neighbouring ion being exposed to an attenuated detection beam.
The evolution of the system will be non-unitary due to spontaneous emission from the
state |4) to the three bright states. In other words, our system is not entirely isolated as
it interacts with the environment. As the evolution of our system is non-unitary we can
not determine the dynamics through the Schrodinger equation. Instead we shall use the
Lindblad master equation. The master equation is given by

d 1

1
% (t) = _ﬁ[HTota p] + Z 5[20np0:2 - anC?; - Cjzonp] (228)

where ), are the collapse operators for our system and describe the interaction of our
system to the environment. Our system has three decay paths from the state |4), each of

11



which are equally likely. Therefore we have three collapse operators C', Cs, C3 which are

given by
/1
Cy = §F |kX4], k=1,2,3. (2.29)

where I' is the spontaneous emission rate from the state |4).

With this we now have all that is needed to simulate an attenuated detection beam
hitting the neighbouring. And so, in order to determine the affect of the beam on the
neighbour, we may solve the Lindblad master equation using the computer software of our
choice to determine the state of the system p(7;), where 7 is the time corresponding to the
length of detection. Now that we know the state of the neighbouring ion after the detection
procedure is completed we can characterize the effect on the neighbour by determining the
state fidelity F(p(74), p(0)) with the initial state of the neighbouring ion p(0).

2.4 Detection Fidelity

To determine the detection fidelity (i.e. the probability of a successful measurement) we
will follow a procedure outlined in [3] and apply it to our specific case of Ytterbium. This
procedure can be similarly found in [I0] where it is experimentally demonstrated on a
Ytterbium ion.

To evaluate our detection procedure we wish to determine the probability that we
successfully detect a qubit state on our target ion after running the detection procedure
for a time 74. As was previously described the detection procedure is quite simple as it
merely consists of hitting the ion with light of wavelength 369.5nm to drive the bright
state fluorescence. There are however some complications. For one any physical system
can not reasonably be expected to collect all photons emitted by the target ion during its
fluorescence with 100% efficiency. The second is that off resonant scattering can lead to
the target ion transitioning from a bright state to the dark state and vice versa.

We begin by first defining some parameters that will be useful. The dark state leakage
parameter aq is defined as
Ry

Qg ‘= RSC (230)

where Ry, is the scattering rate for the ion initially in the state |2) ignoring off resonant
effects, and R, is the expected rate that an ion initially in the dark state will leak into one

12



of the bright states. We similarly have the bright state leakage parameter «; given by
Ry

where Ry is the rate that an ion in one of the bright states will leak into the dark state.
The last parameter we need is the expected number of photons detected A\ given by

ap (2.31)

A= 1R, (2.32)

where 7 is the collection efficiency of the detector. These parameters will allow use to
compute the probability py(n) that we detect n photons for an ion initially in the dark
state. And similarly the probability py(n) that we detect n photons for an ion initially in
the bright state |2). We now recall their corresponding formulas below

pa(n) = =5 5, + #;n)n“ P <n +1, (1 — %) /\) (2.33)
po(n) =m0/ __p <n +1, (1 + %) )\) (2.34)

n! a
(1+5)

where P is the gamma incomplete function and ¢, is the Kronecker delta.

To compute R, we may use the population formulas given in [3] which take into count
population trapping in coherent dark states. Assuming the detuning of the detection beam
is 0 we have

Rsc =

r So
2.35

L+ (g + 42)/T2
where I' = 2719.6 M Hz is the spontaneous emission rate, w, is Zeeman splitting of the
bright states, A is the detuning of the beam, and sy = I/lsy;. For the scattering rates

R4 and R, we no longer need to worry about coherent dark states and so there rates are
determined purely through the off resonant scattering rates of their transitions. We have

2T S0 280(F2)
Ry=2=—_ % 250 (" (2.36)

921 1 50+4%8 94 \A]

2T S0 280(F2)
Ry=--— 0 20 (2.37)

321—1—804—4% 34 \A?
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where Ay = wyrs + wyrp = 27 14.7TGHz and Ay = wyrpp = 270 2.1GHz. In this case we
may use the approximate expressions for scattering rates as the detunings A, and A, are
significantly larger than the spontaneous emission rate. The factor of % is the probability
that once the ion in the bright state absorbs a photon that it will then decay to the dark
state. The factor of % would be the probability that the ion in the dark state will leak to
the bright state once it absorbs a photon.

We now set a threshold for the number of detected photons ng; where upon detection
of ng or more photons we say the state of the ion was |2) otherwise we say it was |0). The
above formulas for the probabilities will allow us to create histograms from the photon
detection count, which when combined with our established threshold will allow us to
determine the probability of a successful detection. Note however that the probability for
a successful detection will differ based on whether we started in a bright state or the dark
state. Hence we will characterize the success chance by considering the average F,,, of
these two success rates.

2.5 Example

We now conclude this chapter by fixing a set of experimental parameters and then seeing
how the quantities previously discussed vary as the detection time increases. We choose
so = I/l = 1 and the Zeeman splitting to be half the Rabi frequency of the detection

2
beam, hence
Q 1 S0 1
V2= 9 7o\ e Ty (2.38)

The beam we may assume is centered on the target ion, and as it is assumed to be Gaussian
it decays as exp(—2r?/w?) where 7 is the distance from the center and wy is the beam width.
If we set the beam width to be 2 microns then an ion separation of 2.5wy corresponds to
an attenuation of 0.000037 on the neighbouring ion. Lastly we assume that the detection
efficiency is n = 0.01.

The probability of absorption is given in eq. (2.11), where here we shall instead use
the probability that the neighbour does NOT absorb a photon. To determine the state of
the neighbouring ion p(7,) after detection time 7; we solve the Lindblad master equation
using the mesolve function in the QuTiP software package. Since the initial state of the
neighbour is |2) we have that the state fidelity will be the (2,2) entry of p(7;). For the
detection fidelity we first compute the photon count histogram as seen in figure 2.3

14



Probability

Bright State Photon Count Histogram

0.25

<o
[N
o

<o
—
w

<o
—
o

0.05

oood 7

Detection Time

—— 2.5e-05
5e-05

=== T7.5e-05

0.0001

T T T T
5 10 15 20
Detected Photons

T
25

Figure 2.3: Some select histograms for the probability of detecting n photons for so = 1/2,
n = 0.01, and assuming optimal scattering rate of the target ion.

We shall forgo showing the dark state histograms as they all have very low probability
of emitting 1 or more photons. In figure 2.4 we show the plot of bright state detection
fidelity and dark detection fidelity as a function of detection threshold for a detection time

of 7Thus.
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Figure 2.4: The bright state detection fidelity, and dark state detection fidelity as a function
of detection threshold for the histogram corresponding to 7; = 75us seen in figure 2.3

And finally we conclude with figure 2.5 showing how all three of quantities we have
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thus far discussed vary for detection times ranging from 1us to 100us.

The Three Quantities Comparison
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Figure 2.5: A plot showing how the probability the neighbouring ion does not absorb
a photon 1 — P(7y), the average detection fidelity F,,,, and the neighbour state fidelity
F(p(14), p(0)) vary as a function of detection time.

2.6 Discussion

To summarize, in this chapter we explored ways of characterizing the adverse effects of
photon absorption and beam leakage on neighbouring ions, and how to determine the
probability of a successful measurement. There is of course a balancing act that must be
performed as attempts to improve the detection fidelity of the measurement, the simplest
being an increase to detection time, can lead to increases in neighbouring ion decoherence.
One of the shortest detection schemes thus far demonstrated is in [10], which attains a
detection time of 11us with a detection fidelity of over 99.9%. The example given in sec-
tion 2.5 would then correspond to a slightly more modest detection time of approximately
50us with detection fidelity 95% and chance of neighbouring ion decoherence smaller than
5%. While these numbers are likely too large/small to be of practical purpose, they were
attained at a relatively small ion separation of bum with no attempt to improve detec-
tion fidelity or reduce ion decoherence. If we assume that the detection procedure in the
previously stated example was able to be completed in the more optimistic time of 11us
this would lead to a neighbouring ion decoherence of less than 1%. These numbers can be
improved in the obvious ways: slightly increased ion separation, improved detector photon
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collection efficiency to reduce detection time, improved beam addressing, etc. However,
there may be less obvious ways they can be improved, which we discuss below.

