
Expressive and Efficient Memory
Representation for Bounded Model

Checking of C programs

by

Xiang Zhou

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2022

© Xiang Zhou 2022

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contributions

Some figures and formulations are taken from Bounded Model Checking for LLVM paper
[29] with contributions from Siddharth Priya, Yusen Su, Prof. Yakir Vizel, Dr. Yuyan Bao
and Prof. Arie Gurfinkel.

Some of the features in SeaBmc, which SeaM depends on were implemented by Sid-
dharth Priya and Prof. Arie Gurfinkel.

The benchmark Verify-C-Common project [28] contains contributions from Siddharth
Priya, Yusen Su, Prof. Yakir Vizel, Dr. Yuyan Bao and Prof. Arie Gurfinkel.

iii

Abstract

Ensuring memory safety in programs has been an important yet difficult topic of re-
search. Most static analysis approaches rely on the theory of arrays to model memory
access. The limitation of the theory of arrays in terms of scalability and compatibility
with SAT/SMT solvers is well-known, and there has been many attempts at optimizing
either the theory itself or memory encodings based on theory of arrays.

In this thesis, we demonstrate that existing arrays-based memory encodings miss po-
tential optimization opportunities by omitting language specific properties such as align-
ment and pointer arithmetic in C. We present SeaM, a new memory representation for
C programs built around a more expressive First-order Theory: the Theory of Memory.
We show that by preserving more C language specific rules and properties, the Theory
of Memory allows for more thorough optimization methods during eager rewriting of se-
quences of stores. We introduce two such optimization methods in this thesis. First, we
over-approximate pointer comparison with an abstract interpretation-like approach called
AddressRangeMap. Second, we compress sequences of stores with Store-Map for faster
address offset look-ups.

The new memory representation is implemented in SeaBmc, a new BMC tool for
LLVM. We evaluate our approach on real-world bounded model checking tasks from the
aws-c-common library and Sv-Comp benchmarks and compare it against two existing
memory representations in SeaBmc. Our results show that SeaM outperforms the theory
of array based representation and is comparable with the λ based representation.

iv

Acknowledgements

I would like to thank my supervisor Professor Arie Gurfinkel for guiding me in every
step of my research projects. I would like to thank my colleagues for aiding me with
their domain specific expertise. Lastly I would like to thank my readers Prof. Mahesh
Tripunitara and Prof. Meng Xu for their insightful feedback.

v

Dedication

This is dedicated to my family, friends and Lulu the cat, who are with me during my
MASc journey.

vi

Table of Contents

List of Figures ix

List of Tables xii

1 Introduction 1

2 Background 4

2.1 Basic rewrite rules . 4

2.2 Theory of Arrays . 7

2.3 Encoding set/copy memory operations . 9

2.4 Encoding Arrays with λ-expressions . 11

2.5 SeaBmc . 11

3 Overview 16

4 Theory of Memory 21

5 Address Range Map 27

5.1 Offset Intervals . 28

5.2 Address Range Map . 32

6 Compressing write with Store-Map 40

6.1 Store-Map data structure . 41

vii

7 Implementation 46

7.1 Multi-step rewriter . 46

7.2 Cached ordered maps for Store-Map. 51

8 Evaluations 54

8.1 Overall performance . 55

8.2 Simplification with ARM . 59

8.3 Overhead reduction with Store-Map . 63

8.4 Conclusion . 66

9 Related Work 68

10 Conclusion 70

References 72

viii

List of Figures

2.1 Rewrite rules for ite terms. 5

2.2 Example rewrite rules for comparison terms. 6

2.3 Example rewrite rules for Boolean terms. 6

2.4 Rewrite rules for addition arithmetic terms. 7

2.5 Term formation rules of TA, a is an σA constant. 8

2.6 Rewrite rules for TA read -over-write expressions. 9

2.7 Term formation rules of TASC . 9

2.8 Rewrite rules for read -over-set . 10

2.9 Rewrite rules for read -over-copy . 10

2.10 Simplified grammar of SEA-IR, where E, L R, P and M are expressions, labels,
scalar registers, pointer registers and memory registers, respectively. Credit
to Siddharth Priya. 13

2.11 Definition of some sym semantics for translating parts of VC, RDEF and
MDEF. 14

2.12 sym translation of memory operations in Lambdas and Arrays. 15

3.1 Sample C program containing memory operations P1 16

3.2 Memory state of P1 after line 17 encoded in TA. 17

3.3 TA expression of read -over-write operation ∗num. 17

3.4 TA expression of read -over-write operation st−>b. 18

3.5 Sample C program P2 containing multiple memory operations on same ad-
dresses. 19

ix

3.6 Memory state of P2 after line 10 encoded in TA. 20

4.1 Term formation rules of TM for programs with 8-bit byte size, 32-bit word
size. Operations between pointer and scalar terms are differentiated with
subscripts p and s. 23

4.2 Axioms for TM pointer comparison. 24

4.3 Axioms for TM pointer arithmetics. 24

4.4 TM word-sized read -over-write axioms. 25

4.5 TM read over word-sized copy, set axioms. 25

4.6 read -over-write rewrite rules for word-sized memory stores. 25

4.7 read -over-write rewrite rules for word-sized memset and memcpy. 26

4.8 sym translation of memory operations in SeaM. 26

5.1 Concrete semantics in domain Ds. 28

5.2 α and γ between Ds and D̂s. min Si∈N and max Si∈N returns the maximum
and minimum element of a set S respectively. 29

5.3 Abstract semantics of itv abstract operators ⊔,⊓ and +̂ . min(a, b) ,
max(a, b) returns the smaller and larger of a and b; ite(c, a, b) returns a if
c is True and b otherwise. 29

5.4 Example tS s1 representing a set of scalar numbers nums(s1), with abstract
value α(nums(s1)). ITE(i) node represents expression ite(i, ...). 30

5.5 Inference rules for numeric offset inclusion in Offset itv. 32

5.6 Concrete semantics in domain Dp. Note nums from itv domain. 33

5.7 Example tP p1 representing set of pointers ptrs(p1), with abstract value
α(ptrs(p1)). ITE(i) node represents expression ite(i, ...). 33

5.8 γ and α functions between ARM and pointers. 34

5.9 Abstract semantics for ARM ⊔, ⊓, ⊑ and +# . Accent ˆ denotes values
and operators of itv. 34

6.1 Memory write sequence represented as a linked-list. 41

6.2 Part of a memory write sequence represented as a map. 41

x

6.3 Memory write sequence represented as a linked list with a Store-Map node. 42

6.4 write-over-write rewrite rules related to creating and updating store-map. . 43

6.5 Rewrite rules for reading store-map . 44

7.1 Example Expr of a tM under rewrite. 50

7.2 Insertion process with OCL and cached stl map. 53

8.1 Per task solving time using Z3 . 57

8.2 Per task solving time using Yices2 . 58

8.3 Per task pre-processing comparison . 59

8.4 Semantically equivalent expressions . 60

8.5 # of extra ROW skips vs. reduction in syntactic size. 61

8.6 SeaM with and without ARM syntactic size per task. 62

8.7 SeaM with and without ARM solving time per task. 63

8.8 Pre-processing time on Sv-Comp tasks. 65

8.9 bAnd program source code. 66

8.10 Pre-processing time of SeaM configurations with increasing SELECT_SIZE. 67

xi

List of Tables

8.1 Overall BMC performance of SeaM, Arrays and Lambdas on aws-c-common
benchmark with Z3. cnt , fld and to measures number of total tasks,
failed tasks and timeouts per category respectively. Timeout threshold
is 1,200 seconds. 56

8.2 Overall BMC performance of SeaM, Arrays and Lambdas on aws-c-common
benchmark with Yices2 solver. cnt , fld and to measures number of to-
tal tasks, failed tasks and timeouts per category respectively. Timeout
threshold is set to 1,200 seconds. 58

8.3 BMC performance of SeaM with and without ARM on aws-c-common
benchmark with Z3 and Yices2. Timeout threshold is 1,200 seconds. . . . 61

8.4 BMC performance on 10 Sv-Comp programs. 64

8.5 BMC performance summary on bAnd. 65

xii

Chapter 1

Introduction

Ensuring memory safety has always been one of the most crucial yet tricky aspects of any
programming language that manipulates memory. Some high-level programming languages
like Java [20] assist programmers with built-in runtime checks against certain memory faults
like null pointer dereference and out-of-bound memory access. More recent development in
programming language like Rust [23] attempt to achieve balance between high-level mem-
ory safety and low-level control with its ownership type system, where pointer aliasing is
tracked statically to prevent direct mutation of aliased state. However, low-level languages
often lack built-in memory safety mechanisms like those possessed by Java and Rust. The
C language, for example, gives programmers low-level control of memory operations, yet
features like arbitrary pointer arithmetic and manual memory management can take years
to master, and can lead to catastrophic memory errors if used incorrectly. The lack of built-
in compile-time or runtime checking means severe security exploits like Heartbleed [21] can
go unnoticed for years in some of the most trusted software libraries like OpenSSL.

Over the years, C programmers have gained access to a plethora of 3rd-party tools
for avoiding and detecting memory errors. Dynamic Binary Instrumentation (DBI) tools
like Valgrind [26] check memory errors at runtime by executing instrumented binary under
emulated environment. DBI tools allow for analysis of programs without the source code,
yet often suffer from heavy overhead in terms of running time. Memory checks instrumented
at compile-time alleviate running-time overhead by executing natively instead of under
emulation. One of the most commonly used compile-time instrumentation tools is LLVM’s
AddressSanitizer [32]. The drawback of compile-time instrumentation tools is that they
require the source code of program under analysis in order to re-compile under special
configurations. The main drawback of all dynamic analysis tools is that their effectiveness
rely on the quality of test suites executed. Even with a great test suite, it is still nearly

1

impossible for dynamic analysis to explore all program states of any complex program.
An alternative approach to ensure memory safety is through static analysis techniques like
Bounded Model Checking (BMC) and Symbolic Execution (SE) [7]. Many static analysis
approaches reduce the problem of program verification to Satisfiability Modulo Theories
(SMT) [2] and then eventually to satisfiability (SAT) solving, which allows them to explore
more of the program states without handcrafting as many test cases. To verify programs
manipulating memory then, we need an expressive SMT theory that can model memory
operations as well as efficient decision procedures that reduces the theory to simpler form.

The theory of arrays (TA) ([24], [1], [22]) is a common choice for modeling memory. An
Array sort is defined by its index sort σI and element sort σE. An array can be seen as an
infinite map from indices of σI to elements of σE. A write to memory is modeled by the TA
write (store in SMT-LIB2) operation: write : σA×σI×σE → σA; while a read from memory
is modeled by the TA read (select in SMT-LIB2) operation: read : σA × σI → σE. The
reduction of formulas with TA terms to equivalent formulas with only underlying theories
of σI and σE along with if-then-else (ite) terms.

The basic form of TA still has a few missing pieces for sufficiently modeling real-world
C programs. First, the transformation of long sequences of read -over-write (ROW) terms
can lead to large nested case-splits. [19] introduced a variety of preprocessing techniques
that eliminates ROW terms, including lazily delaying the transformation of read terms
by substituting them with new variables. Similarly, [6] replaces reads with variables of
another theory (like uninterpreted functions) and tries to solve the formula lazily, only
adding lemmas when inconsistencies occur between indices equality and read variables
equality. A more recent work [18] further reduced the overhead of ROW elimination by
grouping writes with comparable indices together. Note that [18] inspired much of our work
in Chapter 6. Second, common memory operations over a range of indices like memcpy
and memset cannot be represented succinctly by TA read and write operations alone. Sinz
et al.([33], [17], [16]) addressed this issue by extending TA to better model memcpy and
memset operations. In their BMC tool LLBMC ([25], [15]), operations like memcpy and
memset are directly modeled with succinct λ-terms instead of sequences of chained writes.
Similar efforts have also been applied on the SMT solver side. Boolector [5], for example,
matches patterns representing array operations over a range of consecutive indices and
extracts λ-terms from the patterns [27].

Existing optimizations drastically improved the performance of array-based memory
encodings. However, few has taken account C-specific memory rules. Specifically, C stan-
dard implies that given two distinct memory objects oa and ob, and two corresponding legal
pointer arithmetic terms oa+x and ob+y, then oa+x ̸= ob+y must hold. We hypothesize
that by omitting C language specific properties like such, existing memory encodings could

2

miss certain simplification opportunities only applicable under C memory model.

In this thesis, we present SeaM, a more expressive memory representation preserving
more features of the C language. The first component of the new memory representation
is an expressive First-Order Theory called Theory of Memory TM based on ROW axioms
similar to those in TA. TM preserves features of C language source code such as rules for
legal pointer arithmetic. TM also contains succinct encoding of batch memory operations
like memcpy and memset based on the extended TA in [33]. We also present the rewrite
rules for transforming formulas with TM terms present to formulas containing only ite and
underlying theory terms.

With memory operations encoded in TM, we next showcase two optimization techniques
enabled by TM. First, we observe that one of the more expensive operations during ROW
simplification is the resolution of (dis-)equalities between nested pointer expressions. If left
to the SMT/SAT solver, these (dis-)equalities would require expensive ite-pull and ite-push
transformations (see Chapter 2 for detail). For faster resolution of pointer (dis-)equality,
we over-approximate pointer expressions with an Abstract Interpretation-inspired approach
called Address Range Map (ARM), and apply comparisons between abstract values where
possible.

Second, we make the observation that pre-processing each ROW term is an operation
with linear time complexity. With TM, memory write operations into addresses with
different unique base address can be safely commuted since they are guaranteed to be
disjoint; conversely, writes with identical unique base address can be grouped together for
faster lookup. We introduce the Store-Map data structure to compress consecutive store
operations, and present rewrite rules for read-over-store-map with logarithmic in best-case
scenario.

SeaM is implemented as part of the Verification Engine of SeaBMC, a BMC tool that
targets LLVM IR compatible languages like C. We evaluate our approach against exist-
ing basic array-based memory representation and lambda-based memory representation
in SeaBMC, on the BMC tasks targeting real-world C code from the Verify-C-Common
benchmark. Our current results show that TM-based memory representation drastically
outperforms array based approach in terms of verification time. We further observe that
over-approximating pointer comparisons with ARM resulted in more pointer (dis-)equality
resolutions, effectively reducing formula size and verification time. We also evaluate SeaM
on selected verification tasks from Sv-Comp that contain longer sequences of ROW terms.
This set of experiments show that SeaM achieves similar level of simplification as λ-based
encoding with lower overhead in terms of pre-processing time. The reduction in pre-
processing overhead is even more pronounced with store compression using Store-Map.

3

Chapter 2

Background

This chapter serves as a basis for understanding the rest of the thesis. In this chapter, we
first summarize rewrite rules and procedures for ite-terms, comparison terms and Boolean
terms. This chapter describes the axoims and rules that establishes the basic form of
the Theory of Arrays. Next, we present an extension of TA that allows for more succinct
representation of batch memory operations like memcpy and memset. SeaM is implemented
in SeaBmc, a BMC tools for LLVM IR. We briefly summarize the design and features of
SeaBmc for modeling memory and verifying memory safety properties.

2.1 Basic rewrite rules

In this thesis, we frequently use rewrite rules to define semantics and simplification rules.
For rest of the thesis, we use the notation ⊢P φ to indicate that the formula φ is deduced
to be valid by some proof system P , and ⊢ φ when the proof system P is irrelevant. We
write |= φ to indicate that φ is valid (but not necessarily provable). A rewrite rule

⊢ a
t1 ⇝ t2

means if a is proved to be valid, then the term t1 can be rewritten to t2. This means that
any formula ϕ containing t1 is equivalent to the formula ϕ[t1/t2]. For the rest of this thesis,
when presenting axioms and rewrite rules, we assume that all free variables are implicitly
universally quantified. For example, we write ψ(a) to mean ∀a . ψ(a).

4

ITE-PUSH
f(ite(c, x, y)) ⇝ ite(c, f(x), f(y))

ITE-PULL
ite(c, f(x), f(y)) ⇝ f(ite(c, x, y))

⊢ c
ite(c, x, y)⇝ x

⊢ ¬c
ite(c, x, y)⇝ y

ITE-EQ-1
ite(c, x, y) = w ⇝ ite(c, x = w, y = w)

ITE-EQ-2
ite(c, x, y) = ite(c, u, w) ⇝ ite(c, x = u, y = w)

⊢ x = y

ite(c, x, y) ⇝ x

⊢ x = ⊤ ⊢ y = ⊥
ite(c, x, y) ⇝ c

⊢ x = ⊥ ⊢ y = ⊤
ite(c, x, y) ⇝ ¬c

Figure 2.1: Rewrite rules for ite terms.

In the rest of this thesis, we use ite-terms in the form of ite(c, a, b) as a shorthand for if
c then a else b. Figure 2.1 defines the semantics of ite-terms with rewrite rules. Given an
arbitrary function f , ITE-PUSH pushes f into an ite-term, and ITE-PULL lifts f from
an ite-term. While the rewrite rules are shown for unary functions only, they easily extend
to functions and predicates of arbitrary arity. As an example, we show rewrite rules for
equality (a binary predicate) over ite-terms in ITE-EQ rules.

