Parallel Query Processing on Big Spatial Data

A dissertation submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

Polychronis Velentzas

November 2022

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



Parallel Query Processing on Big Spatial Data

A dissertation submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

Polychronis Velentzas

November 2022

1ii
Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



[TANEIIIXTHMIO OEZXAAIAX
INOAYTEXNIKH £XOAH
TMHMA HAEKTPOAOT'QN MHXANIKQN KAT MHXANIKQN YITOAOT'TETON

Hoparinin Enelepyoocio Epotnudtoyv

o€ Meyaiov Oykov Xmpka Agoopéva,

Awotpifn) n omoio vTOPANONKE Y10 TN UEPIKT] EKTANPOGCT)

TOV VIOYPEDGEMV OTOKTNGTG TOL AOUKTOPIKOD AITAMUOTOG

IHolvypovng Berévtlog

Noéupprog 2022

v

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Parallel Query Processing on Big Spatial Data

PhD Dissertation

Polychronis Velentzas

Advisory committee

Michael Vassilakopoulos, Professor, Univ. of Thessaly (Supervisor)
Emmanouil Vavalis, Professor, Univ. of Thessaly

Vassilios Verykios, Professor, Hellenic open University

Examination committee

Michael Vassilakopoulos, Professor, Univ. of Thessaly (Supervisor)
Emmanouil Vavalis, Professor, Univ. of Thessaly

Vassilios Verykios, Professor, Hellenic open University

Christos Antonopoulos, Associate Professor, University of Thessaly
Aspassia Daskalopulu, Associate Professor, University of Thessaly
Panagiota Tsompanopoulou, Associate Professor, University of Thessaly

Theodoros Tzouramanis, Assistant Professor, University of Thessaly

November 2022

vii
Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



DISCLAIMER ON ACADEMIC ETHICS
AND INTELLECTUAL PROPERTY RIGHTS

Being fully aware of the implications of copyright laws, I expressly state that this PH.D.
dissertation, as well as the electronic files and source codes developed or modified in the
course of this thesis, are solely the product of my personal work and do not infringe any
rights of intellectual property, personality and personal data of third parties, do not contain
work / contributions of third parties for which the permission of the authors / beneficiaries is
required and are not a product of partial or complete plagiarism, while the sources used are
limited to the bibliographic references only and meet the rules of scientific citing. The points
where I have used ideas, text, files and / or sources of other authors are clearly mentioned
in the text with the appropriate citation and the relevant complete reference is included in
the bibliographic references section. I also declare that the results of the work have not been
used to obtain another degree. I fully, individually and personally undertake all legal and
administrative consequences that may arise in the event that it is proven, in the course of

time, that this thesis or part of it does not belong to me because it is a product of plagiarism.

The declarant

Polychronis Velentzas

X

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



Acknowledgments

I would like to acknowledge and thank my advisory committee, Professors Michael Vas-
silakopoulos, Emmanouil Vavalis, and Vassilios Verykios, for their invaluable support and
guidance. I would also like to thank Professors Antonio Corral and Christos Antonopoulos
for providing feedback and advice. I owe a debt of gratitude to my family for their unwavering

support and encouragement.

xi

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



PhD Dissertation

Parallel Query Processing on Big Spatial Data

Polychronis Velentzas

Abstract

Nowadays we are storing overwhelming volumes of Spatial data. The continuously growing
need for processing such big data has led us create distributed or parallel frameworks, to
address the emerging computational overhead. Such data (often termed as geospatial data),
are used in many geographically enabled applications.

To exploit these data, efficient processing of spatial queries is of great importance due
to the wide area of applications that may address such queries. The most common spatial
queries where points are involved are point-location, window, distance-range and k nearest-
neighbor queries (k-NNQs). At a higher level, such queries have been used as the basis of
many complex operations in advanced applications, for example, geographical information
systems (GIS), location-based systems (LBS), geometric databases, CAD, etc.

The spatial queries processing performance is usually affected by two major factors. The
computational and the storage factor. The first one can be addressed by many architectures,
for example single core (sequential execution), multi-core (parallel execution), multi-node or
even GPU processing models. The second factor is also of great importance and affects the
retrieval or storage of information. The advent of non-volatile memories (NVM) has enabled
a brand-new class of storage devices with exciting features that will prevail in the storage
market in the near future. Their high read and write speeds, small size, low power consump-
tion and shock resistance are some of the reasons that made them storage medium of choice.
NAND flash is undoubtedly the most popular NVM today. Storage devices based on NAND
Flash are found both in consumer devices and enterprise data-centers.The increasing needs
for efficient storage drove the emergence of Solid-State Drives (SSDs).

Aside from the design and development of the above spatial queries, we furthermore
tested their efficiency in Edge Computers. Edge computing is a distributed computing ar-
chitecture where computation and data storage is as close to the source of data as possible.
We also designed an Edge computing and IoT distributed architecture, where we described
thoroughly the way we can exploit the dynamics of our techniques.

Xiii

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



Xiv Abstract

In this thesis we focus on the design and implementation of spatial queries that take ad-
vantage of multi-core CPU, GPU and SSD for storage. We employ techniques for faster and
fewer computations, computation reductions as well as data processing reductions, using spa-

tial locality and data distribution, on either synthetic or real data. Based on these techniques

» we develop efficient spatial query algorithms using multi-core CPU
» we develop efficient spatial query algorithms using GPU

» we exploit the massive I/O advantages of SSDs.

» we apply these queries to Edge Computers

* we perform extensive experimental tests to compare our algorithms to other existing

ones using synthetic and real spatial data.

Keywords

multi-core; k& Nearest-Neighbor Query; GPU; SSD; Spatial-queries algorithms; Plane-sweep;
Max-Heap; Parallel computing; Edge computing; [oT

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



Adaktopikn Aatpifin

Hapdiinin Enelepyocio Epotnudtov

oe Meyarov Oykov Xopika Agdopéva

IHolvypovng Berévilog

IHepiinyn

Iruepa amodnikebove TOAD peyddo 6yko yoptk®dv dedopévmv. H cuveydc avéovopevn ava-
YKN Yo eneEepyacio TETOIOMV HEYAA®V OEGOUEVAOV LOG OONYNCE VO ONUIOVPYT|COVUE KOTO-
VEUMUEVA 1] TAPAAANAQ GLGTIUATA, Y10 VO, OVTILETOTIGOVUE T OLEOVOLEVO VTTOAOYIGTIKA
Koot. Tétown dedopéva (cuyvd ovopdlovior Yewywpikd dedopUEVa), XPTCULOTOLOVVTOL GE
TOALEG YE@YPAPIKES EQUPUOYES.

[Mo v eKPETAAAEVGT QVTOV TOV OEOOUEV®V, 1) ATOTEAECUATIKY EXEEEPYOCIO YOPIKMDV
gpomubtov givar peyding onpaciog Adym G gupeiog YKANOS EQAPUOYAV OTOV UTOPOVV
VoL XPNCLOTOM GOV AVTA TO, EPMOTHUATO. To TIO0 CLVNOIGUEVA YOPIKA EPMOTNUATO 6T OTTOT0L
gumAgKovVTOL YWPIKA onpeia eivar o epotiuata BEong onueiov, mapabvpov, andoTaong EpL-
Béhetag kol £ mAnciéotepov yeitova (k-NNQs). e vynAdtepo eninedo, TETOW0 EPOTHILATO
&xouvv ypnoiponombei og aon ToALDY TOATAOK®V AEITOVPYIDV GE TPOTYUEVEG EQPUPLOYES,
Y10 TOPASELY L, CLGTNUATO YE®YPUPIK®V TANpopoptdv (GIS), cvotuata mov PBacilovrtal
o€ tonobBesia (LBS), yeoypapikég facelg doedopévmv, CAD k.Ax.

H amddoon g eneéepyaciog Tov Yopikdv epotnudtov cuvnbung ennpedletol amd dvo
Bacuotg mapdyovieg. O vToAOYIoTIKOG TOpdyovTag Kot o mapdyovtag amodnkevong. To
TPAOTO UTOPEL VO AVIIUETOTIOTEL OO TOALES OPYITEKTOVIKES, Y10 TAPASELY O, LOVOD V-
pNvo (SLod0YIKN-GEPLOKT EKTEAECT), TOAAATADY TUPNVOV (TapdAANAN eKTELEDT]), TOALO-
TA®V KOUPoVv N axdun Kot povtéda eneéepyaciog GPU. O debtepog mapdyovtag Exel emiong
HEYAAN onuacio Kot emnpedlel v avdktnon 1 amodnkevorn ntinpogopudv. H élegvon g
non-volative pviung (NVM) enétpeye o oAokaivovpyla Katnyopio. GUGKEVOV amodnKey-
OMNG L& CLVOPTOCTIKA YOPAKTNPLOTIKA OV Bo ETIKPATHCOVY 6TV 0yopd amofnKevoNG GTO
eyyOg péALov. Ot vymAég TahTNTES AVAYVEOONS Kot YYPOENS, TO HKkpd péyeboc, N YaunAn
KATOVOAWDOT] EVEPYELOG KOL 1) AVTOYY] TOVG GE KPUOAGLOVG Etval PePKol amd Tovg AOYOUG TOV

To éKovay OMUoeiA og péco amobnkevong. To NAND flash eivar avapeifoia to o onpo-

XV

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



xvi Hepiinyn

eéG NVM onjuepa. Ot ovokevég armobnkevong mov Pacilovtor oto NAND Flash Bpiokovton
1060 G€ KOTOVOAMTIKEG GVOKEVEG OGO Kol G€ ETUPIKA KEVTPA dedouévav. Ot avlavopeveg
OVAYKEG Y10 ATOTELECUATIKY ATOONKEVGT 00N YNGOV GTNV EUEAVICT] LOVAO®V diCKOL OTE-
peag kotdotaong (SSD).