The fundamental limit may be improved through using the non-isotropic emission of
photons by the target ion during it’s fluorescence. The analysis of section 2.2 was assuming
that the quantization axis was perpendicular to the ion chain as this was how the trap in
[22] was constructed. This results in a neighbouring ion seeing roughly half 7 polarized
light and half 0. Equation 2.7 states however that the amount of 7 polarized light parallel
to the quantization axis will be almost negligible. Hence orienting the ion chain parallel
to the quantization axis can greatly reduce decoherence as an ion in the state |2) can only
absorb 7 polarized light, excluding off-resonant effects. To implement this would require
consideration when engineering the trap, and may not be necessary depending on which
of the fundamental, or the technical limit, are the limiting factors of the system.

Sainath Motlakunta, a colleague, suggested applying a stark shift to the target ion
during state detection. A stark shift beam is a beam of high intensity that is largely detuned
from the 369.5nm transition and focused purely on the target ion causing a slight energy
shift in the energy levels of the target. This allows the detection beam, and consequently
any emitted photons, to be off-resonant to neighbouring ions thereby reducing decoherence.
The downside is it increases the chances of the bright states leaking to the dark state, and
vice versa, reducing the detection fidelity. Our initial calculations for Ytterbium suggest
that the reduction in the detection fidelity is not worth the improved neighbour fidelity.
It’s possible that this trade-off may be worth it in a different species of ion.

We close this chapter by mentioning that the methods used in this chapter are by no
means exhaustive and still leave open what are the best ways of characterizing the errors
in state detection. As an example, the previously mentioned reference [10] analyzes the
decoherence of the neighbouring ion through a T2 experiment. The method in section 2.3
can easily be adapted to simulate such an experiment if desired. However, this leaves
several parameters that may be used to evaluate a state detection procedure: probability
of photon absorption, T2 time, state fidelity of the neighbour, detection fidelity, among
potentially others. What are the best parameters for characterizing the detection process?
And what is the best way to combine the desired parameters into a single number giving
the overall quality of the measurement? We now turn to this question in the next chapter.
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Chapter 3

Figures of Merit for Quantum
Instruments

3.1 Introduction

In the preceding chapter we examined errors in a measurement process specific to trapped
ions, we now turn to the abstract setting of evaluating quantum measurements without
assuming a specific implementation of a quantum computer. The performance of any
quantum computer will naturally be limited by any errors in its physical implementation.
While error correcting procedures of course exist, the catch is any error correcting procedure
must be implemented with operations which in themselves are error prone. This naturally
led to the development of fault-tolerant quantum computation [34, 31, 21, 1]. Fault-
tolerant quantum computation was shown to be possible by proving that there exists a
maximum error rate n of the quantum operations of the computer below which errors can be
suppressed to an arbitrarily small rate using additional quantum operations and processing
time. In other words, if the error per operation in a large-scale quantum computer is
sufficiently small, then quantum error correcting procedures can be implemented effectively.

Therefore, to determine whether we are close to the fault-tolerant threshold, we need
figures of merit to quantify the error per operation and methods to estimate those fig-
ures of merit for a given quantum computer. For unitary operations, two common figures
of merit are the diamond distance and the process infidelity between the ideal operation
and its implementation, with the diamond distance being the figure of merit of choice
for fault-tolerant quantum computation. The diamond distance is typically estimated
by reconstructing the full process using quantum process tomography [9] or gate set to-
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mography [16] and computing the diamond distance between the reconstructed and ideal
processes. However, the cost associated to tomography notoriously grows exponentially
with the size of the system, and there are no known methods of efficiently estimating
the diamond distance for general noise processes. In contrast, the process infidelity can
be efficiently estimated using techniques such as randomized benchmarking and its many
variants [17], or direct fidelity estimation [I1]. However, while the average gate fidelity can
be used to determine an upper bound on the diamond distance and hence on 7 [33], the
upper bound is generally very loose as the diamond distance and the process infidelity are
not directly related.

All known fault-tolerant techniques that can arbitrarily suppress errors require quan-
tum non-demolition measurements, which must preserve the state of the quantum sys-
tem [37, 29, 13]. As quantum non-demolition measurements are represented by quantum
instruments it becomes necessary to develop figures of merit capable of properly evaluat-
ing them. There are then two sources of error in quantum instruments, namely, errors in
the probabilities of outcomes, and errors in the post-measurement states. It is therefore
important to ensure that any method used to evaluate a quantum instrument accurately
represents both types of error. Several groups having been using modifications of known
tomographic methods to fully characterize the quantum instrument [32, 30] or applying
device-independent certification methods based on violations of Bell inequalities [38].

This chapter will proceed as follows. Section 3.2 and section 3.3 will provide a brief
review of figures of merits on states and quantum channels, respectively. Section 3.4
continues with a review of quantum instruments and proves some intermediary results. In
section 3.5 we analyse how the different figures of merit on quantum instruments adequately
capture errors in measurements. Section 3.6 discusses a diamond distance equivalent for
quantum instruments and presents an argument motivating its use. Section 3.7 generalizes
bounds on the diamond distance for unitary channels to bounds on the diamond distance
for quantum instruments. This chapter then concludes in section 3.8 by walking through
several examples computing the different figures of merit for various error models.

3.2 Figures of Merit on Quantum States

We begin by first reviewing some elementary definitions and results from linear algebra.
First, recall that the trace norm || - ||;, otherwise known as the Schatten-1 norm, on a
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matrix A is given by

Al == Tr VATA = Tr|A| = ) 0, (A), (3.1)

where {0, }, is the set of singular values for the matrix A. Secondly, for a matrix A a
square root B is defined as a matrix such that A = B2 In the case where A is positive
semi-definite then there exists a unique positive square root, referred to as the square root.
And lastly, for a d x d square matrix A of rank 1, then it may be decomposed as A = 1)) ¢)|
for some vector |¢) € C?

A d-dimensional quantum state (otherwise known as a density matrix) is a d x d posi-
tive semi-definite matrix of trace 1, with the set of all d-dimensional quantum states being
denoted by Dy. Hence any positive semi-definite matrix can be interpreted as an unnor-
malized quantum state, where unnormalized in this context refers to having potentially
non-unit trace. A pure state p is a quantum state of rank 1. A quantum state that is not
pure, referred to as a mixed state, is given by a convex combination of pure states.

Generalizing the fidelity and trace distance between quantum states we define the fol-
lowing two functionals on the space Pos, of all d x d positive semi-definite matrices (i.e.
all unnormalized d-dimensional quantum states):

D(p,o) = gllp ol (3.2)

Fip.)i= (Tr/Vorva) = Ivavall: 33)

where D is the trace distance, and F is the fidelity. In some cases it will be more convenient
to work with \/F(p, o) rather than F(p,0), at which point we refer to it as the square
root fidelity. Additionally, it should be clear from there definitions that both functionals
are symmetric in their inputs.

Note that in most contexts the above two functionals are used as a figure of merit (a
measure of distinguishability) between two quantum states, and will be there primary use in
this article. Presenting them in the more general context of positive semi-definite matrices
is simply an expansion of their domain to include unnormalized quantum states. As we’ll
see later, this will be convenient as we will frequently encounter completely positive but
NOT trace preserving maps. These maps input a quantum state and will, in general, output
an unnormalized quantum state. This expansion of the domain will allow us to use these
functionals as figures of merit, while avoiding renormalization during some intermediary
steps as will be seen later.
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There are two useful properties of both of these figures of merit, referred to as stability
and contractivity (see [15]), which we recall in the following two lemmas.

Lemma 1 (Stability). Let p,o,7 € Dy. Then
Flp@r,007)=F(r@p1R0)=F(p0) (3.4)
Dp@1,097)=D(T®@p,7®0)="D(p,0) (3.5)

Lemma 2 (Contractivity). Let £ be a trace preserving quantum operation and p,o € Dy.

Then

F(p,0)

D(p,0)

It is well known that in the case for two (emphasis on normalized) quantum states p
and o that if at least one of them is pure then the fidelity simplifies to F(p,o) = Tr po.
The following lemma shows that this is true in the more general case where one of them is
assumed proportional to a pure state.