Reducing ite-terms A common problem in compiling expressions down to satisfiability
solvers is to reduce the formulas to simpler expressions that can be represented effectively
in CNF. Here, we describe the procedure for ite-terms.

Let φ be a formula containing an ite-term t of the form f(ite(c, x, y)). Construct a
formula ψ as follows: ψ = (φ[t 7→ f(w)] ∧ (c ⇒ w = x) ∧ (¬c ⇒ w = y)), where w is a
fresh variable not used in φ. Then, φ is SAT iff ψ is SAT, and ψ is approximately same
size as φ: |φ| ≈ |ψ|. The encoding is similar to Tseytin transformation [34] commonly used
to encode arbitrary formulas to equisatisfiable CNF. The transformation is formalized by

5

the following rewrite rule:

t = f(ite(c, x, y)) w fresh in φ
φ[t] ⇝ (φ[t 7→ f(w)] ∧ (c⇒ w = x) ∧ (¬c⇒ w = y)) (2.1)

Note that while the transformation does not increase the size of the formula, it does
introduce additional variables (namely w). This, in turn, complicates potential simplifica-
tions.

Comparison (=,≤) terms are crucial for representing array operations with ite-terms
by forming index comparison. The details are covered in Sec. 2.2. Figure 2.2 presents some
basic rewrite rules for comparison terms.

⊢ a = b ▷◁ ∈ {≤,=}
(a op p) ▷◁ (b op q) ⇝ p ▷◁ q

⊢ a = b

a = b ⇝ ⊤
⊢ a ̸= b

a = b ⇝ ⊥

a ̸= b ⇝ ¬(a = b)

Figure 2.2: Example rewrite rules for comparison terms.

In order to perform simplifications on ite-terms, it is necessary to first perform simplifi-
cations on the Boolean terms forming the condition part. Figure 2.3 presents some example
rewrite rules for Boolean terms containing negations. Note that the rule NEG-PUSH is
a variation of ITE-PUSH.

¬(¬(a)) ⇝ a
NEG-PUSH

¬(ite(c, x, y)) ⇝ ite(c,¬x,¬y)

⊢ a = ⊤
¬(a) ⇝ ⊥

⊢ a = ⊥
¬(a) ⇝ ⊤

Figure 2.3: Example rewrite rules for Boolean terms.

6

Arithmetic (+,−) terms are also important for representing index arithmetics. Sec. 2.2
also shows index arithmetics representing the range of batch array operations. Figure 2.4
shows two rewrite rules for arithmetics containing addition (+) operation.

⊢ +(b, c) = d
ADD-COMPRESS

+(a, b, c) ⇝ +(a, d)

ADD-FLATTEN
+(a,+(b, c)) ⇝ +(a, b, c)

Figure 2.4: Rewrite rules for addition arithmetic terms.

Note that apart from the purely syntactic rules, most of the rewrite rules presented
above require certain assumption(s) to be true under some proof system. One of the
more common assumptions take the form of (dis-)equality (=, ̸=). In Sec. 2.2 we show the
importance of (dis-)equality between array indices. In Chapter 4 we show how preserving
C memory semantics can serve as a proof system for deciding array-like index (dis-)equality
checks. Furthermore, in Chapter 5 we show another proof system for index (dis-)equality
checks based on abstract interpretation.

2.2 Theory of Arrays

Theory of arrays (TA) is commonly used to represent memory operations. The classic
theory of arrays was first introduced by McCarthy [24] with the following signature:

ΣA = {read, write,=}

read : σA × σI → σE

write : σA × σI × σE → σA

note that the binary function equality (=) is only defined between element terms and index
terms in non-extensional TA. TA defines an array sort σA with the element sort σE and
the index sort σI of the array. The formation rules of terms in TA and syntax of read and
write are defined in Figure 2.5, where the detailed formation rules of index terms tI and
element terms tE are determined by the underlying theories TE and TI .

7

tI ::= ... index terms
tE ::= ... | read(tA, tI) element terms
tA ::= a | write(tA, tI , tE) array terms

Figure 2.5: Term formation rules of TA, a is an σA constant.

The semantics of read and write is defined by the following axioms:

∀i, j . i = j ⇒ read(a, i) = read(a, j) (A1)
∀i, j . i = j ⇒ read(write(a, j, v), i) = v (A2)
∀i, j . i ̸= j ⇒ read(write(a, j, v), i) = read(a, i) (A3)

Axoim (A1) states that reading from the same array a at the same index shall yield
the same element. Axoims (A2) and (A3) assert the rules for read -over-write. Given a
modified array write(a, j, v), (A2) states that if a read over the same index as the previous
write, then the read yields the written element; if the read is over a different index as the
previous modification, the read shall always yield the element at index i of the unmodified
array a.

Extensionality Note that with the above three axioms, it is only possible to compare
the equality between elements of arrays. To compare equality between arrays themselves,
we need to add the axiom of extensionality:

∀a, b, i . a = b⇔ read(a, i) = read(b, i) (A4)

SeaBmc, the BMC tools in which the new memory representation is implemented, uses
only non-extensional theory of arrays. For the rest of this thesis, we write TA to refer to
the non-extensional theory of arrays.

Based on the read -over-write axioms, Figure 2.6 shows rewrite rules for TA read-over-
write expressions that replace write terms with ites.

With the basic form of TA presented above, each write operation can only represent
modification of array contents one index at a time. Given consecutive writes to mem-
ory or batch memory operations such as memset and memcpy over n indices then, TA
represents the operations with sequences of writes with size growing linearly to n. This
behaviour creates a significant performance bottleneck at both the simplification stage and
the SMT/SAT solving stage. Furthermore, it would be impossible to accurately repre-
sent batch memory operations with n of variable (symbolic) value. In the next section,
we present an alternative way to encode batch memory operations with λ-expressions.
Chapter 6 also presents a potential approach to compress consecutive writes to memory.

8

read(write(a, i, v), j) ⇝ ite(i = j, v, read(a, j))

⊢ i = j

read(write(a, i, v), j) ⇝ v

⊢ i ̸= j

read(write(a, i, v), j) ⇝ read(a, j)

Figure 2.6: Rewrite rules for TA read -over-write expressions.

2.3 Encoding set/copy memory operations

Work from Falke ([17], [16]) introduced theory of arrays with set and copy operations
(TASC). TASC extends TA with additional signatures that describe array operations over a
range of size term tS with sort σS:

ΣASC = ΣA ∪ {copy, set,+,−,≤, <}

set : σA × σI × σE × σS → σA

copy : σA × σI × σA × σI × σS → σA

Note the addition of arithmetic operations (+,−) and comparison operations (≤, <) to
the signature. They are defined between terms of σI and σS sorts to represent contiguous
range of indices. The underlying theories of σI and σS are therefore numeric such as the
theory of BitVectors (TBV).

The term formation rule of TASC is also expanded, shown in Figure 2.7

tI ::= ... index terms
tS ::= ... size terms
tE ::= ... | read(tA, tI) element terms
tA ::= a | write(tA, tI , tE) array terms

| set(tA, tI , tE , tS)
| copy(tA, tI , tA, tI , tS)

Figure 2.7: Term formation rules of TASC

Informally, a set(a, p, v, s) operation sets all elements of a with indices in the range
between p and p+ s− 1 to the value v ; a copy(a, p, b, q, s) writes the values of elements in

9

array b with indices between q and q+ s− 1 to elements in array a with indices between p
and p + s− 1. Formally, the semantics of a read over set/copy is defined by the following
axioms:

∀p, i, s . p ≤ i < p+ s⇒ read(set(a, p, v, s), i) = v (A5)

∀p, i, s . ¬(p ≤ i < p+ s) ⇒ read(set(a, p, v, s), i) = read(a, i) (A6)

∀p, i, s . p ≤ i < p+ s⇒ read(copy(a, p, b, q, s), i) = read(b, q + (i− p)) (A7)

∀p, i, s . ¬(p ≤ i < p+ s) ⇒ read(copy(a, p, b, q, s), i) = read(a, i) (A8)

Based on axioms A5-A8, we can devise rewrite rules for read -over-set (Figure 2.8) and
read -over-copy (Figure 2.9) that eliminate set and copy terms.

read(set(a, p, s, v), i) ⇝ ite(p ≤ i < (p+ s), v, read(a, i))

⊢ p ≤ i < (p+ s)

read(set(a, p, s, v), i) ⇝ v

⊢ ¬(p ≤ i < (p+ s))

read(set(a, p, s, v), i) ⇝ read(a, i)

Figure 2.8: Rewrite rules for read -over-set

read(copy(a, p, b, q, s), i) ⇝ ite(p ≤ i < (p+ s), read(b, q + (i− p)), read(a, i))

⊢ p ≤ i < (p+ s)

read(copy(a, p, b, q, s), i) ⇝ read(b, q + (i− p))

⊢ ¬(p ≤ i < (p+ s))

read(copy(a, p, b, q, s), i) ⇝ read(a, i)

Figure 2.9: Rewrite rules for read -over-copy

TASC enables more succinct and precise encoding of memory state of programs contain-
ing batch memory operations like set and copy. The improvement is especially crucial for
applications like BMC, which alternatively treats set and copy like iterations with basic TA
encoding. With a finite limit on unrolling, soundness of the verification is compromised
when the size of address range is symbolic.

10

2.4 Encoding Arrays with λ-expressions

Instead of eagerly rewriting read -over-array expressions, it is also possible to simulate array
operations using λ-expressions. In fact, all σA terms can be expressed using a λ-expression
λi.s, where i is a bound variable of sort σI and s is an expression of sort σE.

Based on read -over-write axioms, write(a, j, v) can be simulated with a λ-term:

write(a, j, v) ⇝ λi.ite(i = j, v, read(a, j))

Similarly, set and copy can also be rewritten:

set(a, p, v, s) ⇝ λi.ite(p ≤ i < (p+ s), v, read(a, i))

copy(a, p, b, q, s) ⇝ λi.ite(p ≤ i < (p+ s), read(b, q + (i− p)), read(a, i))

A read over σA term is then just applying β-reduction over λi.s:

read(λi.s, r) = s[i/r]

The λ−based encoding allows for aggressive simplification of memory state expressions
through beta-reduction during the creation / update stage of arrays.

In our new memory representation, the new theory of memory TM handles set and copy
operations in C programs (memcpy, memset) largely the same as TASC. Improving upon
TA and TASC, however, TM preserves C memory semantics to enable more conclusive index
comparisons and creates possibility for techniques like ARM and Store-Map.

2.5 SeaBmc

In this section, we provide an overview of SeaBmc, with a focus on how it models memory
operations.

SEA-IR SeaBmc is a BMC tool developed for LLVM-based languages; input programs
under verification are first translated into the intermediate representation (IR) of LLVM
called bitcode. Next, SeaBmc extends raw LLVM bitcode input into an IR with explicit
dependency information between memory operations called SEA-IR. A simplified subset
of the SEA-IR grammar is defined in Figure 2.10.

11

A well-formed SEA-IR program (PR) must contain a single entry function named main.
A main function must contain one or more basic blocks (BB). Each BB consists of a label
(L), zero or more PHI-statements which represents control flow, one or more statements
(S) and ends with a branch (br) statement or halt. The last BB must end with halt
marking program termination. Registers are separated into three types: scalar registers
R, pointer registers P and memory registers M. Scalar registers store primitive data type
values like integers. Pointer registers store pointer values returned by memory allocations
or by reading from memory (pointer to pointer). Memory registers represent memory
states returned by either fresh allocations or writing to existing memory. For encoding
C programs, SEA-IR also includes the signatures memcpy : P,P,R,M,M → M and
memset : P,R,R,M → M for representing C memcpy, memset functions. Verification users
can define constraints on scalar values with assume and express assertions with assert.

Memory model in SeaBmc It is common practice for software verification tools to use
a single flat array to represent the memory state of a program. However, many language
semantics treat memory objects from different allocation site as disjoint regions in memory.
Instead of the flat memory model, SeaBmc partitions all memory objects into disjoint
sets of memory regions using alias analysis. To aid program analysis, SEA-IR follows the
MemorySSA [8] scheme in which memory operations are pure. Allocating a fresh object
(alloca / malloc) or writing to existing memory (store) defines new memory registers;
in other words, memory write operations have no side effects on existing defined memory
registers. Read statements (load) are also annoted with the source memory registers.

Verification Condition Generation (VCGen) After performing a series of further
transformations on the input SEA-IR program SeaBmc produces program with following
features:

• single assertion: only contains one assert statement at the end of the last basic
block;

• single assumption: only contains one assume statement before the sole assert state-
ment;

• pure data flow: PHI branching statements are replaced with select statements (se-
mantic same as ITE), the program contains a single basic block with all branching
paths merged with select (ITE) statements

12

PR ::= fun main(){BB+}
BB ::= L : PHI∗ S+ (BR | halt)
BR ::= br E, L, L | br L
PHI ::= R = phi [R, L](, [R, L])∗

| M = phi [M, L](, [M, L])∗

| P = phi [P, L](, [P, L])∗

S ::= RDEF | MDEF | VS
RDEF ::= R = E | P,M = alloca R,M

| P,M = malloc R, M | R = load P, M
| P = load P, M | M = free P, M

MDEF ::= M = store R, P, M | M = store P, P, M
| M = memset P, R, R, M
| M = memset P, R, P, M
| M = memcpy P, P, R, M, M

VS ::= assume R | asssert R

Figure 2.10: Simplified grammar of SEA-IR, where E, L R, P and M are expressions, labels,
scalar registers, pointer registers and memory registers, respectively. Credit to Siddharth
Priya.

The transformed SEA-IR program is then translated into verification conditions (VC) in
SMT-LIB2 with a function sym : IR → VC. We use scalr and ptrs to represent the sorts
of variables translated from SEA-IR scalar and pointer registers. The underlying sort of
scalr and ptrs are usually BitVectors (bv). The sort of translated memory registers is
defined as mems : ptrs → bv(n), where n is the same as underlying BitVector of ptrs.
sym encodes the SEA-IR AST in bottom up fashion. First, SEA-IR registers Mn, Rn or Pn
are translated to variables or constants of corresponding sort mn, rn or pn. Second, each
expression E is translated into a SMT-LIB2 expression sym(E). The details of expression-
wise translation are omitted since most of them are trivial. Each statement S is translated
into a Boolean SMT-LIB2 formula, the most common form being an equality(=) predicate.
Finally, a single SMT-LIB2 formula is produced from the conjunction of sym results of all
statements. Some of the statement-wise semantics of sym is presented in Figure 2.11.

Memory allocation The sym translation of stack allocation (alloca) and heap al-
location (malloc) returns a conjunction of equality predicates each defining contraints on
new pointer and new memory. The constraint on the new pointer depends on the im-
plementation of memory allocator denoted by function alloc, which takes allocation type

13

sym(R = E) ≜ r = e sym(assume R) ≜ r sym(assert R) ≜ ¬r

sym(M1 = store R1, P2, M0) ≜ m1 = write(m0, r1, p2)

sym(M1 = memset P1, R1, R2, M0) ≜ m1 = memset(m0, p1, r1, r2)

sym(M1 = memset P1, R1, P2, M0) ≜ m1 = memset(m0, p1, r1, p2)

sym(M2 = memcpy P1, P2, R1, M0, M1) ≜ m2 = memcpy(m0, p1, m1, p2, r1)

sym(R1 = load P0, M) ≜ p1 = read(m, p0)

sym(P1, M1 = alloca R0, M0) ≜ p1 = alloc(alloca R0, M0) ∧m1 = m0

sym(P1, M1 = malloc R0, M0) ≜ p1 = alloc(malloc R0, M0) ∧m1 = m0

Figure 2.11: Definition of some sym semantics for translating parts of VC, RDEF and
MDEF.

(heap, stack), allocation size and source memory register and returns a pointer. Mem-
ory allocator places important language specific constraints on freshly allocated pointers.
For example, pointer addresses are aligned to word bit width; heap addresses and stack
addresses are disjoint, etc.

Memory representations in SeaBmc Note that in Figure 2.11, the detail semantics
of sym on memory operations store, select , memset and memcpy are abstracted in
functions read, write, memset and memcpy respectively. The detailed semantics of sym
on these memory operations are encapsulated in memory representations. In SeaBmc,
currently there are two memory representations:

1. Arrays: Memories are modeled after TA as described in Sec. 2.2. SEA-IR expres-
sions memory operations are translated to TA expressions following signatures of ArrayEx1.
Arrays handles wide memory operations like memset and memcpy, with nested Array
stores as shown in Figure 2.12. This is not sound when BMC unroll bound is insufficient
or when range of operation is symbolic.

1http://smtlib.cs.uiowa.edu/theories-ArraysEx.shtml

14

http://smtlib.cs.uiowa.edu/theories-ArraysEx.shtml

Arrays Lambdas
read(m, p0) select m p0 m(p0)

write(m0, r1, p2) store m0 r1 p2 λx.ite(x = p2, r1,m0(x))
memset(m0, p1, r1, r2) (store

(store
...

(store m0 r2
(+ p1 (- r1 1)))
...

r2 (+ p1 1))
r2 p1)

λx.ite(p1 ≤ x < (p1 + r1),
r2,m0(x))

memcpy(m0, p1, m1, p2, r1) (store
(store

...
(store m0

(select m1 (+ p2 (- r1 1)))
(+ p1 (- r1 1)))
...