Ext0¢ amd 10 oyed100 10 Kot TNV avVATTUEN TV TOPOTAVE YOPIKOV EPOTNUATOV, OOKIUA-
ocope emmALoV TV amotelespatikoTtd Tovg oe Edge Computers. To Edge computing etvot
L0 KOTOVEUNUEVT] VTTOAOYIGTIKY] OPYLTEKTOVIKT], OOV O VITOAOYIGUAC Kot 1) amodnKevon de-
dopévav gival 660 T0 SLVATOV TLO KOVTA GTNV TNYT TOV 0E00UEVOV. ZYEIAGOLE EMIONG Lo
Katoveunuévn apyrrektovikn vroroyiot®v Edge kot [oT, émov meprypdyope d1eodikd tov
TPOTO LLE TOV OTO10 UITOPOVLLE VO EKUETAAAEVTOVLE T SVVOUIKT TOV TEYVIKOV LLOGC.

Ye aut ™ SwtpPn eotidlovpe GTOV GYESOGUO KOl TNV DAOTOINGT YOPIKOV EPOTN-
pdtov mov expetaAievovtol eneEepyaotéc molAamAdv mupnvev, GPU kot SSD yio amob1-
KELON. XPNOUOTOIOVUE TEXVIKES Y10 TAYVTEPOVS KOl AYOTEPOVG VITOAOYIGHOVG, UEIDGELS
VTOAOYIGUAOV KOOMG KOl LEUDGELS ENEEEPYATTIAG OEOOUEVAV, YPTCLOTOLOVTOS YWPIKT EYYV-
mTo, OlVOuY| O0E0OUEV®Y, GE GLUVOETIKG Kol o€ Tpaypatikd dedopéva. Me Bdon avtég Tig

TEXVIKEG

* OVOTTOGGOVLLE OMOTEAEGLATIKOVS OAYOPLOLOVG YOPIKDV EPOTNULATOV YPTCLULOTOUDV-

tag CPU molomAmv moprivev

* OVATTOGGOVE OMOTEAEGLATIKOVS OAYOPLOLOVG YMPIKADV EPOTNUATOV YPTCLULOTOUDV-

tag GPU
* eKpeToAAevopaote Ta tepdotia mheovektnuata I/O tov SSD.
* epappolovpe avtd To epotrata otoug Edge Computers
* 01evePYOULE EKTEVEIC TEPAUATIKEG OOKIUES Y10 VO GLYKPIVOVLE TOVS OAYOPIOLOVS oG

HE GALOVG VTLAPYOVTES YPNCLOTOLDVTOS GLVOETIKA KO TPOLYLOTIKE Y0Pk Oedopéva.

AéEearg Kherowa

noAlamAiol mopnveg; k Kovrvotepot-T'eitoveg; GPU; SSD; AlyopiBpot yopikdv epotnud-
twv; Plane-sweep; Max-Heap; [Tapdiiniog npoypappaticpdc; Edge computing; [oT

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



Table of contents

[Abstract in Greek

[Table of contents

List of tables

[Abbreviations

=3

Introduction

[[.1 Thesis contribution . . . . . . . . v v v v e

(1.2 Thesis organization] . . . . . . . . v v v v

2 Advanced Spatial query Processing

P.1 Parallel and distributed spatial processing . . . . . . . . . . ... ... ..

R.1.1 Parallel and distributed architectures . . . . . . . . . . . ... ...

P.1.2 Big Spatial and Spatio-Temporal Data Analytics Systemg . . . . . .

.2 CPU and GPU Data Processing . . . . . . . . . . o o v v v v .

R.2.1 CPUProcessing . . . . . . .o

.22  GPUPIrocessing . . . . . . . ou v v

2.2.3 GPU Programming . . . . . . . . . . . . .

2.2.4 CPUvs GPU Data Processing . . . . . . . . . . ... ...

R.3  Architectural research focus . . . . . . . . . . ...

xXvil
Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14

xiii

XV

xvii

xxi

XXV

XXix

22



XVviii Table of contents

B Query Processing with CPU and SSD| 27
B.1 Related Work and Motivation . . .. ... ................. 29
B.1.1 The xBR-tree Family| . ... .................... 30

B.1.2  Spatial Indexes for Flash SSDY . . . ... ... ... ....... 30

B.1.3  Spatial Processing on Multi-core Processor§ . . . . . . ... ... 31

B.2 The xBR™-tree Structurg . . . . . . . .. .. ... 32
B.3  Algorithms for Batch-Queries Processingd . . . . . . . . . . . . ... ... 35
B.3.1 Algorithm for Processing of Batch Point-Location Querie§ . . . . . 36

B.3.2 Algorithm for Processing of Batch Window Queries . . . . .. . . 37

B.3.3  Algorithm for Processing of Batch Distance-Range Queries . . .. 39

B.4 _ Algorithms for Parallel Batch-Queries Processing . . . . . . ... ... .. 40
B.4.1 _Parallelization techniques . . .. ... ............... 40

B.4.2 Basic Ideas of Parallel Query Processing . . . . ... ....... 41

B.4.3 Parallel Algorithm for Processing of Batch Point-Location Queries 42

B.4.4 Parallel Algorithm for Processing of Batch Window and Distance-

............................ 44

B.5 Experimental Result§ . . . . . .. .. ... ... .............. 44
B.5.1 PLQExperiments. . . . . .. .. .. .. ..., 47

B.52 WQExperiments . . . . . . ... ... 50

B.5.3 DRQExperimenty . . . . . . .. ... .. ... 53

B.6 Processing in a Distributed Environmen{ . . . . . . .. ... ........ 58
B.7 Conclusions . . . . . . . v v v 60
4 k—NN Query Processing with GPU and RAM 61
.1 Related Work and Motivation . . . . . . . . . v v v v 62
“4.2  k-NN In-memory GPU-based Algorithms . . . . ... ... ........ 64
2.1 Thrust Brute-Forcd . . . . . . . . . . . . . 64

#.2.2  Thrust Distance Refinement . . . .. ... ............. 65

#.2.3  Symmetric Progression Partitioning Algorithm . . . ... ... .. 68

#.2.4 Heap Symmetric Progression Partitioning . . . . .. ... .. ... 70

#.2.5 k—NNdistancelistbuffef . ..................... 70

#.2.6 k—NN max-Heap distance listbufferf . . ... ... ........ 72

M3 Experimental Studyl . . . . . . .. .. ... 72

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



Table of contents XiX
#.3.1 In-memory, Istset of experimenty . . . . . . .. ... ....... 74

“3.2 In-memory, 2nd set of experiments . . . . . . . . . .. ... ... 81

“.3.3 In-memory, 3rd set of experiments . . . . . . . . . . .. ... ... 89

B4 Conclusiong . . . . . v oot i 91
5 k—NN Query Processing with GPU and SSD 93
5.1 Related Work and Motivation . . . . . .. .. .. ... ........... 94
5.2 k—NN Disk Algorithmg . . . . . . . . . . . . 95
5.2.1 Disk Brute-force Algorithm| . . . . ... ... ... ... ..... 96

5.2.2 Disk Plane-sweep Algorithm . . . . . ... ... ... ....... 96

5.3 Experimental Studyl . . . . . . .. ... ... 99
5.3.1 Reference dataset scaling . . . . ... ... ............. 101

5.3.2 Querydatasetscaling . . . . . . . . . . . 102

533 kscaling . . . . . ..., 103

5.3.4 Interpretation of Resultd . . . . . . ... ... ... ... ..... 105

B4 Conclusiong . . . . . v v 105
6 k—NN Query Processing with IoT Edge Devices and SSD| 107
6.1 Related Work and Motivation . . . . . .. .. ... ............. 109
6.1.1 Brute-Force Techniquey . . . . . . .. . .. . . . . ... ..... 109