Lemma 3. Let A, B € Posy. If A (or equivalently B) is rank 1, then
F(A,B)=TrAB (3.9)
Proof. Since A has rank 1 it follows through a straightforward calculation by expressing A

as A = a|)(¢| for some constant a > 0 and vector |)) € C? with | (¢|) |> = 1. The case
where B is rank 1 would follow immediately by symmetry. O

While there are many figures of merit for quantum states the trace distance and fidelity
are related due to a result by Fuchs and van de Graaf [11] that allows them to be used as
upper and lower bounds for each other. We recall this result in the following inequality.

Theorem 1 (Fuchs-van de Graaf Inequality). Let p,o € Dy. Then,
1
L=V Flpo) < 5llp—oal, < V1-F(po)

Note that it is easy to verify that if both states are pure then the right inequality is
saturated (i.e. the right inequality becomes equality). It is also known that if one of the
states is pure then the left inequality can be improved to

1
1~ F(p,0) < 5 ool (3.10)

21



3.3 Figures of Merit on Quantum Channels

Before discussing quantum channels it will be helpful to first review the process of vector-
ization, or, more specifically, column stacking. Let A € C™*™ be some rectangular matrix
and {j}jez, and {k}iez, be two sets of orthonormal bases for C™ and C", respectively.
We may express A in component form as

A= > aulik]. (3.11)

J€ELm kELn

From which we can see that we may vectorize A through the following map

A= D anlk) @), (3.12)

J€Lm,kELn,

which is straightforward to verify that it equates to stacking the columns of A to create
a single vector. We could of course similarly consider vectorizing A through stacking its
rows. For our purposes we only need a single vectorization map, and so from here on we
will strictly consider column stacking. It is worth mentioning that many of the results we
will see going forward can be straight forwardly adapted to the case of row stacking.

We now recall the following useful properties of vectorization. The proofs of which can
be found elsewhere but we include here for completeness.

Theorem 2. Let A and B be n x n matrices. Then |AB)) = (I ® A)|B)) = (BT @ 1) |A)).

Proof. The process of vectorization described above takes a matrix M and creates a column
vector by stacking the columns of M, or more succintly: [M)) = ([m,]",)". Where m; is
the m-th column of M. Therefore [AB)) can be simply expressed as |ABY) = ([Ab;]7,)".
By noting that I ® A is an n x n block diagonal matrix where each diagonal element is the
matrix A. The first equality |AB)) = (I ® A)|B)) becomes immediate.

For the second equality, note that the product BT ® I is a n x n block matrix where
the (7, 7)-th entry is b;;/ with b;; being the (j,7)-th entry of B. Athough |A)) is technically
a n? dimensional vector we can instead consider it to be n dimensional vector where each
component is the column of A (based on the discussion above). For a fixed i we have a
row of BT ® I to be (by;I,bol,. .., byI) and taking the dot product of this row with the
vector |A)) gives

blial + bQZ’CLQ + 4 bman = Abz (313)
The above equation will be the i-th row of (BT®1) |A)) and so it follows that (BT®1) |A)) =
|AB)) from the discussion at the beginning of the proof. O
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Corollary 1. For n X n matrices A, B, and C we have |ABCY)) = (CT @ A) |B))

Proof. Follows from applying theorem 2 twice:
|ABC) = (I ® A)|BC)) = (I @ A)(CT @ I)|B) = (C" @ A) |B) (3.14)
O
Corollary 2. Let A and B be n x n matrices. Then Tr(ATB) = (A|B)).

Proof. We have as an identity that Tr(AB) = (I|AB)) and so

THA'B) - (1]4B)
= (1] (1 ® AT |B)
= ((IeA)|I))|B)
= [AD)"|B)
= (A4|B) (3.15)

]

Now, a quantum channel is defined as any map A : Dy — D; between quantum
states, which by necessity must be completely positive and trace preserving (CPTP). In
this context, a positive map C (i.e. a map that sends positive semi-definite operators to
positive semi-definite operators) is referred to as completely positive if the induced maps
T, ® C are also positive for every k, where Z; is the identity map on C***. By virtue
of a quantum channel being completely positive it may decomposed in terms of a set of
operators { K}, referred to as Kraus operators, where the action of A on a state p may
be expressed as

p=> KlpK;. (3.16)

J

This Kraus decomposition of a channel is not unique and so we define the Kraus rank
of a completely positive map to be the minimum number of Kraus operators needed in

the decomposition. The set of all quantum channels which maps Dy to D; is denoted
L(Dg, Dy).

Similarly to our treatment of quantum states, whereby we discussed figures of merit
that may be used to compare how “close” two quantum states are to being equal, we also
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wish to compare two quantum channels. The figures of merit we are interested in are
derived through the use of the Choi-Jamiolkowski isomorphism.

First we define the following maximally entangled state ¢ € Dy ® D, given by
1 . 1
@ = o 3 Nk = < Tl (3.17)
7,kE€EZLg

where I; is the d-dimensional identity matrix. And so we may now define the Choi-
Jamiolkowski isomorphism J : L(D;,Ds) — Dy ® Dy where the action of J on a channel
A is given by

J(A) = (Za® A)g, (3.18)

where Z; is the d-dimensional identity map. The outputted state J(.A) is referred to as the
Choi state for the channel A. Note that in most contexts, and as it is introduced here, the
Choi Jamiolkowski isomorphism is presented as an isomorphism between quantum channels
and quantum states [, 18]. However, analogously to how we expanded the domain of the
figures of merits on quantum states, it will be convenient to expand the domain of the map
J to allow in its domain completely positive but not necessarily trace preserving maps.
At which point for a completely positive map A its corresponding Choi state J(A) will in
general be unnormalized.

Assuming that the Kraus operators of a CP map are known, we have the following
lemma providing a relatively easier way to compute the Choi state.

Lemma 4. For a CP map C with Kraus operators {Cy.}r the Choi state may be expressed
as

7€) = 5 S 1CHCx (319

Proof. Using the distributivity of the tensor product, as well as the theorem 2 we get

J(C)=>_J(Cy)
= = " G it (1 )

==Yl (320)
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The usefulness of the Choi-Jamiolkowski isomorphism is it allows us to associate to ev-
ery channel a unique quantum state. Thus any figure of merit between quantum states may
be promoted to a figure of merit on quantum channels by comparing their corresponding
Choi states.

We may now define the following two functionals on the space of completely positive
maps:

Fi(A,B) = F(J(A), J(B)) (3.21)
D, (A, B) := D(J(A), J(B)) (3.22)

When these two functionals are restricted to quantum channels they may be used as figures
of merit. While comparing two quantum channels by comparing their Choi states may at
first seem arbitrary, it has the benefit however of our figures of merit immediately inheriting
the nice properites associated to the fidelity and trace distance. Our primary motivation
however for choosing these figures of merit is their use in applying upper and lower bounds
on the diamond distance, which we will now define.

The above approach compares two channels by comparing their Choi states. However
a more natural way may be to instead compare the outputs of the two channels. As we are
always going to be considering completely positive maps, or combinations of them, whose
inputs are positive semi-definite matrices. We wish to define an operator norm || - [|; on
superoperators of the form A : Pos; — C/*/. Defining the operator norm in the standard
way we have

IAllx = sup{[[A(p)ll1 : p € Posa, ||pllx = 1}. (3.23)

From the definition it should be clear that the maximization is done over all quantum
states p € Dy. As p is a quantum state it is either a pure state or a convex combination of
some set of pure states which we denote {o3}. Letting A : Posy — C/*/ be an arbitrary
superoperator. The quantity o = maxy{[|A(ox)||1} must exist, where o € {o}},. By the
triangle inequality we have

AP < lA)]]1- (3.24)

It follows then that maximization in our operator norm can equivalently be done by only
considering pure states.

From the operator norm we may now define the diamond norm

[l = [|1Za ® Al|1. (3.25)
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From which we can then define diamond distance r, between two quantum channels A and
B as

1
ro(A, B) = 5[ A = Bl.. (3.26)

The addition of the identity mapping in the definition of the diamond norm serves a vital
purpose in that it allows the diamond norm, and by extension the diamond distance, to
have a stability property [15] analogous to that seen for the state based figure of merits.
We state this stability property in the following lemma.