(select m1 (+ p2 1)) (+ p1 1))
(select m1 p2) p1)

λx.ite(p1 ≤ x < (p1 + r1),
m1(p2 + (x− p1)),m0(x))

Figure 2.12: sym translation of memory operations in Lambdas and Arrays.

2. Lambdas: Memories are modeled with λ-functions as described in Sec. 2.4. As
shown in Figure 2.12, writing to memory write(m0, r1, p2) is simulated with a λ function
λx.ite(x = p2, r1,m0(x)); reading from memory read(m, p0) is translated by applying a
pointer value as argument to a λ function m(p0). Formulas can be simplified with β-
reduction, resulting in final VC containing ites only, eliminating the need of ArrayEx
support in SMT solver. λ-functions provide sound encoding for memset and memcpy.

SeaBmc also applies techniques like shadow memory and fat pointers to verify both
temporal and spatial memory safety, detailed in [29]. These techniques are applied at
a higher level than memory representation and are thus out of the scope of this thesis.
Neither of the existing memory representations in SeaBmc retain much information from
C memory semantics, as detailed in Chapter 3 and Chapter 4. The contributions in this
thesis presents an alternative memory representation SeaM for SeaBmc. SeaM explores
possibilities for improving VC simplification performance by preserving C semantics and
implementing custom optimization techniques during VCGen.

15

Chapter 3

Overview

This chapter provides an overview of the approaches used in SeaM using a series of ex-
amples. Consider sample C program P1 in Figure 3.1.

typedef struct { int a; int b; } s;
int main() {

int *num = malloc(sizeof(int)); // obj8
*num = 4;
s *st = malloc(sizeof(s)); // obj16
st ->a = 21, st->b = 42;
int *p = nd_bool () ? &(st->a) : &(st->b);
*p = 4;
assert (*num == st ->b); // read -over -write
return 0;

}
Figure 3.1: Sample C program containing memory operations P1 .

The program initializes an integer num and a structure st containing two integer fields.
It non-deterministically writes the same value in num into one of the fields in st. Figure 3.2
shows the memory state of P1 denoted by mem1 encoded with TA after the execution of
line 17. For demonstration, we use a fresh variable objn to represent a pointer to allocated
memory objects.

16

mem1 = (store
(store

(store
(store mem0 obj8 4)
obj16 21)

(+ obj16 8) 42)
(ite boola obj16 (+ obj16 8)) 4)

Figure 3.2: Memory state of P1 after line 17 encoded in TA.

Note that the final assertion on line 18 depends on two reads on mem1: first read (∗num)
is on the address obj8; second read is on the address obj16 + 8. According to the read -over-
write axioms (A2), (A3) and rewrite rules in Figure 2.6, the two read -over-write expressions
can be eagerly rewritten into ite-expressions in Figure 3.3a and Figure 3.4a.

(select mem1 obj8) =
(ite

(=
obj8
(ite boola obj16 (+ obj16 8)))

4
(ite

(= obj8 (+ obj16 8))
42
(ite

(= obj8 obj16)
21
(ite

(= obj8 obj8)
4
(select mem0 obj8)
)

)
)

)
(a) Full expression of after rewrite into ite.

(select mem1 obj8) =
(ite false 4 4) = 4

(b) Simplified expression.

Figure 3.3: TA expression of read -over-write operation ∗num.

17

(select mem1 (+obj16 8))
=
(ite

(=
(+obj16 8)
(ite boola obj16 (+ obj16 8)))

4
(ite

(= (+obj16 8) (+ obj16 8))
42
(ite

(= (+obj16 8) obj16)
21
(ite

(= (+obj16 8) obj8)
4
(select mem0 (+obj16 8))
)

)
)

)
(a) Full expression of after rewrite into ite.

(select mem1 (+obj16 8))
=
(ite

(ite
boola
(= (+obj16 8) obj16)
(= (+obj16 8) (+obj16 8)))

4
42)

=
(ite

(ite boola false true)
4
42)

= (ite (not boola) 4 42)

(b) Simplified expression.

Figure 3.4: TA expression of read -over-write operation st−>b.

Any reasoning or simplification on the rewritten ite-expressions depend heavily on
(dis-)equality checks between each pair of read (select) and write (store) indices. Certain
checks can be resolved with trivial syntactic check, for example obj8 = obj8 is True and
obj16+8 = obj16 + 8 is False. However, (dis-)equality checks like obj8 = (obj16+8) would
be inconclusive if address bases like obj8 and obj16 are symbolic variables. SeaBmc op-
tionally uses concrete numbers to represent address bases instead, which can result in more
conclusive (dis-)equality checks. Still, this approach would fail to resolve (dis-)equalities
where offsets are symbolic: consider the (dis-)equality check (obj8+x) = (obj16+y). Also,
using concrete numbers for address bases result in loss of generality in terms of allocation
schemes. However, such (dis-)equality check should be conclusive if C semantics is taken
into consideration: any legal pointer arithmetic operations on pointers from different ob-
jects will never be equal. Hence (obj8 + x) = (obj16 + y) is always false. In Chapter 4,
we introduce Theory of Memory (TM) which preserves key C semantics to enable more
simplification opportunities.

Next, consider (dis-)equality checks involving ite-expressions such as
obj8 = ite(boola, obj16, (obj16+8)). A typical strategy for reasoning over such expressions
is to perform an ITE-PUSH rewrite: ite(boola, obj16 = obj8, (obj16 + 8) = obj8), and

18

try to resolve equalities at leave nodes of ite-expressions. This approach could be expensive
as the size of rewritten expression grows significantly, especially when both lhs and rhs of
the equality contain nested ite-expressions. However, from the example equality check one
can make the observation that the lhs of the equality can possibly resolve to the set of
addresses AL = {obj8}, while the rhs can resolve to AR = {obj16, obj16 + 8}. With C
memory semantics in mind, we can prove AR ∩ AL = ∅ since they do not contain any
address from the same memory object, hence the equality check is conclusively False. In
the above demonstration, notice that AL and AR can be extracted individually from the
lhs and rhs parts without performing ITE-PUSH. Similarly, in Chapter 5, we show that
certain pointer dis-equalities can be resolved more efficiently by reasoning over the abstract
value of the pointer expressions. We show that the abstract values can be computed in
place without performing expensive ITE-PUSH rewrites.

Applying all aforementioned simplifications, it is possible to simplify the two read -over-
write expressions into shorter versions in Figure 3.3b and Figure 3.4b. However, notice
the number of read -over-write simplifications for each read grows linearly to the number
of writes. When analysing larger programs with large number of writes, simplification at
pre-process could become a bottleneck. Consider another C program P2 in Figure 3.5 with
multiple memory writes to same memory locations.

1 typedef struct { int a; int b; } s;
2 int main() {
3 int *num = malloc(sizeof(int)); // obj8
4 s *st = malloc(sizeof(s)); // obj16
5 st ->a = 21;
6 *num = 4;
7 st ->b = 42;
8 st ->a = 42;
9 *num = 8;

10 st ->b = 21;
11 assert (*num < st ->b); // read -over -write
12 return 0;
13 }
14 Figure 3.5: Sample C program P2 containing multiple memory operations on same ad-

dresses.

Neglecting compiler optimizations, the memory state of P2 is shown in Figure 3.6a.

19

mem2 =
(store

(store
(store

(store
(store

(store mem0 obj16 21)
obj8 4)

(+ obj16 8) 42)
obj16 42)

obj8 8)
(+ obj16 8) 21)

(a) Unsimplified full expression.

mem2 =
(store

(store
(store mem0 obj16 42)
(+ obj16 8) 21)

obj8 8)

(b) Simplified expression.

Figure 3.6: Memory state of P2 after line 10 encoded in TA.

Considering C memory semantics once again, it is easy to see that after line 10 of P2 ,
although there have been 6 memory writes, only 3 distinct addresses have been written
to. The first 3 writes are effectively overwritten and can be erased from the memory state.
Figure 3.6b shows the simplified expression representing memory state after line 10. Also
note that the addresses obj16 and obj16 + 8 are comparable: the predicate < is defined
between them. Addresses like such can be grouped in a sorted fashion such that binary
search can be done on them instead of linear search during read -over-write simplifications.

In Chapter 6, we introduce an approach that compresses writes in a fashion similar to
the example shown in Figure 3.6. Repeating writes to the same address are compressed;
writes to addresses with the same base are grouped in dedicated data structure in order to
improve the time complexity of read -over-write simplification from linear to logarithmic in
best case scenario.

20

Chapter 4

Theory of Memory

In Figure 2.12, we introduced how SeaBmc translates statements in SEA-IR into VCs
with sym under currently implemented memory representations. The Arrays memory
representation essentially models memory with arrays of BitVectors, and leverages existing
syntax and semantics of ArrayEx theory, which is widely supported by most modern SMT-
solvers. The Lambdas also models memory with arrays of BitVectors, but simulates
array operations with λ-functions. This enables more efficient and precise representation
of ranged memory operations like memcpy and memset in C, as well as enabling eager
simplification through β reduction. Note that while there are careful distinctions between
memory, pointer and scalar registers in SEA-IR, sym with Lambdas and Arrays loses
such distinctions in translation. For example, pointer registers and scalar registers would
both be translated into BitVectors in final VC. Language specific semantics are also not
properly modeled by existing memory representations. As demonstrated in Chapter 3,
we believe such loss of language-specific information would lead to loss of simplification
opportunities, thus worsening the burden of SMT solvers.

21

In this chapter, we introduce the theory of memory TM with signatures

ΣM = {◦s, ◦p, ▷◁s , ▷◁p ,write-word , read -word ,write-byte, read -byte,
memset-words ,memcpy-words}
ptr : σS

word × σS
word → σP

write-word : σM × σP × σS
word → σM

read -word : σM × σP → σS
word

write-byte : σM × σP × σS
byte → σM

read -byte : σM × σP → σS
byte

memset-words : σM × σP × σS
word × σS

word → σM

memcpy-words : σM × σP × σM × σP × σS
word → σM

TM aims to present a precise and efficient encoding of C programs that deal with
memory by preserving certain C memory semantics in its axioms. TM is parameterized
by scalar theory TS , pointer theory TP and condition theory TC. TS and TC are both
single-sorted theories of sort σS and σC respectively. TS models scalar values and needs to
support linear arithmetic operators +,−,=,≤, <; TC models Boolean values and needs to
support Boolean operators and (∧), or (∨). In practice, both TS and TC are implemented
with theory of BitVectors (TBV). Note that in order to represent the bit width difference
between bytes and words, σS needs to be parameterized by bit width. This is also handled
by TBV . We use σSn to denote a scalar sort of bit width n, and tS

n to denote an n-bit
scalar term. The term formation rules of TM are defined in Figure 4.1.

A pointer term tP is defined by the function ptr : σS × σS → σP . The first scalar
term b represents base and the second scalar term o represents offset. A base represents
the starting address of a C memory object. Note a similar set of compare operations are
defined for scalar terms and pointer terms. We use different subscripts differentiate the
two sets of operations (▷◁s and ▷◁p). The semantics of pointer comparison in TM are
defined by axioms in Figure 4.2. Two tPs with different base are not equal. This preserves
the C semantics that two pointers from two different objects cannot be equal. Note that
two tPs are only comparable (operators ≤p , <p defined) if and only if their bases are
identical. Semantics of pointer arithmetics in TM are defined by axioms in Figure 4.3.
Pointer term can also be formed by performing pointer addition +p between a pointer
term and a scalar offset; performing pointer subtraction −p between pointers with same
base would yield the scalar difference in offsets between them.

With new pointer syntax and semantics, we now also need to modify the semantics
of allocation in sym. The behaviour of memory allocator remains unchanged: alloc now

22

◦s ::= +s | −s

◦p ::= +p | −p

▷◁s ::= <s | ≤s | =s

▷◁p ::= <p | ≤p | =p

tC ::= ⊤ | ⊥ | ¬tC | tC ∧ tC | tC ∨ tC
| tS ▷◁s tS | tP ▷◁p tP
| ite(tC, tC, tC)

tS
8 ::= ... | tS

8 ◦s tS8 | read -byte(tM, tP) | ite(tC, tS
8, tS

8)
tS

32 ::= ... | tS
32 ◦s tS32 | read -word(tM, tP)

| ite(tC, tS
32, tS

32) | tP −p tP
tP ::= ptr(tS

32, tS
32) | tP +p tS

32 | ite(tC, tP , tP)
tM ::= mem-identifier

| ite(tC, tM, tM)
| write-byte(tM, tP , tS

8) | write-word(tM, tP , tS
32)

| memset-words(tM, tP , tS
32, tS

32)
| memcpy-words(tM, tP , tM, tP , tS

32)

Figure 4.1: Term formation rules of TM for programs with 8-bit byte size, 32-bit word size.
Operations between pointer and scalar terms are differentiated with subscripts p and s.

places constraints on newly created tP terms as side conditions.

sym(P1, M1 = alloca R0, M0) ≜ p1 = ptr(objn, 0) ∧
ptr(objn, 0) = alloc(alloca R0, M0) ∧m1 = m0

sym(P1, M1 = malloc R0, M0) ≜ p1 = ptr(objn, 0) ∧
ptr(objn, 0) = alloc(malloc R0, M0) ∧m1 = m0

The new base objn created at each allocation site is a fresh scalar variable that is greater
than all previous allocation bases to denote temporal order of allocation. This would be
useful later in Chapter 6.

mem-identifier denotes a symbol or constant of memory sort σM . A memory term
tM represent a mapping from a pointer to either a byte or a word. Writing a byte or a
word to memory is represented by write-byte : σM × σP × σS

b → σM and write-word :
σM ×σP ×σS

w → σM respectively, where b and w are the bit widths of a byte and a word.
Reading a byte or a word from memory is represented by read -byte : σM × σP → σS

b and
read -word : σM × σP → σS

w. Without loss of generality, we discuss word-sized memory
operations only in the rest of this chapter. The semantics of word-sized memory operations
are similar to TA ROW axioms, as shown in Figure 4.4.

23

∀b1, b2 . b1 ̸=s b2 ⇒ ptr(b1, o1) ̸=p ptr(b2, o2)

∀b1, b2, o1, o2 . b1 =s b2 ∧ o1 =s o2 ⇐⇒ ptr(b1, o1) =p ptr(b2, o2)

∀b1, b2, o1, o2 . b1 =s b2 ∧ o1 <s o2 ⇐⇒ ptr(b1, o1) <p ptr(b2, o2)

∀b1, b2, o1, o2 . b1 =s b2 ∧ o1 ≤s o2 ⇐⇒ ptr(b1, o1) ≤p ptr(b2, o2)

Figure 4.2: Axioms for TM pointer comparison.

∀b, o1, o2 . ptr(b, o1) +p o2 = ptr(b, o1 +s o2)

∀b1, b2 . b1 =s b2 ⇒ ptr(b1, o1) −p ptr(b2, o2) = o1 −s o2

Figure 4.3: Axioms for TM pointer arithmetics.

Ranged memory operations are represented by memset-words : σM ×σP ×σSw×σSw →
σM and memcpy-words : σM × σP × σM × σP × σS

w → σM . The semantics of word-sized
ranged memory operations are similar to the semantics of set and copy in TASC, as shown
in Figure 4.5.

With semantics of word-sized memory operations defined in Figure 4.4 and Figure 4.5,
we define rules for eagerly rewriting word-sized reads over tM into formulas with only ite-
terms and terminal mem-identifier symbols. The rewrite rules are shown in Figure 4.6 and
Figure 4.7 for read over word-sized stores and word-sized memset, memcpy respectively.

TM defines sym VCGen semantics for SeaM memory representation. We expand sym
memory operations translation semantics (previous shown in Figure 2.12) with SeaM
shown in Figure 4.8. Note that VC in SeaBmc is non-extensional, so final VC from SeaM
would not contain any write-word, memset-words and memcpy-words after eager rewriting.

In the rewrite rules of TM memory operations, notice that most of the simplifications
depend on resolution of pointer term (dis)-equalities. In the next chapter, we introduce an
efficient technique for pointer comparison based on Abstract Interpretation.

24

∀i, j . i =p j ⇒ read -word(a, i) = read -word(a, j)

∀i, j . i =p j ⇒ read -word(write-word(a, j, v), i) = v

∀i, j . i ̸=p j ⇒ read -word(write-word(a, j, v), i) = read -word(a, i)

Figure 4.4: TM word-sized read -over-write axioms.

∀p, i, s . p ≤p i <p p +p s⇒ read -word(memset-words(a, p, v, s), i) = v

∀p, i, s . ¬(p ≤p i <p p +p s) ⇒ read -word(memset-words(a, p, v, s), i) = read -word(a, i)

∀p, i, s . p ≤p i <p p +p s⇒ read -word(memcpy-words(a, p, b, q, s), i) = read -word(b, q +p (i −p p))

∀p, i, s . ¬(p ≤p i <p p +p s) ⇒ read -word(memcpy-words(a, p, b, q, s), i) = read -word(a, i)

Figure 4.5: TM read over word-sized copy, set axioms.