6.1.2 Spatial Subdivision Techniques . . . . . . . . . . . . . ... ... 112

6.1.3 Motivation . . . . . ... 114

6.2 Edge Computing with IoT Distributed Architecturd . . . . . ... ... .. 115
6.3 k—NNDisk Algorithmg . . . .. .. ... ... ... ........... 117
6.3.1 Disk Brute-force Algorithm| . . . . ... .. ... .. ... .... 118

6.3.2 Disk Plane-sweep Algorithm . . . . . . . . . ... ... ... ... 119

6.3.3 Disk Symmetric Progression Partitioning . . . . . . ... ... .. 119

6.4 Experimental Studyl . . . . . . .. ... ... 121
6.4.1 Comparison to existing method§ . . . . ... ... ......... 124

6.4.2 Reference dataset scaling . . . . ... ... ............. 127

6.43 Querydatasetscaling . . . . . . . . . . . 128

6.44 kscaling . . . . . . .. 130

6.4.5 Interpretationof Resulty . . . .. ... ... ... ......... 131

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



XX Table of contents
6.5 Conclusion . . . . . . ... 132
7 k—NN Query Processing with GPU, SSD and Full Dataset Partitioning 135
7.1 Related Work and Motivation . . . . . . . . . v v v v 136
[7.1.1 _Concurrent Kernel Execution . . .. ... ............. 136
7.1.2 Motivation . . . . . . . . 138
7.2 k—NN Disk Algorithmy . . . . . . . . . . . . . 138
[7.2.1 _Disk Brute-force Algorithm{ . . . . ... ... ........... 139
[7.2.2 _Disk Plane-sweep Algorithm . . . . . ... ... ... ....... 140
[7.2.3  Disk Symmetric Progression Partitioning . . . . .. ... ... .. 140
[7.2.4 TImproved Disk Symmetric Progression Partitioning . . . . . . . . . 141

[7.2.5 Improved Disk Symmetric Progression Partitioning with pinned mem-
bryl . . 141
(7.3 Experimental Study . . . . . . . . . .. 144
[7.3.1 _Synthetic data experimenty . . . . . . .. .. .. ... ... ... 146
[7.3.2 Real dataexperiments . . .. .. .................. 152
7.4 Conclusiony . . . . . . . . . . 155
8 Conclusions and Future Directions 157
B.1 Conclusiong . . . . . vt v vt 157
8.1.1 _Query Processing with CPU and SSD conclusiony . . . . ... .. 157
8.1.2 Query Processing with GPU conclusions . . . . . . . . . ... .. 158
8.2 Future directions . . . . . . . . e e e 160
163
165

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



List of figures

R.1 Parallel and distributed system architecture) . . . . . . . . . .. ... ... 8
R.2  MapReduce programming model] . . . . . . . ... ... ... ... ... 9
2.3 An example of a DAG (Directed Acyclic Graph) scheduler| . . . . .. . .. 10
2.4 SpatialHadoop system architecture [1]) . . . . . . . . .. ... ... .... 12
R.5 Spatial query processing in SpatialHadoop [1,2]) . . . . . . ... ... .. 12
2.6 Spatial partitioning techniques [31) . . . . . ... ... ... ... ..... 14
R.7 Range query DAGanddataflow [3]]. .. ... ... ... ......... 14
P.8 ST-Hadoop system architecture [4,5]) . . . . . . . . . . . . .. ... ... 16
2.9 STARK framework architecture [6]) . . . . . . . . . . . . . .. ... ... 16
2.10 STARK Visualization, Web Interface [7]) . . .. ... ... ... ..... 18
R.11 CUDA threads, thread blocks and grid) . . . . . . ... ... ........ 23
B.1 A collection of 64 points, its grouping to xBR™-tree nodes and its xBR*-tree] 35
B.2 Up: an xBR ™ -tree root pointing to 5 leaves. Middle: an overflown xBR " -tred

root pointing to 6 leaves. Down: the resulting xBR " -tree after splitting of the

...................................... 36
B.3 PLQ: min, max and average gain of PBPLQ vs BPLQ) . . . ... ... .. 50
B.4 WQ: min, max and average gain of PBWQvs BWQ!| . . .. ... ... .. 53
B.5 WQ: min, max and average gain of PBWQvs BWQ| . . .. ... ... .. 58
B.6 WQ: min, max and average gain of PBWQ vs BWQJ . . . ... ... ... 59
“4.1  Query point (red), k = 5 nearest neighbors (black) . . ... ... ... .. 65
“.2 Distance Refinement, query point in red, reference points in black, k = 10 . 66
#.3 SPP Algorithm steps. Every thread computes one query point| . . . . . . . 68

XX1

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



XXii List of figures

“.4  SPP in-memory Partition example, query point represented by + symbol, ref]

grence points represented by x symbols (k-NN points), analyzed points rep-

resented by empty circles, non-analyzed points represented by filled circles)
.................................. 69
“.5 Max-Heap structure examplel . . . . . . . . . . . . ... 73

#.6  Random reference points, k = 20. X-axis: reference point cardinality, Y-axis]
execution time measured inms). . . . . .. ... ... ... 76

4.7 Maximum reference points, k = 20. X-axis: reference point cardinality, Y4
axis: execution time measuredinms) . . . . . . .. ... ... ... ... 77

4.8 Synthetic reference points, k& = 20. X-axis: reference point cardinality, Y4
axis: execution time measuredinms) . . . . . . .. ... .. ... ... 78

4.9 Real reference points, &k = 20. X-axis: reference point cardinality, Y-axis]
gxecution time measured inms). . . . .. ... ... ... 80

#.10 Random reference points, k = 20. X-axis denotes reference point cardinality]
[Y-axis (in logarithmic scale) denotes execution time measured insec| . .. 82

“.11 Maximum reference points, k& = 20. X-axis denotes reference point cardinald
ity, Y-axis denotes execution time measured insed . . . . . . . . . . . ... 84

4.12 Synthetic reference points, k = 20. X-axis denotes reference point cardinald
ity, Y-axis denotes execution time measured insec| . . . .. ... .. ... 85

4.13 Real reference points, k£ = 20. X-axis denotes reference point cardinality)
[Y-axis denotes execution time measured insec] . . . . . .. ... .. ... 87
“.14 Experiment charts. Y-axis is measured inseconds) . . . . . . . . . ... .. 90

5.1 Plane-sweep k-NN algorithm. Cross is the Query point, selected reference
points in solid circles and not selected reference points in plain circles! . . . 98
5.2 Experiment distributions, Left=Uniform, Middle=Gaussian, Right=Bit| . . 100
5.3 Reference scaling experiment (Y -axisinsec.)| . . . . . . . . . ... ... 102
5.4 Query scaling experiment (Y-axisinsec.)] . . . . . . .. .. ... ..... 103
5.5 kscaling experiment (Y-axisinsec.)] . .. . . ... ... . ... ..... 104
5.6 Presorted versus unsorted reference dataset buffer update) . . . . . . . . .. 106
6.1 Edge Computing Architecture] . . . . . . . .. ... .. .. ... ..... 116
6.2 Datafile partitioning and loading of partitions into device’s memory] . . . . 118

Institutional Repository - Library & Information Centre - University of Thessaly

13/02/2023 10:45:22 EET -

137.108.70.14



List of figures xxiii

6.3 Experimental data distributions, Blue=Uniform, Red=Gaussian, Green=Bit| 123
6.4 Experiment Comparison. All values are measured in seconds. The Y axis iy

in logarithmicscalel . . . . .. ... ... .. ... ... .......... 126
6.5 Experiment Comparison, base method DBF} . . . . . ... ... ... ... 126
6.6 Reference scaling experiment (Y -axis in seconds)! . . . .. ... ... .. 127
6.7 Reference scaling experiment gain, base method DBF) . . . ... ... .. 128
6.8 Query scaling experiment (Y -axis in seconds)|. . . . . . ... ... .... 129
6.9 Query scaling experiment gain, base method DBF/. . . . . ... ... ... 130
6.10 k scaling experiment (Y -axisinseconds)) . . . .. . .. .. .. ... ... 131
6.11 k scaling experiment gain, base method DBF| . . . . .. .. ... ... ... 131
7.1 DSPP+ Partitioning and executionpath! . . . . . . . . .. ... ... ... 142
7.2 DSPP+P Partitioning and executionpath] . . . .. ... .. ... ... ... 143
7.3 Experiment distributions, Left=Uniform, Right=Bit | . . .. ... ... .. 147
7.4 Reference scaling experiment (Y-axisinsec.) . . . . . . . . .. ... ... 148
7.5 Query scaling experiment (Y-axisinsec.)] . . . . . . .. .. .. ...... 150
7.6k scaling experiment (Y-axisinsec.)] . . ... ... ... ......... 152
(7.7 Real data experiment (Y-axisinsec.) . . . . . . . . . . .. ... ... .. 154
(7.8 Real data experiment (Y-axisinsec.) . . . . . . . . . ... 155
7.9 Real data experiment (Y-axisinsec.)] . . .. ... ............. 156

