
Enabling Post-Quantum Signatures in
DNSSEC: One ARRF at a time

by

Jason Goertzen

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2022

© Jason Goertzen 2022

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

The Domain Name System Security Extensions (DNSSEC) provide authentication of
DNS responses using digital signatures. DNS relies on UDP as its primary delivery method
which imposes several constraints, with the most notable being that DNS message sizes
should be no larger than 1232 bytes to avoid message delivery issues. It is possible to
deliver larger DNS messages by either utilizing UDP fragmentation or falling back to TCP,
but neither are sufficiently reliable in the current DNS ecosystem. Although large DNSSEC
messages are not a primary concern today — due to the signature size of actively used
algorithms such as RSA or elliptic curve cryptography — large DNS messages become an
alarming issue for post-quantum signing algorithms due to their larger signatures and/or
keys. In this thesis, we propose ARRF, a method for fragmenting large DNS resource
records at the application layer (rather than the transport layer). ARRF is a request-based
fragmentation method, meaning that the initial response contains a truncated response and
all remaining fragments must be explicitly requested. By using request-based fragmenta-
tion, ARRF avoids issues of previously proposed—and rejected—application-layer DNS
fragmentation techniques. By requiring fragments to be explicitly requested at the appli-
cation layer we avoid issues caused by problematic network devices along the transmission
path.

We implement ARRF and evaluate its performance on a simulated network when
used for the three post-quantum algorithms selected by NIST for standardization (Falcon,
CRYSTALS-Dilithium and SPHINCS+) at the 128-bit security level. Our experiments
show that ARRF has considerably lower resolution times compared to DNS over UDP
with TCP fallback for all tested algorithms. We also find that, when using ARRF to de-
liver Falcon and Dilithium less data transmission is required. ARRF was also designed
with a low implementation burden. Our implementation is a simple lightweight daemon
which sits in front of DNS name servers and resolvers and performs the fragmentation and
reassembly transparently.

iii

Acknowledgements

I would first like to thank my supervisor Dr Douglas Stebila for all the time and mentorship
he provided me while working on this thesis and for taking a chance on me. Supervising a
student halfway across the country due to a global pandemic must have been difficult, but
he made it look easy. Douglas went above and beyond with his guidence, patience, and
care. Not only did he care about me as a student but also as a person. Thank you.

I would also like to thank my thesis readers, Dr Urs Hengartner, Dr Ian Goldberg, and
Dr Alfred Menezes, for their valuable time and feedback.

I would not be in the position I am in without the support and mentorship that Dr
Nathaniel Osgood gave me during my undergraduate research. He not only provided
but embraced the opportunity to do research in cryptography despite not being primary
research topic of his in the past. I would also like to thank Dr Cameron Franc and Dr
Christopher Duffy for encouraging me to pursue math during my undergraduate degree.
Thank you all.

The entire CrySP lab has been such a welcoming and uplifting community and is
genuinely one of the highlights of my time here at Waterloo. I want to specifically thank
Thomas, Rasoul, Lucas, John, Simon, Ted, Adithya, Shannon, Vasisht, Emily, Bailey, Miti,
Jarrod, and Nils. Despite essentially being remote for almost two years, you all made me
feel welcome and a part of the CrySP community. I would also like to thank Camryn for
putting up with my thesis ranting and slow pace on our runs together.

I also want to thank Colin, Caylee, Frank, Chris, Mike, Derek, Ben, Brian, Trevor,
Tyler, Lauressa, Aaron and Robin. Graduate school can take a massive toll on your
mental health; without all of you, I would probably have gone completely insane.

Finally, I want to thank my loving parents, Darrell and Sherry, and late grandmother,
Evelyn, for their love and support all these years. I could not have done any of this without
you.

iv

Dedication

To my parents, Darrell, and Sherry, and my late Grandmother Evelyn. Thank you for
all of the love and support over the years.

v

Table of Contents

List of Figures viii

List of Tables ix

1 Introduction 1

2 Background on the Domain Name System 4

2.1 The Domain Name System . 4

2.2 Security Concerns for DNS . 5

2.3 Domain Name Security Extensions . 7

2.3.1 Other DNS Security Mechanisms 9

2.4 DNSSEC Challeneges . 10

2.4.1 Using DNSSEC for Amplification Denial of Service Attacks 10

2.4.2 UDP/IP Fragmentation and DNSSEC 12

2.4.3 DNSSEC Configuration . 16

2.4.4 DNSSEC Adoption . 17

2.5 DNSSEC Algorithm Life Cycle . 18

2.6 Root zone key rollover . 19

3 Post-quantum Cryptography 21

3.1 NIST Post-Quantum Cryptography Selection Process 21

vi

3.2 Selected Algorithms and Round 4 Candidates 23

3.2.1 Digital signature algorithms . 23

3.2.2 Public-key encryption/key encapsulation mechanisms 25

3.3 Stateful Hash-Based Signatures . 28

3.4 Post-Quantum Cryptography and the Domain Name System 28

4 Adapting DNSSEC for a Quantum Future 31

4.1 Request based fragmentation . 31

4.1.1 Resource Record Fragments . 32

4.1.2 Using RRFrags . 33

4.1.3 Example execution of ARRF . 34

4.1.4 Caching and DNSSEC Considerations 36

4.2 Evaluating Post-quantum DNSSEC . 36

4.2.1 Algorithm performance . 38

4.2.2 Post-quantum with standard DNSSEC 38

4.2.3 Post-quantum with ARRF . 39

4.2.4 Post-quantum data transmission . 40

4.2.5 Results . 40

4.3 Discussion . 49

4.3.1 ARRF Performance . 49

4.3.2 ARRF Backwards Compatibility . 49

4.3.3 ARRF Security Considerations . 50

4.3.4 Comparing ARRF against previously proposed mechanisms 51

5 Future Work and Conclusion 54

5.1 Future Work . 54

5.2 Conclusion . 55

References 57

vii

List of Figures

2.1 A simplified version of the DNS distributed tree. 5

2.2 An illustration of a message larger than the MTU size being split into two
fragments. The second fragment does not contain the UDP header 13

4.1 The mapping of the RRFrag format onto the generic resource record format. 33

4.2 A simplified example execution of ARRF 35

4.3 Resolution times in milliseconds with 10ms delay and 128 Kilobytes per
second bandwidth . 44

4.4 Resolution times in milliseconds with 10ms delay and 50 Megabytes per
second bandwidth . 45

4.5 Resolution times in milliseconds with 10ms delay and 50 Megabytes per
second bandwidth . 46

4.6 Resolution times in milliseconds with 0ms delay and unlimited bandwidth . 47

viii

List of Tables

3.1 NIST Security levels . 22

3.2 CRYSTALS-Dilithium’s parameter sets. 23

3.3 Falcon’s parameter sets . 24

3.4 SPHINCS+’s parameter sets. 25

3.5 CRYSTALS-KYBER’s parameter sets. 26

3.6 BIKE’s parameter sets. 26

3.7 Classic McEliece’s parameter sets. 27

3.8 HQC’s parameter sets. 27

3.9 SIKE’s parameter sets. 28

4.1 Algorithm runtime measured using OpenSSL Speed 38

4.2 Resolution times plus or minus standard deviation without ARRF 39

4.3 Resolution times plus and minus standard deviation with the sequential
ARRF daemon . 41

4.4 Resolution times plus and minus standard deviation with the Parallel ARRF
daemon . 42

4.5 Total data transmitted when performing a DNS lookup between resolver
and name server . 42

ix

Chapter 1

Introduction

The Domain Name System (DNS) is a mission critical service for the Internet. DNS is
responsible for translating human-readable domain names into machine-understandable IP
addresses and is used by billions of devices daily. Ensuring that these translations are
correct and not forged is critical to prevent users from being directed to malicious servers
instead of their intended destination. The Domain Name System Security Extensions
(DNSSEC) [57] provide data integrity by using digital signatures. DNSSEC ensures that
the received DNS message is indeed from a server authorized to respond to the query, and
that the message has not been modified in transit.

Today’s DNSSEC uses digital signatures that rely on traditional security assumptions
such as factoring and discrete logarithms, which would not resist attacks by a cryptograph-
ically relevant quantum computer. To continue to provide its intended security guarantees
in the face of such threats, DNSSEC must be updated to accommodate quantum-resistant
algorithms. The post-quantum cryptography standardization project of the United States
National Institute of Standards and Technology (NIST) announced in July 2022 [3] three
post-quantum digital signatures algorithms to be standardized: CRYSTALS-Dilithium [10],
Falcon [28], and SPHINCS+ [8]. All of these selected algorithms have one thing in common:
the amount of data transmission required in order to perform a verification is substantially
larger than their non-post-quantum counterparts: both public keys and signatures. This
increase in size can cause substantial issues for pre-existing network protocols; DNS and
DNSSEC are particularly sensitive to this issue.

DNS uses User Datagram Protocol (UDP) as its primary delivery protocol which allows
for at most 1500 bytes to be transmitted per packet before fragmentation. Although this
does not seem like a major issue, UDP fragmentation is quite fragile and can often cause

1

delivery issues. Once the various headers are accounted for, DNS can send messages of
at most 1232 bytes before needing to fall back to TCP which does not suffer from the
same fragmentation issues. Unfortunately, these post-quantum signatures can cause DNS
messages to exceed the 1232 byte UDP limit, and a non-trivial amount of the DNS does
not support TCP.

In this work we propose ‘A Resource Record Fragmentation mechanism’, or ‘ARRF’ for
short. ARRF is a lightweight request-based backwards compatible fragmentation mecha-
nism which entirely relies on UDP and keeps all DNS communication below the 1232 byte
limit. ARRF works by moving DNS message fragmentation from UDP to the DNS level it-
self. Large resource records are individually fragmented and fragments are only sent when
explicitly requested. ARRF is also designed in such a way that it can be implemented
with low impact on existing servers; in fact we were able to implement it as a transpar-
ent daemon sitting in front of an ARRF-unaware requester and resolver at both ends of
a DNS lookup request, reducing the burden of deployment. To evaluate our approach,
we implemented the three post-quantum digital signature algorithms selected by NIST
— specifically, parameter sets Falcon-512, Dilithium2, and SPHINCS+-SHA256-128s— in
BIND using liboqs [61], as well as a daemon implementing ARRF sitting in front of the
requester and resolver, transparently carrying out the ARRF fragmentation/reassembly.
We were then able to carry out a variety of experiments on a simulated network with
different latencies and bandwidth and different fragmentation sizes to evaluate the per-
formance of ARRF compared to DNS over UDP with TCP fallback, measuring the total
resolution time and the amount of data transmitted. In all our tested scenarios, we found
that Falcon-512 performs better than both Dilithium2 and SPHINCS+-SHA256-128s due
to Falcon-512’s smaller signatures, suggesting that Falcon-512 may be the most suitable
option currently available to be standardized for DNSSEC. We did however find that even
with the improved performance of post-quantum algorithms in ARRF compared to stan-
dard DNS over UDP with TCP fallback, post-quantum algorithms incurred a performance
penalty compared to non-post-quantum algorithms currently in use with DNSSEC (RSA
and ECDSA) due to the unavoidable cost of transmitting more data. Overall, we conclude
that ARRF is a promising option for transitioning to post-quantum DNSSEC: it has less
performance degradation compared to standard DNS over UDP with TCP fallback.

The rest of the thesis is organized as follows. In Chapter 2, we introduce the Domain
Name System and its security concerns. We then provide an introduction to DNSSEC and
the challenges it faces, such as UDP/IP Fragmentation. We also discuss the process of
standardizing a new algorithm for DNSSEC and the process of changing the root zone’s
keys.

Chapter 3 introduces post-quantum cryptography and why it is important. We then

2

provide a brief history of NIST’s post-quantum selection process up to the conclusion of
the third round. Finally, we introduce all of the algorithms which were either selected for
standardization or selected to continue into round 4 of the selection process.

In Chapter 4, we introduce the ARRF design. We use a lightweight proof of concept
daemon to evaluate the effectiveness of ARRF at delivering DNSSEC messages using post-
quantum signatures. We also provide an experimental evaluatation comparing how Falcon,
CRYSTALS-Dilithim, and SPHINCS+ perform both with and without ARRF and provide
a comparison against currently deployed DNSSEC algorithms RSA and ECDSA.

Finally, Chapter 5 outlines the additional work required before deploying ARRF.

3

Chapter 2

Background on the Domain Name
System

DNS is a critical piece of internet infrastructure. In this chapter, we describe how DNS
works, and threats against DNS. We then discuss the mechanism designed to prevent those
attacks, DNSSEC. We also discuss the challenges DNSSEC faces with delivery, deployment,
configuration, and adoption. We conclude the chapter by discussing the process of getting
a new algorithm standardized and deployed to DNSSEC and the process of changing the
root zone’s keys.

2.1 The Domain Name System

Computers use IP addresses to address messages to each other. The DNS provides a
mechanism to translate between human readable strings and these IP addresses. Originally
conceptualized in 1983 in RFC 882 [48] and RFC 883 [49], DNS provides a distributed
tree of zones which may or may not be on different machines. Each zone will contain
a set of Resource Records (RRs) with differing types, and labels. By breaking up DNS
into zones, it improves the scalability of the systems by allowing individuals to manage
their own zones and name servers, while reducing the strain on a particular machine by
delegating responses to other zones and using caching. To assist in the explanation, we
will use the situation where a user wants to access uwaterloo.ca, as illustrated in Figure
2.1. Assuming the requested address is not cached, the DNS resolver will contact the root
name servers to ask which Top Level Domain (TLD) name server contains information

4

about .ca domain names. The root name servers will then respond with NS and A/AAAA
records which indicate the name server responsible for the .ca zone. Once the resolver
receives a reply, it would then send a request to the .ca TLD name servers asking for the
NS and A/AAAA records associated with the Second Level Domain (SLD) uwaterloo.ca.
The TLD name servers would then reply with the records for the name server responsible
for the uwaterloo.ca zone. Finally, the resolver sends a request to the uwaterloo name
server for the A or AAAA record associated with the IP address of uwaterloo.ca. Although
in our example case the translation would stop at the uwaterloo.ca level, there may be
additional name servers required. Due to the amount of requests made, caching is used to
reduce the strain on name servers as well as reducing latency.

Figure 2.1: A simplified version of the DNS distributed tree.

2.2 Security Concerns for DNS

DNS as originally designed contains no guarantees on security, and no notion of crypto-
graphic authentication, leaving the protocol susceptible to attacks. The Internet Engi-

5

neering Task Force (IETF) decided there was a need to identify these threats to DNS and
published RFC 3833 [7] which describes weaknesses that can be exploited by malicious
actors for both DNS and DNSSEC

The primary class of threats involve poisoning a target DNS resolver’s cache, which can
be done a few different ways:

i) Packet interception, also known as a Monkey-in-the-Middle attack, is an attack where
a malicious actor is able to sit in the chain of communication between a source and
destination, and allows the malicious actor to not just see what is communicated
between the two servers, but the malicious actor can also modify, drop, or pass on
packets that are part of that communication. This allows the malicious actor to see
what a server is requesting, and provide a malicious answer. In our context, the
attacker would see a DNS lookup request and reply with an IP address for a malicious
server rather than the server the DNS resolver is actually looking for; this could then
get cached by said DNS resolver.

ii) ID Guessing and Query Prediction is essentially a brute force attack where the ma-
licious actor constructs UDP packets and tries to make them look like valid replies
from a name server so that malicious resource records are cached. In order to do
this, the adversary must be able to guess the question being asked, and the ID field.1
Considering the ID field in a DNS header is only 16 bits long, and the server port
used for DNS is public information, there are only 216 possible combinations to try.
In 2008 Kaminsky [40] showed that you can reliably poison a DNS resolver’s cache by
querying for records which are not in the zone, and then flooding the resolver with
responses that delegrate the response to a malicious server. In response to this attack
randomized client ports were introduced thus effectively increasing the difficulty of
guessing to 1 in 232. In 2021, Man et al. [44] introduced a new technique for infering
the client’s UDP source port. This technique reduces the search space to 216 + 216. If
the ID and source port can sucessfully guessed then a malicious record could then be
cached.