ROW
read -word(write-word(a, i, v), j) ⇝ ite(i =p j, v, read -word(a, j))

⊢ i =p j ROW-HIT
read -word(write-word(a, i, v), j) ⇝ v

⊢ i ̸=p j ROW-SKIP
read -word(write-word(a, i, v), j) ⇝ read -word(a, j)

Figure 4.6: read -over-write rewrite rules for word-sized memory stores.

25

read -word(memset-words(a, p, s, v), i)
⇝ ite(p ≤s i <s (p +p s), v, read -word(a, i))

⊢ p ≤p i <p (p +p s)

read -word(memset-words(a, p, s, v), i) ⇝ v

⊢ ¬(p ≤p i <p (p +p s))

read -word(memset-words(a, p, s, v), i) ⇝ read -word(a, i)

read -word(memcpy-words(a, p, b, q, s), i)
⇝ ite(p ≤p i <p p +p s, read -word(b, q +p (i −p p)), read -word(a, i))

⊢ p ≤p i <p p +p s

read -word(memcpy-words(a, p, b, q, s), i) ⇝ read -word(b, q +p (i −p p))

⊢ ¬(p ≤p i <p p +p s)

read -word(memcpy-words(a, p, b, q, s), i) ⇝ read -word(a, i)

Figure 4.7: read -over-write rewrite rules for word-sized memset and memcpy.

SeaM
write(m0, r1, p2) write-word m0 r1 p2

memset(m0, p1, r1, r2) memset-words(m0, p1, r1, r2)
memcpy(m0, p1, m1, p2, r1) memcpy-words(m0, p1, m1, p2, r1)

read(write(m0, r1, p2), p1) ite(p1 =p p2, r1, read-word(m0, p1))
read(memset(m0, p1, r1, r2), p2) ite(p1 ≤p p2 <p (p1 +p r1), r2,

read-word(m0, p2))
read(memcpy(m0, p1, m1, p2, r1), p3) ite(p1 ≤p p3 <p (p1 +p r1),

read-word(m1, p2 +p (p3 −p p1)),
read-word(m0, p3))

Figure 4.8: sym translation of memory operations in SeaM.

26

Chapter 5

Address Range Map

In C programs translated to SEA-IR, it is common to represent control flow with PHI
statements, which is further translated to ite-terms during VCGen to represent different
possible values based on condition. As a result, it is possible for pointer terms tP in TM
expressions to contain ite-expressions, as described in Figure 4.1. Precise comparison be-
tween tP terms containing nested ites can be exponential when done with ITE-PULL and
ITE-PUSH rewrites. In this chapter, we introduce Address Range Map (ARM), an Ab-
stract Interpretation [11] based technique that results in more efficient pointer comparisons
by over-approximating tP pointer terms.

Abstract Interpretation Abstract Interpretation is a powerful technique for approxi-
mation by representing large space of states with small number of abstract states. Given a
concrete domain D, an abstract domain is defined by a complete lattice ⟨D#,⊑,⊔,⊓,⊤,⊥⟩.
Sets of concrete elements from D are mapped to abstract values from D# by abstraction
function α : P(D) 7→ D#, and abstract values are mapped back to sets of concrete ele-
ments by concretization function γ : D# 7→ P(D) such that γ(⊤) = D and γ(⊥) = ∅.
Given the operational semantics of the statement transformers in a concrete domain, the
corresponding abstract domain also defines abstract semantics that transforms abstract
values as concrete elements transform. The connection between a concrete transformer F
and corresponding abstract transformer F̂ is denoted by F ↪→ F̂ .

The abstract semantics of D# is required to be sound with regards to the concrete
semantics of D. Given a concrete transformer F and corresponding abstract transformer
F#, F# is sound wrt. F if

∀x ∈ D,∀x# ∈ D# . α(x) ⊑ x# ⇒ α(F (x)) ⊑ F#(x#)

27

nums(a) =

{
{a} If a is scalar concrete constant.
Ds If a is scalar symbolic value.

nums(ite(c, a, b)) = ite(c, nums(a), nums(b))

=

{
nums(a) If c = True

nums(b) If c = False

nums(a +s b) = {x +s y | x ∈ nums(a), y ∈ nums(b)}

Figure 5.1: Concrete semantics in domain Ds.

5.1 Offset Intervals

Given a tP ptr(b, o), the offset o is a scalar term tS representing a set of scalar offset
values in concrete domain denoted by Ds. We define function nums : σS → P(Ds) that
returns the set of all concrete scalar offsets represented by tS . The concrete semantics
ite : σC × σS × σS → σS and +s : σS × σS → σS is defined by nums(tS) in Figure 5.1.
The concrete scalar set of sum of a and b contains set of sums between cartesian product
of nums(a) and nums(b); the concrete set of ite(i, a, b) is nums(a) if i is True, otherwise
nums(b). For example, the scalar term s1 shown in Figure 5.4a represents the set of scalars
shown in Figure 5.4b. We can over-approximate Ds elements with the abstract domain of
intervals [10] (itv) denoted as D̂s. An abstract value of the interval domain takes the form
[l, h], where l represents the lower bound, with concrete values l ∈ Z ∪ −∞; h represents
the upper bound with concrete values h ∈ Z ∪∞.

The abstraction function α and concretization function γ between scalar offset concrete
domain and interval abstract domain in Figure 5.2. A concrete offset with scalar value o
maps to a itv with lower bound and higher bound o; a symbolic offset maps to ⊤. Note
that the scalar addition operator (+s) corresponds to the abstract addition operator (+̂)
between abstract itv values.

The abstract version of scalar add +s is itv abstract add +̂ ; the abstract version of ite is
⊔. The semantic of abstract union (⊔), join (⊓), subset of (⊑) and itv addition +̂ operators
between itv abstract values are defined in Figure 5.3. Note that we assume overflow does not
happen on +s since we are focusing on the subset of scalar values representing pointer
offsets. Legal pointer arithmetics should not overflow. Figure 5.4c shows an example
abstraction process of scalar term s1.

Soundness of Abstract Semantics The abstract transformers ⊔ and +̂ should be
sound wrt. their concrete counterpart ite and +s .

28

α(O) =

[min Oi∈N,max Oi∈N] O is non-empty set of scalars.
⊤ O = Ds

⊥ O = ∅
γ([l, h]) = {x ∈ Z | l ≤s x ≤s h}

Figure 5.2: α and γ between Ds and D̂s. min Si∈N and max Si∈N returns the maximum
and minimum element of a set S respectively.

a +s b ↪→ α(nums(a)) +̂ α(nums(b)) [a, b] +̂ [a′, b′] = [a +s a
′, b +s b

′]

ite(i, a, b) ↪→ α(nums(a)) ⊔ α(nums(b)) [a, b] ⊔ [a′, b′] = [min(a, a′),max(b, b′)]

[a, b] ⊔ ⊤ = ⊤ [a, b] ⊔ ⊥ = [a, b]

[a, b] ⊓ ⊤ = [a, b] [a, b] ⊓ ⊥ = ⊥
[a, b] +̂ ⊤ = ⊤ [a, b] +̂ ⊥ = [a, b]

∀a, b . [a, b] ⊑ ⊤ ∀a, b . ⊥ ⊑ [a, b]

[a, b] ⊓ [a′, b′] = ite(a ≤s a
′ ≤s b ∨ a′ ≤s a ≤s b

′, [max(a, a′),min(b, b′)], ⊥)

[a, b] ⊑ [a′, b′] ⇐⇒ [a, b] ⊆ [a′, b′] ⇐⇒ a′ ≤s a ∧ b ≤s b
′

Figure 5.3: Abstract semantics of itv abstract operators ⊔,⊓ and +̂ . min(a, b) , max(a, b)
returns the smaller and larger of a and b; ite(c, a, b) returns a if c is True and b otherwise.

ITE Take tS a and b representing sets of scalar offsets A = nums(a), B = nums(b);
then the itv abstract values of them are â = α(A) = [min Ai∈N,max Ai∈N], b̂ = α(B) =
[min Bi∈N,max Bi∈N]. The abstract value k̂ of abstract version of ite (⊔) between â and b̂
is

k̂ = â ⊔ b̂ = [min(min Ai∈N,min Bi∈N),max(max Ai∈N,max Bi∈N)]

After forming new tS k with ite,

k = ite(i, a, b)

K = nums(k)

= nums(ite(i, a, b))

= ite(i, A,B) ITE-PUSH

29

ITE(i)

+s

ITE(j)

8 16

42

21

(a) s1 AST

i

j

{50}

True

{58}

False

True

{21}

False

(b) nums(s1)

α(s1)

=α(21) ⊔

(α(42) +̂ α(ite(j, 8, 16)))

=[21, 21] ⊔

([42, 42] +̂ [8, 16])

=[21, 21] ⊔ [50, 58]

=[21, 58]

(c) α(nums(s1))

Figure 5.4: Example tS s1 representing a set of scalar numbers nums(s1), with abstract
value α(nums(s1)). ITE(i) node represents expression ite(i, ...).

K resolves to A if i is True otherwise B. If i is True:

α(K) = α(A)

= [min Ai∈N,max Ai∈N]

⊑ [min(min Ai∈N,min Bi∈N),max(max Ai∈N,max Bi∈N)]

⊑ k̂ = â ⊔ b̂

If i is False:

α(K) = α(B)

= [min Bi∈N,max Bi∈N]

⊑ [min(min Ai∈N,min Bi∈N),max(max Ai∈N,max Bi∈N)]

⊑ k̂ = â ⊔ b̂

Regardless of value of i,

∀â, b̂ ∈ itv,∀A,B ∈ Ds . α(A) ⊑ â ∧ α(B) ⊑ b̂⇒ α(ite(i, A,B)) ⊑ â ⊔ b̂ (5.1)

is True.

Addition Take tS a and b representing sets of scalar offsets A = nums(a), B =
nums(b); then the itv abstract values of them are â = [minAi∈N,maxAi∈N], b̂ = [minBi∈N,maxBi∈N].

30

The abstract sum of â and b̂ is

â +̂ b̂ = [min Ai∈N + min Bi∈N,max Ai∈N + max Bi∈N]

. After forming new tS k with addition +s ,

k = a +s b

K = nums(k)

= nums(a +s b)

= {x +s y | x ∈ A, y ∈ B}

The minimum element in K is the sum of minimum elements in A and B; the maximum
element in K is the sum of maximum elements in A and B. Therefore the abstract value
of K is:

α(K) = [min Ki∈N,max Ki∈N]

= [min Ai∈N + min Bi∈N,max Ai∈N + max Bi∈N]

⊑ â +̂ b̂

In other words,

∀â, b̂ ∈ itv,∀A,B ∈ Ds . α(A) ⊑ â ∧ α(B) ⊑ b̂

⇒ α({x +s y | x ∈ A, y ∈ B}) ⊑ â +̂ b̂ (5.2)

is True.

Theorem 1. The abstract semantics of itv ⊔ and +̂ is sound wrt. concrete semantics
of Ds ite and +s .

Proof. We have established soundness of ⊔ wrt. ite in (5.1). Intuitively, given scalar term
ite(i, a, b), ⊔ joins the then and else branches of ite regardless of the condition i, therefore
â ⊔ b̂ ⊒ α(ite(i, nums(a), nums(b))) is always true. The soundness of +̂ wrt. scalar +
is established in (5.2). Given two sets of scalar numbers nums(a) and nums(b), concrete
addition creates a new set ab from sums of cartesian product of nums(a) and nums(b).
The itv of ab is [min nums(a)i∈N + min nums(b)i∈N,max nums(a)i∈N + max nums(b)i∈N],
which is the same as α(nums(a)) +̂ α(nums(b)).

31

Note that although lacking a concrete counterpart in Ds, abstract intersection ⊓ is
also sound: given two sets of scalar values over-approximated by [a, b] and [a′, b′] the new
interval between max(a, a′) and min(b, b′) over-approximates the set intersection. We omit
the proof for itv ⊓ soundness, which is already elaborated in [10].

Given a concrete offset element o, we define the inference rules for inclusion (∈) of o in
a itv [l, h] in Figure 5.5.

⊢ l ≤s o ≤s h

∀o . o ∈ [l, h] ∀o . o ∈ ⊤ ∀o . o /∈ ⊥

Figure 5.5: Inference rules for numeric offset inclusion in Offset itv.

5.2 Address Range Map

With ites, a tP represent a set of pointer base-offset pairs: (b, o). We define the concrete
domain of pointers as Dp = {(b, o) | b ∈ AP , o ∈ Z≥0}, where AP denotes architecture-
specific address space of non-negative integers. We define ptrs : σP → P(Dp) to return
the set of all pointers represented by a pointer term tP . The concrete semantics of ite :
σC × σP × σP → σP and +p : σP × σS → σP are defined by ptrs(tP) in Figure 5.6. For
example, p1 in Figure 5.7a represents different sets of base-offset pairs depending on the
values of conditional terms i and j, as shown in Figure 5.7b. Instead of directly perform
comparison between elements of Dp, we propose comparisons within the abstract domain
Dp

instead. The abstract values in Dp
are maps between scalar pointer base and offset

itv abstractions m : σS 7→ [σS, σS]. We use ⊤ and ⊥ to represent all pointers and none
possible pointers. We name the abstract values Address Range Map (ARM). An ARM
ϕ# in which ∀ (b 7→ ô) ∈ ϕ# . ô = ⊥ is ⊥ since all bases map to none possible offsets.
For convenience, we define function bases that returns the set of bases in an ARM ϕ#:
bases(ϕ#) = {b | (b 7→ o) ∈ ϕ#}. Given a base b in an ARM ϕ#, we write ϕ#[b] to refer to
the mapped itv by b.

The concretization function (γ) and abstraction function (α) between Dp and Dp
are

defined in Figure 5.8. Concretization of ARM γ(ϕ#) is the set of pointers with all pointer
bases in ϕ# keys and offsets between the mapped intervals per base.

32

ptrs(ptr(b, o)) = {(b, o′) | o′ ∈ nums(o)}
ptrs(ite(c, a, b)) = ite(c, ptrs(a), ptrs(b))

=

{
ptrs(a) If c = True

ptrs(b) If c = False

ptrs(p +p i) = {(b, o +s o
′) | (b, o) ∈ ptrs(p), o′ ∈ nums(i)}

Figure 5.6: Concrete semantics in domain Dp. Note nums from itv domain.

ITE(i)

+p

ITE(j)

8 16

ptr(obj8, 16)

ptr(obj16, 8)

(a) p1 AST

i

j

{(obj8, 16 + 8)}

True

{(obj8, 16 + 16)}

False

True

{(obj16, 8)}

False

(b) ptrs(p1)

α(p1)

=α(ptr(obj16, 8)) ⊔
(α(ptr(obj8, 16) +#

α̂(ite(j, 8, 16)))

={obj16 7→ [8, 8]} ⊔
({obj8 7→ [16, 16]} +#

[8, 16])

={obj8 7→ [24, 32],

obj16 7→ [8, 8]}

(c) α(ptrs(p1))

Figure 5.7: Example tP p1 representing set of pointers ptrs(p1), with abstract value
α(ptrs(p1)). ITE(i) node represents expression ite(i, ...).

Figure 5.9 defines the abstract semantics for ⊔, ⊓ and abstract version of +p

(+# : ARM × itv → ARM) , ite (⊔ : ARM×ARM → ARM) between ARMs. As shown
in the abstraction process of the ite pointer term ptrs(p1) in Figure 5.7c, for the pointer
addition in the then branch, ARM abstraction performs itv +̂ operation between the itv
value of ite(j, 8, 16) and all mapped itvs in the ARM of ptr(obj8, 16):

{obj8 7→ [16, 16]} +# [8, 16] = {obj8 7→ [16 + 8, 16 + 16]} = {obj8 7→ [24, 32]}

ARM over-approximates ite(i, a, b) by ignoring the value of condition term i and performing
⊔ operation between α(a) and α(b): the ARM of ite p1 is calculated from ⊔ between the
ARM of then branch and the else branch

{obj16 7→ [8, 8]} ⊔ {obj8 7→ [24, 32]} = {obj16 7→ [8, 8], obj8 7→ [24, 32]}

Between ARMs with common bases, ⊔ operation would perform itv ⊔̂ for the mapped
offsets of common bases. For example, ⊔ between α(ptrs(p1)) and ARM {obj8 7→ [8, 16]}

33

α(ϕ) = {b 7→ α̂({o | (b, o) ∈ ϕ}) | (b, o) ∈ ϕ}
γ(ϕ#) = {(b, o) | o ∈ ϕ#[b], b ∈ bases(ϕ#)}

Figure 5.8: γ and α functions between ARM and pointers.

ite(c, p, p′) ↪→ α(ϕ) ⊔ α(ψ), where ϕ = ptrs(p) and ψ = ptrs(p′)

ϕ# ⊔̂ ψ# = {b 7→ ô | b ∈ bases(ϕ#) ∪ bases(ψ#),

ô =

ϕ#[b] ⊔̂ ψ#[b] if b ∈ bases(ϕ#) ∧ b ∈ bases(ψ#)

ϕ#[b] if b ∈ bases(ϕ#) ∧ b /∈ bases(ψ#)

ψ#[b] if b /∈ bases(ϕ#) ∧ b ∈ bases(ψ#)}
ϕ# ⊓ ψ# = {b 7→ ϕ#[b] ⊓̂ ψ#[b] | b ∈ bases(ϕ#) ∩ bases(ψ#)}
p +p o ↪→ α(ϕ) +# α̂(A) where ϕ = ptrs(p) ∧ A = nums(o)

ϕ# +# [l, h] = {b 7→ ϕ#[b] +̂ [l, h] | b ∈ bases(ϕ#)}
bases(ϕ#) ⊆ bases(ψ#) ∧ ∀b ∈ bases(ϕ# ⊔ ψ#) · ϕ#[b] ⊑̂ ψ#[b] ⇐⇒ ϕ# ⊑ ψ#

Figure 5.9: Abstract semantics for ARM ⊔, ⊓, ⊑ and +# . Accent ˆ denotes values and
operators of itv.

would yield

{obj16 7→ [8, 8], obj8 7→ [24, 32]} ⊔ {obj8 7→ [8, 16]}
={obj16 7→ [8, 8], obj8 7→ ([24, 32] ⊔̂ [8, 16])}
={obj16 7→ [8, 8], obj8 7→ [8, 32]}

Soundness of Abstract semantics The abstract transformers ⊔ and +# should be
sound wrt. their concrete counterpart ite and +p .