Lemma 5 (Stability). Let A,B € L(D4,Dy). Then

ro(Za @ A, Ly @ B) = 1o(A, B) (3.27)

All of the figures of merit thus discussed can be related through the following inequality

(see [41])

Lemma 6. Let A be a hermiticty-preserving map between d-dimensional operators. Then
we have
(Al < [l Alle < dlj J(A)]]1- (3.28)

We note that the upper and lower bound in terms of the trace norm may be exchanged
for expressions involving the fidelity by using the Fuchs-van de Graaf inequality.

3.4 Quantum Instruments

A quantum instrument is a special case of a quantum channel in which it takes as input a
quantum state and outputs a mixed state that stores all relevant measurement statistics.
More explicitly, the action of an instrument A on a quantum state p is given by

E}h ) @ kXK. (3.29)

The states {|k)} are referred to as the pointer states of the measurement, and are a set of or-
thonormal states that represent each measurement outcome. The completely positive maps
Ay are referred to as the pointer maps, and are defined such that the post-measurement
state, assuming measurement outcome k is recorded, is given by = A’“ (p ) . The probability of
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obtaining an outcome k using the instrument A is determined through the trace: Tr Ax(p).
We emphasize here that the pointer maps are by necessity not trace preserving and hence
their output will be unnormalized quantum states. However their sum ), Ay is and hence
is by definition a quantum channel.

We mention here briefly that indirect measurements, which are measurements consisting
of pairing a system with an ancilla state, performing a unitary operation on the combined
system, and then a projective measurement on the ancilla, are special cases of quantum
instruments. The pointer maps in this case would be a composition of the following maps:
the unitary channel on the combined system associated to the indirect measurement, a
projection of the ancilla state onto the qubit state |0) or |1), and tracing out the ancilla
state.

The usefulness of the quantum instrument representation is that our measurement is
now described through a quantum channel. Hence any figure of merit on quantum channels
is now also a figure of merit for measurements. Secondly, the particular form of the quantum
instrument means the output of the instrument will always be a summation of mutually
orthogonal states due to the pointer states. An immediate consequence of this is that
the square root fidelity and trace distance become additive over the pointer maps as the
following lemma and subsequent theorem shows.

Lemma 7. Let {My}rex be a set of hermitian matrices of the same dimension and
{|k)}kex be a set of orthonormal vectors. Then

1> M@ R}kl = 1Ml (3.30)

Proof. From the orthonormality of {|k)}rex we get after a brief calculation

<Z\Mk!®\k)<ky> = (ZMk®|k><ky> : (3.31)

Taking the square root of the above and applying the definition of the trace norm we get

1D My @ [k)k||n = Tr| Y My @ kXK (3.32)
k = Tri | M| @ |k)K| (3.33)
=> ﬁMkHl (3.34)

k O
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Theorem 3. Let A and B be two quantum instruments with respective pointer maps { A }r
and {B}r and let p be a quantum state of appropirate dimension. Then we have the
following

VF(AB) =Y /Fi(Ar. By (3.35)
Dy(A,B) = Zk:DJ(Ak,Bk) (3.36)
VF(A(p). B(p)) = i VF(Aw(p), Bi(p)) (3.37)
D(A(p), B(p)) = >_ D(Aw(p), Bi(p)) (3.38)

k (3.39)

Proof. We first note in general for an instrument 4 we have

J(A) = J(Ar) @ k)| (3.40)

The orthogonality of the pointer states gives
J(A) = J(B) = J(Ap) = J(B) @ |k)k] (3.41)
k

Since J(Ay)—J(By) is of course hermitian the first equation in the theorem follows directly
from lemma 7.

Recalling the definition of the fidelity using the trace norm

VF(I(A), J(B) = [V I (A)/ T (B)]r- (3.42)
Since
VI(A) =D VI(A) @ |k)E] (3.43)
the orthogonality of the pointer states gives
VIAWVIB) =YV I(A)V T (Br) @ [k)k| (3.44)

and so we may again apply lemma 7 to obtain the second equation as stated in the theorem.

Equations three and four in the theorem would following identically to the above cal-
culations which completes the proof. O]
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The above theorem is highly important as it allows for simpler calculation of the fidelity
and trace distance between instruments by allowing us to compare the pointer maps sep-
arately. It also illustrates that in many cases it will often be more convenient to consider
the square root fidelity due to its additive nature rather than the fidelity itself.

As previously discussed, we are interested in comparing an ideal measurement to its
noisy implementation. In many cases the ideal measurement would correspond to an ideal
computational basis measurement whereby the pointer maps A, have Kraus rank 1 and
are simply rank 1 projectors. In light of this the following lemma will be useful for quickly
and easily computing the fidelity F.

Lemma 8. For CP maps A and B with respective Kraus operators A and {By}rer, then
we have

Fi(AB) = Z|Tr (ATBL)?

Proof. Using eq. (3.20), the Choi states for A and B are

T(A) = ANA] (3.45)

= =3 IBOB (3.46)

In particular, J(A) has rank 1. Therefore

Fi(A,B) = F(J(A), J(B))
=Tr(J(A)J(B))

- —Tr (yA A|Z]Bk Bk>
> (ABw) (BilA)
== Z Tr(ATBy) Tr(B] A)
k
_ % S TH(A B2, (3.47)
k
which completes the proof. ]
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The intention with the above lemma is that as A, has rank 1 for every k the above
lemma can be used to compute the fidelity between the pointer maps F (A, By) regardless
of what form the noisy implementation B has. Theorem 3 can then be applied to compute
the fidelity or trace distance as desired.

3.5 Errors in Measurements

While the previous section asserts that we may use the figures of merits on quantum
channels as figures of merit on quantum instruments, and hence measurements, it still leaves
open the physical motivation for doing so. This section will provide a general discussion
of the errors associated to measurements and how the fidelity and trace distance can be
used to adequately capture these errors.

First it will be useful to recall two common distinguishability measures on classical
probability distributions. Let p : X — [0,1] and ¢ : X — [0,1] be two probability
distributions over the outcome space X. Then the Kolmogorov distance K is defined as

K(pa) =5 3 Iola) — a(a)] (3.45)

zeX

and the Bhattacharyya coefficient B is defined as

B(p,q) == Y v/p(w)q(x) (3.49)

zeX

Now, suppose we have a system in the state p and we wish to perform a measurement
with outcome space K. Let A be quantum instrument representing the ideal measurement,
and B be an instrument representing its noisy implementation. There are two possible
errors that might occur with the measurement: an error in the probability of an outcome,
or an error in the post-measurement state.

Letting ¢ = Tr(Agk(p)) and r = Tr(Bk(p). The error in the probability of outcome £,
denoted A,(g,r), may be defined simply as the difference between the two probabilities

Ap(g,r) =g —rl. (3.50)

Recall that the outputs of the pointer maps A and By, which dictate the post-measurement
state, are unnormalized. Hence when defining the error in the post-measurement state it
will be convenient to allow its domain to include unnormalized quantum states to allow us
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to work with the pointer maps directly without worry of normalization. Letting o = Ak (p)
and 6 = Ai(p) we define the error between the post-measurement states, which we denote
by Ay(p,0), as

1 1
g 51
Trat7 Tréo ’ (3.51)

1
Ay(0,0) == H
2 1

where it can be seen that the normalization of § and ¢ has been baked into the definition.

A standard way of modeling the noise in the implementation B would be to assume
that it consists of an ideal measurement with an additional error processes that may occur
before and/or after the measurement. Under this model the pointer maps for B have the
form of By = LA, R where £ and R are quantum channels that represent errors which
occur post- or pre-measurement, respectively. For simplicity this form is assuming that £
and R are the same for every k. Since L is a quantum channel, and hence trace preserving,
the probability of obtaining outcome k using the noisy measurement B is Tr(LA,R(p))
and hence will clearly be independent of £. Consequently, any errors that happen post-
measurement do not contribute to errors in probability. In general, the error in the post-
measurement state will depend on both £ and R. However, in the commonly assumed case
where the pointer maps for the ideal measurement have form Ay (p) = [, XWk| p |10 X10x| for
some normalized vector |1y ), then the error in post-measurement state will be independent
of both R and the initial state p. This can immediately be seen from the fact that the
post-measurement state for the outcome k is proportional to LA,R(p)) and by assumption
the output of ALR(p) will always be proportional to the state |1 )1x|, regardless of input.
The only exception of course being if R(p) outputs a state orthogonal to |t ).