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET -

137.108.70.14



Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



List of tables

R.1

Overview of the comparative criteria of big spatial and spatio-temporal datd

ANAlVHCS SYSIEMSY . . . o v v e e e e e e e 19

B.1

The configurations of parallel processing tested| . . . ... ... ... .. 42

B.2

PLQ: (Disk Accesses % performance gain and Total Exec. Time absolutd

values and % time performance gain) BPLQ vs LRU ObO, for the 500K(
.................................... 47

B.3

PLQ: (Disk Accesses % performance gain and Total Exec. Time absolutd

values and % time performance gain) BPLQ vs LRU ObO, for the Park dataset! 48

B.4

PLQ: (Total Exec. Time % performance gain) PBPLQ vs BPLQ, for the

BOOKC dataset] . . . . . . . . . 49

B.5

PLQ: (Total Exec. Time % performance gain) PBPLQ vs BPLQ, for the Parki

.................................... 49

B.6

WOQ: (Disk Accesses % performance gain and Total Exec. Time absolute vald

ues and % performance gain) BWQ vs LRU ObO, for the NArdND dataset| 51

B.7

WOQ: (Disk Accesses % performance gain and Total Exec. Time absolute vald

ues and % performance gain) BWQ vs LRU ObO, for the Water dataset| . . 51

B.8

WOQ: (Total Exec. Time % performance gain) PBWQ vs BWQ, for the NArdND

.................................... 52

B.9

WOQ: (Total Exec. Time % performance gain) PBWQ vs BWQ, for the Water

.................................... 52

B.10

DRQ: (Disk Accesses % performance gain and Total Exec. Time absolutd

values and % performance gain) BDRQ-D vs LRU ObO, for the 1000KC
.................................... 54

XXV

Institutional Repository - Library & Information Centre - University of Thessaly

13/02/2023 10:45:22 EET -

137.108.70.14



XXVvi

List of tables

B.11 DRQ: (Disk Accesses % performance gain and Total Exec. Time absolutd

values and % performance gain) BDRQ-D vs LRU ObO, for the Build dataset! 54

B.12 DRQ: (Disk Accesses % performance gain and Total Exec. Time absolut

values and % performance gain) BDRQ-B vs LRU ObO, for the NArd dataset| 55

B.13 DRQ: (Disk Accesses % performance gain and Total Exec. Time absolute
values and % performance gain) BDRQ-B vs LRU ObO, for the Park dataset!

B.14 DRQ: (Total Exec. Time % performance gain) PBDRQ-D vs BDRQ-D, for
the 1000KC dataset) . . . . . . . . . . . . .

B.15 DRQ: (Total Exec. Time % performance gain) PBDRQ-D vs BDRQ-D, for
the Build dataset) . . . . . . . . . . . .

B.16 DRQ: (Total Exec. Time % performance gain) PBDRQ-B vs BDRQ-B, for
the Nard dataset] . . . . . . . . . o o v

B.17 DRQ: (Total Exec. Time % performance gain) PBDRQ-B vs BDRQ-B, for
the Park dataset) . . . . . . . . . . ..

“.1 k-NN Distance List Buffer, k=10 . . . . . . . . . . . . . . . .. ... ...

4.2 Speedup gain of new methods T-BF,T-DS versus BF-Global, using Randomn|
....................................
4.3 Speedup gain of new methods T-BF, T-DS versus BF-Global, using Synthetid

....................................

4.4 Speedup gain of new methods T-BF, T-DS versus BF-Global, using Real datasets

4.5 Speedup gain of AIDW, T-BF, T-DS, SPP versus BF-Global, Random dataset/

4.6 Speedup eain of T-BF, T-DS, SPP versus BF-Global, Synthetic dataset|

4.7 Speedup eain of T-BF, T-DS, SPP versus BF-Global, Real datasets|

4.8 Speedup gain of SPP,HSPP vs. T-DS| . . . . . . . . . . . ... ... ...

5.1 SpiderWeb Dataset generator parameters] . . . . . . . . . . . . . .. ...

6.1 SpiderWeb Dataset generator parameters, for the existing algorithms com-

parison experiment] . . . . . . . . ...

6.2 SpiderWeb Dataset generator parameters, for the new methods scaling exper

....................................

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14

55

56

56

57

57

72

71

80
83
86
88



List of tables XXVil
7.1 __SpiderWeb Dataset generator parameters] . . . . ... ... ........ 146
[7.2 Reference scale gain, base method DBF) . . . . . . . .. ... ... .... 149
7.3 Query scale gain, base method DBF) . . . . .. ... ... ......... 151
7.4 K scale gain, base method DBF| . . ... ... ............... 152
(7.5 Real Datasets| . . . . . . . . . 153
7.6 Real data gain, base method DBF| . . . . . .. ... .. .. ... ..... 154

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



Abbreviations

GPU
CUDA
MPI
SIMD
SSD
GIS
LBS
CAD
NVM
k-NN
TBF
TDS
PS
SPP

Graphics processing unit

Compute Unified Device Architecture
Message Passing Interface

Single Instructions Multiple Data
Solid State Drive

Geographical Information Systems
Location-Based Systems
Computer-aided design
Non-Volative Memory

k Nearest Neighbor

Thrust Brute Force

Thrust Distance Refinement

Plane Sweep

Symmetric Progression Partitioning

XX1X

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



Chapter 1

Introduction

Every year, the volume of the produced Spatial and Temporal data is continuously grow-
ing. In order to process and analyze such big data we need more powerfull devices, smarter
and more efficient algorithms. This emerging computational overhead can be addressed by
architectures based on distributed or parallel frameworks. Such data (often termed as geospa-

tial or spatio-temporal), are used in many geographically enabled applications.

There are many spatial queries that we need in our every day life applications. The most
common spatial queries, where points are involved, are point-location, window, distance-
range and k nearest-neighbor queries (PLQs, WQs, DRQs and £-NNQs, respectively, in
the sequel). At a higher level, such queries have been used as the basis of many complex
operations in advanced applications, for example, geographical information systems (GIS),

location-based systems (LBS), geometric databases, CAD, etc.

Another emerging technology that can benefit from such queries is Edge Computing.
Edge computing is reshaping IT and business computing. Employing spatial queries in the
Edge is a crucial success factor for fast and efficient query results, because Edge computers

are closely located to data sources.

The performance of these geographic applications is usually affected by two major fac-
tors. The computational and the storage factor. The first one can be addressed by many ar-
chitectures, for example single core (sequential execution), multi-core (parallel execution),
multi-node or even GPU processing models. The second factor is also of great importance and
affects the retrieval or storage of information. The arrival of non-volatile memories (NVM)
has enabled a brand-new class of storage devices with exciting features that will prevail in the

storage market in the near future. Their superior features, such as high read and write speeds,

1

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



2 Chapter 1. Introduction

small size, low power consumption and shock resistance are some of the reasons that made
them the preferable storage medium of choice. NAND flash is undoubtedly the most popu-
lar NVM today. Storage devices based on NAND Flash are found both in consumer devices
and enterprise data-centers.The increasing needs for efficient storage drove the emergence of

Solid-State Drives (SSDs).

In order to accelerate the operational speed of demanding spatial and spatio-temporal
applications we can exploit many techniques and follow best practices. First and foremost
would be to write better code, use better libraries or use better algorithms. Next would be the
use of compiler level optimizations. Then the computations could be executed on faster hard-
ware but there are physical limits to how fast a single processor core can be manufactured.
With multicore processors, parallelization techniques could be implemented to speedup com-
putation. This can usually be done with concurrency and threads. Again there are physical
limits to the number of cores that can be added into a single processor. So, multiple processor
and something like the Message Passing Interface (MPI) to manage communication among

different processors could be the next step.

Furthermore, accelerator hardware like many cores GPU can be used to offload some of
the computation. GPUs are extremely useful and efficient in doing Single Instructions Multi-
ple Data (SIMD) computations but have some data transfer overheads. GPU coding also re-
quires rewriting the kernels in CUDA so they have coding effort overheads too. In the CPUs,
we can further use vectorization using intrinsics to vectorize the code so that the operation run
concurrently. Also, focus on the memory hierarchy and cache organisation can lead to devel-
oping algorithms that are either cache aware or oblivious and reduce the memory movement
overheads. Also, in a distributed setup, communication reducing or communication avoiding
can reduce the communication costs which are usually a big part of distributed computing.
Proper load balancing among the nodes can also lead to more efficient computation. Target-
ing memory IO patterns based on the existing hardware or file systems and avoiding writes
to disk as much as possible because writes are far more costlier than reads, can also lead to

better total computation time on a distributed system.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



1.1 Thesis contribution 3

1.1 Thesis contribution

We are motivated by the vast amount of spatial data produced, their exploitation in nu-
merous modern applications and the need to process these data in multi-core parallel envi-
ronments with efficient algorithms, in this thesis, we develop such algorithms and study their
performance.