ITE Given pointer term tP in ite form k = ite(i, p, q), the concrete sets of the children
are P = ptrs(p), Q = ptrs(q). k represents a set of pointer base-offset pairs K:

K = ite(i, P,Q)

34

which resolves to P if i is True and Q otherwise. Abstract values of P and Q are p# =
α(P), q# = α(Q). The result of abstract version of ite (⊔) between p# and q# is

p# ⊔ q# = {b 7→ ô | b ∈ p# ∨ b ∈ q#}

where each offset interval ô in entries are defined according to Figure 5.9.

Without loss of generality, we discuss the case if i = True only. If i = True, the ARM
of k is just the ARM of p:

α(K) = ite(True, P,Q) = α(P) = p#

Lemma 1. For all pointer terms p and q, bases(p#) ⊆ bases(p# ⊔ q#), where p# =
α(ptrs(p)) and q# = α(ptrs(q)).

Proof. From abstract semantics of ⊔# in Figure 5.9, bases(p# ⊔ q#) = bases(p#) ∪
bases(q#) ⊇ bases(p#).

Lemma 2. Given pointer terms p and q, and their ARMs p# and q#, p#[b] ⊑̂ (p#⊔ q#)[b]
for all b where b ∈ p# ∧ b ∈ q#.

Proof. For each base b that exist in both p# and q#, their mapped itvs ô are re-calculated
with ôp ⊔̂ ôq, where ôp = p#[b] = [l, h], ôq = q#[b] = [l′, h′].

ô = (p# ⊔# q
#)[b] = ôp ⊔̂ ôq

= [l, h] ⊔̂ [l′, h′]

= [min(l, l′),max(h, h′)]

From above and semantics of ⊑̂ in Figure 5.3:

ôp = [l, h]

⊑̂ [min(l, l′),max(h, h′)] = ô

From Lemma 1, Lemma 2 and the semantics of ARM ⊑ in Figure 5.9,

α(ite(i, P,Q)) ⊑ (α(P) ⊔ α(Q))

The above proves that

∀P,Q ∈ Dp, ∀p#, p# ∈ Dp
. α(P) ⊑ p# ∧ α(Q) ⊑ q# ⇒ α(ite(i, P,Q)) ⊑ p# ⊔ q#

35

Pointer addition Given pointer term tP formed by pointer arithmetic k = p +p r,
the original pointer term p represents a set of pointer base-offset pairs P = ptrs(p), while
the scalar term o represents an set of scalar offsets R = nums(r). The abstract value of P
is ARM

p# = α(P) = {b 7→ α̂({o | (b, o) ∈ P}) | (b, o) ∈ P} (5.3)

we denote the abstract itv of all offsets with same base b α̂({o | (b, o) ∈ P}) with ô. The
abstract value of R is itv

r̂ = α̂(R) = [l′, h′] = [min Ri∈N,max Ri∈N] (5.4)

According to ARM abstract semantics in Figure 5.9, the result of the abstract version of
+p (+#) between p# and r̂ is

p# +# r̂ = {b 7→ p#[b] +̂ r̂ | b ∈ p#} (5.5)

For convenience, we write P +Dp R as shorthand of ptrs(p +p r). According to concrete
semantics of +p in Figure 5.6, the set of pointer pairs K represent by new pointer term
k after addition is

K = ptrs(k) = P +Dp R

= {(b, o +s o
′) | (b, o) ∈ P, o′ ∈ R}

Thus the abstract value of K is

k# = α(K) = α({(b, o +s o
′) | (b, o) ∈ P, o′ ∈ R})

= {b 7→ α̂({o +s o
′ | (b, o) ∈ P, o′ ∈ R})| (b, o) ∈ P, o′ ∈ R}

Lemma 3. For all pointer term p and k = p +p r with ARMs p# and k#, bases(p#) ⊆
bases(k#), where p# = α(ptrs(p)) and k# = α(ptrs(p +p r)).

Proof. From (5.5), k# has the same set of keys (bases) as p# and p# +# r̂.

Lemma 4. For all pointer term p and k = p +p r with ARMs p# and k#,
α(ptrs(k))[b] ⊑̂ k#[b] is True for all base b in p and k.

Proof. For each unique base b in K, the set of all unique offset values is

O′ = {o +s o
′ | (b, o) ∈ P, o′ ∈ R}

36

with abstract itv

α̂(O′) = [min O′
i∈N,max O′

i∈N]

= [min Oi∈N + min Ri∈N,max Oi∈N + max Ri∈N]

where O denotes the set of offsets {o|(b, o) ∈ P} per unique base b. From the semantics of
+̂ in Figure 5.3, Equation (5.3) and Equation (5.5), we can see that per unique base b

α(K)[b] = α̂(O′) ⊑ ô +̂ r̂ = (p# +# r̂)[b]

With Lemma 3, Lemma 4 and semantics of ARM ⊑ in Figure 5.9, we prove that

∀P ∈ Dp,∀R ∈ Ds,∀p# ∈ Dp
#,∀r̂ ∈ itv . α(P) ⊑ p#∧α̂(R) ⊑ r̂ ⇒ α(P +Dp R) ⊑ p# +# r̂

is True.

Theorem 2. The abstract semantics of ARM ⊔ and +# is sound wrt. concrete semantics
of Dp ite and +p .

Proof. Recall for all ARMs p# and q#, p# ⊑ q# is True iff 1. the set of bases in p# Bp and
set of bases in q# Bq satisfy Bp ⊑ Bq and 2. for all b ∈ Bp ⊓ Bq, the mapped itvs satisfy
p#[b] ⊑ q#[b].

For ⊔ wrt. ite, constraint 1 is established by Lemma 1. and constraint 2 is established
by Lemma 2.

For +# wrt. ite, constraint 1 is established by Lemma 3 and constraint 2 is established
by Lemma 4.

With soundness of abstract transformers ⊔ and +# established in Theorem 2, we have
established that ARM is a sound over-approximation of tP : given a set of pointers ϕ
represented by a pointer term tP p and the ARM of p ϕ# = α(ptrs(p)), then ϕ ⊑ γ(ϕ#).

Given two pointer expressions i and j that represent sets of pointers ϕ and ψ respec-
tively, empty intersection between the sets implies dis-equality between i and j.

ϕ ⊓ ψ = ∅ ⇐⇒ i ̸=p j

Theorem 3. The abstract intersection transformer ⊓ for ARM is sound wrt. concrete set
intersection between sets of pointers base-offset pairs:

∀P,Q ∈ Dp, ∀P#, Q# ∈ Dp
. α(P) ⊑ P# ∧ α(Q) ⊑ Q# ⇒ α(P ⊓Q) ⊑ P# ⊓Q#

37

Proof. Two sets of pointer pairs ϕ and ψ are over-approximated by their ARM abstractions
ϕ# and ψ#. The intersection between ϕ and ψ is

ρ = ϕ ⊓ ψ

and the ARM approximation of ρ is

α(ρ) = {b 7→ α̂({o | (b, o) ∈ ϕ ⊓ ψ}) | (b, o) ∈ ϕ ⊓ ψ}

while the abstract intersection between ϕ# and ψ# is

ϕ# ⊓ ψ# = {b 7→ ϕ#[b] ⊓̂ ψ#[b] | b ∈ ϕ# ∧ b ∈ ψ#}

First we can observe that α(ρ) share the same set of keys (base) with ϕ# ⊓ ψ#. Next,
we need to establish the relationship between mapped values (offset) for each key (base).
For every unique base b in both ϕ and ψ, ϕ#[b] and ϕ#[b] intervals over-approximate corre-
sponding sets of scalar offsets. Recall that itv abstract ⊓̂ is sound wrt. set intersection. We
can now see that for each unique b in both ϕ and ψ, α({o | (b, o) ∈ ϕ⊓ψ}) ⊑ ϕ#[b] ⊓̂ ψ#[b].
With keys and values both satisfying the condition for abstract ⊑ in Figure 5.9, we have
established α(ρ) ⊑ ϕ# ⊓ ψ#.

Theorem 4. Two pointer terms p and q are not equal if α(ptrs(p)) ⊓ α(ptrs(q)) = ⊥.

Proof. From the soundness of abstract ⊓ operation, we can use results of ⊓ between ARMs
to impliy dis-equalities between tPs. Assume two tPs p and q represent two sets of pointer
pairs ϕ and ψ; ϕ and ψ are over-approximated by their ARM abstractions ϕ# and ψ#. If
intersection between ϕ# and ϕ# is ⊥, then we know α(ϕ ⊓ ψ) = ⊥ must be True since
α(ϕ ⊓ ψ) ⊑ ϕ# ⊓ ψ#. We can then deduce ϕ ⊓ ψ is emtpy, and p ̸=p q.

Take the example tP p1 from Figure 5.7 again. tP p2 = ite(k, obj8, obj16) has abstract
value ARM {obj8 7→ [0, 0], obj16 7→ [0, 0]}. The abstract value of ⊓ between the ARMs of
p1 and p2 is

α(ptrs(p1)) ⊓ α(ptrs(p2)) = {obj8 7→ ([0, 0] ⊓̂ [24, 36]), obj16 7→ ([0, 0] ⊓̂ [8, 8])}
= {obj8 7→ ⊥, obj16 7→ ⊥}
= ⊥

The ⊥ result implies that p1 ̸=p p2: regardless of the values of condition terms i, j and k, the
set pointers represented by p1 does not overlap with the set represented by p2. Note that the
converse of Theorem 4 is not True. Take a tP p′1 = ite(¬i, ptrOf(obj8, 16) +p ite(j, 8, 16)),
which is the same as p1 other than inverted condition term i. Clearly p1 ̸=p p

′
1, but p′1 and

p1 have identical ARMs.

38

Time and space complexity of ARM Given two tPs with syntactic size n, the space
complexity of of corresponding ARMs is O(n) with a hash map based implementation since
each node in tP AST corresponds to at most 1 key-value pair in an ARM. In order to over-
approximate pointer dis-equality using Theorem 4, we first need to construct two ARMs
by traversing the AST of each tP and applying the abstract semantics from Figure 5.9.
The abstract semantics of +# and ⊔ both perform linear time-complexity operations on
children of current node. Therefore the time complexity during the ARM construction
stage is n · O(n) = O(n2). Finally, the abstract semantics of ⊓ between two constructed
ARMs is linear to the size of ARMs (O(n)). Overall the time complexity is

T (n) = Tconstr + Tinter = O(n2) +O(n) = O(n2)

which is better than the exponential complexity of pointer term comparisons with ITE-
PUSH and ITE-PULL applied on terms with nested ITEs. In practice, SeaM without
ARM skips comparisons between tPs containing nested ITEs: if the comparison is con-
clusive, cost in terms of time is too expensive; if the comparison is inconclusive, the time
cost is spent in vain since rewritten VC would explode in syntactic size instead of being
simplified. With ARM, more pointer comparisons can be performed without rewriting of
the tPs at much smaller cost.

39

Chapter 6

Compressing write with Store-Map

In previous chapters we have introduced the VC translation semantics of SeaM with
Theory of Memory TM, which preserves C memory semantics and allows for more con-
clusive pointer comparison during simplification. We have also introduced ARM, which
provides more efficient pointer comparison by over-approximating complex pointer expres-
sions containing nested ITEs. To apply the simplifications rules detailed in Figure 4.6
and Figure 4.7, SeaM needs to traverse the data structure representing current sequence
of memory writes during the VCGen process of a ROW with pointer index i, and check
pointer dis-(equality) between i and each write index j. There are two data structures
commonly used for representing array/memory write sequences in static analysis.

Linked-list Array/memory write sequences are commonly represented by nested write
expressions. The term write(a, idx , val) is analogous to a linked-list node storing a pair of
values (idx , val), where the nested array/memory term a can be seen as the "pointer" to
next node. For example, the write sequence from Figure 3.2 can be viewed as a linked-list
of writes as illustrated in Figure 6.1. The "head" of the linked-list provides access to the
latest write, while the linked-list always ends with an emtpy memory symbol representing
the initial state. The linked-list data structure is generic, supporting both constant indices
and symbolic ones like the ite term at the head of Figure 6.1. The temporal order of write
operations is also perfectly maintained. Note that temporal order refers to the order in
which instructions are executed. For example, in Figure 3.2, the write to obj8 is temporally
earlier than the write to obj16. However, like all linked-list based data structures, nested
writes does not support random access. ROW simplifications on nested writes require
linear traversal of the linked-list. Therefore, time-complexity of ROW simplifications on

40

linked-list write sequence is linear to the number of writes. Given n writes and m reads,
overall simplification time-complexity is O(m · n) with only ROW simplifications.

head
ite(i, obj16, obj16 + 8)

4

obj 16 + 8

42

obj 16

21

obj 8

4
mem0

Figure 6.1: Memory write sequence represented as a linked-list.

Map In special cases where indices of all write operations are pairwise comparible, ie.
linear arithmetic ≤ operator is defined between two indices, it is sound to ignore the
temporal order of write operations with different indices and store write sequences in a
map with one key-value pairs per unique index. A write would replace the value written
by a previous write with identical index in the map, so the temporal ordering between
writes with same index is still maintained. ROW simplifications are performed with a
map lookup, which will always result in full simplification: only the value written to the
index being read will be returned. ROW simplifications is efficient with running-time
logrithmic to the number of writes. However, indices that are not pairwise comparible
with the rest cannot be represented by such map-like data structure. For example, the
map in Figure 6.2 can only represent the memory state before the last write with an ite
index. A purely map-based data structure is therefore not generic enough for application
in BMC.

obj 8 7→ 4

obj 16 7→ 21

obj 16 + 8 7→ 42

Figure 6.2: Part of a memory write sequence represented as a map.

6.1 Store-Map data structure

SeaM represents memory write history with nested TM memory terms, which is essentially
a Linked-list data structure. A recent work in [18] proposed a new data structure map list

41

for representing array writes. Map lists groups array writes into a list of maps, where
each map contains a group of writes with pairwise comparable indices. In theory,
map list is both generic like a linked-list-based data structure and efficient like a map-
based data structure. Previously, TM introduced C-based semantics for pointer pairwise
comparison in Figure 4.2, which states that ≤p operator is defined between two pointer
terms if the bases of the pointers are identical, and the offsets are pairwise comparable.
TM creates the basis for grouping tPs in a similar manner as map list nodes, which supports
logarithmic-time ROW simplifications within each group.

We expand the syntax of TM with a new σM signature representing a memory term
named store-map : σM × σP × {σS 7→ σS} → σM :

tM ::= ... | store-map(tM, tP , tS
32 7→ tS

32)

A store-map term represents a group of memory writes within the same memory object
objn — each index is comparable with ≤p with the rest. The base address of the memory
object is represented by the second tP argument of store-map, always taking the form
ptr(objn, 0). The first tM argument represents the state of memory with writes that are
either: (1) temporally earlier in execution order, and with addresses that are not pairwise
comparable to any of the pointers in store-map, or (2) with addresses that are provable
to be in different objects which are allocated earlier than objn. The third argument of a
store-map is a map between offsets o from objn base to scalar values written to ptr(objn, o).
The same memory state previously represented in Linked-list and map representations can
be represent in Store-Map, as illustrated in Figure 6.3. The two writes to obj16 and
obj16 + 8 are compressed into a store-map node.

head
ite(i, obj16, obj16 + 8)

4

obj 16

0 7→ 21

8 7→ 42

obj 8

4
mem0

Figure 6.3: Memory write sequence represented as a linked list with a Store-Map node.

To construct and update store-map during VC, new rewrite rules are applied during sym
translation of write-over-write (WOW) as shown in Figure 6.4. A write over an existing
tM a at address i is rewritten as follows:

SMAP-NEW If a is another write at address j, and i and j share the common object
base β, the two writes are merged into a store-map.