With the brief discussion out of the way we now wish to show that the fidelity and trace
distance capture both of the errors in measurement. We begin by first fixing an initial state
p and we now wish to compare the outputs of the quantum instruments A(p) and B(p).
First we shall do so by using the trace distance, however with the additional assumption
that the error in the post-measurement state is 0 for every measurement outcome (i.e.
Ag(Ag(p), Br(p)) = 0 for every k). Consequently, this is equivalent to the assumption that

Ae(p) _ Bilp)
Tr(Ax(p))  Tr(Bi(p))

We may now use the additivity of the trade distance and the fact that the trace norm of

(3.52)
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a state is 1 to obtain

D(A(p) Z 1A% (p) — Bi(p) 1 (3.53)

1 . _Alp) g Bi(p)
- Z’T A g gy ~ BTGy, OO
= 137 T (A0)) - Th(B0) (35)

which is simply the Kolmogorov distance. If we had instead assumed that the error in the
probability for each outcome k is 0 (i.e. Tr(Ax(p)) = Tr(Bk(p)) for every k) then a similar
calculation to the above gives

D(A( ZTr Ar(p)As(Ar(p), Bi(p)) (3.56)

which is simply the weighted average error in the post-measurement state of each outcome.

We now compare the outputs of both quantum instruments using the square root fi-
delity instead of the trace distance. By using the additivity of the trace distance and
multiplicaiton by 1 to introduced factors of Tr(Ag(p) and By (p) we obtain

VEAR)Bi) = 3 VT A0 T By F(Ax(p), Bilp)) (3.57)

where the tilde denotes that the outputs of the pointer maps have been normalized. Follow-
ing the calculations we did previously, if we assume that the error in the probabilities for
each outcome are the same, then the above is simply the weighted average of the fidelities
of the post measurement states. If we instead assume the error in the post-measurement
states are 1 for every outcome, then the fidelity between the states is 1 and hence the above
reduces to the Bhattacharyya coefficient.

3.6 A Diamond Distance for Measurements

The previous section was intended to provide some intuition for using the fidelity and
trace distance as distinguishability measures on quantum instruments. The issue however
is the analysis was conditioned on a particular input state. It would therefore be beneficial
to develop an initial state agnostic figure of merit. This section is intended to provide
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motivation for considering a maximization over input states and hence develop an analog
of the diamond distance specific to quantum instruments. The following analysis is based
on the argument in [39] for using the diamond distance as figure of merit on quantum
channels.

To begin, consider a circuit consisting of a sequence of linear operations which we denote

IT 9 =9m9m1...O, (3.58)

Jj=m—0

where each ©; is a linear map representing either the operation of state preparation, mea-
surement, or gate. Before preceding it will be constructive to discuss how each operation
may be expressed as a linear map in this context. The operation of a gate expressed as a
linear map seems obvious, while the operation of state preparation can simply be repre-
sented by the constant map which sends all inputs to a designated state. Representing the
operation of measurement as a linear map is somewhat more tricky. The natural choice
given the content of this article would be to represent measurements using quantum in-
struments. This has the benefit of being able to track measurement outcomes across the
circuit through the pointer states. The downside of course being that each measurement
operation will therefore expand the system by adding ancilla states. This can be corrected
for by e.g. appending to each gate operation a number of identity mappings on the ancilla
states equal to the number of measurement operations that precede the gate operation.
This can similarly be done to the pointer maps for subsequent measurements. This initially
seems cumbersome, but ultimately becomes a minor technical detail that can effectively
be ignored as we’ll see shortly.

Let 1 represent the ideal output of the circuit and p represent the output of the noisy
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implementation, then by sub-multiplicativity and the triangle inequality we have

[ —pllh = H O;— H 9,
Jj=m—0 J=m—0 1
= II ©-9+ I S+9+ I 9- II o
Jj=m—0 Jj=m—1—=0 j=m—1—=0 J=m—0 1
<| I 925-9. I S| +llon [ 9i- 9;
j=m—0 j=m—1—=0 1 j=m—1—=0 Jj=m—0 1
(A inequality)
< H 0, — H Ol + HD (contractivity)
j=m—1—0 j=m—1-=0
0 ~
<319, - 95l (3.50)
j=m

where )5]- represents the noisy implementation of ©;. From this we can see that the
diamond distance not only bounds the error in the circuit, but does so while allowing us to
consider the error in each individual operation separately. The expression of the error in
the circuit in terms of the diamond distance has the added benefit that all of the appended
identity mappings that had to be added can actually be ignored due to the stability of the
diamond distance.

The above is intended as physical motivation for having the diamond distance, as
defined for general quantum channels, to be the figure of merit of choice when evaluating
quantum instruments. There is however a subtle difference in how the diamond distance
is used for quantum instruments as opposed to gates that is worth mentioning. When
working with gates there is a common notion of the diamond distance from the identity,
in which a sequence of noisy gates is compared to the identity channel. Comparing a
quantum instrument however to the identity channel has no (obvious) physical meaning.
When comparing instruments it will always be comparing a noisy implementation with its
ideal counterpart in whatever form they may take in a given context. Appealing to the
obvious similarities of the two uses of the diamond distance and the subtle differences it
may be appropriate to refer to the diamond distance when used for quantum instruments
as the diamond distance from the ideal.
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3.7 Relations Between Figures of Merit

With several different notions for figures of merit on a quantum instrument it would be
prudent to develop relations between them. The most simple of which is a quick application
of the Fuchs-van de Graaf inequality applied to the Choi states of quantum instruments.
This gives the following lemma

Corollary 3. For any two quantum instruments A and B, we have
1
Fi(AB) = 5 I7(A) = JB)], = V1= Fs(A B)

As we saw previously in lemma 6, the diamond distance can be bounded by D;. Now
lemma 6 will of course still trivially apply in the case of quantum instruments. However,
there is a very important distinction here when bounding the diamond distance from the
identity as compared to the diamond distance from the ideal. As seen in the proof of

proposition 9 of [11], we may bound the diamond distance from the identity for a unitary
channel G through the use of the improved lower bound of 1 — F(¢, J(G)), to obtain
1= F(, J(@) <19 - Tl (3.60)

as ¢, the maximally entangled state used in the Choi-Jamiolkowski isomorphism, is a pure
state. The problem however is the Choi state of a quantum instrument will always be a
mixed state as long as there is more than one measurement outcome. The goal now is to
generalize equation 3.10 to allow for mixed states. The following lemma does so for a class
of states with a structure reminiscent of that of quantum instruments and hence may be
used to give us the desired new lower bound.

Lemma 9. Let p = Zj p; and o = Z]‘ oj be decompositions of two density operators
satisfying

PiPk = 00k = Pjok = 0;pr =0 (3.61)
for all j # k and such that p; is rank 1 for all j. Then

(pj; 0
Z\/# o= ol (3.62)
]’ ]

Proof. Under the stated assumptions, p and o are block-diagonal in the same basis and so
from lemma 7 we have

lp—cll =" llp; — a5, (3.63)
j
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where p; and o; are positive semi-definite matrices. Now for positive semi-definite matrices
A and B we have the following identity for the trace norm

1
3ll4 = Bll: 2 maxTr (P(4 - B)), (3.64)

where the maximization is taken over positive matrices P < I. As p; = p;/Trp; is a
projector, we have

1 .
lps =il = Te (pilp; — o)) = Tr pj — (3.65)

Summing over the previous equation while noting that

D Trp =1 (3.66)
J

and since each p; is rank 1 by assumption we may use lemma 3 to rewrite each term in
terms of the fidelity. O]

Theorem 4 (Extended Fuchs-van de Graaf Inequality). Let A and B be quantum instru-
ments with respective pointer maps { Ay} and {By}i. If, for every k, the pointer maps Ay,
have Kraus rank 1 then

Fi(Ag, By)
J(Ag) — J(B 3.67
-3 B < S A - B (3.6

Proof. For an instrument A4 we have

T(A) = " J(A) @ |k)E|. (3.68)

Since A, has Kraus rank 1 the Choi states J(A) will be rank 1. Hence using lemma
lemma 9 together with the stability of the fidelity obtains the desired result. O

The Choi states for the quantum instruments will by construction satisfy the require-
ments for theorem 4 as long as we assume that the ideal pointer maps are rank 1 projectors.
We will not prove in general that the lower bound given in theorem 4 is an improvement
over the lower bound of 1 —+/F;(A, B) given by the Fuchs-van de Graaf inequality, but we
will show that it is an improvement and is able to saturate the inequality in a few select
examples in the following section. We will however perform a quick sanity check that the
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lower bound given in theorem 4 will in fact never be negative. Using Holder’s inequality
for the Schatten norms, as the Schatten 1-norm is colloquially known as the trace norm,
we have

Z Fi(Ag, By)) ZH\/J.Ak W I B3

,FJ .Ak,.Ak ||J Ak ”1
<y VAR 1y (Br) I3
Tr J(Ag)
-y
=1 (3.69)
We now generalize an argument of [11] to upper and lower bound the diamond distance

from the ideal.