These issues are alarming as they can be abused to perform denial of service and phishing
attacks.

1An ID field is used to help the resolver determine which request is getting serviced.

6

2.3 Domain Name Security Extensions

To combat the threats described in Section 2.2, the IETF began drafting DNSSEC with
the original proposal coming in 1999 as RFC 2535 [24] and was superseded in 2005 by RFC
4033 [57]. A important thing to bring up early when talking about DNSSEC is DNSSEC
is not a confidentiality solution, it is designed solely as an integrity solution. That is to
say, a malicious actor can still see what is being requested, by whom, and the reply, but
if they modify or replace a reply with anything else that the replying name server did not
include in the response the resolver should be able to detect it.

DNSSEC’s integrity checks rely on constructing a Chain of Trust from the root zone,
to the TLD zone, to the SLD zone, all the way until the answer to the query is found
with each step being verified using various signature schemes. DNSSEC is flexible in
that it supports multiple algorithms some of which are optional and others which are
required. DNSSEC also supports zones being signed with multiple different algorithms at
a given time to maximize compatibility between a given zone and resolver. Responses now
include the signatures (RRSIGs) of entire sets of records (RRsets) that share the same
label and type being requested, the entire RRset rather than an individual record, as well
as potentially the public keys (DNSKEYs) used to verify the RRSIGs, so responses are
larger than standard DNS. Due to this extra information that is included in responses,
DNSSEC is built on top of the EDNS0 [65]. EDNS0 is a set of mechanisms which extends
the maximum supported DNS response size from 512 bytes to 64 kilobytes, and requires the
addition of the pseudo-resource record ‘OPT’ in requests and responses. OPT records are
not explicitly located in zones. Instead, OPT records are dynamically constructed when a
DNS message is built. OPT records extend the return code field from 4 bits to 36 bits and
provide space for an additional 16 flags. Finally, OPT also provides a dynamically sized
field to pass key-value pairs known as “options”.

Recall from Section 2.1 that DNS lookups generally take a recursive form. Going back
to our uwaterloo.ca example, the resolver would query root for the .ca zone, and the root
zone would reply with an IP address associated with the .ca zone. The resolver now needs
to verify that a malicious actor has not modified this response. In order for a zone to sign
a response, it must generate a public and private key pair known as the zone signing key
pair. As part of the response from root, the standard information is sent along with a
signature for each set of Resource Records (RRsets) being sent. These RRsets are signed
by root’s zone signing private key. If the resolver does not have root’s zone signing public
key, it must perform a DNSKEY query as well. The resolver will then use the root zones’s
zone signing public key with the signatures included in the response to verify the integrity
of the response.

7

The reader may have noticed a potential problem with this mechanism as currently
described: if the zone signing public key is provided via the same medium as the rest of
the response, then there is nothing stopping a malicious actor from modifying the zone
signing public key, the signature, and the response of the query before the resolver receives
it. This undermines the entire point of DNSSEC. The way DNSSEC handles this issue is
to include a signature of the zone signing public key signed by the private key of a second
key pair known as the key signing key pair. DNSSEC does support the use of a single key
pair for use as the zone signing key and key signing key, known as the combined signing
key (CSK) pair, but it is far more common for there to be two separate key pairs; one for
signing the zone and one for signing the zone’s public key. The main obstacle with this
mechanism is how to provide the key signing public key to the resolver without having
the same issue as the zone signing public key. This key must be provided through an
alternative mechanism. This is known as a trust anchor as it is where the chain of trust
begins/where the chain is anchored.

This approach is not scalable for any zones other than root as there are too many zones
to pre-install these key signing public keys for each one. Therefore, in order to continue
this chain of trust, the parent zone, must also pass on the key signing public key of the
child zone to the resolver. In our example, root would be the parent of the .ca zone. This
entire process will continue until a zone is able to answer the query with the appropriate
record. If any of the integrity checks fail, whether from a malicious actor, a misconfigured
zone, or one of the zones in the chain not supporting DNSSEC, the query response can no
longer be assumed to be authentic.

This process works if a query is for a record that exists, but DNSSEC must also be able
to verify a response saying the request is querying something that does not exist is valid.
If the resolver cannot verify this, then malicious actors can perform a denial of service
attack by modifying the response to say the requested domain name does not exist when
it does. RFC 6781 [41] describes the two mechanisms used to provide this service, NSEC
and NSEC3.

The idea behind NSEC is that an authoritative name server will construct a chain of
NSEC records for each domain name the name server is responsible for. This chain is
sorted based on the cleartext of the records it represents. If a resolver queries for a record
that does not exist, the name server will reply with the NSEC record which contains the
record that would be just before the queried record in the chain and the record that would
be just after. This gives the name server something to sign and proves to the resolver that
the record they were querying does not exist in a way that can have its integrity verified.
The fact that NSEC records are constructed using cleartext allows for zone enumeration
which can allow an outside actor to discover all of the records stored in that zone easily.

8

Certain zone operators may find this undesirable, such as for regulatory reasons, so NSEC3
was created to make zone enumeration more computationally taxing. NSEC3 is largely the
same as NSEC, however instead of using the cleartext of records when creating the NSEC
record, a hashing algorithm with salt is used for obfuscation purposes. There is a variation
of NSEC known as white lies where the name server constructs an NSEC record using false
names that still allow the resolver to authenticate non-existence [68]. An example of this
would be if a zone contained a.example.com, f.example.com, z.example.com, and a resolver
asked for d.example.com. A valid white lies response could be an NSEC record containing
b.example.com and e.example.com. Both of those addresses do not actually exist, but they
still allow the resolver to prove non-existence.

2.3.1 Other DNS Security Mechanisms

DNSSEC is not the only DNS security mechanism standardized by the IETF. Some these
other security mechanisms focus on confidentiality (DNS over TLS and DNS over HTTPS),
some on authenticity (TSIG), and some on availability (DNS cookies).

DNS over TLS Standardized in 2016 [33], DNS over TLS (DoT) sends queries and
responses using the Transport Layer Security protocol (TLS), with queries being sent to a
new dedicated TCP port 853. This provides confidentiality of what is being queried, as well
as message integrity. However, DoT only provides integrity and confidentiality between the
client and resolver, whereas DNSSEC provides end-to-end integrity between the resolver
and name servers. Due to using a new port, middle boxes and network operators will be
able to identify that a DoT lookup is being performed.

DNS over HTTPS The concern of DoT traffic being identifiable spawned the idea
of DNS over HTTPS (DoH). DNS messages are now sent using the HTTP protocol over
TLS [31]. Queries are now sent to the standard HTTPS TCP port 443. By doing this, DoH
is indistinguishable from standard HTTPS traffic, with the extra complexity of requiring
the HTTP protocol.

Both of the above protocols should gain to benefit from the recently standardized DNS
over Dedicated QUIC transport protocol [35].

TSIG Transaction signatures (TSIG) provides a method to authenticate that DNS mes-
sages are from a specific requester by using a shared symmetric secret key and a one-way

9

hash function [26]. TSIGs are generally used when a primary name server wishes to inform
secondary name servers that they need to update their copy of a zone to match that of the
primary name server, however they can also be used to ensure requests and responses are
from authorized entities.

DNS Cookies Out of path attacks are a concern in the context of DNS, and cookies are
a low cost protection to prevent these attacks [25]. When a DNS client makes a request, it
will construct a 64 bit client cookie using a pseudo random function applied to the client’s
IP Address, the server’s IP Address, and some secret value. When the server receives
the request with the client cookie it will construct its 64 bit server cookie using a pseudo
random function applied to the client’s IP address, a its own secret value, and the client’s
cookie. When the response is sent both the server cookie and client cookie will be included.
The client will then be able to compare the sent client cookie with what it expects. All
future queries should include the client and server cookie. The server will then check the
sent cookie against what it expects. If a cookie does not match what is expected, then a
BADCOOKIE response is sent. This means that an out of path attacker must guess the
correct number out of 264 potential options.

2.4 DNSSEC Challeneges

Although DNSSEC achieves the goals that were set by the IETF, it also introduces some
additional concerns. In this section, we discuss a few of these potential problems.

2.4.1 Using DNSSEC for Amplification Denial of Service Attacks

RFC 3833 [7] discusses that DNSSEC does not help against denial of service attacks; in
fact it is pointed out that with DNSSEC deployed DNS can be used for larger scale denial
of service amplification attacks.

Amplification attacks are attacks where a malicious actor spoofs a request and claims
this spoofed request is from the victim server. The server receiving this request then replies
with a larger amount of data than it received. DNSSEC worsens (or improves if you are
the attacker) this amplification because of the extra information that has to be sent with
response in order for a resolver to validate the integrity of that response.

Van Rijswijk-Deij et al. [64] sought to measure just how large of an impact DNSSEC
would make for performing these types of attacks. As stock DNS can already be used for

10

amplification attacks, they used the theoretical maximum amplification of standard DNS
to compare against the potential amplification against every DNSSEC enabled domain in
the top 6 TLDs, and a measurement of sampled domains which do not have DNSSEC
enabled in those same 6 TLDs.

They deduced that the theoretical maximum of standard DNS would occur when a
request is made for the shortest domain possible (they use ‘x.com’ as an example) and the
maximum allowed response size of 512 bytes, and results in an amplification of 512

23
≈ 22.3.

Comparing their measurements against each other and the theoretical max of standard
DNS it was found that, perhaps not too surprisingly, DNSSEC has higher amplification
than standard DNS. The interesting finding is that most DNSSEC query responses mea-
sured were within the theoretical maximum of standard DNS implying that DNSSEC may
not be as bad as it might initially appear. It is found that the primary problem responses
are ‘ANY’2 and ‘DNSKEY’ queries. Several DNS operators, including Cloudflare, have
since deprecated ANY queries [43].

Van Rijswijk-Deij et al. proposed a few solutions to mitigate the observed increase in
amplification.

i) Ingress Filtering: the primary goal of this solution is to prevent source address spoof-
ing. With this solution, “network operators would only allow responses to enter their
network if the source IP address is a legitimate address within their network.” That
is, if an attacker spoofs a source address that is not a legitimate address of their net-
work, the network operator should drop the packet rather than forwarding it on. The
problem with this proposal is that it requires that every network on the internet have
Ingress Filtering deployed, and the sad reality is this is not the case, so this strategy
will not work.

ii) Response Rate Limiting: the core idea behind Response Rate Limiting is for Author-
itative Name Servers to limit the responses they send out if they receive a bunch of
requests from the same IP address block. This solution was proposed after DNSSEC
was used in a lot of attacks, and can be quite effective. However, this solution is
not entirely helpful as the primary attack vector of DNSSEC amplification attacks
are misconfigured resolvers which allow anyone to use them. If these resolvers cache
the response from the authoritative name server, then they will be the root of the
amplification and Response Rate Limiting is evaded.

2An ‘ANY’ query is a query which returns all records for a domain name.

11

iii) EDNS0 cookies: this proposed solution is Van Rijswijk-Deij et al.’s preferred solution
and was originally proposed by Eastlake [25] . The idea is to only send large responses
to queries that contain a valid cookie for the source IP address. This would greatly
limit amplification attacks, but we note that this would add additional overhead to
establishing this cookie. This overhead is not discussed in Van Rijswijk-Deij et al.’s
work.

iv) Response size limiting: the core idea of response size limiting is to only send replies
which would result in an amplification of less than the theoretical max of standard
DNS. The authors theorize that likely only ‘any’ queries would be affected by this
solution, and it would reduce the likelihood of fragmentation (see Section 2.4.2 for
discussion on how fragmentation affects DNSSEC).

v) Restricting or blocking ANY queries: the authors note that Response Rate Limiting
and response size limiting already restrict ‘ANY’ query responses so that they are
not too large. However, flat out blocking ANY queries may end up breaking non-
malicious software (such as qmail). It is also a bit of a narrow solution as queries
such as ‘DNSKEY’ queries can also cause significant amplification. However, as pre-
viously mentioned, ANY queries are now no longer supported by several major DNS
operators [43].

2.4.2 UDP/IP Fragmentation and DNSSEC

UDP/IP fragmentation

When sending messages in a network, message size becomes a concern. Different transport
mediums have different maximum packet sizes known as the “Maximum transmission unit”
(MTU) of the medium. If a desired message exceeds the MTU, it must be broken up and
sent over multiple packets. Since TCP is a stream, this is handled gracefully and causes no
routing issues. However, as UDP is datagram based, fragmentation can cause significant
issues, with an IETF RFC commenting on its fragility [13].

When a message that is larger than the MTU is being sent over UDP the UDP packet
is split into multiple fragments, each getting its own IP header.3 The issue that arises with
this is that the UDP header will only be in the first fragment as illustrated by Figure 2.2,
thus resulting in the source and destination ports not being included in the other message

3IPv4 and IPv6 handle fragmentation slightly differently, but these differences are not important for
this conversation

12

fragments. This can cause issues for middle boxes that use the source and destination
ports to route packets for policy reasons. Stateless firewalls can also experience issues as
the firewall must either accept all trailing fragments, which is susceptible to attack, or
reject all trailing packets which can block legitimate traffic.

Figure 2.2: An illustration of a message larger than the MTU size being split into two
fragments. The second fragment does not contain the UDP header

13

DNSSEC message fragmentation

DNSSEC can cause significantly larger messages to be sent compared to standard DNS
due to the additional RRSIG and DNSKEY resource records sent in responses and can
potentially require messages to be sent which are larger than a network path’s MTU. Van
Den Broek et al. [62] note that UDP/IP fragmentation issues do occur when using DNS,
and they explore how widespread these issues are, if it is a concern for deploying DNSSEC,
as well as propose a few potential solutions.

For their experiment, they collected network traces of an authoritative name server
managed by SURFnet which is responsible for approximately 4000 zones, 300 of those hav-
ing DNSSEC deployed. They found that 58% of queries received fragmented responses,
with 10.5% of all resolvers seen showing problematic behaviour. They break the problem-
atic behaviour up into five different resulting cases:

i) The resolver replies with an ‘ICMP Fragment Reassembly Time Exceeded message’
(ICMP FRTE). This occurs when a fragment gets dropped, most likely due to being
blocked by a firewall. Approximately 1.3% of observed resolvers responded this way.

ii) The resolver sends a standard DNS request. This occurs when either EDNS0 is not
supported by the name server being queried, or a fragment is dropped. A resolver
cannot distinguish between the two, but the expect this error to occur due to a frag-
ment being dropped. Approximately 2.4% of observed resolvers reverted to standard
DNS.

iii) The resolver repeats the query but changes the EDNS0 advertised maximum response
size which tells the name server the largest size the response can be.4 Certain re-
solver software modifies this size if they are not able to reconstruct the response. Ap-
proximately 3.5% of observed resolvers retried with a modified advertised maximum
response.

iv) The resolver reverts to using TCP to perform the DNSSEC lookup. This occurs
when a resolver receives a truncated message, meaning that the name server was not
able to fit the entire response into the advertised maximum size. Once TCP is being
used as the method of communication, size is no longer a concern. It was found that
communication was switched to TCP when the UDP based response was not truncated
occurred less than 1% of the time.

469% of observed queries advertise 4096 bytes, 1.8% advertised 512 bytes and 2% advertised between
1280 bytes and 1472 bytes. Generally, the maximum size a UDP packet can be is 1500 bytes.