42

⊢ i =p ptr(β, o1) ⊢ j =p ptr(β, o2) SMAP-NEW
write-word(write-word(a, i, v1), j, v2) ⇝
store-map(a, ptr(β, 0), {o1 7→ v1, o2 7→ v2})

⊢ i =p ptr(β, o1) SMAP-HIT
write-word(store-map(a, ptr(β, 0),m), i, v) ⇝

store-map(a, ptr(β, 0),m[o1 7→ v])

⊢ j <t i WOW-COMMUTE
write-word(write-word(a, i, w), j, v) ⇝
write-word(write-word(a, j, v), i, w)

⊢ i =p ptr(α, o) ⊢ ptr(α, 0) <t ptr(β, 0) WOSMAP-COMMUTE
write-word(store-map(a, β,m), i, v) ⇝
store-map(write-word(a, i, v), β,m)

Figure 6.4: write-over-write rewrite rules related to creating and updating store-map.

SMAP-HIT If a is a store-map with object base β, which is the same base of i, then
offset-value map of a is updated with the offset and value of the outer write.

We also add the rules WOW-COMMUTE, and WOSMAP-COMMUTE that commutes
two consecutive tMs if the outer tM pointer belongs to an object allocated temporally
earlier (denoted by <t: σP × σP → σC) than the inner tM. The commute rewrites help
merge writes to a same object separated by write(s) to other objects. However, note that
allocation temporal order <t between objects does not imply pairwise comparability ≤p

between pointers belonging to the objects. The relationship ≤p , in line with C semantics,
is spatial and strictly defined between pointers in a same object.

ROW rewrite rules are also expanded to accommodate reads over store-maps. A read
over store-map a with object base β at address i is rewritten following the rules:

R-HIT If β is proven equal to the base of i, and the offset-value map of a contains the
offset of i, return the mapped value;

R-MISS If β is proven equal to the base of i, but the offset-value map of a does not
contain the offset of i, recursively rewrite read over nested tM of a at i;

R-SKIP If β is proven not equal to the base of i, recursively rewrite read over nested tM
of a at i;

43

⊢ i =p ptr(β, o) ⊢ m[o] =s e R-HIT
read -word(store-map(a, ptr(β, 0),m), i) ⇝ e

⊢ i =p ptr(β, o) ⊢ o /∈ m
R-MISS

read -word(store-map(a, ptr(β, 0),m), i) ⇝ read -word(a, i)

⊢ i =p ptr(α, o) ⊢ α ̸=s β R-SKIP
read -word(store-map(a, ptr(β, 0),m), i) ⇝ read -word(a, i)

⊢ m[o1] =s v1 ⊬ i =p β ⊬ i ̸=p β R-ABORT
read -word(store-map(a, ptr(β, 0),m), i) ⇝

read -word(write-word(store-map(a, β,m \ o1), ptr(β, o1), v1), i)

Figure 6.5: Rewrite rules for reading store-map

R-ABORT If neither equality nor dis-equality can be proven between the base of i and
β, recursively rebuild read over nested writes with offset-value pairs in a.

SeaM with store-map is still generic: the temporal order of writes at symbolic addresses
not comparable to others is maintained since they are neither grouped into store-maps nor
commuted with neighbouring memory writes. Similar to map list from [18], the simplifi-
cation performance of SeaM memory representation with store-map varies from that of a
Linked-list data structure to that of a map data structure depending on programs under
verification. The time-complexity of SeaM simplification with store-map can be analysis
in two scenarios, with number of memory writes denoted by n and number of memory
reads denoted by m:

Best-case scenario the program maintains a single memory object, the memory write
sequence would be compressed into a single store-map; each WOW simplification
inserts or updates an entry in an ordered map, so time-complexity of WOW simplifi-
cations is Twow = O(n · log(n)); each ROW simplification perform a lookup from the
map, so overall ROW time complexity Trow = O(m · log(n)). Overall time complexity
is then T = Trow + Twow = O(n · log(n)) +O(m · log(n)).

Worst-case scenario all memory writes in the program are at disjoint memory objects
and the memory write sequence is a Linked-list sorted by allocation temporal order;
WOW simplifications push writes linearly down the write sequence, performing es-
sentially bubble sort, so time complexity of WOW simplifications is Twow = O(n2);

44

each ROW simplification performs a linear search in the Linked-list, so overall read -
over-write time complexity is Trow = O(m · n). Overall time complexity is then
T = Trow + Twow = O(n2) +O(m · n).

If number of write and read are approximately the same (m ≈ n), in a program close to
ones in base-case scenario , SeaM with store-map can in theory out-perform configuration
with linear data structure in terms of simplification time: T = O(n · log(n)) is better
than T = O(n2). Under the same assumption that m ≈ n, programs close to the ones in
worst-case scenario has overall simplifications time-complexity of O(n2), which is the same
as linear configuration, meaning simplification time overhead would not be significant.

During implementation, integrating a ordered map data structure with logarithmic
lookup and insertion into VC AST proves to be challenging. The VC AST wrapper data
structure Expr was originally designed to be immutable. Sec. 7.2 describes the imple-
mentation details of Store-Map.

45

Chapter 7

Implementation

We have implemented SeaM as a memory representation in SeaBmc. This chapter de-
scribes two of the more interesting implementation details: 1. multi-step rewriter for
custom VC simplification and 2. cached ordered map for Store-Map.

7.1 Multi-step rewriter

The VC ASTs are represented by the Expr data structure. Expr nodes are immutable and
supports shared children, which essentially make Expr a DAG data structure. The sym
VCGen process described in Figure 4.8 and ROW simplifications described in Chapter 4
and Chapter 5 all require an efficient and configurable rewriter for Expr. The rewriter
should also support multi-step rewriting. For example, after a ITE-PUSH rewrite

ite(i, t, e) = x ⇝ ite(i, t = x, e = x)

the rewritten formula could be further simplified if the sub-formulas t = x and e = x
are rewritten to True or False. Multi-step rewriting is particularly important for ROW
simplifications. For example, after applying ROW rewrite rule in Figure 4.4

read -word(write-word(a, i, v), j) ⇝ ite(i =p j, v, read -word(a, j))

conclusive rewrite result on the sub-formula i =p opens opportunities for further applying
ROW-HIT rule or ROW-SKIP rule. We have implemented a rewriter for VC ASTs sup-
porting multi-step rewriting based on iterative post-order tree traversal with caching. The

46

rewriter design is similar to that implemented in Z3 [12]. A rewriter implementation is a
template class containing the overall AST traversal procedure parameterized by a rewriter
configuration class: Rewriter<RewriterConfig>. A RewriterConfig class defines the
following procedures:

• shouldRewrite(Expr e) → bool: takes an Expr e as argument and returns Boolean
dictating whether any rewrite rules are applicable to the expression;

• applyRewriteRules(Expr e) → (Expr, rewrite_status): applies a rewrite rule on
e and returns a tuple containing the rewritten expression and a rewrite_status;
rewrite_status serves as instruction for rewriter on next actions for the rewritten
expression:

RW_DONE: simplification is final;

RW_<n>: rewrite expression bounded by n;

RW_FULL: rewrite fully without bound;

RW_SKIP: future visits on the rewritten expression should be skipped; should only
return this status if applyRewriteRules would return False on the rewritten
expression.

• applyAfterRewriteActions(Expr oldE, Expr newE) → void: given original expres-
sion oldE and rewritten expression newE from applying a rewrite rule, apply actions
like update cache or update logging.

The rewriter performs post-order traversal of a Expr iteratively with the aid of two
stacks. The first rewrite_stack holds data structures named RewriteFrame, which con-
tains an expression under rewrite and fields recording the progress of its rewrite

RewriteFrame {
Expr m_exp; // the expression under rewrite
size_t m_depth; // number of levels to rewrite from this node
size_t m_i; // up to m_i th children have been rewritten
bool m_rewriting; // this frame is currently under further rewrite

}

As shown in Alg. 1, the procedure visit tries visiting a Expr node in the expression and
returns a Boolean result indicating whether rewrite should halt at the node. To prevent
repeated visits on same Expr nodes, a cache from original Expr to fully rewritten version is
maintained by the rewriter. If the node is not in the cache, depth limit has not been reached

47

In : e : Expr to visit; depth : current depth limit
Out: True if e has been fully rewritten before or depth is 0, otherwise False
Procedure visit(e: int, depth: int):

if depth = 0 or not config.shouldRewrite(e) then
result_stack.push(e);
return True;

end
if e is in cache then

result_stack.push(cache[e]);
return True;

end
if depth ̸= FULL then

depth := depth −1;
end
F := RewriteFrame(e, depth, 0, False);
rewrite_stack.push(F);
return False;

end
Algorithm 1: Procedure for trying to visit an Expr node.

and the shouldRewrite function under current config returns True, a new RewriteFrame
is created with the node and pushed to the top of rewrite_stack.

The second stack maintained by the rewriter is result_stack. At the start of a rewrite,
the rewriter calls visit on the root node, and pops the first element of rewrite_stack and
processes it with procedure processFrame in Alg. 2. Lines 2-8 tries to visit each of the argu-
ments, if any argument node needs to be visited, it is pushed to rewrite_stack and current
processFrame exits. By line 9, all arguments of f are fully rewritten and are the top-most
elements in result_stack. A new Expr is formed with rewritten arguments and rewrite
rules contained in RewriterConfig is applied to rewrite it. If returned rewrite_status
indicates that no further rewrite is possible (RW_DONE) or necessary (RW_SKIP), the rewrit-
ten Expr is pushed to top of result_stack. If rewrite_status is RW_DONE, the rewritten
result is also cached. If returned status is RW_n, it means rewriter should apply further
rewrite up to n levels. The rewriter pushes a new RewriteFrame containing the interme-
diate rewritten value and depth. Note that RW_n is set to a integer constant of value n,
so the rewriter passes RW_n for depth argument. When rewrite_stack is empty, the final
rewritten version of root should be on top of result_stack. The full outer loop of rewrite
process is summarized in Alg. 3.

48

1 Procedure processFrame(f: RewriteFrame):
2 for i = f.m_i to size of f.m_exp.args do
3 inc f.m_i;
4 k:= f.m_exp.args[i];
5 if not visit(f.m_exp.args, f.m_depth) then
6 return
7 end
8 end
9 rewrite_stack.pop();

10 n := size of f.m_exp.args;
11 args := list from top n in result_stack; /* get rewritten args */
12 result_stack.pop(n);
13 old := f.m_exp.op(a in args) ; /* renew with new args */
14 new := config.applyRewriteRules(old);
15 config.applyAfterRewriteActions(old, new);
16 if res.status := RW_SKIP then
17 cache multi-step;
18 result_stack.push(res.rewritten);
19 else if res.status := RW_DONE then
20 cache multi-step;
21 cache[f.m_exp] := res.rewritten;
22 result_stack.push(res.rewritten);
23 else
24 mark multi-step start;
25 rewrite_stack.push(RewriteFrame(res.rewritten, res.status, 0, False));
26 end
27 end

Algorithm 2: Procedure for processing an Expr node.

e : Root node to be rewritten.
visit(e);
while rewrite_stack not empty do

processFrame(rewrite_stack.top);
end
return result_stack.top;

Algorithm 3: Full rewrite loop.

49

ite(i,mt,me)

mt : write-word(ma, p1, v1) me : write-word(ma, p2, v2)

ma : write-word(mb, p3, v3)

Figure 7.1: Example Expr of a tM under rewrite.

Multi-step caching Consider a multi-step rewrite

a ⇝ b ⇝ c

The expected caching should be a 7→ c. However, following Alg. 2, the rewrite from a
to b returns a RW_n status, so a would not be cached. The rewrite status from b to c is
RW_DONE, which adds to cache b 7→ c. Failing to properly cache mult-step rewrite could
result in higher cost in time. Take the example tM shown in Figure 7.1, in which both me

and and mt contain memory state ma. Without proper caching on ma’s multi-step rewrite,
it would be rewritten twice, each time from mt and me, in which case the example tM is
no longer treated as a DAG but a tree.

To properly cache such multi-step rewrites, we add procedure mark multi-step start
as described in Alg. 4 during handling of RW_n status, which marks m_rewriting field
in RewriteFrame f to True and pushes f back on top of rewrite_stack. During han-
dling of RW_DONE and RW_SKIP, if the top element of rewrite_stack f ’ is marked with
m_rewriting, then f ’ will be removed from stack and the cache will be properly updated
as shown in Alg. 5.

Theorem 5. Expr rewriter with multi-step caching rewrites in linear time to the syntactic
size of expressions.

Proof. Any node e in an Expr would not be visited more than once regardless of result of
applyAfterRewriteActions(e):

• RW_SKIP: shouldRewrite(e) must return False, so e would be skipped by next
visit call;

50

f : current processed RewriteFrame
if rewrite_stack is empty or rewrite_stack.top.m_rewriting = False then

f.m_rewriting := True;
rewrite_stack.push (f);

end
Algorithm 4: Mark multi-step

res : rewrite result
if rewrite_stack not empty and rewrite_stack.top.m_rewriting = True then

cache[rewrite_stack.back.m_exp] := res.rewritten;
result_stack.pop();

end
Algorithm 5: Cache multi-step

• RW_DONE: e and rewritten result would be cached, next visit(e) would directly use
cached result;

• RW_n: e is marked with m_rewriting and pushed back to rewrite_stack; when
RW_DONE is returned on intermediate Expr, marked e would be removed from
rewrite_stack and cached.

Discussion During development of the first iteration of the Expr rewriter, we took
much inspiration from Z3’s rewriter1. Multi-step rewriting with different rewrite_status
was one of the designs we ported, but we noticed unusual time consumption when extensive
multi-step rewriting was required for Store-Map R-ABORT rewrite rule, leading to the
implementation of multi-step caching. It is possible that Z3 rewriter does not handle multi-
step caching or handles in very different manner, but such performance issue in a SMT
solver rewriter is outside of the scope of this thesis.

7.2 Cached ordered maps for Store-Map.

Recall that the Expr data structure is immutable, ie. individual argument nodes cannot
be replaced without creating a new parent node. For Store-Map, this means the offset-

1Publicly available at https://github.com/Z3Prover/z3/tree/master/src/ast/rewriter

51

https://github.com/Z3Prover/z3/tree/master/src/ast/rewriter

value map cannot be implemented directly as binary search tree or ordered list with Expr
nodes, since inserting into such data structure would require copying all existing entries
to build a new instance with the inserted entry. Instead, the "offset-value map" part
of a store-map term is represented by a nested Linked-list-like data structure that bears
similarity to cons list in Lisp. We refer to this data structure as offsets-value cons list
(OCL). An OCL is ordered by insertion order. The real map with keys ordered by pointer
offset is an instance of C++ stl ordered_map. We maintain a cache from store-maps to
stl ordered_maps.

Given a store-map s with OCL c and cached stl ordered_map m, during an insertion
from SMAP-HIT, a new OCL c’ is built in constant time with two arguments: 1. the
inserted offset-value pair and 2. the previous list c. A new store-map s’ is created with
the new OCL. We also insert offset-value pair to m in logarithmic time, and move m from
previous key s to new key s’ in cache. We illustrate the process in Fig. 7.2. Note that only
store-maps from with the latest revision will maintain a cached offset-value ordered map for
logarithmic lookup. This design does mean write over store-maps that has been written to
would result in store-map cache miss and a offset-value ordered map would not be available;
ROW simplification lookup can only be done by linearly searching OCL. However, in
experiments detailed in Sec. 8.3, SeaM configured with current implementation of Store-
Map out-performs the linear configuration, indicating insignificant negative impact from
store-map cache miss.

52

write-word(
store-map(

a,
ptrOf(β, 0),
cons((0, 21),

cons((8, 42), nil)
)

),
ptrOf(β, 16),
8

)
⇝
store-map(

a,
ptrOf(β, 0),
cons ((16, 8),

cons((0, 21),
cons((8, 42), nil)

)
)

)

(a) Rewrite from store-map(s, ptr(β, 16), 8) to s′

{
...
s 7→ {

0 7→ 21,
8 7→ 42

}
...

}
↪→
{

...
s′ 7→ {

0 7→ 21,
8 7→ 42,
16 7→ 8

}
...

}

(b) Updates in Expr 7→ stl map cache

Figure 7.2: Insertion process with OCL and cached stl map.

53

Chapter 8

Evaluations

In this chapter, we evaluate the performance of SeaM with a series of experiments. As
described in Chapter 7, SeaM is implemented as part of SeaBmc. In Sec. 8.1, we com-
pare the overall performance of SeaM against two existing memory representations im-
plemented in SeaBmc: 1. Arrays, which encodes memory operations with basic theory
of arrays; 2. Lambdas, which encodes memory operations with TASC simulated with
λ-expressions. We evaluate overall performance in terms of soundness, measured by num-
ber of correct results out of all verification tasks, SMT solving time of VC generated and
pre-processing time, measured by the total time spent on rewriting and simplifying VC for-
mulas. The evaluation benchmark are BMC tasks from Verify C Common project. Each
task verifies the representation invariant and memory safety of a C function implemented in
the aws-c-common library. These tasks are chosen as benchmark since they are based on C
programs containing real-world patterns of memory usage and manipulation. All tasks are
expected to yield result of unsat, so any sat result would be recognized as failures. All ver-
ification tasks are publicly available at https://github.com/seahorn/verify-c-common.