Corollary 4. Let A and B be quantum instruments with corresponding pointer maps
{Ap}kex and {By}rer. If the pointer maps of A all have Kraus rank 1, we have

Fr(AB) 1
1= 2 < A= B||, < dy/1—Fs(A4B).
FAA) 2 I 1A4.B)

Proof. For convenience, we let 6 = A — B. To prove the lower bound, we note that

16]ls = sup [[Za @ 6(p)llx = [ Za @ 6(9) Il = [[/(A) = J(B)|x (3.70)

pPED ;2

and use the lower bound of theorem 4. To prove the upper bound, we may write the
diamond norm as [12]

0]l = d max{[|(v/po © I;)J(6)(v/p1r @ If)llx : po, pr € Da}, (3.71)

where the factor of d comes from the normalization of the Choi state. The inequality
|ABC||1 < [|Allo || B][1]|C|s0 [] together with ||,/p]lo < 1 for any quantum state p gives

19]lo < df|J(O)]]- (3.72)

Using the upper bound from corollary 3 again completes the proof. O
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3.8 Examples for Commnon Noise Models

With the figures of merit established it would now be constructive to look at a few examples
to see how the proposed figures of merit behave under some simple noise models. The
complication with the diamond distance however is that since it is a maximization over
quantum states it is not always obvious or easy to compute it directly. The following
examples therefore will focus on computing F; and D; and simply being content with
using them to bound the diamond distance.

For the following examples when discussing Kraus operators for the various pointer
maps we will adopt the notation A, ;, which will denote the j-th Kraus operator for the
pointer map A; of the instrument A. The Kraus operators for each error model we obtain
from [21]. We will also frequently make use of the following lemma to more easily compute
the trace distance.

Lemma 10. Let |x),|y) € C. Then

HaXal = lyXyl s = v/ (zle) + (yly))? — 4] (yla) |

Proof. Let |0) and |1) be an orthonormal basis for the span of the vectors |z) and |y).
Then

[zXz| = (20]0) + 21|1))(Zo (0] + 21 (1]) (3.73)
= |x0|2 |0XO| + zoZ1 |OX1| 4+ Zox1 |OX1| 4+ |$1|2 |1X(1]. (3.74)

and similarly for y. Therefore we have

)| — |y)y| = (\xop —Jyol? woT — yoﬂé) | (3.75)

Tox1 — Joyr  |o1]* — |p

|2

Without loss of generality, we choose |1) oc v so that

2] — 5yl = ('“’"0'2 roTy ) . (376)

Torr |o1* — [lyl?

(‘CL Z) (3.77)
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the characteristic polynomial is
(a—=XN)(d—X) —bc=X—Xa+d) —bc+ad=0 (3.78)
By the quadratic formula we have

A= % ((a+d) +/(atd? —4(ad—bc)). (3.79)

Noting that |zo|* + |21|*> = ||z|| and z; = (y|z) /||z||, in our particular case we get the
eigenvalues to be

2X = Jlzl* = llyll* = v/l % = lyI?)? = 4(lzol?1[* — |zoPlly [l — Juo2lua[2)  (3.80)

= ll=lI* = Iy £ V(2 [I* = 2llyl2 (ol + [21]%) + [yll*) + o 2 [y]|? (3.81)

= llzl* = ly1* £ Vlizll* + 2llyl2lwol* — 2[ly2lz1]* + [ly]* (3.82)

(3.83)

(3.84)

= ll=l* = ly1* £ V(2 lI* + 2llyllzol? + 2llyl2l 2 + yll*) — 4]l ]2
= ll=l1* = llylI* £ /(=] + [ly]12)2 — 4] {yl=) [2

If we assume that ||y|| < ||z|| then from the above we see that

0 < [l = llyl* < V(= + yl*)? — 4] {yl) 2 (3.85)

It follows that

> silla)el = ly)yh) = VIl + Tyl1?)? — 4] (yl) 2 (3.86)

i

Note that the above analysis was contingent on the span of |z) and |y) forming a two
dimensional space. This would not be true if |y) = a|x) for some constant « € C. However
in that case it is straightforward to compute the trace norm

HaXa| = Ty)ul = Il |2Xz| — lol* [2)a] [l = 1 = |of*] (z|z) (3.87)

which is actually the same result we would get if we had instead used the formula stated
in the lemma. O

39



Bit Flip

Lets consider the case of where the instrument A corresponds to an ideal computational
basis measurement for a single qubit system. It will therefore have two pointer maps Ag
and A;, which each, respectively, have a singular Kraus operator

Ao,o = |0><0| (388)
Aip = 1)1 (3.89)

Now, consider an instrument B representing a non-ideal measurement consisting of a

bit flip error with probability p followed by an ideal computational basis measurement.
The Kraus operators for a bit flip error are

{vp(10X0[ + [1)1], /1 = p(J0X1] + [1)XO0])}. (3.90)

The instrument B will have two pointer maps By and B; each with two Kraus operators,
which we list below

Boo = /I-plOX0l, B = Blo)1] (3.91)
Biog=+/1—p|1X1l|, Bi1=+/p|1)X0| (3.92)

Since Ag has a single Kraus operator we may use lemma 8 to compute the fidelity
between A, and B,. We find

F(A;,B;) Z | Tr(A;B; 1|2 (3.93)

k€EZ4

_ %\/Tp_ (3.94)

Therefore
F(AB)=1—p. (3.95)
and
> o JJT JAZf’;lk —1—p. (3.96)

Hence the extended Fuchs-van de Graaf inequality would give a lower bound of p, which
is tighter compared to the lower bound as given by the Fuchs-van de Graaf inequality of

1—+1—p.
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The trace norm between J(Ag) and J(Bp) can then be computed using lemma 10 as
follows:

7o) — J(Bo)ll = 5 1Ao)(Aol ~ | Bool(Bool — |Boa(Boal I (397
= 211100)(00] — (1~ p) 00)00] — p[10}10] (3.98)
= 211 00)(00] — [10)10] |, (3.99)
= p. (3.100)

A similar calculation will show that
[J(Ar) = J(B)[lr = p. (3.101)
Hence by additivity
D(A,B) =p. (3.102)

Giving saturation in the lower bound of the extended Fuchs-van de Graaf inequality.

Phase Flip

Again considering A to be an ideal computational basis measurement of a qubit system.
Let the instrument B represent a non-ideal measurement consisting of a phase flip error
with probability p followed by an ideal computational basis measurement. The Kraus
operators for phase flip channel are given below

{V1=p[0}0|+ 1 =p[1)X1],  VPIOXO] — /P |1)1]}- (3.103)

The two pointer maps By and B; for the instrument B will each have two Kraus operators,
as given

B0,0 = 1/ 1-— P ‘0><0| s B071 == \/]_7|O><0| (3104)
Bio=+/1—-p|I)1], Bii=—/p|1X1]. (3.105)

Since A has a single Kraus operator we may use lemma 8 to compute the fidelity

between A, and B,. We find

1 1
F(AB)) =5 | D | Te(AoBox)? = 5. (3.106)

kEZy
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Therefore

F(A,B)=1. (3.107)

The trace norm between J(Ap) and J(B,) can then be computed using lemma 10 as
follows:

17 (Ao) — J(Bo)llr = %H [ Ao){Ao| — |Bo,o){Boo| — [Boa)X(Boal [l1 (3.108)
= %II 0000} — (1 — p) [00)(00] — p [00X00] [}, (3.109)
=0. (3.110)

A similar calculation will show that
[7(A1) = J(By)][s = 0. (3.111)
Hence by additivity

D(A, B) = 0. (3.112)

The fidelity being 1 and trace distance 0 are reflective of the fact that phase flip will
induce no error in probabilities or error in the post-measurement state due to the projective
nature of A.