14

v) Some resolvers try the query again and receive large responses of over 512 bytes. The
authors state that it is difficult to tell if resolvers that behave this way are problematic
or not, as this could either be a resolver retrying a query over and over rather than
falling back to TCP, or a non-caching resolver. Of the observed resolvers 9.7% behaved
in this manner.

Van Den Broek et al. propose two solutions to combat fragmentation:

i) Enable the name server to specify the maximum size of a response that they believe to
be safe and then take the minimum between that value and the advertised maximum
response size. This allows for a simple tweakable parameter to be set, with the poten-
tial of no work being required for the operators of the problematic resolvers. However,
that can also be seen as a negative as there is now no incentive for the problematic
resolver’s operator to fix the actual underlying issue. It was found that using 1232
bytes as the parameter had positive results when tested on the SURFnet name server
that the observations were made. In the 6.5 hours of testing they preformed, they
observed no ICMP FRTE messages, but did notice a very slight increase in truncated
UDP responses.

ii) The authors constructed a tool they dub ‘DNSRM’ which, when combined with a
sensor that detects what class of problematic resolver a resolver is, dynamically tunes
responses in the attempt to work around the issues the resolver is having. ‘DNSRM’
acts as a proxy between the resolver and the DNS software running on the name
server. This is quite an expensive and complicated mechanism as the sensor requires
significant resources in order to do its job. It was found that this system’s benefits
did not outweigh its complexity versus the first solution discussed.

Fragmenting messages at the Application Layer

Attempts at moving message fragmentation from the transport layer to the application
layer in DNS have been proposed and ultimately discarded.

DNS message fragments An IETF draft by Sivaraman et al. [59] was published in 2015
attempting to tackle the problem of fragmenting large DNS message over UDP. The idea
is that when a large DNS message cannot fit inside a single UDP packet, split the message
up into several new DNS messages which contains as many resource records as they can
fit. EDNS0 options are used to signify the number of fragments, the current fragment’s

15

id and if fragmentation is supported by the client. For compatibility reasons, each DNS
message that is a fragment of the larger original DNS message should have the truncated
flag (TC) set so that a requester can gracefully fall back to TCP. The draft requires that
DNS cookies be used in order to avoid DNS amplification and reflection attacks. This draft
eventually expired in 2016 until a suspiciously similar draft was published on April 19 2022
with seemingly the only major change being the entire author list.5 [70]

Additional Truncated Response Originally proposed in 2018, Additional Truncated
Response (ATR) [60] is a lightweight way to handle UDP fragmentation for large DNSMes-
sages. The idea is similar to Silvaraman’s draft [59], but does not require EDNS options.
When a large DNS message is to be sent, simply break it up into several UDP packets, send
the first one and wait for some timeout, then send the second one and wait for a timeout,
and repeat until all of the UDP packets are sent. This is nice because it does not require
a name server to maintain state, and resolvers can implement this behaviour as a daemon
rather than having to update the DNS software directly. If a resolver does not support
ATR it will simply drop any trailing fragments and fallback to TCP. However, several
concerns were raised which were ultimately the demise of ATR. First, some DNS software
closes their sockets immediately after receiving a DNS message. This would mean that
any trailing fragments would not be deliverable and would cause an ICMP “destination
unreachable” packet to be sent back to the name server. This would cause a lot of ICMP
noise and would greatly increase the difficulty of debugging networking issues. ATR also
produces two times the number of packets for a legitimate exchange, and fives times the
number of packets for a malicious one and thus make Denial of Service attacks a concern.
Ultimately, combined with the general mindset of “just do not send large DNS messages”
of the working group, meant that the ATR draft was rejected.

2.4.3 DNSSEC Configuration

DNSSEC is quite a complex mechanism to deploy, manage, and configure. It requires name
servers to pick secure key pairs to use for their signatures, provide those needed keys to the
parent zone, and update the parent name servers with said keys when they get changed. In
2016, Dai et al. [19] sought to measure how many active DNSSEC domains, both TLD and
SLD, were unable to establish a chain of trust despite indicating they support DNSSEC.
Using data provided by ICANN and alexa.com, they found that 0.89% of TLDs and 19.46%

5The DNSOP email thread on this topic can be found here:
https://www.mail-archive.com/dnsop@ietf.org/msg25080.html

16

https://www.mail-archive.com/dnsop@ietf.org/msg25080.html

of SLDs that had DNSSEC deployed were unable to establish a chain of trust. These can
be caused by:

i) The registrar not supporting DNSSEC, so the key signing public key is missing from
the parent zone, despite the owner configuring their name server to have the extra
information needed by DNSSEC.

ii) The parent zone having an outdated key signing public key, which can occur when a
rollover takes place.

Dai et al. also observed that RSA was the most common algorithm deployed and that
34% of TLDs and 52% of SLDs that use DNSSEC were using zone signing keys that are too
short.6 Wander [67] also observed these key lengths during the period of April 2013 and
January 2017. Part of the thought behind why these key sizes are being used is to reduce
potential fragmentation (see Section 2.4.2). Wander recommends exploring using elliptic
curve cryptosystems instead of RSA as they provide smaller signatures with signing at the
cost of verifying steps being more taxing on a CPU. Dai et al. also found that 16 domains
were using even RSA moduli.

2.4.4 DNSSEC Adoption

It may seem odd to discuss DNSSEC adoption in the challenges section, but it is a well-
known fact that DNSSEC adoption has been slower than was initially hoped. Wander [67]
observed the adoption of DNSSEC between 2013 and 2017. Wander observed that the
number of TLDs that supported DNSSEC increased significantly over his observation;
starting with just 33% in April 2013 and increasing to 90% in January 2017. Wander notes
that this increase is likely due to a massive amount of new generic TLDs being introduced
during this time. Of the TLDs first observed in April 2013, 52% had deployed DNSSEC
by January 2017.

Wander also looked at SLDs by using NSEC and NSEC37 to determine which SLDs
support DNSSEC. As of January 2017, he found that the SLDs with the highest adoption,
as well as the highest number of SLDs using DNSSEC, were .nl, .se, .cz domains all with
adoption of over 45%. However, looking at .com shows that having a high number of
domains using DNSSEC does not equate to having high adoption. With over six hundred

6These RSA keys were less than 1024 bits, with some even being as small as 512 bits.
7GPU based dictionary attacks were used to crack the NSEC3 hashes.

17

thousand .com domains using DNSSEC, that equates to less than 1% of .com domains
having DNSSEC enabled.

Wander notes in order to encourage DNSSEC adaoption, .nl provided an 8% discount
in registry fees for two years, .cz offered tech support and financial support for marketing,
and the Swedish government subsidized discounts for .se domains. He then argues that
these national specific domain name initiatives were part of the reason .com saw a jump
in DNSSEC signed SLDs. If a registrar already did the work for the national TLDs, then
it is an easy thing to deploy to .com domains.

Amplification attacks, UDP/IP fragmentation, configuration, and adoption are all con-
siderable challenges facing DNSSEC, however there are also challenges and obstacles for
adding a new signing algorithm to the protocol.

2.5 DNSSEC Algorithm Life Cycle

DNSSEC allows for multiple algorithms to be used for signing responses to queries. So un-
derstanding the process an algorithm goes through in order to be widely used is important.
Müller et al. [53] analyzed this process for several algorithms.

Standardization takes at least one year and involves an IETF working group to discuss
a proposed draft, made by one of the working group members, to determine if they should
proceed with working on said draft. Once the working group has settled on a draft a last
call is made for feedback before formally asking for the draft to be published. After being
reviewed and a wider scoped last call is made, the draft is reviewed by an RFC editor and
is then finally published as an RFC.

Müller et al. note that there are several obstacles that algorithms come against when
trying to become standardized. Algorithms that are wishing to be standardized must be
an improvement to those that are already standardized. Systems that are equally as good
are not deemed to be worth the time to standardize as they do not add anything extra
to DNSSEC. Software support is also an important requirement: if an algorithm is in a
major cryptographic library already then there is less of an obstacle for operators to deploy
the algorithm, and thus it is more likely said algorithm will be standardized. Timing and
other non-algorithm related issues can also prevent an algorithm from being standardized.
Discussions on other key areas may end up preventing progress on standardization, and
it can even be deemed that it is the wrong time to add additional algorithm support to
DNSSEC.

18

In order for an algorithm to see usage after being standardized, there needs to be
incentive for a zone operator to add support for said algorithm. Cryptography is complex
and easy to misconfigure (see Section 2.4.3), so operators are going to avoid potentially
breaking something that is currently working just to add something new. Incentives could
include financial incentives, such as those mentioned in Section 2.4.4, or an attack on an
algorithm they use is released.

In addition to transition between algorithms, entities within the DNSSEC ecosystem
must also be able to rollover from one public key to another.

2.6 Root zone key rollover

Refreshing private/public key pairs is important to maintian security. Cryptographic
schemes rely on the computational hardness of problems to remain secure; given enough
time, any cryptosystem can be broken. Several agencies have recommendations for how
long a key of a certain length should be used for.8 Key rollovers effectively reset attacks
being performed against a system using digital signatures, and should be done within the
suggested amount of time.

Wander observed [67] that 88% of TLDs rolled over their zone signing keys every 30–
120 days and 55% rolled over their key signing key at least once during that four year
observation period. The trickiest rollover to perform, however, is the root zone’s key
signing key.

Recall that the root key signing key is a trust anchor. That is to say, it must be
distributed to any system that uses it in a secure manner. This key is used as part of every
chain of trust that is constructed on the public internet, so if something goes wrong there
is potential for substantial outages. So far, root’s key has only been rolled over once, in
2018. Müller et al. [52] reviewed and described the process and determined that all things
considered, the rollover was a success.

There are two approaches to distributing the new key to resolvers, in-band and out-of-
band. The out-of-band mechanism is fairly simple but requires additional work by resolver
operators. IANA will publish the new key to their website as an XML file, and the resolver
operator will download said XML file via some integrity preserving mechanism such as
TLS or a digital signature.

8keylength.com is a good resource for seeing these recommendations in one place.

19

In-band is a much more complex system to define, but it removes the work needed to
be performed by a resolver operator. First, the new key is added to the DNSKEY set.
As resolvers query root for its keys, they will begin to see the new key signing key. Once
they start to see this new key, a 30 day hold-down period begins. If the new key is seen
frequently during this period, the resolver will add that key as a valid public key for the
zone that is being queried, in our case root. The reason for this hold-down period is to
ensure that any malicious actors who have compromised a trust anchor cannot add their
key. Sometime later, the resolver doing the trust anchor rollover will mark the old key
as revoked, and the key stays in the DNSKEY set. Another 30 day hold-down period
commences and concludes with resolvers switching to using the new key and removing the
old key from their known keys. Eventually, the old key was removed entirely from the
zone’s DNSKEY set. The in-band method is supported by several major resolver software
packages such as BIND, Unbound, and Knot.

The entire rollover process was quite lengthy and ended up taking two and a half years
or five years if initial planning was included. The timeline of deployment was as follows:
The replacement key signing key pair was generated in October 2016. The new key was
published by IANA in February 2017 and the first signed DNSKEY set including the new
key appeared in April 2017. The new key was added to root’s DNSKEY set in July 2017,
and resolvers began the hold-down process described above. ICANN then paused the
rollover process in September 2017 and did not resume the rollover process until a year
later. The reason for this delay was that 8% of resolvers that operators were observing
were signalling that they did not have the new key.

It was only one month after the rollover process resumed that the time to live for the
old key expired, and the old key was marked as revoked in January 2019. Finally, the old
key was removed from the root zone DNSKEY set in March 2019.

Müller et al. observed that when there were configuration problems that caused outages,
a majority of operators had fixed the outages within an hour. They did note however that
telemetry used for these observations, both for operators and themselves, was less than
ideal. Although RFC 8145 [69] introduces a way for zone operators to test key deployment
and saw steady adoption prior to the rollover, one could not retrieve stateful information
from a resolver due to it being passively collected. The good news is RFC 8509 [36], root
sentinel, solves that particular issue and is seeing wide adoption. Müller et al. note that
both solutions suffer from potential signal distortion and lack of query volume metrics.

Müller et al. also observed an interesting trend of the number of resolvers indicating
they supported the old key increased after the key was revoked. This is likely due to older
versions of software which included the old key being used.

20

Chapter 3

Post-quantum Cryptography

Public-key cryptography bases its security on the difficulty of solving certain problems. If
one of these problems were discovered to be easy to solve, then all cryptoschemes that are
built off of that problem would also be easy to break and therefore not secure.

Quantum computers unlock a new way to solve problems that are considered hard using
a classical computer. Classical computers use bits to represent data and can store either a
0 or a 1. Quantum computers, on the other hand, represent data using quantum bits, or
qubits, and take advantage of multiple properties of quantum mechanics; namely quantum
superposition, quantum entanglement, and quantum inference.

In 1994 an efficient factoring quantum algorithm was unveiled by Shor [58]. Once
a sufficiently powerful quantum computer is developed, Shor’s algorithm can be used to
efficiently break the widely deployed public-key cryptoschemes we use today. Major entities
such as Google, IBM, and Microsoft are all researching and developing quantum computing,
and in some cases, are even offering cloud based quantum computing products [30,37,47].

Although quantum computers are not an active threat to our deployed cryptography
today, it is important to proactively prepare for the day that is no longer the case.

3.1 NIST Post-Quantum Cryptography Selection Pro-
cess

NIST is responsible for releasing Federal Information Processing Standards (FIPS) which
are used as guidelines by government agencies when there is not already a pre-existing

21

industry solution. Although NIST releases FIPS for government agencies, many in the pri-
vate sector also follow these standards [55]. NIST has standardized several cryptographic
primitives in the past such as AES [23], SHA-1 [42], SHA-2 [20], and SHA-3 [22]. Not all
of these were standardized in the same way. Some, such as SHA-1 and SHA-2 were devel-
oped internally by the National Security Agency (NSA), whereas others took a more open
approach and took submissions and comments from the global cryptographic community
before ultimately settling on the algorithm to standardize for government use. This open
process brings more expert scrutiny to the selection process thus decreasing the likelihood
of security flaws being discovered post standardization.

Looking to the future, NIST posted a Call for Proposals for its post-quantum cryptog-
raphy standardization process on December 16 2016 [54]. The goal for this open selection
process is to standardize a set of post-quantum public-key encryption/key encapsulation
mechanisms and a set of post-quantum digital signature algorithms so that the transition
can begin well before a realistic quantum adversary is developed. NIST defined five levels
of security which algorithms should aim to achieve with level 1 being the least secure and
level 5 being the most secure. The definitions of the NIST security levels are in Table 3.1.

Table 3.1: NIST Security levels

Level Security Requirement
1 At least as secure as AES128
2 At least as secure as SHA256/SHAKE256
3 At least as secure as AES192
4 At least as secure as SHA384/SHAKE384
5 At least as secure as AES256

On December 21, 2017 the process began with a pool of 82 digital signature and public-
key encryption/key encapsulation mechanisms with 13 not meeting the minimum accep-
tance criteria, and 5 being withdrawn [2]. After a round of public comments, the set
of algorithms was narrowed to 26 potential candidates on January 30, 2019 [50]. After
another round of public comments, the pool of algorithms was narrowed to six (three final-
ists, three alternates) digital signature algorithms and nine (four finalists, fives alternates)
public-key encryption/key encapsulation mechanisms. On July 5 2022, NIST announced
the key encapsulation algorithm CRYSTALS-KYBER [9] was selected for standardization,
and that CRYSTALS-Dilithium [10], Falcon [28], and SPHINCS+ [8] were selected as the
digital signature algorithms to be standardized [3]. A fourth round has been announced
and exclusively includes public-key encryption/key encapsulation mechanisms. Round four
algorithms consist of Binary Flipping Key Exchange (BIKE) [5], Classic McEliece [4], Ham-

22

ming Quasi-Cyclic (HQC) [1], and Supersingular Isogeny Key Encapsulation (SIKE) [39].
A Call for Proposals for additional digital signature schemes was published on September
6, 2022 with a submission deadline of June 1, 2023 [56].