Since, the possible research field directions within this discipline is immense, we focus
on the above four demanding queries, namely point-location, window, distance-range and
k nearest-neighbor queries (PLQs, WQs, DRQs and k-NNQs, respectively, in the sequel).
Moreover, since an algorithm for a parallel system relies on the characteristics of the system
and the possible system choices are numerous, we develop algorithms for some of the most
popular such systems. In this thesis, we focus on point data and employing of techniques for
faster and fewer computations, pruning of unnecessary computations, taking advantage of
spatial locality and distribution of data, parallelism using OpenMP or CUDA library, opti-
mizing the amount of computational load among threads, and using indexes such as xBR+tree

for even higher execution time gain

« we develop the first Batch Point-Location Query algorithm (BPLQ) using xBR " -trees

in SSDs, taking advantage of multi-core CPUs .

« we develop the first Batch Window Query algorithm (BWQ) using xBR*-trees in SSDs,

taking advantage of multi-core CPUs .

« we develop the first Batch Distance-Range Queries (BDRQ) using xBR*-trees in SSDs,

taking advantage of multi-core CPUs .
* we develop novel in-memory GPU based algorithms for the £-NN query

* we develop novel data partitioning GPU based algorithms for the £-NN query using
GPU and SSD

* we apply these queries to Edge Computers

+ for each of the above queries, we perform extensive experimental tests to derive the
best parameter settings for each algorithm and to compare the efficiency of the several
alternative algorithms we developed and ones appearing in the literature (for the cases

where such algorithms already existed).

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



4 Chapter 1. Introduction

Our first multi-threaded implementations successfully exploited the dynamics derived
from the use of xBR*-trees in SSDs. All of our queries run faster than previous implemen-
tations. OpenMP was a key “ingredient” to accomplish such task. We seamlessly integrated
our existing single-thread algorithms to out new multi-threaded ones.

The next step was to develop spatial queries on CUDA devices. Although, CUDA devices
are not designed specifically for spatial data, the algorithms we developed make these systems
suitable for processing the spatial queries we study. Initially we used the well known CUDA
Thrust library for developing £-NN query. Using Thrust we created our two first in-memory
algorithms the Trust Brute Force (7BF) and the Thrust Distance Refinement (7DS) k-NN
query. TDS is excellent for small volumes of query datasets and greatly outperforms existing
methods.

Furthermore, we extended our algorithms by developing an in-memory Plane-Sweep (PS)
k-NN query and the new Symmetric Progression Partitioning (SPP) k-NN query, which par-
titions reference data in the device memory.

Our next step was to develop a k-NN query for big data reference datasets. While keeping
the query dataset in-memory we partitioned the reference dataset. This resulted to the devel-
opment of the algorithms of our disk based algorithm implementations Disk Plane Sweep
(DPS) and Disk Symmetric Progression Partitioning (DSPP) k-NN query.

Lastly, me further enhanced our algorithms to also support big query data. At this step we
also exploited a significant CUDA feature. CUDA streams, which aims to hide the latency of
memory copy and kernel launch from different independent operations [9], are widely used in
computational tasks to increase performance [[10]. This resulted to our most advanced algo-

rithm Improved Disk Symmetric Progression Partitioning with pinned memory (DSPP+P).

1.2 Thesis organization

The rest of thesis is organized as follows. In Chapter ], we present the parallel and dis-
tributed spatial query processing. In Chapter 3 we present Single Dataset Spatial Query Pro-
cessing with CPU and SSD. In Chapter i we present the k-NN query processing with GPU
and RAM. In Chapter [ we present the k-NN query processing with GPU and SSD. In Chap-
ter [ we present the k-NN query processing with IoT Edge Devices and SSD. In Chapter [] we
present the £-NN query processing with GPU, SSD and full dataset partitioning. In Chapter

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



1.2 Thesis organization 5

B, we present our conclusions and future directions.
At this point we would like to note that the state of the art will be embedded in each
chapter. This way, we believe will assist the reader to easily become acquainted with each

chapters’ context and correlate it with our novel methods and implementations.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



Chapter 2

Advanced Spatial query Processing

In this chapter we will begin by documenting in detail the available Big Spatial and
Spatio-Temporal Data Analytics Systems. We are living in the era of Big Data, and Spatial
and Spatio-temporal Data are not an exception. These systems are rather new but they have
emerged quickly and are vastly used for the management of big spatial and spatio-temporal
data. We will describe their usage, common spatial and spatio-temporal datatypes and their
architecture. Later in this chapter we will focus on CPU and GPU Data Processing (since
nowadays centralized systems can handle quite big data), and we will depict each architec-

tures’ advantages and disadvantages.

2.1 Parallel and distributed spatial processing

This section provides a comparative overview of Big Spatial and Spatio-Temporal Data
Analytics Systems based on a set of characteristics (data types, indexing, partitioning tech-
niques, distributed processing, query Language, visualization and case-studies of applica-
tions). We will present selected systems (the most promising and/or most popular ones),
considering their acceptance in the research and advanced applications communities. More
specifically, we will present two systems handling spatial data only (SpatialHadoop and
GeoSpark) and two systems able to handle spatio-temporal data, too (ST-Hadoop and STARK)
and compare their characteristics and capabilities. Moreover, we will also present in brief
other recent / emerging spatial and spatio-temporal analytics systems with interesting char-
acteristics. The subsection closes with our conclusions arising from our investigation of the

rather new, though quite large world of ecosystems supporting management of big spatial

7

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



8 Chapter 2. Advanced Spatial query Processing

and spatio-temporal data.

2.1.1 Parallel and distributed architectures

Data mining and analysis of big data is a non-trivial task. Often, it is performed in a
distributed infrastructure of multiple compute network-interconnected (through the cluster

network) nodes, each of which may be equipped with multiple CPUs or GPUs (Fig.2.1)).

Parallel and Distributed System

Cluster Network

Clients

Client 1 Client 2 Client 3 Client ... Client M
Figure 2.1: Parallel and distributed system architecture.

This kind of architectures bring a number of challenges. First of all, the resources must be
effectively used. For example, one must avoid delays of CPU/GPU resources due to work-
ing data transfer over network. Second, all the available resources (CPU/GPU, storage and
network) should be typically shared among different users or processes to reduce costs and
increase interoperability. In order to address these challenges several architectures and frame-
works have risen. In this section, we will describe the two most popular of them, Apache

Hadoop and Apache Spark. Both of them are open source and widely used.

2.1.1.1 Apache Hadoop

Hadoop is a shared-nothing framework, meaning that the input data is partitioned and dis-
tributed to all computing nodes, which perform calculations on their local data only. Hadoop
is a two-stage disk-based MapReduce computation engine, not well suited to repetitive pro-
cessing tasks.

MapReduce [[11,[12] is a programming model for distributed computations on very large

amounts of data and a framework for large-scale data processing on clusters built from com-

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



2.1.1 Parallel and distributed architectures 9

modity hardware. A task to be performed using the MapReduce framework has to be specified
as two phases: a) the map phase, which is specified by a map function, takes input, typically
from Hadoop Distributed File System (HDFS) files, possibly performs some computations
on this input, and distributes it to worker nodes, and b) the reduce phase which processes
these results as specified by a reduce function (Fig.2.2). An important aspect of MapReduce
is that both the input and the output of the map step are represented as key/value pairs and that
pairs with same key will be processed as one group by a reducer. The map step is parallelly
applied to every pair with key & of the input dataset, producing a list of pairs with key k.
Subsequently, all pairs with the same key from all lists are grouped together, creating one list
for each key (shuffling step). The reduce step is then parallelly applied to each such group,

producing a list of key/value pairs:

map : (ki,v1) — list(ke,vs) and reduce : (ko, list(vy)) — list((k3,v3))

Additionally, a combiner function can be used to run on the output of the map phase and per-
form some filtering or aggregation to reduce the number of keys passed to the reducer. The
MapReduce architecture provides good scalability and fault tolerance mechanisms. MapRe-
duce was originally introduced by Google in 2004 and was based on well-known principles
of parallel and distributed processing. It has been widely adopted through Hadoop (an open-
source implementation), whose development was led by Yahoo and later became an Apache

proj ectll,

Distributed File System Sort + Send Merge
Key/value

Key/value
Key/value XK

Key/value

Distributed File System

Key/value
Key/value
Key/value
Key/value

BIG
DATA

Key/value
Key/value
Key/value
Key/value
Key/value
Key/value
Key/value

Key/value

Key/value
Key/value —1

A A R R

\ oo

Figure 2.2: MapReduce programming model.