Amplitude Damping

We will now consider amplitude damping, which corresponds to the decay of the qubit
system from its excited state |1)(1| to its ground state |0)0]. It has the following two
Kraus operators

{10)0] + 1 =p[1)1],  V/p[OX1]}, (3.113)

where the parameter p corresponds to the probability of state decay.

Now, similarly to other examples we will let A correspond the an ideal computational
basis measurement for a qubit system. The instrument B will correspond to a noisy
measurement consisting of amplitude damping followed by an ideal computational basis
measurement. A quick calculation for the Kraus operators of the two pointer maps By and
B using equation 3.113 gives
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Boo =10)0], Bo1=+p|0)1]| (3.114)

Bio=+/1—-p1)X1]. (3.115)

Since the pointer maps for A have a single Kraus operator we may first use lemma 8
to obtain

1 1
VF (Ao, By) = 5\/ | T Al Bool? + | Tr Ao Boal? = 5 (3.116)

and

1
JF(ALB) = \/]TrAOOBOO\2+|TrAOOB()1| —5vVi-p (3.117)

Therefore using additivity we get

F(A,B) = 1+\/1— (3.118)
and also
N LT FolAeBe) _y_p (3.119)
Fi( Ay, Ax) 2

In this instance we may compute the trace distance between the pointer maps directly
to find

[J(Ao) — J(Bo)llr = %H | Ao.0){Ao,0l — | Boo)(Bo.ol — [Boa){Boal llh (3.120)
= %H |00){00] — [00){00] — p[10)(10] |1 (3.121)
_ g (3.122)
and
[J(AL) = J(By)| = %H |A1o) (Aol — | BLo)(Brol — [Boa){Boal llh (3.123)
= 2] - (- p) 1 (3.124)
_ g (3.125)
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Therefore using additivity we find the trace distance between A and B to be

D(AB) =2

3.126
27 ( )

which again will give saturation in the lower bound of the extended Fuchs-van de Graaf
inequality.

Depolarization

As in the previous examples we let A correspond to a computational basis measurement on
a qubit system. We will consider the polarization channel, which corresponds to a decay
of the state of the qubit into a maximally mixed state. The polarizing channel has the
following Kraus operators

{@L \/gx, \/gy, \/%}. (3.127)

Therefore if we let B a noisy implementation of A consisting of the depolarizing channel
followed by a computational basis measurement we attain the following Kraus operators
for the pointer maps of B

BO,OZ 1__|O BOl—f|0 BOQ— f|0 B()g—\/>|0 3128
Bl,OI 1——|1 Bll—\/7‘1 B12—Z\/7’1 BlB— \/7|1 . 3129)

Continuing as we have before, we first start by computing the fidelity of the pointer
maps to get

VF (Ao, By) = Z | Tr(A] o Box)|? (3.130)

k€Zy
1 3p D
— /(1 — — = 131
= fa-2)+t (3.131)
1 p
— /1 == 3.132
=35 5 ( )
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and similarly

VF (AL, By) = 1— 5 (3.133)
Hence by additivity
N p
VFAB) = [1- 3, (3.134)
and additionally
pPiiaiba 2R FoAeBe) P (3.135)
Fi(Ag, Ar) 2

Continuing with the trace distance we get

17 (Ao) = J(Bo)llh = %H [A0.0)(Avol = > 1Bos)(Box! [l (3.136)

lc

= %H 100)X00[ — (1 - —) 0X0] = 5 |10><10| - |00>(00| o (3.137)

= 211001 - [10)(10] (3.138)
-3, (3.139)
and similarly
17(A) = T (Bl = 5. (3.140)
Therefore
D(A,B) = g (3.141)

and we obtain another example of saturation in the lower bound of the extended Fuchs-van
de Graaf inequality.

Unitary Channel

All of the previous examples had saturation in the lower bound of the extended Fuchs-
van de Graaf inequality. We now construct an example that gives a saturated upper
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bound for the Fuchs-van de Graaf inequality. Again, let A be an ideal computational basis
measurement on a qubit system. For any unitary map U, consider the non-ideal instrument

B which has pointer maps By = U(Ay). The Kraus operators in this case will be

By =U|0X0|, By =U]|1)X]1].
Letting k € {0, 1} and using lemma 10 we find that

17A%) — TBll = 51l AN As] — [UANT A

= %\/(<<Ak|f4k» + (UAR|UARD)? — 4] (U Ax|Ap)) |2

= %\/4 Tr(AL Ag) — 4] Te(UTA] Ap) |2
1= [(k[UE)[>.

Therefore if we choose U = cos1 — isin X, then

—ZHJ (A) — J(By)||1 = | sin ).

Computing the fidelity we obtain

1 2
Fi(AB) = (| Tr(ALU Ao)| + |Tr(A§UA1)|) — cos?f

and hence the upper bound of the Fuchs-van de Graaf inequality is.

V1 —./—':](.A,B) = |sin6’].

Additionally we have

Z Fi( Ay, By)) 9
= cos“ 6.
Fi(Ag, Ag)

Using the earlier expression for the trace distance we have

17(Ax) = J(Bg)l1 = [sin6].

(3.142)

(3.143)
(3.144)

(3.145)
(3.146)

(3.147)

(3.148)
(3.149)

(3.150)

(3.151)

(3.152)

And so in this example we see saturation in the upper bound of the Fuchs-van de Graaf

inequality.
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3.9 Discussion

In this chapter we explored how the figures of merit on unitary channels may be adapted
to figures of merit on quantum instruments. In particular, how figures of merit based
on comparing the outputs of quantum instruments capture errors in measurements in
intuitive ways. This leads to the diamond distance being seen as a favorable figure of
merit for measurements due to its nice properties and physical motivation. However,
it’s worth emphasizing here that this work is merely meant to introduce these figures
of merit. It is still necessary to develop concrete applications, and ultimately develop
methods for experimentally estimating them. As we previously mentioned, the diamond
distance for unitary channels is typically determined by doing a full process tomography
on the system allowing one to directly compute the diamond distance. This is of course
inefficient, but there are no known efficient methods for computing the diamond distance
directly. As the figures of merit for quantum instruments are based so strongly on the
figures of merit for unitary channels we suspect that being able to directly and efficiently
determine the diamond distance for a physical measurement to be unlikely. Hence the
emphasis in section 3.7 on relating the diamond distance to other figures of merit which
may be used to estimate the diamond distance, rather than focus on developing methods
of computing it directly.
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Chapter 4

Conclusion

To summarize, we saw in chapter 2 the errors that may arise in a Ytterbium 171 ion traps
and some approaches to characterize them. The obvious limitation of these approaches is
that they are rooted in the structure of trapped ions and hence don’t necessarily apply to
general quantum computing systems. This leads to Chapter 3, which looks at the more
abstract setting of quantum instruments and figures of merit that may be used to evaluate
them. The hope would be that these figures of merits could provide more robust ways
of characterizing the sub system measurements necessary in a trapped ion system. More-
over, as they figures of merit are system agnostic they would facilitate the comparison of
measurement procedures across multiple types of implementations of a quantum computer.

48



References

[1] Dorit Aharonov and Michael Ben-Or. Fault-tolerant quantum computation with con-

2]

3]

[4]

[5]

stant error rate. SIAM Journal on Computing, 38(4):1207-1282, 2008.

Dorit Aharonov, Alexei Kitaev, and Noam Nisan. Quantum circuits with mixed states.
page 20-30, 1998.

D. J. Berkeland and M. G. Boshier. Destabilization of dark states and optical spec-
troscopy in zeeman-degenerate atomic systems. Phys. Rev. A, 65:033413, Feb 2002.