3.2 Selected Algorithms and Round 4 Candidates

In this section we summarize both the selected algorithms (denoted with †) and the current
round four candidates (denoted with ‡) of the NIST post-quantum cryptography selection
process.

3.2.1 Digital signature algorithms

CRYSTALS-Dilithium† CRYSTALS-Dilithium’s security is based on the hardness of
Module Learning With Error problem and is available in two different flavours. Standard
Dilithium uses SHAKE-128 to expand the matrix in the public and private keys, whereas
Dilithium-AES uses, unsurprisingly, AES for matrix expansion. Dilithium provides pa-
rameter sets which achieve NIST security levels 2, 3 and 5. CRYSTALS-Dilithium was
selected as the primary signature algorithm because of its high efficiency, simple imple-
mentation, strong theoretical security basis, and its positive cryptanalysis history. Table
3.2 depicts Dilithium’s submitted parameter set’s security level and public key, secret key
and signature sizes.

Table 3.2: CRYSTALS-Dilithium’s parameter sets.

Parameter Set Security
Level

Public Key
Size (bytes)

Secret Key
Size (bytes)

Signature
Size (bytes)

Dilithium2 2 1312 2528 2420
Dilithium3 3 1952 4000 3293
Dilithium5 5 2592 4864 4595

23

Falcon† Falcon’s security is based on the hardness assumption of the shortest integer
solution over NTRU lattice problem. The Falcon team submitted two parameter sets,
Falcon-512 and Falcon-1024 which achieve NIST security levels one and five respectively.
Falcon supports several types of signature formats: compressed, padded, and CT. Com-
pressed signatures are variable in length and are the smallest signatures on average. Padded
signatures are fixed length. CT signatures are fixed length and allow for constant-time
processing in the context of message data and signature value. Falcon was selected for
standardization due to its strong security and its reasonably sized signatures and public
keys. It is noted that the algorithm is quite complex and could therefore lead to imple-
mentation bugs compromising security in practice. Table 3.3 depicts Falcon’s submitted
parameter set’s security level and public key, secret key and signature sizes. Recent work
has been able to shrink Flacon signatures by up to 40% with a minimal security cost [27],
however as this work has yet to be added to the Falcon specification we exclude the results
from Table 3.3

Table 3.3: Falcon’s parameter sets
* denotes the average size over 10,000 signatures (100 secret keys, 100 signatures per key)

plus/minus the standard deviation.

Parameter Set Security
Level

Public Key
Size (bytes)

Secret Key
Size (bytes)

Signature
Size (bytes)

Falcon-512 compressed 1 897 1281 651.59±2.55∗

Falcon-512 padded 1 897 1281 666
Falcon-512 CT 1 897 1281 809
Falcon-1024 compressed 5 1793 2305 1261.06±3.57∗

Falcon-1024 padded 5 1793 2305 1280
Falcon-1024 CT 5 1793 2305 1577

SPHINCS+† SPHINCS+ is a hash-based signature scheme and has three instantiations
which use the hashing algorithms SHA2, SHAKE, and HARAKA. For each instantiation,
a “small” and a “fast” set of parameters are provided. SPHINCS+ imposes a maximum
number of signatures that should be generated for a particular public key. For each signa-
ture created, the initial low probability that enough of the private key will be revealed to
the attacker increases. NIST required in its original call for proposals that 264 signatures
must be safely generated. SPHINCS+ is quite complex which could lead to implementation
issues. SPHINCS+ has similar assumptions to NIST’s already standardized stateful hash-
based signature algorithms; however SPHINCS+ does not require the signer to maintain
state. SPHINCS+ signatures are also extremely large, with the smallest of the proposed

24

parameter sets being over 7 kilobytes. There are parameter sets which achieve NIST se-
curity levels one, three, and five. SPHINCS+ was selected for standardization due to its
strong security and because SPHINCS+ relies on a different security assumption compared
to CRYSTALS-Dilithium and Falcon which both use lattices. SPHINCS+ therefore pro-
vides a strong alternative in the event that attacks are found that break the lattice based
algorithms. Table 3.4 depicts SPHINCS+’s submitted parameter set’s security level and
public key, secret key and signature sizes.

Table 3.4: SPHINCS+’s parameter sets.

Parameter Set Security
Level

Public Key
Size (bytes)

Secret Key
Size (bytes)

Signature
Size (bytes)

SPHINCS+-128s 1 32 64 7,856
SPHINCS+-128f 1 32 64 17,088
SPHINCS+-192s 3 48 96 16,224
SPHINCS+-192f 3 48 96 35,664
SPHINCS+-256s 5 64 128 29,792
SPHINCS+-256f 5 64 128 49.856

3.2.2 Public-key encryption/key encapsulation mechanisms

Although this thesis foscuses on applying post-quantum digital signatures to DNSSEC, we
include the public-key encryption/key encapsulation mechanisms selected for the fourth
round of NIST’s standardization processes for completeness.

CRYSTALS-KYBER† CRYSTALS-KYBER’s security is based on the Module Learn-
ing With Errors problem. CRYSTALS-KYBER has two versions; the standard version
which uses SHAKE, and the “90s” version which uses a combination of AES in counter
mode and SHA2. CRYSTALS-KYBER has suggested parameter sets which achieve NIST
security levels of one, three, and five. CRYSTALS-KYBER was selected because of its
thorough security analysis and its strong performance. Table 3.5 depicts CRYSTALS-
KYBER’s submitted parameter set’s security level and public key, secret key, ciphertext,
and shared secret sizes.

BIKE‡ BIKE is based on the Quasi-Cyclic Moderate Syndrome Decoding and Quasi-
Cyclic Codeword Finding problems and provides parameter sets that achieve NIST security

25

Table 3.5: CRYSTALS-KYBER’s parameter sets.

Parameter Set Security
Level

Public Key
Size (bytes)

Secret Key
Size (bytes)

Ciphertext
Size (bytes)

Shared Secret
Size (bytes)

KYBER512 1 800 1,632 768 32
KYBER768 3 32 64 17,088 32
KYBER1024 5 48 96 16,224 32

levels one and three. NIST selected BIKE as a round four candidate due to its strong
performance. Table 3.6 depicts BIKE’s submitted parameter set’s security level and public
key, secret key, ciphertext, and shared secret sizes.

Table 3.6: BIKE’s parameter sets.

Parameter Set Security
Level

Public Key
Size (bytes)

Secret Key
Size (bytes)

Ciphertext
Size (bytes)

Shared Secret
Size (bytes)

BIKE-L1 1 1,541 5,223 1,573 32
BIKE-L3 3 3,083 10,105 3,115 32

Classic McEliece‡ Classic McEliece is built on Neiderreiter’s dual version of McEliece’s
public key encryption using binary Goppa codes. There are two versions of Classic McEliece:
a simpler “systematic” version and a generalized “semi-sytematic” version. Classic McEliece
submitted parameter sets provide NIST security levels of one, three, and five. NIST se-
lected Classic McEliece as a round 4 candidate as they are confident in its security, however
do not see use cases for the scheme do to its extremely large public key size. NIST are
using round 4 to determine if there is an application for Classic McEliece, and leaving
Classic McEliece as an option in the event the other round 4 candidates are determined to
be insecure. Table 3.7 depicts Classic McEliece’s submitted parameter set’s security level
and public key, secret key, ciphertext, and shared secret sizes.

26

Table 3.7: Classic McEliece’s parameter sets.

Parameter Set Security
Level

Public Key
Size (bytes)

Secret Key
Size (bytes)

Ciphertext
Size (bytes)

Shared Secret
Size (bytes)

Classic McEliece 348864 1 261,120 6,452 128 32
Classic McEliece 460896 3 524,160 13,568 188 32
Classic McEliece 6688128 5 1,044,922 13,892 240 32
Classic McEliece 6960119 5 1,047,319 13,908 226 32
Classic McEliece 8192128 5 1,357,824 14,080 240 32

HQC‡ HQC is based on the Quasi-cyclic Syndrome Decoding with parity problem and
provides parameter sets which achieve NIST security levels of one, three, and five. NIST
selected HQC as a round 4 candidate due to its strong security, however they are con-
cerned by both HQC’s public key and ciphertext sizes. Table 3.8 depicts HQC’s submitted
parameter set’s security level and public key, secret key, ciphertext, and shared secret sizes.

Table 3.8: HQC’s parameter sets.

Parameter Set Security
Level

Public Key
Size (bytes)

Secret Key
Size (bytes)

Ciphertext
Size (bytes)

Shared Secret
Size (bytes)

HQC-128 1 2,249 2,289 4,481 64
HQC-192 3 4,522 4,562 9,026 64
HQC-256 5 7,245 7,285 14,469 64

SIKE‡ SIKE is based on the Supersingular Isogeny Walk problem, and provides param-
eter sets which achieve NIST security levels of one, two, three, and five. SIKE offers a
default version as well as a compressed version which trades smaller public keys and ci-
phertexts in exchange of performance. SIKE was selected as a round 4 candidate due to
its small key sizes, but due to SIKE being relatively new it requires additional scrutiny.
On July 30, 2022, a devastating attack [15] on SIKE was published removing SIKE from
contention, but we include its parameter sets for completeness. Table 3.9 depicts SIKE’s
submitted parameter set’s security level and public key, secret key, ciphertext, and shared
secret sizes.

27

Table 3.9: SIKE’s parameter sets.

Parameter Set Security
Level

Public Key
Size (bytes)

Secret Key
Size (bytes)

Ciphertext
Size (bytes)

Shared Secret
Size (bytes)

SIKE-p434 1 330 374 364 16
SIKE-p434 compressed 1 197 350 236 16
SIKE-p503 2 378 434 402 24
SIKE-p503 compressed 2 225 407 280 24
SIKE-p610 3 462 524 486 24
SIKE-p610 compressed 3 274 491 336 24
SIKE-p751 5 564 664 596 32
SIKE-p751 compressed 5 335 602 410 32

3.3 Stateful Hash-Based Signatures

The NIST Post-quantum Cryptography standardization process is not the first time NIST
has standardized algorithms which are resistant to a quantum adversary. Prompted by the
IETF standardizing the stateful hash-based signature schemes XMSS with RFC 8391 [34]
and LMS with RFC 8554 [46], NIST requested public input on whether they should stan-
dardize the two schemes. Stateful Hash-Based signatures are different from the digital
signature schemes described above as the signer must maintain a state and that a signing
key has a limited number of signatures it can produce. Maintaining state can be problem-
atic in certain scenarios such as distributed systems, however stateful hash-bashed signing
algorithms often have smaller keys and are more performant. On October 30 2020 NIST
published its recommendation for XMSS and LMS. It is worth noting that NIST only
recommends a subset of the parameter sets defined in RFC 8361 and RFC 8554 [18].

3.4 Post-Quantum Cryptography and the Domain Name
System

DNSSEC relies on classical public-key cryptography to maintain message integrity. Once
a powerful enough quantum computer is developed, the currently standardized algorithms
will leave DNSSEC vulnerable and untrustworthy. As part of NIST’s call for proposals [54],
DNSSEC was listed as one of the protocols which needs to be hardened against a quantum
adversary. As both IETF standardization and root key rollovers can take years, it is
important to start the discussion and planning now, so that we can be prepared for the

28

inevitable quantum future.

Müller et al. [51] began this discussion by evaluating the round 3 NIST candidates in
the context of DNSSEC. They established several requirements for a scheme to fulfil if
it were to be used for DNSSEC signatures. As discussed in Section 2.4.2, fragmentation
is a major concern for DNSSEC and the recommended maximum response size, both for
signatures and public keys, should not exceed 1232 bytes. However, due to public keys
not needing to be transmitted as often as signatures, larger public keys may be acceptable.
They also require that a resolver be able to validate 1000 signatures per second as currently
a “medium” sized resolver only performs on the order of hundreds of validations a second.1
In order to support large, frequently changing zones, the final requirement is that the
algorithm must be able to create 100 signatures a second.

Three of the round 3 candidate algorithms fulfil the requirements sufficiently enough to
be considered: Falcon-512, Rainbow-Ia [21] and RedGeMSS128 [14].2 On first inspection it
would appear that Falcon-512 is the clear winner as it is the only scheme that completely
meets the requirements set above, in particular its signature and public key sizes both
being within the 1232 byte limit. However, both Rainbow-Ia and RedGeMSS128 have
significantly smaller signatures sizes which makes them extremely appealing. Falcon-512
has a signature size of 0.7kB whereas the other two schemes have signature sizes of 66 bytes
and 35 bytes respectively. The requirement that both Rainbow-Ia and RedGeMSS128 fail
is their public keys are 158kB and 375kB respectively vs Falcon-512’s comparatively paltry
key size of 0.9kB. Falcon-512 may not be the drop in replacement we are looking for,
however, as only a single key or signature can fit within the 1232 byte threshold. Müller
et al. expect that DNSSEC specification changes will be required before quantum safe
cryptography can be deployed in order to support larger key and/or signature sizes.

Müller et al. discuss two potential changes that could solve the large key and signature
size issue described above, the first being TCP. Currently, DNS resolvers can revert to
TCP when they receive a truncated response from a zone, however 11% of name servers
do not support TCP which makes this option not viable. The good news is DNS Flag Day
2020 is championed TCP, and support is improving, however more work is required [45].
The second option is to use encrypted DNS such as DNS-over-TLS or DNS-over-HTTPS
which both rely on TCP and are both “gaining traction”. Ultimately, Muller et al. state
that changes to the DNSSEC protocol will likely be required.

1As DNSSEC has not yet hit widespread adoption it is likely that this will grow, however it is likely
that cryptography libraries will also improve their efficiency as well.

2Note: Rainbow-Ia and RedGeMSS128 did not advance into round 4 of NIST’s selection process as
both had major attacks compromising their security discovered during round 3.

29

One proposed modification that Beernink presented in their thesis [11] was delivering
DNSKEY delivery out-of band rather than in standard DNS messages. The idea is that
when a large DNSKEY is required, such as when using the now defunct round 3 candidate
Rainbow [21], for verification the requesting server would initiate a HTTP or FTP request
to fetch the large key. Unforunately none of the algorithms selected by NIST provide the
large DNSKEY small signature trade-off that Beernink was designing for, and thus other
options must be explored.

30

Chapter 4

Adapting DNSSEC for a Quantum
Future

As the threat of a powerful quantum adversary looms, we must begin the process of plan-
ning for, and adopting, quantum secure algorithms in mission critical pieces of infastruc-
ture, such as DNSSEC. The three digital signing algorithms selected by NIST all have
substanially larger signatures than what are currently standardized for use with DNSSEC
causing larger DNS messages to be sent. In this chapter we intoduce A Resource Record
Fragmentation mechanism as a request based fragmentation mechanism for handling the
larger DNS messages that the NIST selected algorithms necessitate. We construct a sim-
ple lightweight proof of concept daemon which implements ARRF and only requires minor
modifications to DNS software. Specifically, we increase several internal buffers to 65535
bytes to account for the largest possible DNS message size. We then evaluate DNSSEC
resolution times using the three NIST selected post-quantum digital signature algorithms
both with and without the ARRF daemon.