2.1.1.2 Apache Spark

To overcome limitations of the MapReduce paradigm and Apache Hadoop (especially

regarding iterative algorithms), Apache SparkE was developed. This is also an open-source

"https://hadoop.apache.orqg/
’https://spark.apache.org/

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14


https://hadoop.apache.org/
https://spark.apache.org/

10 Chapter 2. Advanced Spatial query Processing

cluster-computing framework based on Resilient Distributed Datasets (RDDs), read-only
multisets of data items distributed over the computing nodes. RDDs form a kind of dis-
tributed shared memory, suitable for the implementation of iterative algorithms. Apache
Spark achieves high performance for both batch and streaming data, using a state-of-the-
art DAG (Directed Acyclic Graph) scheduler (an example is depicted in Fig. R.3)), a query
optimizer and a physical execution engine.

DAG scheduler is the scheduling layer of Apache Spark that implements stage-oriented
scheduling. It transforms a logical execution plan (i.e. RDD lineage of dependencies built

using RDD transformations) to a physical execution plan (using stages).

/ Filter /,,/ /Wﬁh\\
: Reduce !
\\\_4,/ \
Execution
Collect [ Collect |
Start \ :
—— Sort /

Map

Map _—

Figure 2.3: An example of a DAG (Directed Acyclic Graph) scheduler.

The data transformations that take place in Spark are executed in a “lazy” way. Trans-
formations are lazy in nature: when we call some operation for an RDD, it does not execute
immediately; it is executed when output is requested. Spark maintains a record of which op-
eration is being called (through DAG). We can think of a Spark RDD as the data that we built
up through transformations. Since transformations are lazy in nature, we can execute opera-
tions any time by calling an action on data. Hence, in lazy evaluation, data is not loaded, and

computations are not performed until it is necessary.

2.1.2 Big Spatial and Spatio-Temporal Data Analytics Systems

In the next subsections, we will present in detail a popular representative of each of
group of systems (Hadoop-based and Spark-based Spatial and Hadoop-based and Spark-
based Spatio-temporal Data Analytics Systems). SpatialHadoop (http://spatialhad
oop.cs.umn.edu/), a full-fledged MapReduce framework with native support for spa-
tial data, is presented in Section R.1.2.1. Section is devoted to GeoSpark (http:

//geospark.datasyslab.org), an in-memory cluster computing framework for pro-

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14


http://spatialhadoop.cs.umn.edu/
http://spatialhadoop.cs.umn.edu/
http://geospark.datasyslab.org
http://geospark.datasyslab.org

2.1.2  Big Spatial and Spatio-Temporal Data Analytics Systems 11

cessing large-scale spatial data that uses Spark as its base layer and adds two more layers,
the Spatial RDD (SRDD) Layer and Spatial Query Processing Layer, thus providing Spark
with in-house spatial capabilities. ST-Hadoop (http://st-hadoop.cs.umn.edu/),
the first full-fledged open-source MapReduce framework with a native support for spatio-
temporal data, is presented in Section 2.1.2.3. ST-Hadoop is a comprehensive extension to
Hadoop and SpatialHadoop that injects spatio-temporal data awareness inside each of their
layers. In Section 2.1.2.4, STARK framework for scalable spatio-temporal data analytics on
Spark (https://github.com/dbis-1ilm/stark) is presented. It is built on top
of Spark and provides a domain specific language (DSL) that seamlessly integrates into any
(Scala) Spark program. It includes an expressive set of spatio-temporal operators for filter,
join with various predicates as well as k nearest neighbor search. Moreover, in Section

we present a comparison of these systems regarding their capabilities and characteristics.

2.1.2.1 SpatialHadoop

SpatialHadoop (http://spatialhadoop.cs.umn.edu/) [, 13] is a full-
fledged MapReduce framework with native support for spatial data. It is an efficient disk-
based distributed spatial query processing system. Note that MapReduce [|11] is a scalable,
flexible and fault-tolerant programming framework for distributed large-scale data analysis.

SpatialHadoop [[1,[13] (see in Fig. R.4 its architecture) is a comprehensive extension to
Hadoop [|14] that injects spatial data awareness in each Hadoop layer, namely, the language,
storage, MapReduce, and operations layers. In the Language layer, SpatialHadoop adds a
simple and expressive high-level language for spatial data types and operations. In the Stor-
age layer, SpatialHadoop adapts traditional spatial index structures as Grid, R-tree, R -tree,
Quadtree, etc. to form a two-level spatial index [|15]. SpatialHadoop enriches the MapReduce
layer by two new components, SpatialFileSplitter and SpatialRecordReader for efficient and
scalable spatial data processing. SpatialFileSplitter (SFS) is an extended splitter that exploits
the global index(es) on input file(s) to early prune file cells/blocks not contributing to an-
swer, and SpatialRecordReader (SRR) reads a split originating from spatially indexed input
file(s) and exploits the advantages of the local indices to efficiently process it. At the Opera-
tions layer, SpatialHadoop is also equipped with a several spatial operations, including range
query, k-NN query and spatial join. Other computational geometry algorithms (e.g. polygon

union, skyline, convex hull, farthest pair and closest pair) are also implemented following a

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14


http://st-hadoop.cs.umn.edu/
https://github.com/dbis-ilm/stark
http://spatialhadoop.cs.umn.edu/

12 Chapter 2. Advanced Spatial query Processing

similar approach [[16].

Spatial Queries /
Spatial Operations Query Results
. SpatialHadoop -
5 Language i

Compiled MapReduce Program

Operations (KNNQ, spatialdoin,
RangeQuery, ...)

i Processing Nodes /
: Storage Configured MapReduce Job

i:”l’ “‘: MapReduce
@ @ @ L= | MapReduce (spatialRecordreader,

@ @ SpatialFileSplitter)
Ei@ @ @ i Index Information

Master

Sves @ '« | Storage (GridFile, R-tree, R*-tree,
File Data kd-tree, Quadtree, ...) :

Figure 2.4: SpatialHadoop system architecture [|1].

The Language layer provides a high-level language with standard spatial data types and
operations to make the system accessible to non-technical users. In particular, the language
layer provides Pigeon [[1 7] a simple high level SQL-like language that supports OGC-compliant
spatial data types and spatial operations.

In general, a spatial query processing in SpatialHadoop consists of four steps [|l, 2], re-
gardless of whether we have one or two input files (Fig. .3, where two files as input are

shown): (1) Preprocessing, (2) Pruning, (3) Local Spatial Query Processing, (4) Global Pro-

cessing.

Spacially :i
Indexed i e e !
: ) Files i Number of Splits }}! map task #1 . H :
i Input files i 0 ) p— Sbatal - - i | combine reduce i
i i e ecor - function  [FFT¥]  function function ;
E HDFS e H i i H
" P ~ E e e scscccccmcccccmcccmemmeem——————————— (H H
H Spatial H v :
H - N File HE i :
: Partitioning it 4 splitter i i 7
il - b i i " Local E ;
V| Hors \ 1 v Y Spatla(:I' e map combine reduce H
Q " R e function 133 ™]  function function H
. function B i

Preprocessing i Pruning i Local Spatial Query Processing i Global Processing

Figure 2.5: Spatial query processing in SpatialHadoop [[1, 2].

The core of SpatialHadoop is used in several real applications that deal with big spatial
data including MNTG [[18], a web-based traffic generator; TAREEG [|19], a MapReduce ex-
tractor for OpenStreetMap data; TAGHREED [20], a system for querying and visualizing

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



2.1.2  Big Spatial and Spatio-Temporal Data Analytics Systems 13

twitter data, and SHAHED [21]], a MapReduce system for analyzing and visualizing satellite
data. SHAHED is a tool for analyzing and exploring remote sensing data publicly available by
NASA in a 500 TB archive. It provides a web interface where users navigate through the map
and the system displays satellite data for the selected area. HadoopViz [22] is a MapReduce-
based framework for visualizing big spatial data, it can efficiently produce giga-pixel images

for billions of input records.

2.1.2.2 GeoSpark

The GeoSpark (http://geospark.datasyslab.orqg) framework exploits the
core engine of Apache Spark and SparkSQL, by adding support for spatial data types, indexes,
and geometrical operations. GeoSpark extends the Resilient Distributed Datasets (RDDs)
concept to support spatial data. It adds two more layers, the Spatial RDD (SRDD) Layer
and Spatial Query Processing Layer, thus providing Spark with in-house spatial capabili-
ties. The SRDD layer consists of three newly defined RDDs, PointRDD, RectangleRDD and
PolygonRDD. SRDDs support geometrical operations, like Overlap and Minimum Bounding
Rectangle. SRDDs are automatically partitioned by using the uniform grid technique, where
the global grid file is split into a number of equal geographical size grid cells. Elements that
intersect with two or more grid cells are being duplicated. GeoSpark provides spatial indexes
like Quadtree and R-tree on a per partition base. The Spatial Query Processing Layer includes
spatial range query, spatial join query, spatial £-NN query. GeoSpark relies heavily on the
JTS (Java Topology Suite) and therefore conforms to the specifications published by the Open
Geospatial Consortium. It is a robust and well implemented spatial system. Moreover, a lot
of heterogeneous data sources are supported, like CSV, GeoJSON, WKT, NetCDF/HDF and
ESRI Shapefile. GeoSpark does not directly support temporal data and operations.