Next, we evaluate the individual impacts of the two optimization techniques - ARM and
Store-Map, towards the overall performance. In Sec. 8.2, we evaluate the impact of ARM
on verifying aws-c-common BMC tasks. The comparison is done on two configurations
of SeaM: with or without ARM. As additional performance metrics, we also look at
syntactic size: number of unique nodes in final VC DAG, and ROW skips : number of
ROW simplifications based on axoims (A2) and (A3).

In Sec. 8.3, we evaluate the impact of SeaM on pre-processing time, particularly with
Store-Map. For this experiment, we compare the pre-processing time among Lambdas
and two configurations of SeaM (with and without Store-Map). The benchmark C

54

https://github.com/seahorn/ verify-c-common

programs are adopted from Sv-Comp’s array-crafted benchmarks. The reason for using
Sv-Comp tasks over aws-c-common tasks is that pre-processing time in general are very
low for all aws-c-common tasks. Crafted progams from Sv-Comp contain repeated access
and modification to memory in loops, thus they translate to longer ROW sequences. The
tasks are publicly available at a forked branch of the Verify-C-Common project1. To further
explore the impact on scalability in terms of the correlation between pre-processing time
and size of ROW sequences, we look into a case study created by isolating a single task
bAnd and perform verification with increasing size of ROW sequences.

All experiments are conducted on a Linux machine with 2 Intel® Xeon® E5-2680 8-core
(32 threads in total) CPUs and 64GB of memory.

8.1 Overall performance

In this section we evaluate the overall performance of SeaM as part of SeaBmc in terms
of soundness, solving time and pre-processing time against the two alternative memory
representations in SeaBmc: Arrays and Lambdas. For this set of experiments, we use
SeaBmc to verify 157 aws-c-common tasks with each of the three memory representations.
We repeat the experiment with two SMT solvers integrated to SeaBmc: Z3 and Yices2.
Apart from memory representation and solver backend, configuration of SeaBmc is the
same accross all experiments: using the optimal strategy described in Section 4 of [29].
Note that pre-processing is the same between SeaBmc configurations with different solvers:
SeaM with a combination of custom rewriter and Z3 simplifier; Arrays and Lambdas
with Z3 simplifier only. SeaBmc does not leverage stand-alone simplifier from Yices2.

We present the results with Z3 in Tab. 8.1 and the results with Yices2 in Tab. 8.2
respectively. For each configuration under different memory representation, we show the
average and total pre-processing time and SMT solving time of tasks that finished within
timeout limit per category. Note that the timeout threshold for each verification task is
1,200 seconds. Certain tasks under configurations with Arrays exceeded the timeout
limit or failed with wrong results; the number of failures and timeouts per category are
presented under the fld/to column. Total timing results of categories with failures and
timeouts are highlighted in red. Total best results of the memory representation with no
timeouts or fails are highlighted in bold text.

1Accessible at https://github.com/danblitzhou/verify-c-common/tree/xiang-thesis-bench/
seahorn/jobs_bench

55

https://github.com/danblitzhou/verify-c-common/tree/xiang-thesis-bench/seahorn/jobs_bench
https://github.com/danblitzhou/verify-c-common/tree/xiang-thesis-bench/seahorn/jobs_bench

SeaBmc under both Lambdas and SeaM finished all verification tasks with correct
results within timeout limit for both solvers, while there are 3 fails along with 29 timeouts
and 2 fails for Arrays with Z3 and Yices2 respectively.

Tab. 8.1 shows that overall Z3 solves VCs produced by Lambdas the fastest. However,
SeaM produced favourable or equal results in terms of solving time in 6 out of the 13
categories. The side-by-side comparison of solving time per task between SeaM and
Lambdas is shown in Figure 8.1a. Overall, SeaM greatly out-performs Arrays in
terms of solving time, producing VCs with faster or equal solving time by Z3 in 11 out of
the 13 categories. In both categories (array and hash_iter) where Arrays beats SeaM
in solving time, SeaBmc with Arrays timed out in 1 out of 4 and 4 out of 5 tasks
respectively. The side-by-side comparison of solving time per task between SeaM and
Arrays is shown in Figure 8.1b.

categories cnt
SeaM Lambdas Arrays

pre-proc (s) solving (s) pre-proc (s) solving (s) fld/to pre-proc (s) solving (s)
avg total avg total avg total avg total avg total avg total

arithmetic 6 <1 <1 <1 <1 <1 <1 <1 <1 0/0 <1 <1 <1 <1
array 4 <1 <1 1 4 <1 <1 <1 3 0/1 <1 <1 <1 1
array_list 24 <1 <1 4 99 <1 <1 2 58 0/0 <1 <1 31 753
byte_buf 29 <1 <1 <1 21 <1 <1 <1 11 1/2 <1 <1 10 280
byte_cursor 24 <1 <1 <1 9 <1 <1 <1 8 0/1 <1 <1 2 46
hash_callback 3 <1 <1 3 9 <1 <1 5 15 0/0 <1 <1 5 17
hash_iter 5 <1 <1 7 37 <1 1 6 32 0/4 <1 1 <1 <1
hash_table 19 <1 <1 4 87 1 19 3 70 0/6 <1 14 81 1,055
linked_list 18 <1 <1 2 41 <1 1 1 21 0/8 <1 <1 101 1,011
others 2 <1 <1 <1 <1 <1 <1 <1 <1 0/0 <1 <1 <1 <1
priority_queue 6 <1 <1 <1 2 <1 <1 <1 2 0/0 <1 <1 <1 2
ring_buffer 2 <1 <1 <1 <1 <1 <1 <1 <1 0/0 <1 <1 <1 <1
string 15 <1 <1 2 32 <1 1 2 35 2/7 <1 <1 13 104
total 157 <1 341 22 255 3/29 15 3,269

Table 8.1: Overall BMC performance of SeaM, Arrays and Lambdas on
aws-c-common benchmark with Z3. cnt , fld and to measures number of total tasks,
failed tasks and timeouts per category respectively. Timeout threshold is 1,200 seconds.

56

(a) SeaM vs. Lambdas (b) SeaM vs. Arrays

Figure 8.1: Per task solving time using Z3

Tab. 8.2 shows that overall Yices2 solves VCs produced by Arrays the fastest. How-
ever, SeaM produced faster or equal results in terms of solving time in 8 out of the 13
categories. Also, Arrays resulted in two failures in the string category. The side-by-side
comparison of solving time per task between SeaM and Arrays is shown in Figure 8.2b.
With Yices2, SeaM produces VCs with faster or equal solving time than Lambdas in
6 out of the 13 categories; total solving time of SeaM is shorter than Lambdas. The
side-by-side comparison of solving time per task between SeaM and Lambdas is shown
in Figure 8.2a. The plot indicates that the overall difference in solving time between
SeaM and Arrays / Lambdas are skewed by a small number of cases; in the majority
of aws-c-common tasks, solving time is comparable between SeaM and the alternative
memory representations.

57

categories cnt
SeaM Lambdas Arrays

pre-proc (s) solving (s) pre-proc (s) solving (s) fld/to pre-proc (s) solving (s)
avg total avg total avg total avg total avg total avg total

arithmetic 6 <1 <1 <1 <1 <1 <1 <1 <1 0/0 <1 <1 <1 <1
array 4 <1 <1 <1 2 <1 <1 <1 1 0/0 <1 <1 <1 1
array_list 24 <1 <1 3 95 <1 <1 5 123 0/0 <1 <1 7 174
byte_buf 29 <1 <1 <1 6 <1 <1 <1 5 0/0 <1 <1 <1 6
byte_cursor 24 <1 <1 <1 2 <1 <1 <1 1 0/0 <1 <1 <1 1
hash_callback 3 <1 <1 5 15 <1 <1 4 13 0/0 <1 <1 <1 11
hash_iter 4 <1 <1 4 22 <1 1 2 10 0/0 <1 1 3 22
hash_table 19 <1 <1 8 162 1 19 14 284 0/0 <1 14 4 176
linked_list 18 <1 <1 6 122 <1 1 3 69 0/0 <1 <1 9 20
others 2 <1 <1 <1 <1 <1 <1 <1 <1 0/0 <1 <1 <1 <1
priority_queue 6 <1 <1 <1 <1 <1 <1 <1 <1 0/0 <1 <1 <1 <1
ring_buffer 2 <1 <1 <1 <1 <1 <1 <1 <1 0/0 <1 <1 <1 <1
string 15 <1 <1 <1 25 <1 1 1 17 0/2 <1 <1 <1 11
total 157 <1 451 22 523 0/2 15 422

Table 8.2: Overall BMC performance of SeaM, Arrays and Lambdas on
aws-c-common benchmark with Yices2 solver. cnt , fld and to measures number of
total tasks, failed tasks and timeouts per category respectively. Timeout threshold is
set to 1,200 seconds.

(a) SeaM vs. Lambdas (b) SeaM vs. Arrays

Figure 8.2: Per task solving time using Yices2

In terms of per-processing time, SeaM consistently out-performs the other two memory
representations. The per-task comparisons are presented in Figure 8.3. Note that in
general, pre-processing time is not significant in aws-c-common tasks. The BMC unroll

58

bound are general set below 100, resulting in short ROW sequences. Therefore, to study
the impact of Store-Map, a technique aiming at reducing pre-processing overhead, we
use crafted C programs from Sv-Comp as benchmarks and apply larger BMC bounds in
Sec. 8.3.

(a) SeaM vs. Arrays (b) SeaM vs. Lambdas

Figure 8.3: Per task pre-processing comparison

Conclusion Overall, SeaBmc configured with SeaM produces VCs with comparable,
sometimes superior solving time than Lambdas with both Z3 and Yices2. With Z3,
SeaM produces VC with both faster solving time and better soundness than Ar-
rays. With Yices2, SeaM produces VC with better soundness than Arrays at the
cost of slightly longer solving time. Regardless of solver choice, SeaM achieves neg-
ligible pre-processing time overhead compared to the other memory representations.
In conclusion, SeaM proves to be sound and highly performant in terms of solving time
and pre-processing time for BMC on read-world industrial code base.

8.2 Simplification with ARM

In this section, we evaluate the impact of over-approximating pointer comparison with
Address Range Map (ARM) on SeaM performance. In addition to soundness, solving
time and pre-processing time, we also compare the metrics syntactic size: number of unique
nodes in final VC DAG, and ROW skips : number of ROW simplifications.

59

Note on new metrics We consider syntactic size a reasonable metric only between
configurations of the same memory representation, since different memory representations
may use syntactically different expressions for equivalent semantics. For example, the two
expressions in Figure 8.4 both represent a read -over-write. The expression e1 in Figure 8.4a
uses TA signatures resulting in a smaller syntactic size than the expression e2 in Figure 8.4b
(9 < 13). However, the comparison in syntactic size between e1 and e2 is not meaningful
since they are semantically equivalent.

ROW skips contain ROW simplifications based on both syntactic pointer comparisons
based on axiom 1 of Figure 4.2 and pointer comparisons resolved by ARM Theorem 4.

e1 = (select
(store

(store a p v)
q
w

)
i

)

(a) Expression with TA.

e2 = (ite
(= i q)
w
(ite

(= i p)
v
(select a i)

)
)

(b) Expression with ite only

Figure 8.4: Semantically equivalent expressions

We run SeaBmc configured with SeaM to verify 157 BMC tasks from aws-c-common.
The experiments are repeated with ARM turned on (SeaM) and off (SeaM-No-Arm).
Final VCs from both configurations are solved with Z3 and Yices2. The results are pre-
sented in Tab. 8.3.

Compared to configuration without ARM, SeaM with ARM resolves 42 more ROW
skips on average accross all aws-c-common tasks. There are no failures in either configura-
tions, indicating the soundness of ROW skips by ARM. Figure 8.5 plots the extra ROW
skips resolved by ARM against syntactic size reduction. The plot indicates a positive linear
correlation between number of ROW skips introduced by ARM and reduction in syntactic
size. The extra ROW skips resulted in syntactic size reduction of 1.2× on average accross
all aws-c-common tasks. The per-task comparison on syntactic size is shown in Figure 8.6.

60

solving (s) pre-proc. (s) syntac. size total skips
Z3 Yices2

config avg sum avg sum avg sum avg sum avg sum
SeaM 2 346 2 456 <1 3 745 116983 42 6639
SeaM-No-Arm 3 502 6 1051 <1 3 920 144473 <1 27
avg diff ×1.5 ×3.0 ×1.0 ×1.2 +42

Table 8.3: BMC performance of SeaM with and without ARM on aws-c-common bench-
mark with Z3 and Yices2. Timeout threshold is 1,200 seconds.

Figure 8.5: # of extra ROW skips vs. reduction in syntactic size.

61

Figure 8.6: SeaM with and without ARM syntactic size per task.

On average accross all aws-c-common tasks, SeaM with ARM resulted in VCs with
1.5× faster solving time for Z3 and 3.0× for Yices2 compared to configuration without
ARM. The per-task comparison between the two configurations are shown in Figure 8.7.
The plot shows that VCs simplified with ARM is faster to solve for both solvers accross
all aws-c-common tasks with very few exceptions. In terms of pre-processing time, the
experiments show that ARM does not result in any additional overhead, which is explained
by its linear running time by design as described in Chapter 5.

62

(a) Z3 (b) Yices2

Figure 8.7: SeaM with and without ARM solving time per task.

Conclusion ARM has a positive impact on the performance of SeaBmc with SeaM
while maintaining soundness. On VCs generated from read-world industrial code base,
ARM resolves significantly more ROW skips than the approach with syntactic pointer
comparison only. Simplification with ARM resulted in syntactically smaller VCs and
faster solving time for Z3 and Yices2, with negligible pre-processing time overhead.

8.3 Overhead reduction with Store-Map

In this section, we evaluate the impact of Store-Map on pre-processing time. In
Sec. 8.1 and Sec. 8.2, SeaM spends around 3 seconds on pre-processing for all 157 aws-c-common
tasks. On average, the pre-processing time per task is less than 1 second. Without chang-
ing settings such as BMC unrolling bound, impact of Store-Map is insignificant on
aws-c-common tasks. Alternatively, we adopted 10 C programs from the array-crafted
section of Sv-Comp benchmarks collection. These programs all perform a large number
of repeated memory access and modification operations on a single integer array. We per-
formed BMC on the 10 programs with SeaBmc using three memory representations: 1.
Lambdas; 2. SeaM: SeaM with Store-Map; 3. SeaM-linear: SeaM with linear
nested memory writes. For all tasks we use only Z3 as SMT solver since this experiment
aims to evaluate pre-processing performance. Also, as the results reveal, SeaBmc with

63

Config. pre-proc. time (s) solving time (s) syntac. size Store-Map simp.sum diff
SeaM 3 – <1 47425 23192
SeaM-linear 102 ×34 <1 47425 –
Lambdas 233 ×77 <1 8919 –

Table 8.4: BMC performance on 10 Sv-Comp programs.

all three memory representations does the heavy-lifting during pre-processing instead of
during SMT solving.

The BMC results of SeaBmc with three memory representations are presented in
Tab. 8.4. We also present the total number of simplifications introduced by Store-
Map, including R-HIT and R-SKIP in Figure 6.5, in the Store-Map simplifications
column. Overall, Store-Map results in over 23,000 R-HIT and R-SKIP rewrites over 10
tasks. Total pre-processing time is reduced by 34× compared to SeaM-linear, and 77×
compared to Lambdas, while the solving time of result VCs are identically negligible
across all memory representations. Pre-processing time per task is always the shortest
for SeaM as shown in Figure 8.8. Note that between the two configurations of SeaM,
SMT solving time and syntactic size are identical. This is consistent with Store-Map’s
designed purpose of reducing ROW simplification time during pre-processing, it does not
resolve additional pointer equalities.

Case study bAnd To further explore the correlation between pre-processing time and
size of ROW sequences in VC, we create a case study focusing on a single program from
Sv-Comp array-crafted: bAnd, as shown in Figure 8.9. The program maintains an
integer array x of fixed size N and initializes it with non-deterministic values on lines 19-21.
On line 23, x is passed into a function named bAnd, which reads existing elements of x
and calculates the accumulated bit-wise and (&) product of all elements in the array and
stores it in ret. In the loop on lines 25-29, each iteration swaps elements from two shifting
indices of x; next the bit-wise & product of the shuffled array calculated and stored in
ret2. Each iteration then verifies the equality between ret and ret2. By adjusting the
variable SELECT_SIZE, we can adjust the size of ROW sequences in the translated VC.

In this case study, we perform BMC on bAnd program using SeaBmc configured with
Lambdas, SeaM and SeaM-linear. The experiment is repeated with increasing values
of SELECT_SIZE, ranging from 10 to 100. The pre-processing time of BMC results on bAnd
with different memory representations vs. size of SELECT_SIZE is plotted in Figure 8.10.
As size of ROW sequences in VC increases with SELECT_SIZE, SeaBmc pre-processing

64

Figure 8.8: Pre-processing time on Sv-Comp tasks.

Config. pre-proc. time (s) solving time (s)sum diff
SeaM 4 – <1
SeaM-linear 16 ×4 <1
Lambdas 52 ×13 <1

Table 8.5: BMC performance summary on bAnd.

time grows close to linearly under all three configurations. The rate of pre-processing time
increase in relation to size of ROW is ranked as the following: Lambdas > SeaM-linear
> SeaM. Solving time across the three configurations are identical and very insignificant,
as shown in Tab. 8.5. Through this case study, we show that SeaM is more scalable
than Lambdas as size of ROW sequences increases. With Store-Map data structure,
ROW simplification can be performed with best-case running time logarithmic to number
of writes. This is reflected by the even slower increase of pre-processing time as size of
ROW sequences increases in VC when Store-Map is enabled in SeaM.