4.1 Request based fragmentation

As discussed in Section 3.4 changes will need to be made in order to support post-quantum
cryptography in DNSSEC. In a perfect world, we could simply send the larger DNS mes-
sages with little to no concern of them arriving. However, as described in Section 2.4.2,
UDP/IP fragmentation can cause significant problems for delivering large DNS messages
via UDP. The current solution to solving this problem is falling back to TCP, however,

31

a non-trivial amount of DNS name servers do not support TCP. We look to solve this
problem by moving DNS message fragmentation from UDP (transport layer) to DNS itself
(application layer), while addressing concerns raised to previously proposed mechanisms.
We dubbed our solution A Resource Record Fragmentation mechanism, or ARRF for short.

4.1.1 Resource Record Fragments

When a DNS message is too large to fit into the maximum advertised UDP size, the message
must be shrunk while still containing meaningful information to the requester. We intro-
duce a new type of pseudo-resource record: Resource Record Fragments (RRFrags). Like
OPT, another pseudo-resource record, RRFrags are not explicitly in DNS zones. Rather
they are created only when they are needed. RRFrags are designed similarly to the OPT
pseudo-resource record; they use the standard resource record wire format but repurpose
some of the fields. An RRFrag contains the following fields:

NAME Must always be root (.) to reduce the amount of overhead required to send a
RRFrag while respecting the generic resource record format.

TYPE Used to identify that this pseudo-resource record is an RRFrag.

RRID This is used to indicate the particular resource record that is being fragmented.
Since labels do not necessarily have distinct resource records attached to them, this
allows a requester to be explicit in its request while not requiring the responder to
remember which particular resource record it fragmented. The RRID of a particular
resource record can be arbitrarily assigned, but must not change.

CURIDX This is the current index in the byte array of the original resource record which
is being fragmented.

FRAGSIZE This is the total number of bytes contained in FRAGDATA plus two bytes
to account for the extra space needed for the RRSIZE field. FRAGSIZE has two
different meanings depending on the context. If the RRFrag is part of a query, then
this indicates how large the responding server should make this particular fragment.
If the RRFrag is part of a response, this field indicates how much data was sent in
this particular fragment.

RRSIZE This is the size of the original non-fragmented Resource Record. This is used by
the requester to determine how much data it still needs to request from the responder
in order to reassemble that particular resource record.

32

Generic
Resource Record

Format

RRFrag
Format

Variable Bytes NAME < - - - - - - - NAME = ‘.’ 1 Byte
2 Bytes TYPE < - - - - - - - TYPE = RRFRAG 2 Bytes
2 Bytes CLASS < - - - - - - - RRID 2 Bytes
4 Bytes TTL < - - - - - - - CURIDX 4 Bytes
2 Bytes RDLENGTH < - - - - - - - FRAGSIZE 2 Bytes

Up to 216 Bytes RDATA < - - - - - - - RRSIZE 2 Bytes
< - - - - - - - FRAGDATA Up to 216 - 2 Bytes

Figure 4.1: The mapping of the RRFrag format onto the generic resource record format.

FRAGDATA This field contains the raw bytes of the fragment. In queries this is always
empty. In responses this will contain FRAGSIZE bytes starting at CURIDX. It is
possible for FRAGDATA to contain zero bytes in responses, which we will elaborate
on later.

Figure 4.1 depicts how an RRFrag maps onto the generic resource record format. Note
that similar to a DNSKEY resource record where the extra fields needed required are
inside RDATA, an RRFrag stores the RRSIZE alongside FRAGDATA. This was done to
handle the case where an implementation which does not support ARRF blindly copies
RDLENGTH, or in our case, FRAGSIZE bytes into a buffer prior to branching based on
resource record type.

4.1.2 Using RRFrags

When a DNS response is too large to fit in the maximum advertised UDP size, RRFrags
are used to shrink the response until it is below the advertised threshold. Resource records
are replaced with RRFrags in place. That is to say, if a resource record being fragmented
is in a particular section of the DNS message, the RRFrag replacing will be inserted into
the same section. This is key so that the original message format once all resource records
are assembled will remain intact. It is important to note that the OPT pseudo-resource
record must not be fragmented as it contains important meta data about the response,
such as the DNS cookie. DNS messages that contain RRFrags should send as much data
as they are able without surpassing the advertised threshold.

33

The initial response containing at least one RRFrag can be considered a “map” of the
non-fragmented message. This map is used by the requester to determine what the non-
fragmented DNS message will look like upon reassembly. The requester can now determine
what fragments it is missing in order to complete the original large DNS message, and can
now send a new query for the missing RRFrags. It is the responsibility of the requester to
specify which resource records it desires, how large the fragments should be, and where the
fragments start. This is done by adding a RRFrag for each distinct RRID the requester is
requesting a fragment for in the query’s additional section. If the response contains any
non-RRFrag resource records, it should store them until it is possible to reassemble the
entire DNS message.

When the responder sees a query containing a RRFrag, it just has to construct a
standard DNS response by inserting the corresponding RRFrags into the answers section.
The Fragdata being sent is a simple copy of the bytes of the desired resource record starting
at CURIDX and ending at CURIDX + FRAGSIZE. This request response cycle continues
until the requester is able to reassemble the original large non-fragmented message. For
backwards compatibility reasons, whenever a response is sent which contains an RRFrag,
the truncated flag (TC) must be set in the DNS message header. Setting the truncated flag
also removes the need to advertise support for ARRF as a resolver that does not support
ARRF will retry the request over TCP.

If a requester asks for a fragment which cannot be constructed, such as an RRID which
does not map to a specific resource record, the responder should respond with a return
code of FORMERR to indicate that the query was malformed.

4.1.3 Example execution of ARRF

To better solidify how ARRF works, we will now work through an example DNS query
whose response is larger than the MTU. This example has had some details abstracted
away and should not be used in place of the above specification when implementing ARRF.
Figure 4.2 illustrates our example execution. This example begins at the last stage of name
resolution for the query “uwaterloo.ca.”. We have two servers; the resolver (coloured red)
making the DNSSEC enabled query for uwaterloo.ca., and the uwaterloo.ca. name server
(coloured blue).

34

(a) Resolver sends a DNSSEC enabled request
for uwaterloo.ca.’s A record

(b) The name server constructs a response which
is too large to send within the MTU limit

(c) The name server replaces the large RRSIG
with an RRFRAG containing as much of the
RRSIG as possible

(d) The resolver receives the DNS response,
copies the A record and RRFRAG data into its
state and sends a request for the remaining frag-
ment of the large RRSIG

(e) The name server constructs a DNS response
containing the requested fragment and sends the
response to the resolver

(f) The resolver copies the missing fragment into
its state.

(g) The resolver combines the two RRFrags it
received and reconstructs the large original DNS
response

Figure 4.2: A simplified example execution of ARRF

35

First the resolver makes a standard request for the A record and its associated RRSIG
(Figure 4.2(a)). Upon receiving the request, the resolver observes that the DNS response
is too large to fit within the confines of the MTU (Figure 4.2(b)), and thus replaces the
large RRSIG with an RRFrag (Figure 4.2(c). This RRFrag will contain as much of the
original RRSIG as possible, and will inform the resolver how much of the original RRSIG
is missing. Once the resolver receives the DNS response, it will copy both the entire A
record as well as the RRFrag (Figure 4.2(d)) and allocating enough space for the rest of the
missing record. The resolver will then send another DNS query, but this time asking for an
RRFrag and sending its own RRFrag (Figure 4.2(e)). Once the uwaterloo.ca name server
receives the RRFrag query, it will use the RRFrag in the additional section to determine the
starting position and size of the fragment of the original RRSIG is being requested. The
name server will construct a new DNS response containing the rest of our missing RRSIG
inside of an RRFrag and send the new response to the resolver (Figure 4.2(f)). Finally the
resolver will copy the newly received RRFrag into its state, reassemble the original RRSIG,
and reconstruct the original large DNS response (Figure 4.2(g)). DNSSEC validation now
takes place, and if verification is successful the records are cached by the resolver.

4.1.4 Caching and DNSSEC Considerations

RRFrags themselves should never be cached. Once a DNS message is reassembled, and
if necessary DNSSEC validated, then non-fragmented resource records may be cached.
If RRFrags could be cached, this would allow for malicious data to be accepted prior
to validation. Caching complete resource records as opposed to RRFrags also allows for
intermediate resolvers to send different fragment sizes then they originally received which
allows for more flexibility to handle varying advertised UDP sizes. For resolvers which do
not support ARRF RRFrags will not be cached as they are sent in truncated messages
resulting in the resolver falling back to TCP.

4.2 Evaluating Post-quantum DNSSEC

In this section we evaluate the three algorithms selected by NIST at the end of round 3
of their Post-quantum selection, Falcon, Dilithium, and SPHINCS+, as well as include
results for RSA 2048 with SHA256 and ECDSA P256 for the sake of comparison. We
evaluate these algorithms both using DNSSEC as defined today, as well as with ARRF. To
perform this evaluation we used Internet Systems Consortium’s BIND9 9.17.9 [38] as our
DNS server software. We then added support for the three selected algorithms to BIND9

36

using Open Quantum Safe’s liboqs 0.7.1 and OpenSSL 1.1.1l fork [61]. To deploy a test
DNS network we used Docker and Docker’s built in networking as well as ‘tc’ to simulate
network bandwidth and latency. Finally, rather than implementing ARRF directly into
BIND9, we constructed a daemon which intercepts all incoming and outgoing network
traffic and implements ARRF transparently for both the resolver and all name servers. We
use libnetfilter-queue 1.0.3-1 to intercept packets.

We will now describe how the daemon behaves. When the machine acting as the name
server receives a DNS query, it will modify the maximum advertised UDP message size
to the maximum value of 65535 bytes1. The daemon then sends the message to the DNS
software, which will then respond with a UDP message up to 65535 bytes. If ARRF were
implemented directly into BIND9, DNS messages could be arbitrary in size as BIND9
could digest resource records as they are received (and validated), rather than needing
the entire message to be received. The daemon then receives this response, copies the
entire message into its state and effectively becomes the DNS name server. Whenever a
fragment is requested in the future the daemon will use its state if possible rather than
sending the request to the DNS software. For simplicity, our daemon never flushes its state;
however, should ARRF be deployed, state consistency will need to be maintained. When
the machine acting as the DNS resolver receives a DNS response containing an RRFrag,
the daemon will intercept the message. The daemon will create a state for that individual
transaction containing the metadata provided by the initial response’s map and copy any
data included into the state. The daemon will then execute ARRF until the entire message
can be reconstructed, and the daemon transparently sends the reconstructed message to
the DNS resolver software.

To evaluate Falcon, Dilithium, and SPHINCS+, we construct a simple DNS network
consisting of a client, a resolver, and a name server each running in their own Docker
container on the same machine. The name server zone contains 1000 ‘A’ records, each
with a unique label and signature. We query for each of these A records and measure the
total resolution time for each one. The zone also contains 1 ‘primer’ name record which is
used to ‘prime’ the resolver so that it does not perform and status queries and already has
the zone’s Zone Signing Key. To model the worst case response size, we disabled ‘minimal
responses’ and as such each response will contain 1 question, 1 A record, 1 NS record,
1 SOA record, and 3 RRSIGs. We use ‘dig’ to issue each query and measure the total
resolution time of said query.

We evaluate these algorithms using a variety of network conditions. To model a low
bandwidth low delay setting, we use a network with 10ms of delay and 128 kilobytes per

1Modifications to BIND9 were required as the maximum DNS message size BIND9 supports is 4096

37

second bandwidth. We also evaluate a low delay high bandwidth network, we use 10ms of
delay and 50 megabytes per second bandwith. A high latency moderate bandwidth network
is also evaluated with 100ms of delay and 50 megabytes per second bandwidth. Finally,
we measure an ideal network where there is 0 delay, and unlimited bandwidth, with the
only cost being processing the messages. All experiments were run on a c5.2xlarge Amazon
Web Services instance which provides 8 cores of an Intel Xeon(R) Platinum 8124M with
16 gigabytes of RAM.

4.2.1 Algorithm performance

In order to fully understand the results, it is important to understand the performance of
the verification function of each of the algorithms. We use the Open Quantum Safe openssl
fork’s speed command to measure each algorithms signing and verification performance and
report the results in Table 4.1.

Table 4.1: Algorithm runtime measured using OpenSSL Speed

Algorithm Sign (ms) Verify (ms)
Falcon-512 0.2810 0.0438
Dilithium2 0.0753 0.0268
SPHINCS+-SHA256-128s 373.1 1.360
RSA 2048 with SHA256 0.5600 0.0177
ECDSA P256 0.0219 0.0677

4.2.2 Post-quantum with standard DNSSEC

We first measure how the Post-quantum algorithms perform if they were deployed to
DNSSEC as it is currently specified under two scenarios and five different network condi-
tions. We first measure how the algorithms would perform with a maximum UDP size of
1232. For messages larger than 1232 bytes, the DNS servers will fall back and establish a
new TCP connection. The second scenario is the exclusive use of UDP without fragmen-
tation for DNS communication provides an idealized view of the best case performance we
can achieve using a particular algorithm. The average resolution times with standard devi-
ation for the various network conditions are depicted in Table 4.2. RSA 2048 with SHA256
and ECDSA P256 only have entries for Standard DNS as the signatures of these algorithms
are small enough to ensure they can fit in a single DNS message without fragmentation.

38

Table 4.2: Resolution times plus or minus standard deviation without ARRF

Algorithm Standard DNS
Resolution Time (ms)

DNS using only UDP
Resolution Time (ms)

10ms of latency and 128 Kilobytes per second bandwidth
Falcon-512 107.3 ± 1.8 61.5 ± 2.2
Dilithium2 147.9 ± 1.5 102.0 ± 1.9
SPHINCS+-SHA256-128s 275.4 ± 2.1 229.4 ± 2.0
RSA 2048 with SHA256 52.20 ± 1.2 N/A
ECDSA P256 47.78 ± 1.9 N/A

10ms of latency and 50 Megabytes per second bandwidth
Falcon-512 82.11 ± 2.3 40.6 ± 2.1
Dilithium2 82.24 ± 2.2 40.8 ± 2.3
SPHINCS+-SHA256-128s 82.59 ± 2.1 41.2 ± 2.2
RSA 2048 with SHA256 41.50 ± 2.2 N/A
ECDSA P256 47.49 ± 1.9 N/A

100ms of latency and 50 Megabytes per second bandwidth
Falcon-512 802.1 ± 2.1 401.6 ± 2.0
Dilithium2 802.4 ± 2.0 401.5 ± 2.0
SPHINCS+-SHA256-128s 802.5 ± 1.9 401.9 ± 2.0
RSA 2048 with SHA256 401.3 ± 2.0 N/A
ECDSA P256 401.2 ± 2.2 N/A

0ms of latency and unlimited bandwidth
Falcon-512 2.5 ± 3.9 1.1 ± 2.0
Dilithium2 2.3 ± 3.3 1.2 ± 2.2
SPHINCS+-SHA256-128s 2.4 ± 3.5 1.2 ± 1.9
RSA 2048 with SHA256 1.7 ± 3.0 N/A
ECDSA P256 1.6 ± 2.7 N/A

4.2.3 Post-quantum with ARRF

In this section we evaluate how each of the algorithms perform when using two different
flavours of ARRF. First we offer a “sequential” version. This version sends a request,
receives a response, then looks what it needs to request and sends another request. This
process is repeated until the entire message is received. Secondly we offer a parallel version
where once the first response is received the name server sends all of the requests for
fragments at once essentially parallelizing the ARRF mechanism. We provide both of
these variations as we hypothesize that should ARRF be standardized and deployed that

39

operators may wish to rate limit ARRF messages to prevent overwhelming middle boxes.
These two versions of ARRF provide the two extremes of ARRF’s performance. Should
rate limiting be used, the observed performance would be between those two extremes. We
provide several scenarios where the maximum DNS message size varies across all of the
various network conditions described above.