[. I. Beterov and M. Saffman. Rydberg blockade, forster resonances, and quantum
state measurements with different atomic species. Phys. Rev. A, 92:042710, Oct 2015.

Robin Blume-Kohout, John King Gamble, Erik Nielsen, Jonathan Mizrahi,
Jonathan D. Sterk, and Peter Maunz. Robust, self-consistent, closed-form tomog-
raphy of quantum logic gates on a trapped ion qubit. 2013.

C. D. Bruzewicz, R. McConnell, J. Stuart, J. M. Sage, and J. Chiaverini. Dual-
species, multi-qubit logic primitives for ca+/sr+ trapped-ion crystals. npj Quantum
Information, 5(1):102, Nov 2019.

Dmitry Budker, Derek Kimball, Derek F Kimball, and David P DeMille. Atomic

physics: an exploration through problems and solutions. Oxford University Press,
USA, 2004.

Man-Duen Choi. Completely positive linear maps on complex matrices. Linear Algebra
and its Applications, 10(3):285-290, 1975.

Isaac L. Chuang and M. A. Nielsen. Prescription for experimental determination of the
dynamics of a quantum black box. Journal of Modern Optics, 44(11-12):2455-2467,
1997.

49



[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Stephen Crain, Clinton Cahall, Geert Vrijsen, Emma E. Wollman, Matthew D. Shaw,
Varun B. Verma, Sae Woo Nam, and Jungsang Kim. High-speed low-crosstalk de-

tection of a 171yb+ qubit using superconducting nanowire single photon detectors.
Communications Physics, 2(1):97, Aug 2019.

Marcus P. da Silva, Olivier Landon-Cardinal, and David Poulin. Practical character-
ization of quantum devices without tomography. Phys. Rev. Lett., 107:210404, Nov
2011.

E. B. Davies and J. T. Lewis. An operational approach to quantum probability.
Communications in Mathematical Physics, 17(3):239-260, Sep 1970.

Omar Fawzi, Antoine Grospellier, and Anthony Leverrier. Efficient decoding of ran-
dom errors for quantum expander codes. In Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2018, page 521-534, New York,
NY, USA, 2018. Association for Computing Machinery.

Christopher A. Fuchs and Jeroen van de Graaf. Cryptographic distinguishability
measures for quantum-mechanical states. IEFE Transactions on Information Theory,
45(4):1216-1227, may 1999.

Alexei Gilchrist, Nathan Langford, and Michael A. Nielsen. Distance measures to
compare real and ideal quantum processes. Physical Review A, 71(6):062310, jun
2005.

Daniel Greenbaum. Introduction to quantum gate set tomography. 2015.

J. Helsen, I. Roth, E. Onorati, A.H. Werner, and J. Eisert. General framework for
randomized benchmarking. PRX Quantum, 3:020357, Jun 2022.

A. Jamiotkowski. Linear transformations which preserve trace and positive semidefi-
niteness of operators. Reports on Mathematical Physics, 3(4):275-278, 1972.

Kaveh Khodjasteh, Daniel A. Lidar, and Lorenza Viola. Arbitrarily accurate dynam-
ical control in open quantum systems. Phys. Rev. Lett., 104:090501, Mar 2010.

A Yu Kitaev. Quantum computations: algorithms and error correction. Russian
Mathematical Surveys, 52(6):1191-1249, dec 1997.

Emanuel Knill, Raymond Laflamme, and Wojciech H. Zurek. Resilient quantum com-
putation. Science, 279(5349):342-345, 1998.

20



[22]

[23]

[24]

[25]

[26]

[33]

Kotibhaskar, Nikhil. Design and construction of an ion trapping apparatus for quan-
tum simulation experiments. Master’s thesis, 2019.

Michael A Nielsen. A simple formula for the average gate fidelity of a quantum
dynamical operation. Physics Letters A, 303(4):249-252, 2002.

Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum In-
formation: 10th Anniversary Fdition. Cambridge University Press, 2010.

Rachel Noek, Geert Vrijsen, Daniel Gaultney, Emily Mount, Tachyun Kim, Peter
Maunz, and Jungsang Kim. High speed, high fidelity detection of an atomic hyperfine
qubit. Opt. Lett., 38(22):4735-4738, Nov 2013.

S. Olmschenk, D. N. Matsukevich, P. Maunz, D. Hayes, L.-M. Duan, and C. Monroe.
Quantum teleportation between distant matter qubits. Science, 323(5913):486-489,
2009.

Masanao Ozawa. Quantum measuring processes of continuous observables. Journal
of Mathematical Physics, 25(1):79-87, 1984.

G. A. Paz-Silva, G. K. Brennen, and J. Twamley. Fault tolerant quantum information
processing with holographic control. 2010.

Gerardo A. Paz-Silva, Gavin K. Brennen, and Jason Twamley. Fault tolerance with
noisy and slow measurements and preparation. Phys. Rev. Lett., 105:100501, Aug
2010.

J. M. Pino, J. M. Dreiling, C. Figgatt, J. P. Gaebler, S. A. Moses, M. S. Allman,
C. H. Baldwin, M. Foss-Feig, D. Hayes, K. Mayer, C. Ryan-Anderson, and B. Neyen-
huis. Demonstration of the trapped-ion quantum ccd computer architecture. Nature,
592(7853):209-213, Apr 2021.

John Preskill. Fault-tolerant quantum computation. 1997.

Kenneth Rudinger, Guilhem J. Ribeill, Luke C.G. Govia, Matthew Ware, Erik Nielsen,
Kevin Young, Thomas A. Ohki, Robin Blume-Kohout, and Timothy Proctor. Char-
acterizing midcircuit measurements on a superconducting qubit using gate set tomog-
raphy. Phys. Rev. Applied, 17:014014, Jan 2022.

Yuval R Sanders, Joel J Wallman, and Barry C Sanders. Bounding quantum gate
error rate based on reported average fidelity. New Journal of Physics, 18(1):012002,
dec 2015.

ol



[34]
[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Peter W. Shor. Fault-tolerant quantum computation. 1996.

Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM Review, 41(2):303-332, 1999.

Roman Stricker, Davide Vodola, Alexander Erhard, Lukas Postler, Michael Meth,
Martin Ringbauer, Philipp Schindler, Rainer Blatt, Markus Miiller, and Thomas
Monz. Characterizing quantum instruments: From nondemolition measurements to
quantum error correction. PRX Quantum, 3:030318, Aug 2022.

Roman Stricker, Davide Vodola, Alexander Erhard, Lukas Postler, Michael Meth,
Martin Ringbauer, Philipp Schindler, Thomas Monz, Markus Miiller, and Rainer
Blatt. Experimental deterministic correction of qubit loss. Nature, 585(7824):207—
210, Sep 2020.

Sebastian Wagner, Jean-Daniel Bancal, Nicolas Sangouard, and Pavel Sekatski.
Device-independent characterization of quantum instruments. Quantum, 4:243, March
2020.

Joel J. Wallman. Bounding experimental quantum error rates relative to fault-tolerant
thresholds. 2015.

Joel J. Wallman and Joseph Emerson. Noise tailoring for scalable quantum computa-
tion via randomized compiling. Phys. Rev. A, 94:052325, Nov 2016.

Joel J Wallman and Steven T Flammia. Randomized benchmarking with confidence.
New Journal of Physics, 16(10):103032, oct 2014.

John Watrous. Simpler semidefinite programs for completely bounded norms. arXiv
preprint arXiv:1207.5726, 2012.

Kenneth Earl Wright II. Manipulation of the quantum motion of trapped atomic ions
wia stimulated Raman transitions. PhD thesis, University of Maryland, College Park,
2017.

o2



	List of Figures
	Introduction
	Measurement in a Ytterbium Trap
	Ytterbium as a qubit
	Fundamental limit
	Technical limit
	Detection Fidelity
	Example
	Discussion

	Figures of Merit for Quantum Instruments
	Introduction
	Figures of Merit on Quantum States
	Figures of Merit on Quantum Channels
	Quantum Instruments
	Errors in Measurements
	A Diamond Distance for Measurements
	Relations Between Figures of Merit
	Examples for Commnon Noise Models
	Discussion

	Conclusion
	References