In order to take advantage of the spatial proximity which is crucial for improving query
speed, GeoSpark automatically repartitions a loaded Spatial RDD according to its inter-
nal spatial data distribution (Fig. .6 presents spatial partitioning techniques supported by
GeoSpark). This is crucial for every computation, because it minimizes the data shuffles
across the cluster and it avoids unnecessary CPU overheads on partitions that contain un-
wanted data.

GeoSpark can run spatial query processing operations on the SRDDs, right after the

Spatial RDD layer loads, partitions are generated and indexing is completed. The spatial

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14


http://geospark.datasyslab.org

14 Chapter 2. Advanced Spatial query Processing

a) SRDD partitioned by uniform grids b) SRDD partitioned by Quad-Tree
[ ¥ Vs 2

"

C) SRDD partitioned by R-Tree d) SRDD partitioned by KDB-Tree

Figure 2.6: Spatial partitioning techniques [3].

query processing layer provides support for many spatial operations like range query, dis-
tance query, £ Nearest Neighbors (k-NN) query, range join query and distance join query. In
order to describe the distributed processing of GeoSpark we will analyze the simplest of the
queries the range query. A spatial range query is faster and less resource-consuming because
it just returns objects that the input query window object contains. To complete such queries,
we need to issue a parallelized Filter transformation in Apache Spark, which introduces a
narrow dependency. As a result, repartitioning is not needed. These is also a more efficient
way, we can broadcast the query window to all workers and parallelize the processing across
the cluster. The query processing algorithm needs only one stage, due to the narrow depen-
dency which does not require data shuffle. In Fig. .7, the range query DAG and data flow is
depicted.

-~
: N
Query local index @
Narrow v
dependency
_______ ====
. A
vl I
i I
Tl I
|
e |
_______ ———
Data —
Indexed SRDD Result SRDD

\fl ow (cached)

Figure 2.7: Range query DAG and data flow [3].

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



2.1.2  Big Spatial and Spatio-Temporal Data Analytics Systems 15

2.1.2.3 ST-Hadoop

ST-Hadoop (http://st-hadoop.cs.umn.edu/) [4, 5], see in Fig. its ar-
chitecture, is a full-fledged open-source MapReduce framework with a native support for
spatio-temporal data. ST-Hadoop is a comprehensive extension to Hadoop [[14] and Spatial-
Hadoop [[I]] that injects spatio-temporal data awareness inside each of their layers, mainly,
language, indexing, MapReduce and operations layers. In the Language layer, ST-Hadoop
extends Pigeon language [|1 7] to supports spatio-temporal data types and operations. In the /n-
dexing layer, ST-Hadoop spatio-temporally loads and divides data across computation nodes
in the Hadoop Distributed File System (HDFS). In this layer, ST-Hadoop scans a random
sample obtained from the whole dataset, bulk loads its spatio-temporal index in-memory, and
then uses the spatio-temporal boundaries of its index structure to assign data records with its
overlap partitions. ST-Hadoop sacrifices storage to achieve more efficient performance in
supporting spatio-temporal operations, by replicating its index into temporal hierarchy index
structure that consists of two-layer indexing of temporal and then spatial. The MapReduce
layer introduces two new components of SpatioTemporalFileSplitter and SpatioTemporal-
RecordReader, that exploit the spatio-temporal index structures to speed up spatio-temporal
operations. Finally, the Operations layer encapsulates the spatio-temporal operations that
take advantage of the ST-Hadoop temporal hierarchy index structure in the indexing layer,
such as spatio-temporal range, spatio-temporal top-k nearest neighbor, and spatio-temporal
join queries.

The key idea behind the performance gain of ST-Hadoop is its ability to load the data in
HDFS in a way that mimics spatio-temporal index structures [23]. Hence, incoming spatio-
temporal queries can have minimal data access to retrieve the query answer. The extensibility
of ST-Hadoop allows others to extend spatio-temporal features and operations easily using
similar approaches as described in [5].

Summit [24] is a full-fledged open-source library on ST-Hadoop MapReduce framework
with built-in native support for trajectory data. Summit cluster contains one master node that
breaks a MapReduce job into smaller tasks, carried out by slave nodes. Summit modifies three
core layers of ST-Hadoop, namely, Language, Indexing and Operations. The Language layer
adds new SQL-Like interface for trajectory operations and data types. The modifications
and the implementation of the Indexing (trajectory indexing) and Operation (trajectory range

query, trajectory k nearest neighbor query and trajectory similarity query) layers are more

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14


http://st-hadoop.cs.umn.edu/

16 Chapter 2. Advanced Spatial query Processing

] ST Queries /
ST Operations Query Results

ST-Hadoop S

Language TIME INTERVAL [+ !

Compiled MapReduce Program

Operations (sT-Aggregates, ST-Join
ST-RangeQuery,)

i Processing Nodes /
: Storage Configured MapReduce Job

i:’”’ \ MapReduce
@ 8 @ i | MapReduce (sTRecordReader,

55@ @ : STFileSplitter)
:Ej @ @ Index Information

Master |

Slaves 8 ,—> Indexing (Time-slicing, Data-slicing
i Flebaa Multi-resolution) :

Figure 2.8: ST-Hadoop system architecture [4, 5].

complicated.

2.1.2.4 STARK

The STARK framework (https://github.com/dbis-1ilm/stark) [(]isa
promising new spatio-temporal data analytics framework (see in Fig. .9 its architecture). It
is tightly integrated with Apache Spark by leveraging Scala language features and it adds
support for spatial and temporal data types and operations. Furthermore, STARK exploits
SparkSQL functionality and implements SQL functions for filter, join with various predi-
cates and aggregate vector as well as raster data. STARK also supports £ nearest neighbor
search and a density-based clustering operator allows to find groups of similar events. STARK
includes spatial partitioning and indexing techniques for fast and efficient execution of the

data analysis tasks.

Scala APl |
Distance
RDD ‘ Functions
Partitioner ‘ Spatial Partitioner
Spark Core

Figure 2.9: STARK framework architecture [6].

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14


https://github.com/dbis-ilm/stark

2.1.2  Big Spatial and Spatio-Temporal Data Analytics Systems 17

The main data structure of STARK is STObject. This class is a super-class of all spatial
objects and provides a time component. STObject relies on the JTS library with the JTSplus
extension, thus it supports all types of geometry objects, such as Point, Polygon, Linestring,
Multipoint, Multypolygon and Multilinestring. Regarding the temporal data-type, the STO-
bject contains o time component that facilitates temporal operations. Besides the Scala API
based on the core RDDs, STARK is integrated into SparkSQL and implements SQL functions
to filter, join, and aggregate vector and raster data.

The framework can index any partition, using an in memory spatial index structure. The
R-tree index structure is currently supported by STARK, because of its JTS library depen-
dency. Also, other indexing structures are planned to be included in future versions. There
are three available indexing modes: (1) No Index, (2) Live Indexing and (3) Persistent Index.
Furthermore, the same index can be used among different scripts, eliminating costly index
creation time.

STARK is taking advantage of the Hadoop environment, resulting to parallel execution on
cluster nodes. Every node processes a fragment of the whole dataset, which is call a partition.
STARK spatial and spatio-temporal partitioning does not utilize Spark’s built-in partitioners,
for example a hash partitioner. Currently STARK uses only spatial partitioning, temporal
partitioning is under development. In order to take advantage of the locality of data, STARK
uses the following partitioners: (1) Grid Partitioner, (2) Binary Space Partitioner and (3) Par-
titioning Polygons.

STARK is heavily depended on Spark’s capabilities; therefore the visualization tools of
Spark can be used to visualize STARK data. There is only one documented visualization tool
designed especially for STARK spatial visualization (see Fig. .10), which also combines
raster data in final layout. This visualization tool comes with a web interface [[7]] where users

can interactively explore raster and vector data using SQL.

2.1.2.5 Comparison of distributed systems

In Table R.1|, we compare the four systems presented in the previous sections, regard-
ing the features included in the presentation of these systems. Note that, there was non-
available (N.A.) information available in the literature regarding some features of certain
systems (language for GeoSpark, visualization for ST-hadoop and applications for GeoSpark

and STARK).

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



18 Chapter 2. Advanced Spatial query Processing

Datasets +

dis/idatamanoimessungly —  IIEDETEE
dfe:/idatalregions/ — TS Schema

[Scan ] Execute e Tle
SELECT w.ile, r_maxvalue(w.tile) / id: It
FROM wafers w, regionsr name: String

WHERE r_intersects(w.tle, r.geo) AND st_contains(irefoeo, .geo) gea: STObject

Resu

Visualization

Add ¥ Query Statistics

J

Pr

100 100 %

B
u
N
ifn 0 Elapsed Time 52 seconds
20 I No. Rows 1583252
——] | I I

B M 1 2 B M B % ¥ BN
tile.