Our daemon implementation is far from production ready, and should be treated as a
proof of concept. With that in mind, it is important to understand the raw overhead that
the daemon incurs. By setting the maximum DNS message size to 65535 bytes, we will
see how much of a cost we are paying just by running the proof of concept daemon. We
then evaluate what we would expect most operators would use as their maximum DNS
message size of 1232 bytes. In order to see how ARRF scales, we also provide some smaller
maximum DNS message sizes of 5122 and 256 bytes. Table 4.3 depicts the measured
mean resolution time in milliseconds for the sequential daemon across the various network
conditions measured, and Table 4.4 contains the results for the parallel daemon. Figures
4.3, 4.4, 4.5, and 4.6 illustrate all measured resolution times for standard DNS and DNS
using ARRF for all network conditions. Each point is the average resolution time over 1000
DNS lookups for the various algorithms being evaluated both with and without ARRF.
When ARRF is used, maximum message sizes of 65535, 1232, 512, 256 are included.

4.2.4 Post-quantum data transmission

In order to understand the full implications of deploying ARRF, we must also consider the
amount of data transmitted compared to that of the DNS as it is currently standardized.
We measured the total amount of bytes required to transmit a complete DNS message
signed with Falcon-512, Dilithium2, and SPHINCS-SHA256-128s both with and without
ARRF deployed. The results are located in Table 4.5.

4.2.5 Results

Regardless of network conditions and whether ARRF was used or not, we can see trends
across the evaluated algorithms. When considering standard DNS, RSA and ECDSA have
the shortest resolution times with the best performing post-quantum algorithm being twice
as slow across all network conditions. This is due to the response sizes being too large for
a single UDP packet, causing it to be truncated and thus effectively making the initial

2The minimum DNS message size that must be supported

40

Table 4.3: Resolution times plus and minus standard deviation with the sequential ARRF
daemon

Algorithms
Resolution Times (ms) for each
Maximum Message Size (Bytes)

65535 1232 512 256
10ms of latency and 128 Kilobytes per second bandwidth

Falcon-512 62.6 ± 2.1 84.4 ± 1.5 148.5 ± 1.6 275.8 ± 1.7
Dilithium2 103.2 ± 1.8 231.7 ± 1.8 422.7 ± 2.4 803.9 ± 1.3
SPHINCS+-SHA256-128s 230.7 ± 1.9 635.1 ± 2.1 1271.0 ± 2.0 2480.0 ± 1.9

10ms of latency and 50 Megabytes per second bandwidth
Falcon-512 41.8 ± 2.1 62.1 ± 2.3 122.5 ± 2.2 243.0 ± 2.3
Dilithium2 41.9 ± 2.1 162.9 ± 2.2 343.8 ± 1.9 705.6 ± 2.4
SPHINCS+-SHA256-128s 42.5 ± 2.2 424.7 ± 1.8 1028.0 ± 2.5 2173.0 ± 2.1

100ms of latency and 50 Megabytes per second bandwidth
Falcon-512 402.0 ± 2.1 601.1 ± 2.9 1203.0 ± 1.9 2404.0 ± 1.1
Dilithm2 402.1 ± 2.0 1604.0 ± 1.8 3405 ± 2.1 7008.0 ± 1.7
SPHINCS+-SHA256-128s 402.7 ± 2.0 4207.0 ± 2.0 10210 ± 1.8 21620.0 ± 1.4

0ms of latency and unlimited bandwidth
Falcon-512 1.6 ± 2.3 2.0 ± 2.6 2.2 ± 2.4 2.7 ± 2.6
Dilithium2 1.8 ± 2.6 2.3 ± 2.5 2.9 ± 2.2 4.2 ± 1.3
SPHINCS+-SHA256-128s 2.0 ± 2.4 3.6 ± 1.5 5.7 ± 2.2 5.7 ± 2.4

query a wasted trip. The resolver must then fall back to the less performant TCP protocol
to complete the lookup. When only UDP is used, ECDSA and RSA only beat Falcon-512
and Dilithium2 when bandwidth was restricted to 128 kilobytes per second. This is likely
due to the verification functions of Falcon-512 and Dilithium2 being more efficient than
ECDSA and RSA.

When considering the cases where the ARRF daemon is running, but not actively frag-
menting resource records, we see comparable performance to standard DNS using only
UDP. When comparing the post-quantum algorithms on standard DNS using only UDP
versus the ARRF daemon using a maximum message size of 65535 bytes we see a mini-
mal overhead never exceeding 1.25 ms. As previously mentioned our daemon is far from
production ready nor optimized, so we deem ARRF itself to have minimal overhead when
fragmentation is not required.

When the ARRF daemon is fragmenting resource records we see that the parallel dae-
mon has a performance improvement of approximately 20% over TCP for all algorithms

41

Table 4.4: Resolution times plus and minus standard deviation with the Parallel ARRF
daemon

Algorithms
Resolution Times (ms) for each
Maximum Message Size (Bytes)

65535 1232 512 256
10ms of latency and 128 Kilobytes per second bandwidth

Falcon-512 62.8 ± 2.2 84.7 ± 1.8 86.2 ± 2.3 89.5 ± 2.1
Dilithium2 103.1 ± 1.9 127.9 ± 1.6 132.9 ± 2.0 142.7 ± 2.0
SPHINCS+-SHA256-128s 230.7 ± 1.9 262.9 ± 2.1 279.7 ± 1.7 311.6 ± 2.1

10ms of latency and 50 Megabytes per second bandwidth
Falcon-512 41.6 ± 2.1 62.0 ± 2.1 62.1 ± 2.3 62.2 ± 2.2
Dilithium2 41.0 ± 2.2 62.5 ± 2.2 63.0 ± 2.6 62.5 ± 2.6
SPHINCS+-SHA256-128s 42.4 ± 2.2 63.5 ± 2.2 64.4 ± 1.9 66.8 ± 2.2

100ms of latency and 50 Megabytes per second bandwidth
Falcon-512 400.6 ± 2.0 601.1 ± 2.2 601.2 ± 2.2 601.7 ± 2.2
Dilithm2 400.9 ± 2.0 601.7 ± 2.3 601.7 ± 2.2 602.4 ± 1.9
SPHINCS+-SHA256-128s 401.5 ± 2.1 602.4 ± 1.9 603.4 ± 1.6 605.5 ± 2.4

0ms of latency and unlimited bandwidth
Falcon-512 1.2 ± 2.4 1.5 ± 2.3 1.7 ± 2.3 1.8 ± 2.5
Dilithium2 1.2 ± 2.1 1.7 ± 2.4 1.9 ± 2.0 2.5 ± 1.9
SPHINCS+-SHA256-128s 1.4 ± 2.1 2.4 ± 1.9 3.5 ± 1.6 5.7 ± 2.4

Table 4.5: Total data transmitted when performing a DNS lookup between resolver and
name server

Algorithm

Data transmitted
durring DNS lookup (Bytes)

Standard DNS
ARRF Maximum

DNS Message sizes (Bytes)
1232 512 256

Falcon-512 3,112 2,557 2,947 3,637
Dilithium2 8,623 8,367 9,402 11,322
SPHINCS+-SHA256-128s 26,073 26,140 29,620 36,175

and all maximum messages sizes. This is due to the parallel nature of the parallel daemon
effectively only paying the latency cost once after receiving the initial response whereas
TCP as a limited sized window causing the latency cost to be paid multiple times. The

42

sequential daemon even outperforms TCP for Falcon-512 with a maximum messages size
of 1232 bytes across all tested network conditions. This is due to the Falcon-512 signed
response only requiring one additional round trip to reassemble the message whereas the
TCP fallback needs to receive the entire message from scratch.

43

R
SA

2048
w

ith
SH

A
256

E
C

D
SA

P
256

Falcon-512

D
ilithium

2

SP
H

IN
C

S+
SH

A
256-128s

Algorithms

0

500

1000

1500

2000

2500

M
ea

n
R

es
ol

ut
io

n
T

im
e

(m
s)

Resolution times for DNSSEC queries with 10ms of latency
and 128 Kilobytes per second bandwidth

0

100

200

300

Parallel ARRF with Maximum UDP: 65355
Parallel ARRF with Maximum UDP: 1232
Parallel ARRF with Maximum UDP: 512
Parallel ARRF with Maximum UDP: 256
Sequential ARRF with Maximum UDP: 65355
Sequential ARRF with Maximum UDP: 1232
Sequential ARRF with Maximum UDP: 512
Sequential ARRF with Maximum UDP: 256
Standard DNS
Standard DNS with only UDP

Figure 4.3: Resolution times in milliseconds with 10ms delay and 128 Kilobytes per second
bandwidth

44

R
SA

2048
w

ith
SH

A
256

E
C

D
SA

P
256

Falcon-512

D
ilithium

2

SP
H

IN
C

S+
SH

A
256-128s

Algorithms

0

500

1000

1500

2000

M
ea

n
R

es
ol

ut
io

n
T

im
e

(m
s)

Resolution times for DNSSEC queries with 10ms of latency
and 50 Megabytes per second bandwidth

0

50

100

150

200

Parallel ARRF with Maximum UDP: 65355
Parallel ARRF with Maximum UDP: 1232
Parallel ARRF with Maximum UDP: 512
Parallel ARRF with Maximum UDP: 256
Sequential ARRF with Maximum UDP: 65355
Sequential ARRF with Maximum UDP: 1232
Sequential ARRF with Maximum UDP: 512
Sequential ARRF with Maximum UDP: 256
Standard DNS
Standard DNS with only UDP

Figure 4.4: Resolution times in milliseconds with 10ms delay and 50 Megabytes per second
bandwidth

45

R
SA

2048
w

ith
SH

A
256

E
C

D
SA

P
256

Falcon-512

D
ilithium

2

SP
H

IN
C

S+
SH

A
256-128s

Algorithms

0

5000

10000

15000

20000

M
ea

n
R

es
ol

ut
io

n
T

im
e

(m
s)

Resolution times for DNSSEC queries with 100ms of latency
and 50 Megabytes per second bandwidth

200

400

600

800

Parallel ARRF with Maximum UDP: 65355
Parallel ARRF with Maximum UDP: 1232
Parallel ARRF with Maximum UDP: 512
Parallel ARRF with Maximum UDP: 256
Sequential ARRF with Maximum UDP: 65355
Sequential ARRF with Maximum UDP: 1232
Sequential ARRF with Maximum UDP: 512
Sequential ARRF with Maximum UDP: 256
Standard DNS
Standard DNS with only UDP

Figure 4.5: Resolution times in milliseconds with 10ms delay and 50 Megabytes per second
bandwidth

46

R
SA

2048
w

ith
SH

A
256

E
C

D
SA

P
256

Falcon-512

D
ilithium

2

SP
H

IN
C

S+
SH

A
256-128s

Algorithms

2

4

6

8

10

M
ea

n
R

es
ol

ut
io

n
T

im
e

(m
s)

Resolution times for DNSSEC queries with 0ms of latency
and unlimited bandwidth

1.0

1.5

2.0

2.5

3.0

Parallel ARRF with Maximum UDP: 65355
Parallel ARRF with Maximum UDP: 1232
Parallel ARRF with Maximum UDP: 512
Parallel ARRF with Maximum UDP: 256
Sequential ARRF with Maximum UDP: 65355
Sequential ARRF with Maximum UDP: 1232
Sequential ARRF with Maximum UDP: 512
Sequential ARRF with Maximum UDP: 256
Standard DNS
Standard DNS with only UDP

Figure 4.6: Resolution times in milliseconds with 0ms delay and unlimited bandwidth

47

The sequential daemon performs worse in all other cases and is greatly affected by
increased latency. This is due to the sequential daemon needing to wait for each request to
be fulfilled before requesting the next piece, and TCP being able to achieve some parallelism
due to its sliding window. In the scenarios with latency and bandwidth restrictions, we
see that as the maximum message size is reduced, Parallel ARRF scales nicely due to
parallelizing the requests, whereas sequential ARRF scales roughly by the factor that the
maximum message size is reduced.

When comparing algorithms, Falcon-512 comes the closest to RSA and ECDSA in all
constrained network scenarios, but is still slower despite the efficient verification function.
Falcon-512 is affected primarily by bandwidth and is 60% slower than RSA and 76%
slower than ECDSA in the 128 kilobytes per second scenario when using Parallel ARRF.
If bandwidth is not a concern, then Falcon-512 performs better, but is still 49% slower
than both RSA and ECDSA in both scenarios with 50 megabytes per second bandwidth.
Unsurprisingly, Dilithium2 and SPHINCS+-SHA256-128s perform far worse than Falcon-
512 and the non-post-quantum algorithms; roughly 1.5 and 3 times slower than Falcon-512
when using Parallel ARRF, and even worse when using sequential ARRF.

Finally, when considering data overhead, we can see that when DNS messages sizes are
at the recommended size of 1232 bytes that ARRF actually uses less data to transmit a
DNS signed with Falcon-512 and Dilithium2. This is due to how DNS handles switching to
TCP essentially causing the three-way TCP handshake to turn into a five-way handshake.
First the resolver sends a UDP request to the name server. The name server then sends
a response identical to the request and marks the response as truncated the standard
TCP three-way handshake is then performed. TCP also sends acknowledgement packets
for packets received and thus offsetting the extra costs imposed by fragment requests in
ARRF. With these factors, combined with UDP packet headers being 12 bytes smaller
than those of TCP, allows efficient communication for both Falcon-512 and Dilithium2.
However, TCP becomes more data efficient compared to ARRF once many fragments are
requested and sent. Due to maintaining backwards compatibility, ARRF must surround
all requests and responses inside of a DNS message and all fragments inside of an RRFrag.
TCP, on the other hand, is a stream and only sends a single DNS message header and
sends the raw resource records themselves rather than sending the extra bytes RRFrags
required. As mentioned earlier TCP sends acknowledgement packets for each TCP packet
received. These acknowledgements are smaller than a UDP packet containing an ARRF
request. The size difference depends on how many RRFrags are being requested, but the
most common ARRF request in our experiments was 60 bytes including UDP, IP, and DNS
message headers, and the largest request being 75 bytes, whereas TCP’s acknowledgement
packets are 52 bytes in size. If a DNS message is considerably large, such is the case with

48

SPHINCS+-SHA256-128s signed messages, these small data savings end up making up for
wasting the initial UDP request.

4.3 Discussion

We first discuss ARRF and consider whether it is a viable solution for sending large DNS
messages. We then discuss the viability of post-quantum signatures being applied to
DNSSEC.

4.3.1 ARRF Performance

As can be seen in Tables 4.3 and 4.4, and Figures 4.6, 4.3, 4.4, and 4.5, Parallel ARRF
is by far the most performant beating out TCP in all cases despite how many requests
and responses are required to transmit the original large DNS message. Sequential ARRF
when used in cases of messages being only slightly larger than what can fit in a single UDP
packet also performs quite well when compared against TCP. However Parallel ARRF’s
performance does not come for free. On a busy resolver these parallel requests could eat
up available bandwidth quite quickly and could potentially overwhelm middle boxes. We
hypothesize that a production ready version of ARRF would have rate limiting to prevent
this issue, and therefore performance would likely be. We also note that despite there
not being considerable differences between DNS with only UDP and the ARRF daemon
running but not fragmenting, that there are likely optimizations, such as multithreading,
that can be made to the daemon. We also hypothesize that ARRF being integrated directly
into DNS software would increase efficiency. We leave experimenting and evaluating these
potential optimizations as well as evaluating window sizes as future work.