Conclusion On crafted Sv-Comp benchmarks, SeaBmc with SeaM achieved similar
level of simplification during pre-processing with much smaller pre-processing time com-
pared to Lambdas. When Store-Map data structure is enabled over linear nested writes,

65

1 #define N 101
2 #define SELECT_SIZE ?
3 int bAnd (int x[N]) {
4 int i;
5 long long res;
6 res = x[0];
7 for (i = 1; i < N; i++) {
8 res = res & x[i];
9 }

10 return res;
11 }
12

13

14 int main(void) {
15 int x[N];
16 int temp;
17 int ret;
18 int ret2;
19 for (int i = 0; i < N; i++) {
20 x[i] = nd_int ();
21 }
22

23 ret = bAnd(x);
24

25 for (int i = 0, j = SELECT_SIZE; i < j; i++, j--) {
26 temp = x[i]; x[i] = x[j]; x[j] = temp;
27 ret2 = bAnd(x);
28 sassert(ret == ret2);
29 }
30 return 0;
31 }

Figure 8.9: bAnd program source code.

the performance gain is even greater. The case study with bAnd affirms that as size of ROW
sequences grows, SeaM can be more scalable than Lambdas. Once again, Store-Map
introduces further improvement in scalability compared to linear data structure approach.

8.4 Conclusion

Overall, SeaM is a sound memory representation for SeaBmc with comparable or bet-
ter performance in terms of solving time compared to existing best performing memory
representations against real-world industrial benchmarks. Performance in terms of pre-
processing time is superior to both Lambdas and Arrays under all configurations.

ARM proves to be effective for resolving pointer comparisons. Extra simplifications
by ARM have positive impact on SMT solving time of BMC on real-world industrial
benchmarks. The improvement inflicts negligible overhead in pre-processing time.

On benchmarks requiring simplification on longer sequences of ROW, SeaM proves to
be more performant than Lambdas in terms of pre-processing time while achieving similar

66

Figure 8.10: Pre-processing time of SeaM configurations with increasing SELECT_SIZE.

level of simplification measured by solving time. Store-Map proves to be effective in
further reducing pre-processing time when enabled in SeaM. As size of ROW sequences
increases, SeaM proves to be more scalable in a crafted scenario than Lambdas. Store-
Map further improves scalability upon SeaM with linear data structure.

67

Chapter 9

Related Work

Memory encoding in BMC is a mature yet still robust field of study. CBMC [9], one of
the earliest BMC tool for C programs, uses a combination of theory of arrays and theory
of uninterpreted functions to represent memory allocation and operations. SMACK [31] is
another BMC tool for LLVM. It also leverages alias analysis to partition memory. SMACK
also aims to preserve LLVM IR memory features by translating LLVM IR into the Boogie
intermediate verification language (IVL) [13], which in spirit is similar to the purpose of
TM. The authors of LLBMC ([17], [15], [25], [33]) introduced extended theory of memory
TASC with sound and efficient encoding of set and copy operations; it also introduced
simulation of array operations with λ functions. SeaM borrows the VCGen semantics of
memset and memcpy from TASC, but opts to perform eager rewriting of ROW terms over
using λ functions.

A different direction for the problem of encoding rich memory operations is to extend
solvers to support theories modeling memory properties. [14] introduces a theory of heaps
for CHC clauses. The theory of heaps also makes distinction between pointers (Address
sort) and other scalar values. The work defines new SMT theory semantics in SMT and
CHC solvers, unlike SeaM which rewrites VC to contain only ites and array constants
(uninterpreted functions). The theory of heaps also maintains properties lke validity and
allocation safety, which is not handled by SeaM: SeaBmc handles temporal and spatial
safety with shadow memory and fat pointers. A work in similar direction from Raka-
marić et. al. [30] models the memory of a Heap Manipulating Program (HMP) with an
acyclic singly-linked list; the work extends the MathSAT [4] solver reasons about un-
bound reachability of program states in an HMP. Although both capturing properties of
heap manipulating programs, [30] and SeaM have very different abstraction models.

68

The theory of arrays is still one of the more prominent memory representations ac-
cross different verification and program analysis techniques. Many domain specific mem-
ory encodings still contain array terms in final VC. Therefore, improvements on decision
procedures for TA is a straighforward direction for improving verification performance.
Literature on techniques that eliminate ROW terms with eager ([19], [22]) rewriting is
abundant. One approach substitutes array terms with new variables and delays solving
substitutes terms lazily [19]. Another "lazy" approach adds array lemmas on demand [6]
only when inconsistencies occur between indices equality and read variables equality. Most
of the improved decision procedures for TA are implemented in solvers. In theory, Arrays
memory representation could be modified with TM ROW simplifications while keeping
array terms in final VC to take advantage of solvers with more advanced array decision
procedures.

The Store-Map technique takes inspirations from map list data structure in [18].
Store-Map also partially sorts memory write sequence in temporal order with commute
rewrite rules in addition to grouping spatially pairwise-comparable indices like map list. In
essence, the application spaces of Store-Map and map list are quite different. Map list
aims at generic array simplifications without language-specific information, while Store-
Map focuses on simplifications under the context of BMC for C programs. [18] also
uses intervals abstract domain for over-approximate scalar values. However, [18] does not
include abstract semantics of ite, which is understandable considering the work mostly
uses formulas generated from Symbolic Execution as benchmarks. Note that our Abstract
Interpretation approach ARM abstracts symbolic scalar values with ⊤. This is not as
precise as [18], which propagates intervals of symbolic values from assertions. We believe
in the future similar level of precision is feasible in ARM through taking advantage of
assume statements in SEA-IR.

69

Chapter 10

Conclusion

In this thesis we explore the advantage of preserving language specific properties in memory
encodings for BMC in terms of solving time of verification conditions and pre-processing
overhead.

We introduced an expressive First-Order theory called Theory of Memory TM. TM
preserves C-specific pointer arithmetic and comparison semantics with pointer sort σP .
TM encodes C memset and memcpy functions succinctly and soundly. We also created eager
rewrite rules that remove all TM memory operation signatures from final VC provided to
solver backend, leaving only ites and uninterpreted functions. Based on TM, we introduce
two optimization techniques.

First, we identified the problem of exponential overhead during direct comparisons
between terms of σP sort involving nested ites. We introduced ARM, an abstract value of
pointer terms that can be constructed from pointer terms in polynomial time to syntactic
size of pointer term ASTs. We showed that ARM ⊓ operation over-approximates pointer
(dis)-equality check in linear time. We complemented TM ROW simplifications with faster
resolution of pointer (dis-equalities) from ARM at the cost of sound over-approximation.

Next, we observed potential scalability issue from linear ROW simplification rewrites.
Taking advantage of TM pointer comparison semantics, we compress writes with pairwise-
comparable pointers in special data structures named Store-Map with best-case loga-
rithmic time-complexity for each ROW simplification.

We have consolidated the above contributions into a memory representation SeaM in
SeaBmc. On real-world C program benchmarks, SeaM yields faster overall VC solving
time than Arrays memory representation; SeaM is comparable in VC solving time per-
formance with Lambdas. The pre-processing time SeaM is noticeably superior to both

70

Arrays and Lambdas. Against real-world C program benchmarks and crafted Sv-Comp
benchmarks respectively, both ARM and Store-Map show positive impact on the overall
performance of SeaM.

71

References

[1] Arrays, pages 291–310. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

[2] Clark Barrett and Cesare Tinelli. Satisfiability Modulo Theories, pages 305–343.
Springer International Publishing, Cham, 2018.

[3] Miquel Bofill, Robert Nieuwenhuis, Albert Oliveras, Enric Rodríguez-Carbonell, and
Albert Rubio. A write-based solver for SAT modulo the theory of arrays. In Alessandro
Cimatti and Robert B. Jones, editors, Formal Methods in Computer-Aided Design,
FMCAD 2008, Portland, Oregon, USA, 17-20 November 2008, pages 1–8. IEEE, 2008.

[4] Marco Bozzano, Roberto Bruttomesso, Alessandro Cimatti, Tommi Junttila, Peter
van Rossum, Stephan Schulz, and Roberto Sebastiani. The mathsat 3 system. In
Robert Nieuwenhuis, editor, Automated Deduction – CADE-20, pages 315–321, Berlin,
Heidelberg, 2005. Springer Berlin Heidelberg.

[5] Robert Brummayer and Armin Biere. Boolector: An efficient SMT solver for bit-
vectors and arrays. In Stefan Kowalewski and Anna Philippou, editors, Tools and
Algorithms for the Construction and Analysis of Systems, 15th International Con-
ference, TACAS 2009, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2009, York, UK, March 22-29, 2009. Proceedings,
volume 5505 of Lecture Notes in Computer Science, pages 174–177. Springer, 2009.

[6] Robert Brummayer and Armin Biere. Lemmas on demand for the extensional theory
of arrays. J. Satisf. Boolean Model. Comput., 6(1-3):165–201, 2009.

[7] Cristian Cadar and Koushik Sen. Symbolic execution for software testing: three
decades later. Commun. ACM, 56(2):82–90, 2013.

[8] Fred C. Chow, Sun Chan, Shin-Ming Liu, Raymond Lo, and Mark Streich. Effec-
tive representation of aliases and indirect memory operations in SSA form. In Ti-
bor Gyimóthy, editor, Compiler Construction, 6th International Conference, CC’96,

72

Linköping, Sweden, April 24-26, 1996, Proceedings, volume 1060 of Lecture Notes in
Computer Science, pages 253–267. Springer, 1996.

[9] Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking ANSI-C
programs. In Kurt Jensen and Andreas Podelski, editors, Tools and Algorithms for
the Construction and Analysis of Systems (TACAS 2004), volume 2988 of Lecture
Notes in Computer Science, pages 168–176. Springer, 2004.

[10] P. Cousot and R. Cousot. Static determination of dynamic properties of programs. In
Proceedings of the Second International Symposium on Programming, pages 106–130.
Dunod, Paris, France, 1976.

[11] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Conference
Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 238–252, Los Angeles, California, 1977. ACM Press,
New York, NY.

[12] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In C. R.
Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for the Construction
and Analysis of Systems, pages 337–340, Berlin, Heidelberg, 2008. Springer Berlin
Heidelberg.

[13] Robert DeLIne and Rustan Leino. Boogiepl: A typed procedural language for checking
object-oriented programs. Technical Report MSR-TR-2005-70, March 2005.

[14] Zafer Esen and Philipp Rümmer. A theory of heap for constrained horn clauses
(extended technical report). CoRR, abs/2104.04224, 2021.

[15] Stephan Falke, Florian Merz, and Carsten Sinz. The bounded model checker LLBMC.
In Ewen Denney, Tevfik Bultan, and Andreas Zeller, editors, 2013 28th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2013, Silicon Val-
ley, CA, USA, November 11-15, 2013, pages 706–709. IEEE, 2013.

[16] Stephan Falke, Florian Merz, and Carsten Sinz. Extending the theory of arrays: mem-
set, memcpy, and beyond. In Ernie Cohen and Andrey Rybalchenko, editors, Verified
Software: Theories, Tools, Experiments - 5th International Conference, VSTTE 2013,
Menlo Park, CA, USA, May 17-19, 2013, Revised Selected Papers, volume 8164 of
Lecture Notes in Computer Science, pages 108–128. Springer, 2013.

73

[17] Stephan Falke, Carsten Sinz, and Florian Merz. A theory of arrays with set and copy
operations. In Pascal Fontaine and Amit Goel, editors, 10th International Workshop
on Satisfiability Modulo Theories, SMT 2012, Manchester, UK, June 30 - July 1,
2012, volume 20 of EPiC Series in Computing, pages 98–108. EasyChair, 2012.

[18] Benjamin Farinier, Robin David, Sébastien Bardin, and Matthieu Lemerre. Arrays
made simpler: An efficient, scalable and thorough preprocessing. In Gilles Barthe, Ge-
off Sutcliffe, and Margus Veanes, editors, LPAR-22. 22nd International Conference on
Logic for Programming, Artificial Intelligence and Reasoning, Awassa, Ethiopia, 16-21
November 2018, volume 57 of EPiC Series in Computing, pages 363–380. EasyChair,
2018.

[19] Vijay Ganesh and David L. Dill. A decision procedure for bit-vectors and arrays.
In Werner Damm and Holger Hermanns, editors, Computer Aided Verification, 19th
International Conference, CAV 2007, Berlin, Germany, July 3-7, 2007, Proceedings,
volume 4590 of Lecture Notes in Computer Science, pages 519–531. Springer, 2007.

[20] James Gosling and Henry McGilton. The Java Language Environment: A White
Paper. Technical report, Sun Microsystems Computer Company, Mountain View,
CA, USA, October 1995.

[21] Red Hat Inc. Cve-2014-0160. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2014-0160, 2013. Accessed: 2022-08-09.

[22] Daniel Kroening and Ofer Strichman. Arrays, pages 171–179. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2008.

[23] Nicholas D. Matsakis and Felix S. Klock. The rust language. In Proceedings of the
2014 ACM SIGAda Annual Conference on High Integrity Language Technology, HILT
’14, page 103–104, New York, NY, USA, 2014. Association for Computing Machinery.

[24] J. Mccarthy. Towards a mathematical science of computation. In In IFIP Congress,
pages 21–28. North-Holland, 1962.

[25] Florian Merz, Stephan Falke, and Carsten Sinz. LLBMC: bounded model checking of
C and C++ programs using a compiler IR. In Rajeev Joshi, Peter Müller, and Andreas
Podelski, editors, Verified Software: Theories, Tools, Experiments - 4th International
Conference, VSTTE 2012, Philadelphia, PA, USA, January 28-29, 2012. Proceedings,
volume 7152 of Lecture Notes in Computer Science, pages 146–161. Springer, 2012.

74

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160

[26] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight dy-
namic binary instrumentation. In Jeanne Ferrante and Kathryn S. McKinley, edi-
tors, Proceedings of the ACM SIGPLAN 2007 Conference on Programming Language
Design and Implementation, San Diego, California, USA, June 10-13, 2007, pages
89–100. ACM, 2007.

[27] Mathias Preiner, Aina Niemetz, and Armin Biere. Better lemmas with lambda ex-
traction. In Roope Kaivola and Thomas Wahl, editors, Formal Methods in Computer-
Aided Design, FMCAD 2015, Austin, Texas, USA, September 27-30, 2015, pages
128–135. IEEE, 2015.

[28] Siddharth Priya, Xiang Zhou, Yusen Su, Yakir Vizel, Yuyan Bao, and Arie Gurfinkel.
Verifying verified code. In Automated Technology for Verification and Analysis, pages
187–202, Cham, 2021. Springer International Publishing.

[29] Siddharth Priya, Xiang Zhou, Yusen Su, Yakir Vizel, Yuyan Bao, and Arie Gurfinkel.
Bounded model checking for llvm. In Formal Methods in Computer-Aided Design.
Springer International Publishing, 2022.

[30] Zvonimir Rakamarić, Roberto Bruttomesso, Alan J. Hu, and Alessandro Cimatti.
Verifying heap-manipulating programs in an smt framework. In Kedar S. Namjoshi,
Tomohiro Yoneda, Teruo Higashino, and Yoshio Okamura, editors, Automated Tech-
nology for Verification and Analysis, pages 237–252, Berlin, Heidelberg, 2007. Springer
Berlin Heidelberg.

[31] Zvonimir Rakamarić and Michael Emmi. Smack: Decoupling source language details
from verifier implementations. In Armin Biere and Roderick Bloem, editors, Computer
Aided Verification, pages 106–113, Cham, 2014. Springer International Publishing.

[32] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry Vyukov.
Addresssanitizer: A fast address sanity checker. In Proceedings of the 2012 USENIX
Conference on Annual Technical Conference, USENIX ATC’12, page 28, USA, 2012.
USENIX Association.

[33] Carsten Sinz, Stephan Falke, and Florian Merz. A precise memory model for low-level
bounded model checking. In Ralf Huuck, Gerwin Klein, and Bastian Schlich, editors,
5th International Workshop on Systems Software Verification, SSV’10, Vancouver,
BC, Canada, October 6-7, 2010. USENIX Association, 2010.

[34] G. S. Tseitin. On the Complexity of Derivation in Propositional Calculus, pages 466–
483. Springer Berlin Heidelberg, Berlin, Heidelberg, 1983.

75

	List of Figures
	List of Tables
	Introduction
	Background
	Basic rewrite rules
	Theory of Arrays
	Encoding set/copy memory operations
	Encoding Arrays with -expressions
	SeaBmc

	Overview
	Theory of Memory
	Address Range Map
	Offset Intervals
	Address Range Map

	Compressing write with Store-Map
	Store-Map data structure

	Implementation
	Multi-step rewriter
	Cached ordered maps for Store-Map.

	Evaluations
	Overall performance
	Simplification with ARM
	Overhead reduction with Store-Map
	Conclusion

	Related Work
	Conclusion
	References