4.3.2 ARRF Backwards Compatibility

As DNS is a distributed system managed by many different entities, it is likely that there
may be resolvers and/or name servers which do not understand ARRF. We now consider
two scenarios: when the resolver implements ARRF, and when the resolver does not im-
plement ARRF. We also discuss the impact ARRF has on middle boxes.

49

Resolver implements ARRF

When a querier which supports ARRF receives a response from a name server which does
not support ARRF, it will receive a truncated DNS message with the TC flag set. It
can then gracefully fallback to TCP and retry the query, thereby maintaining backwards
compatibility.

Resolver does not implement ARRF

At first glance ARRF may cause issues when the querier receives a response containing an
RRFrag as it will not be able to understand what an RRFrag is, nor what it should do with
it. Thankfully, older resolvers ignore unknown resource record types, so it will gracefully
fallback to TCP as it will see that the TC flag is set resulting in no additional round trips
than if ARRF was not being used.

ARRF Middle box support

By fragmenting at the DNS level, we should ensure that the majority of middle boxes
will not cause issues for ARRF. From a middle box’s perspective, all messages sent using
ARRF look like standard DNS messages which will not require any state to be properly
routed. However, if there exist middle boxes which look inside DNS messages and view
the types of the message’s resource records the new RRFrag type could potentially cause
those middle boxes to reject the message. Additional work is required to determine if these
middle boxes are indeed a concern and, if so, how widespread these middle boxes are.

4.3.3 ARRF Security Considerations

Denial of Service Attacks

ARRF is designed to prevent DoS attacks as much as possible. Since fragments must be
explicitly requested, a querier can reject any fragments it is not expecting. When combined
with DNS cookies, off path attacks become infeasible. An adversary which is in-path could
modify the values in response which contain RRFrags which could cause a querier to ask for
fragments which do not exist. Middle boxes could also inject malicious data into individual
RRFrag’s FRAGDATA fields. If DNSSEC is used then this will cause the validation to
eventually fail. This is acceptable as this validation failure, although denying service, is no

50

worse than DNS without ARRF deployed. ARRF also limits the impact of amplification
DoS attacks as it restricts the response sizes and each response needs a corresponding
request. If a response arrives with the wrong ID or DNS cookie, it should be discarded.

DNS Cache Poisoning

Since RRFrags themselves should not be cached, DNS cache poisoning is no more of a
concern than it is in traditional DNS. If DNSSEC is used, then DNS cache poisoning is
not a concern assuming a secure signature algorithm is used.

Memory Exhaustion Attacks

ARRF as specified is susceptible to memory exhaustion attacks. Although DNS cookies
make this less of a concern for out of path adversaries, there is nothing stopping an on
path adversary from changing the RRSIZE fields in the initial response. Since the querier
uses this initial response as a map without any form of validation, an adversary could
insert many RRFrags advertising they are fragments of extremely large resource records.
The querier would likely then allocate enough memory to store the intermediate state until
reassembly is possible. One potential solution to this would be to use some heuristics to
determine if a RRFrag map makes sense. Based on what the resolver could expect to
receive for a query of some form, the resolver can check to see if the response it actually
received fits within those expectations. For example, if the resolver indicated that it only
supported Falcon-512 signatures, it can check that the advertised sizes of the fragments are
no larger than 690 bytes. We ultimately leave this issue as an avenue for future exploration.

Unreliable Networks

In this work we did not specify nor evaluate how ARRF performs when UDP packets do
not reach their destination. BIND9 uses a default timeout of 800ms to determine whether
it should try the request again or not, but it is unclear if that timeout duration would make
sense for ARRF or not. This question must be answered before ARRF can be deployed
and we leave this as an avenue for future work.

4.3.4 Comparing ARRF against previously proposed mechanisms

As discussed in Section 2.4.2, ARRF is not the first attempt at a DNS level fragmentation
mechanism. Since Sivaraman’s draft “DNS message fragments” [59] was not as developed

51

as Additional Truncated Response (ATR) [60], we will be primarily focusing on ATR in
this section. ATR, Sivaraman’s draft, and ARRF, all rely on DNS level fragmentation. The
DNS servers are required to fragment messages and re-assemble them rather than relying
on the transport layer to handle message fragmentation for them. All three mechanisms
are transport layer agnostic and could therefore be used on both UDP and TCP. It may
seem unclear why someone would want to run any of these mechanisms over TCP, however
by doing so there is the potential for sending DNS messages larger than the 64 kilobyte
maximum. ATR and Sivaraman’s draft could in theory allow resource records of 64 kilo-
bytes to be transmitted; whereas ARRF could allow for resource records of arbitrary length
if RRSIZE were increased. This is due to the difference in granularity of fragmentation
that the three mechanisms use. ATR and Sivaraman’s draft fragment the DNS message
as a whole, whereas ARRF fragments individual resource records. Although there are no
resource records that require an increase to the maximum DNS message size, and therefore
maximum resource record size, it is not entirely unrealistic to see this issue potentially
arising.

Before being broken [12], the Rainbow [21] post-quantum signature scheme was quite
appealing due to its relatively small signature sizes, however had large public keys of 161600
bytes. Since DNSKEYS are sent much less frequently than signatures, this might have been
a reasonable trade off had Rainbow not been broken. It is entirely possible that a new
post-quantum signature scheme is created and deemed secure which has similar signature
and public key sizes. In order to fully support arbitrary sized resource records, the resource
record format would need to be modified to support larger RDATA regions, and RRSIZE
would need to be updated to the proper integer width.

One of the major criticisms of ATR was that since the mechanism would “blindly” send
its additional message as part of its response, it would cause a flood of ICMP ‘destination
unreachable’ packets to be created by resolvers which did not support ATR. Many imple-
mentations close their sockets immediately after receiving a response, so by the time the
additional message is received the socket would no longer be accessible. This would make
debugging considerably more challenging and reduce the usefulness of ICMP messages as
a whole. Another issue arises with firewalls that have the policy of only receiving a single
DNS message per query, and thus compounding the ICMP flood issue. ARRF does not
suffer from these issues. First responses are only sent when they are explicitly queried for.
A DNS server implementing ARRF will never send an additional response blindly and will
never send additional messages to resolvers that do not support ARRF as they will never
ask for them. Similarly, all DNS messages containing RRFrags will have an associated
query and will therefore not get dropped by firewalls implementing the above policy. As
ARRF does not suffer from either of those issues, there will not be a flood of ICMP packets

52

that caused so much concern.

ATR also requires a slight delay between the first message being sent and the trailing
messages being sent in order to maintain message ordering. Receiving messages out of
order is not an issue for ARRF as the requesting server will know what to expect after
receiving the first message containing the “map” of the large DNS message. All responses
after the first one will have been explicitly asked for and are not dependent on any other
responses.

Whereas ATR is quite lightweight, ARRF does have some additional communication
costs. ATR has a single round trip + the delay required to maintain message ordering,
whereas ARRF has Original message size

Maximum message size round trips. With the exception of the initial round
trip these round trips can be performed in parallel thus reducing the overall resolution
time as demonstrated in Figures 4.3, 4.4, 4.5, and 4.6. ARRF also requires more data to
be sent, specifically as part of requesting the additional fragments. RRFrags in requests
are 15 bytes in size, and the number sent depends on the number of resource records, how
large they are, and how much data can fit in the maximum message size.

Sivaraman’s draft uses EDNS0’s OPT resource record requiring three fragmentation
related options support to be assigned by ICANN. ARRF does not use the OPT pseudo-
resource record and therefore does not require any options to be defined by ICANN, however
a new resource record type will need to be assigned for RRFRAss.

Finally both ARRF and ATR can be implemented as a daemon on the resolver side
without any changes required to the DNS software being used. This would make deploy-
ment much simpler as it would not require a DNS operator to update their resolver software
and potentially have version incompatibilities. The reassembly could be performed entirely
transparently to the resolver.

When considering which algorithm should be used to strengthen DNSSEC against a
quantum adversary, we can see that Falcon-512 is by far the most performant whether
ARRF is used or not. This is because Falcon’s signature and key sizes are substantially
smaller than those offered by Dilithium2 and SPHINCS+-128s. Since DNS is such a key
portion of internet infrastructure, any additional overhead will be have significant impact.
Assuming that Falcon’s security stands up to additional scrutiny by the cryptographic
community, we recommend that Falcon-512 be selected for standardization by the DNS
community and that ARRF be deployed alongside Falcon to minimize the slow down caused
by transmitting Falcon’s keys and signatures.

53

Chapter 5

Future Work and Conclusion

To conclude this work we discuss the future work required to deploy ARRF and post-
quantum cryptography to the DNS, and summarize our findings.

5.1 Future Work

Although ARRF appears to be a viable solution to solving DNS message fragmentation and
therefore opening the door for a post-quantum secure DNS, additional work needs to be
done. The backwards compatibility of ARRF needs to be further explored and evaluated;
more specifically exploring if there are middle boxes which cause ARRF to fail. ARRF
as specified in this work is susceptible to memory exhaustion attacks and additional work
needs to be done to prevent these attacks. It is also likely that operators will want to
limit the amount of concurrent requests when using Parallel ARRF and therefore research
into selecting a reasonable limit must be done. In this work we provide a proof of concept
daemon which transparently implements ARRF, but there may be additional concerns for
integrating ARRF into the various DNS implementations and requires additional study. In
this work we only considered the case when packet delivery was guaranteed. Unfortunately,
this is not a guarantee we can rely on in reality and we must therefore research how
ARRF behaves in unreliable networks. Finally, work needs to be done to measure any
additional processing/memory overhead introduced by ARRF and whether that overhead
is reasonable.

Once the above issues have been resolved, ARRF must be proposed to the IETF as
an internet draft. After addressing comments from the DNS community, assuming enough

54

support is received, the ARRF draft must go through a ‘call for adoption’. If enough
support is shown during the call for adoption, a working group will be established and
work on standardizing ARRF. Finally, if the working group deems it appropriate, an RFC
will be published specifying the ARRF standard, and implementations should then begin
adopting the mechanism.

Any proposed signature algorithm must go through a similar standardization process
as ARRF will have to, however should be done independently of ARRF. Although ARRF
makes sense to be deployed alongside a post-quantum signing algorithm, it is important
that in the event ARRF is not standardized that the standardization of a post-quantum
algorithm is not hampered.

5.2 Conclusion

Post-quantum cryptography will inevitably need to be integrated into the DNSSEC ecosys-
tem, however it looks like it will not be as smooth of a transition as we would like. Of
all the options, Falcon-512 is by far the most performant but even with Parallel ARRF is
still significantly slower than currently used classical signing algorithms. There has also
been work on shrinking Falcon-512 signatures significantly which will improve its perfor-
mance [27]. Dilithium2 is perhaps viable as an alternative option, but considering the
DNSSEC community’s previous stance of “we can avoid sending large message by shaping
their contents better (smaller signatures, less additional data)” [66], it is likely to receive
significant resistance through the standardization process. SPHINCS+-128s is by far the
worst performing of the three post-quantum options due to its slow verification and ex-
tremely large signatures which causes resolution times to explode.

Message sizes are not the only thing to consider when discussing which post-quantum
signing algorithm to standardize for DNSSEC, as the security of the algorithms must also
be considered. So far major attacks have been found against several algorithms fairly late
in the NIST selection process. To make matters worse, those algorithms were broken with
traditional computers, therefore making the attacks much more practical. Although the
three selected algorithms are believed to be secure now, it remains to be seen how they
hold up to additional scrutiny. It is likely that using a hybrid of a classical signing scheme
and post-quantum scheme will be required to ensure that the signatures are at least as
strong as what are currently standardized. This will come at a further performance cost
and also increase communication sizes, and we plan to evaluate this additional cost in the
future.

55

One option is waiting for new post-quantum signature schemes to be invented and hope
that signature sizes become more reasonable. NIST is requesting additional post-quantum
signature schemes be submitted for consideration for standardization [56]. However waiting
for such a scheme to emerge is eating into the valuable time needed to plan and prepare
for a quantum adversary. It is best that we plan for the worst case of signatures sizes
not improving and be pleasantly surprised if such a scheme arises. With that in mind, we
recommend Falcon-512 to be the post-quantum signing algorithm selected for DNSSEC
standardization with ARRF as its delivery mechanism to achieve reasonable resolution
times while providing robust fragmentation.

56

References

[1] Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Loïc Bidoux, Olivier Blazy,
Jurjen Bos, Jean-Christophe Deneuville, Arnaud Dion, Philippe Gaborit, Jérôme La-
can, Edoardo Persichetti, Jean-Marc Robert, Pascal Véron, and Gilles Zémor. Ham-
ming Quasi-Cyclic (HQC) Third round version, 2021-06-06 2021.

[2] Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper, Quynh Dang, Carl
Miller, Dustin Moody, Rene Peralta, Ray Perlner, Angela Robinson, Daniel Smith-
Tone, and Yi-Kai Liu. Status report on the first round of the NIST post-quantum
cryptography standardization process, 2019-01-31 2019.

[3] Gorjan Alagic, Daniel Apon, David Cooper, Quynh Dang, Thinh Dang, John Kelsey,
Jacob Lichtinger, Yi-Kai Liu, Carl Miller, Dustin Moody, Rene Peralta, Ray Perlner,
Angela Robinson, and Daniel Smith-Tone. Status report on the second third of the
NIST post-quantum cryptography standardization process, 2022-07-5 2022.

[4] Martin R. Albrecht, Daniel J. Bernstein, Tung Chou, Carlos Cid, Jan Gilcher, Tanja
Lange, Varun Maram, Ingo von Maurich, Rafael Misoczki, Ruben Niederhagen, Ken-
neth G. Paterson, Edoardo Persichetti, Christiane Peters, Peter Schwabe, Nicolas
Sendrier, Jakub Szefer, Cen Jung Tjhai, Martin Tomlinson, and Wen Wang. Classic
McEliece: conservative code-based cryptography, 2020-10-10 2020.

[5] Nicolas Aragon, Paulo S. L. M. Barreto, Slim Bettaieb, Loïc Bidoux, Olivier Blazy,
Jean-Christophe Deneuville, Philippe Gaborit, Santosh Ghosh, Shay Gueron, Tim
Güneysu, Carlos Aguilar Melchor, Rafael Misoczki, Edoardo Persichetti, Jan Richter-
Brockmann, Nicolas Sendrier, Jean-Pierre Tillich, Valentin Vasseur, and Gilles Zémor.
BIKE: Bit Flipping Key Encapsulation Round 3 Submission, 2021-09-29 2021.

[6] Suranjith Ariyapperuma and Chris J. Mitchell. Security vulnerabilities in DNS and
DNSSEC. In The Second International Conference on Availability, Reliability and
Security (ARES’07), pages 335–342, 2007.

57

[7] Derek Atkins and Rob Austein. Threat Analysis of the Domain Name System (DNS).
RFC 3833, RFC Editor, August 2004.

[8] Jean-Philippe Aumasson, Daniel J. Bernstein, Ward Beullens, Christoph Dobraunig,
Maria Eichlseder, Scott Fluhrer, Stafan-Lukas Gazdag, Andreas Hülsing, Panos Kam-
panakis, Stefan Kölbl, Tanja Lange, Martin M. Lauridsen, Florian Mendel, Ruben
Niederhagen, Christian Rechberger, Joost Rijneveld, Peter Schwabe, and Bas Wester-
baan. SPHINCS+ Submission to the NIST post-quantum project, v.3.1, 2022-07-10
2022.

[9] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyuba-
shevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé.
CRYSTALS-KYBER Algorithm Specifications and Supporitng Documentation (Ver-
sion 3.02), 2021-08-04 2021.

[10] Shi Bai, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter
Schwabe, Gregor Seiler, and Damien Stehlé. CRYSTALS-Dilithium Algorithm Speci-
fications and Supporitng Documentation (Version 3.1), 2021-02-8 2021.

[11] G.J. Beernink. Taking the quantum leap: Preparing DNSSEC for Post Quantum
Cryptography. Master’s thesis, University of Twente, February 2022.

[12] Ward Beullens. Breaking Rainbow Takes a Weekend on a Laptop. Cryptology ePrint
Archive, Paper 2022/214, 2022. https://eprint.iacr.org/2022/214.

[13] Ron Bonica, Fred Baker, Geoff Huston, Bob Hinden, Ole Trøan, and Fernando Gont.
IP Fragmentation Considered Fragile. RFC 8900, RFC Editor, September 2020.

[14] Antoine Casanova, Jean-Charles Faugère, Gilles Macario-Rat, Jacques Patarin, Lu-
dovic Perret, and Jocelyn Ryckeghem. GeMSS: A Great Multivariate Short Signature,
2020-10-21 2020.

[15] Wouter Castryck and Thomas Decru. An efficient key recovery attack on SIDH
(preliminary version). Cryptology ePrint Archive, Paper 2022/975, 2022. https:
//eprint.iacr.org/2022/975.

[16] David Conrad. Indicating resolver support of DNSSEC. RFC 3225, RFC Editor, 12
2001.

[17] Lawrence W. Conroy and Scott Petrack. The PINT Service Protocol: Extensions to
SIP and SDP for IP Access to Telephone Call Services. RFC 2848, RFC Editor, June
2000.

58

https://eprint.iacr.org/2022/214
https://eprint.iacr.org/2022/975
https://eprint.iacr.org/2022/975

[18] David A. Cooper, Daniel C. Apon, Quynh H. Dang, Michael S. Davidson, Morris J.
Dworkin, and Carl A. Miller. Recommendation for Stateful Hash-Based Signature
Schemes, 2020-10-30 2020.

[19] Tianxiang Dai, Haya Shulman, and Michael Waidner. DNSSEC misconfigurations in
popular domains. In Cryptology and Network Security, volume 10052, pages 651–660.
Springer International Publishing, 2016.

[20] Quynh Dang. Secure hash standard (SHS). FIPS 180-4, National Institute of Stan-
dards and Technology, 2012-03-06 2012.

[21] Jintai Ding and Dieter Schmidt. Rainbow, a New Multivariable Polynomial Signature
Scheme. In John Ioannidis, Angelos Keromytis, and Moti Yung, editors, Applied
Cryptography and Network Security, pages 164–175. Springer International Publishing,
2005.

[22] Morris Dworkin. SHA-3 standard: Permutation-based hash and extendable-output
functions. FIPS 202, National Institute of Standards and Technology, 2015-08-04
2015.

[23] Morris Dworkin, Elaine Barker, James Nechvatal, James Foti, Lawrence Bassham,
E. Roback, and James Dray. Advanced encryption standard (AES). FIPS 197, Na-
tional Institute of Standards and Technology, 2001-11-26 2001.

[24] Donald E. Eastlake 3rd. Domain Name System Security Extensions. RFC 2535, RFC
Editor, March 1999.

[25] Donald E. Eastlake 3rd and Mark P. Andrews. Domain Name System (DNS) Cookies.
RFC 7873, RFC Editor, May 2016.

[26] Donald E. Eastlake 3rd, Ólafurand Guðmundsson, Paul A. Vixie, and Brian
Wellingotn. Secret Key Transaction Authentication for DNS (TSIG). RFC 2845,
RFC Editor, May 2000.

[27] Thomas Espitau, Mehdi Tibouchi, Alexandre Wallet, and Yang Yu. Shorter Hash-
and-Sign Lattice-Based Signatures. Cryptology ePrint Archive, Paper 2022/785, 2022.
https://eprint.iacr.org/2022/785.

[28] Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky, Thomas
Pornin, Thomas Prest, Thomas Ricosset, Gregor Seiler, William Whyte, and Zhenfei
Zhang. Falcon: Fast-Fourier Lattice-based Compact Signatures over NTRU Specifi-
cation v1.2, 2020-01-10 2020.

59

https://eprint.iacr.org/2022/785

[29] Sukhpal S. Gil, Adarsh Kumar, Harvinder Singh, Manmeet Singh, Kamalpreet Kaur,
Muhammad Usman, and Rajkumar Buyya. Quantum computing: A taxonomy, sys-
tematic review and future directions. Software: Practice and Experience, 52(1):66–114,
2022.

[30] Google. Quantum computing service. https://quantumai.google/
quantum-computing-service. Accessed: 2022-07-01.

[31] Paul E. Hoffman and Patrick McManus. DNS Queries over HTTPS (DoH). RFC
8484, RFC Editor, October 2018.

[32] Paul E. Hoffman and Jakob Schlyter. The DNS-Based Authentication of Named
Entities (DANE) Transport Layer Security (TLS) Protocol: TLSA. RFC 6698, RFC
Editor, August 2012.

[33] Zi Hu, Liang Zhu, John Heidemann, Allison Mankin, Duane Wessels, and Paul E.
Hoffman. Specification for DNS over Transport Layer Security (TLS). RFC 7858,
RFC Editor, May 2016.

[34] Andreas Huelsing, Denis Butin, Stefan-Lukas Gazdag, Joost Rijneveld, and Aziz Mo-
haisen. XMSS: eXtended Merkle Signature Scheme. RFC 8391, RFC Editor, May
2018.

[35] Christian Huitema, Sara Dickinson, and Allison Mankin. DNS over Dedicated QUIC
Connections. RFC 9250, RFC Editor, May 2022.

[36] Geoff Huston, Jao Silva Damas, and Warren Kumari. A Root Key Trust Anchor
Sentinel for DNSSEC. RFC 8509, RFC Editor, December 2018.

[37] IBM. IBM Quantum systems. https://www.ibm.com/quantum/systems. Accessed:
2022-07-01.

[38] Internet Systems Consortium. BIND 9. https://www.isc.org/bind, 2021.

[39] David Jao, Reza Azarderakhsh, Matthew Campagna, Craig Costello, Lucas De Feo,
Basil Hess, Aaron Hutchinson, Amir Jalali, Koray Karabina, Brian Koziel, Brian
LaMacchia, Patrick Longa, Michael Naehrig, Geovandro Pereira, Joost Renes,
Vladimir Soukarev, and David Urbanik. Supersingular Isogeny Key Encapsulation,
2020-10-01 2020.

60

https://quantumai.google/quantum-computing-service
https://quantumai.google/quantum-computing-service
https://www.ibm.com/quantum/systems
https://www.isc.org/bind

[40] Dan Kaminsky. Black ops 2008: It’s the end of the cache as we know
it. https://www.blackhat.com/presentations/bh-jp-08/bh-jp-08-Kaminsky/
BlackHat-Japan-08-Kaminsky-DNS08-BlackOps.pdf, 2008.

[41] Olaf M. Kolkam, Matthijs Mekking, and Miek Gieben. DNSSEC Operational Prac-
tices, Version 2. RFC 6781, RFC Editor, December 2012.

[42] Annabelle Lee, Miles Smid, and Stanley Snouffer. Security requirements for cryp-
tographic modules [includes change notices as of 12/3/2002]. FIPS 140-2, National
Institute of Standards and Technology, 2001-05-25 2001.

[43] Marek Majkowski and Ólafur Guðmundsson. Deprecating the DNS ANY meta-query
type. https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/
call-for-proposals-dig-sig-sept-2022.pdf, 2015-03-06 2015.

[44] Keyu Man, Zhiyun Qian, Zhongjie Wang, Xiaofeng Zheng, Youjun Huang, and Haixin
Duan. Dns cache poisoning attack reloaded: Revolutions with side channels. In
Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’20, page 1337–1350. Association for Computing Machinery, 2020.

[45] Jiarun Mao, Michael Rabinovich, and Kyle Schomp. Assessing Support for DNS-over-
TCP in the Wild. In Oliver Hohlfeld, Giovane Moura, and Cristel Pelsser, editors,
Passive and Active Measurement, pages 487–517, Cham, 2022. Springer International
Publishing.

[46] David McGrew, Michael Curcio, and Scott Fluhrer. Leighton-Micali Hash-Based Sig-
natures. RFC 8554, RFC Editor, April 2019.

[47] Microsoft. Azure quantum. https://azure.microsoft.com/en-ca/services/
quantum/. Accessed: 2022-07-01.

[48] Paul Mockapetris. Domain names: Concepts and facilities. RFC 882, RFC Editor,
November 1983.

[49] Paul Mockapetris. Domain names: Implementation specification. RFC 883, RFC
Editor, November 1983.

[50] Dustin Moody, Gorjan Alagic, Daniel Apon, David Cooper, Quynh Dang, John Kelsey,
Yi-Kai Liu, Carl Miller, Rene Peralta, Ray Perlner, Angela Robinson, Daniel Smith-
Tone, and Jacob Alperin-Sheriff. Status report on the second round of the NIST
post-quantum cryptography standardization process, 2020-07-22 2020.

61

https://www.blackhat.com/presentations/bh-jp-08/bh-jp-08-Kaminsky/BlackHat-Japan-08-Kaminsky-DNS08-BlackOps.pdf
https://www.blackhat.com/presentations/bh-jp-08/bh-jp-08-Kaminsky/BlackHat-Japan-08-Kaminsky-DNS08-BlackOps.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://azure.microsoft.com/en-ca/services/quantum/
https://azure.microsoft.com/en-ca/services/quantum/

[51] Moritz Müller, Jins de Jong, Maran van Heesch, Benno Overeinder, and Roland van
Rijswijk-Deij. Retrofitting post-quantum cryptography in internet protocols: a case
study of DNSSEC. ACM SIGCOMM Computer Communication Review, 50(4):49–57,
2020.

[52] Moritz Müller, Matthew Thomas, Duane Wessel, Wes Hardaker, Taejoon Chung,
Willem Toorop, and Roland van Rijswijk-Deij. Roll, roll, roll your root: A com-
prehensive analysis of the first ever DNSSEC root KSK rollover. In Proceedings of the
ACM Internet Measurement Conference, IMC ’19, page 1–14. Association for Com-
puting Machinery, 2019.

[53] Moritz Müller, Willem Toorop, Taejoong Chung, Jelte Jansen, and Roland van
Rijswijk-Deij. The reality of algorithm agility: Studying the DNSSEC algorithm
life-cycle. In Proceedings of the ACM Internet Measurement Conference, IMC ’20,
page 295–308. Association for Computing Machinery, 2020.

[54] NIST. Submission requirements and evaluation criteria for the post-quantum cryp-
tography standardization process. https://csrc.nist.gov/CSRC/media/Projects/
Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.
pdf, 2026-12-20 2016.

[55] NIST. Compliance FAQs: Federal information process-
ing standards (FIPS). https://www.nist.gov/standardsgov/
compliance-faqs-federal-information-processing-standards-fips, Nov
2019.

[56] NIST. Call for Additional Digital Signature Schemes for the Post-Quantum Cryptog-
raphy Standardization Process. https://csrc.nist.gov/csrc/media/Projects/
pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf, 2022-09-
06 2022.

[57] Scott Rose, Matt Larson, Dan Massey, Rob Austein, and Roy Arends. DNS Security
Introduction and Requirements. RFC 4033, RFC Editor, March 2005.

[58] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM Review, 41(2):303–332, 1999.

[59] Mukund Sivaraman, Shane Kerr, and Linjian Song. DNS message fragments. Internet-
Draft draft-muks-dns-message-fragments-00, Internet Engineering Task Force, July
2015.

62

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://www.nist.gov/standardsgov/compliance-faqs-federal-information-processing-standards-fips
https://www.nist.gov/standardsgov/compliance-faqs-federal-information-processing-standards-fips
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf

[60] Linjian Song and Shengling Wang. ATR: Additional Truncation Response for Large
DNS Response. Internet-Draft draft-song-atr-large-resp-03, Internet Engineering Task
Force, March 2019.

[61] Douglas Stebila and Michele Mosca. Post-quantum key exchange for the internet and
the open quantum safe project. In Selected Areas in Cryptography (SAC) 2016, volume
10532 of LNCS, pages 14–37. Springer International Publishing, 2016.

[62] Gijs van den Broek, Roland van Rijswijk-Deij, Anna Sperotto, and Aiko Pras.
DNSSEC meets real world: dealing with unreachability caused by fragmentation.
IEEE Communications Magazine, 52(4):154–160, 2014.

[63] Roland van Rijswijk-Deij, Kasper Hageman, Anna Sperotto, and Aiko Pras. The per-
formance impact of elliptic curve cryptography on DNSSEC validation. IEEE/ACM
Transactions on Networking, 25(2):738–750, 2017.

[64] Roland van Rijswijk-Deij, Anna Sperotto, and Aiko Pras. DNSSEC and its potential
for DDoS attacks: A comprehensive measurement study. In Proceedings of the ACM
Internet Measurement Conference, IMC ’14, page 449–460. Association for Computing
Machinery, 2014.

[65] Paul Vixie. Extension Mechanisms for DNS (EDNS0). RFC 2671, RFC Editor, August
1999.

[66] Paul Vixie. Re: [DNSOP] Call for Adoption: draft-song-atr-large-resp. https://
mailarchive.ietf.org/arch/msg/dnsop/JdhkwdWT2hGzIwfVx6CrX15KCfk/, 2019.

[67] Mattäus Wander. Measurement survey of server-side DNSSEC adoption. In 2017
Network Traffic Measurement and Analysis Conference (TMA), pages 1–9, 2017.

[68] Samuel Weiler and Johan Ihren. Minimally Covering NSEC Records and DNSSEC
On-line Signing. RFC 4470, RFC Editor, April 2006.

[69] Duane Wessels, Warren Kumari, and Paul E. Hoffman. Signaling Trust Anchor Knowl-
edge in DNS Security Extensions (DNSSEC). RFC 8145, RFC Editor, April 2017.

[70] Haisheng Yu, Yan Liu, and Guangzhou Genlian. DNS message fragments. Internet-
Draft draft-hsyu-message-fragments-00, Internet Engineering Task Force, April 2022.

63

https://mailarchive.ietf.org/arch/msg/dnsop/JdhkwdWT2hGzIwfVx6CrX15KCfk/
https://mailarchive.ietf.org/arch/msg/dnsop/JdhkwdWT2hGzIwfVx6CrX15KCfk/

	List of Figures
	List of Tables
	Introduction
	Background on the Domain Name System
	The Domain Name System
	Security Concerns for DNS
	Domain Name Security Extensions
	Other DNS Security Mechanisms

	DNSSEC Challeneges
	Using DNSSEC for Amplification Denial of Service Attacks
	UDP/IP Fragmentation and DNSSEC
	DNSSEC Configuration
	DNSSEC Adoption

	DNSSEC Algorithm Life Cycle
	Root zone key rollover

	Post-quantum Cryptography
	NIST Post-Quantum Cryptography Selection Process
	Selected Algorithms and Round 4 Candidates
	Digital signature algorithms
	Public-key encryption/key encapsulation mechanisms

	Stateful Hash-Based Signatures
	Post-Quantum Cryptography and the Domain Name System

	Adapting DNSSEC for a Quantum Future
	Request based fragmentation
	Resource Record Fragments
	Using RRFrags
	Example execution of ARRF
	Caching and DNSSEC Considerations

	Evaluating Post-quantum DNSSEC
	Algorithm performance
	Post-quantum with standard DNSSEC
	Post-quantum with ARRF
	Post-quantum data transmission
	Results

	Discussion
	ARRF Performance
	ARRF Backwards Compatibility
	ARRF Security Considerations
	Comparing ARRF against previously proposed mechanisms

	Future Work and Conclusion
	Future Work
	Conclusion

	References