Figure 2.10: STARK Visualization, Web Interface [7].

2.2 CPU and GPU Data Processing

2.2.1 CPU Processing

The primary goal of conventional CPUs is to optimize their serial performance. Typically,
manufacturers relied on Dennard scaling to increase processor frequency and thus processing
speed [25]. Dennard scaling depends on the size of transistors in relation with their clock
frequency and voltage. The transistors keep on shrinking and more of them are integrated on
a single die and their clock frequency increases. In order to keep power consumption constant,
the operating voltage needs to be decreased. This change has led to a 100x performance gain
of recent CPUs, when compared to older CPUs. CPU manufacturers have also developed
microarchitecture advances that extract implicit instruction level parallelism (ILP) from the
instruction stream, to improve serial performance. The main technique of these advances
is the CPU pipeline which overlaps the execution stages of different instructions. The best
performance is achieved when the pipeline is full and the processor can start and complete one
instruction per cycle. The major disadvantage of the pipeline is that it stalls when instructions
are dependent on each other, or when the processor should wait on memory access.

A variety of techniques are being used in modern CPUs, to keep the pipeline from stalling

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



2.2.1 CPU Processing

19

Table 2.1: Overview of the comparative criteria of big spatial and spatio-temporal data ana-

lytics systems

GeoSpark SpatialHadoop ST-Hadoop STARK
Datatypes  Point, Point, Rectangle, STPoint, Time, Point,Polygon,
Rectangle, LineString, Interval Linestring,
LineString, Polygon Multipoint,
Polygon Multypolygon,
Multilinestring,
Time, Interval
Indexes R-tree, R-tree Temporal R-tree
Quadtree hierarchy index,
Temporal Slicing,
Spatial index
Partitioning Quadtree, k-d Quadltree, Time-partitioning Grid Partitioning,
tree, STR-tree, STR-tree, STR+, slicing, Binary Space
Voronoi, k-d tree, Data-partitioning Partitioning
Uniform, Hilbert-curve, slicing
Hilbert Z-curve
Operations Range, £-NN, Range, k-NN, Spatio-temporal intersect, contains,
Spatial join, Spatial join range, containedBYy,
Distance join spatio-temporal spatial join, nearest
top-k nearest neighbors,
neighbor, clustering, skyline
spatio-temporal
join
Processing DAG execution MapReduce MapReduce DAG execution
model model
Language N.A. Pigeon Pigeon Piglet, Pig Latin
Visualization GeoSparkViz Single level image, N.A. Web UI
Multilevel images
Applications N.A. MNTG, TAREEG, Summit N.A.
TAGHREED,
SHAHED,
HadoopViz

and increase ILP [26]. One example is the that branch prediction continues to fetch and de-
code instructions of the predicted branch in the instruction stream, which keeps the early
stages of the pipeline full. Speculative execution also executes the instructions of predicted
branches and only discards their results, if the prediction later proves not to be correct. The
Out-of-order execution optimization reorders the instruction stream to achieve less instruc-
tion dependencies and memory stalls. Dennard scaling and these microarchitecture advances

have produced a gain of 52 per cent per year between 1986 and 2003.

The use of ILP is limited by the performance of the memory system [26]. Data 1/Os

stall the processor pipeline, when the processor cannot find independent instructions to feed

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



20 Chapter 2. Advanced Spatial query Processing

in the pipeline. The total stall is dependent on the memory latency and the capability of
concurrent memory accesses that can be served depending on the memory bandwidth. The
rate that memory improves over time has lagged processor performance, both for latency and
bandwidth.

Early CPUs access memory in a one clock cycle. Current CPus have to wait hundreds of
cycles. In many applications, even more in those that rely on fast integer performance [26],
there is not enough instruction level parallelism available to overcome this access latency
[27]. One way To reduce memory access latency is for modern CPUs to use large caches.
This feature allows CPUs to exploit temporal and spatial data access locality.

However, even with large and fast caches, data-intensive operations are limited by mem-
ory access due to unavoidable cache misses when loading fresh (not cached) data. The fre-
quencies increase in processor has stopped since 2003 [26]. Physical limitations have risen
and manufacturers cannot further reduce operating voltages. So, the operating frequency has
reached a threshold which can not be surpassed without excessive power consumption and
heat dissipation. On the other hand, the microarchitecture advances to increase ILP are not
energy-efficient because their implementation requires an increasing amount of the proces-
sor’s transistor budget. Since scalar performance is no longer increasing, manufacturers have
turned to increase throughput, by exploiting explicit data parallelism. Multi-core CPUs inte-
grate multiple processor cores on a single die. Simultaneous multi-threading (SMT) enables
independent threads to utilize different execution units of a core which explicitly increases
ILP. SIMD instructions work on multiple data items in a single cycle. These developments

mean that multi-core CPUs are becoming more and more similar or even identical to GPUs.

2.2.2 GPU Processing

Originally, GPUs were developed for special purposes, just to accelerate graphics render-
ing, mostly in 3D games. The main concern of GPUs manufacturers was to make the graphics
rendering pipeline more flexible and better support a most of the 3D games. As a result, GPUs
are primarily optimized for applications that render graphics. These applications mainly in
need of the following three interrelated features: (1) high degree of data parallelism, (2) la-
tency tolerance and (3) high demands on memory bandwidth.

In one hand, CPUs rely on extracting the implicit ILP from an instruction stream, on

the other hand, GPUs rely on explicit data parallelism to keep processing cores busy. As

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



2.2.2 GPU Processing 21

a result, GPUs consist of multiple simple processing cores instead of fewer advanced and
complex processing cores, as CPUs do. The computational performance of GPUs can scale
about linearly depending on the transistor budget, whereas the microarchitectural features of

CPUs, scale proportional to the square root of the transistor budget [28].

It makes sense that the latency of processing an individual data item is less important for
GPUs, because they are aggregate throughput-bound, instead of being serial-bound in per-
formance. This results to two major effects concerning the hardware design. The first one
is that it allows us to downgrade the processing frequency and include more transistors to
implement processing cores within a specific power budget. The second one is that instead
of reducing the latency of an individual data item through caches and microarchitectural ad-
vances, the latency is hidden by processing other data items. To aid latency hiding, the GPU
hardware allows for a massive over-subscription of threads. One example is that each stream-
ing multiprocessor (SM) of an Ampere A100 GPU can execute a total of four independent
warps at a time [29] (A warp is a group of threads that execute the same instruction). Each
SM can manipulate 64 different warps that are waiting for execution. At every cycle, the SM

can switch between active and inactive warps without overhead.

To implement this microarchitecture and support so many threads, GPUs contain big reg-
ister files, much greater than than the ones of CPUs. When compared to CPUs, for the GPU
side, large L1 cache also places more emphasis, which are closely integrated to the processing
cores. In contrast with CPUs, the shared last-level cache is smaller on GPUs. The Ampere

A100 has 8x fewer cache resources per SM than the EPYC 7702P has per core.

Due to the streaming data access of GPU graphics, the computational workloads slightly
depend on data reuse so caches are not very useful. GPU memory is optimized for high
bandwidth transactions, so that the input data adequately feeds the large number of processing
cores. The memory bus is also clocked faster, up to 7 GHz for GDDR6 memory. Furthermore,
high-performance GPUs use three-dimensional stacked memory. The memory is joined with
the GPU processor in the same die in a single package. Stacked memory is addressed through
an ultra-wide data bus. For example,the Ampere A100 uses ten 512-bit memory controllers
which results in a overall bus width of 5120 bits. This is an order of magnitude wider than

the 8x 64-bit bus width of the EPYC 7702P.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



22 Chapter 2. Advanced Spatial query Processing

2.2.3 GPU Programming

Programmers use a special programming model to develop parallel programms in a scal-
able and extensible way [30]. This model represents GPU hardware as an abstract parallel
processor. It helps programmers to define how their parallel program will be executed on the
device and also aids in the workload partitioning in order to achieve scalable parallelism. GPU
programming is different than CPU programming in many important ways. The main and
most popular implementations of this programming model are CUDA [30] and OpenCL [31].
OpenCL represents parallel processors, e.g., multicore CPUs or GPUs, as computational de-
vices consisting of compute units (CUs). On NVIDIA GPUs, each compute unit maps to a
Streaming Multiprocessor (SM), and on multi-core CPUs, a compute unit represents a logical
CPU core.

NVIDIA GPUs contain 1-N Streaming Multiprocessors (SM). Each SM has 1-4 warp
schedulers. Each warp scheduler has a register file and multiple execution units. The execu-
tion units may be exclusive to the warp scheduler or shared between schedulers. Execution
units include CUDA cores (FP/INT), special function units, texture, and load store units.

Both of these programming models divide programming into host code and device code.
Host code is executed in as a single thread process on the host CPU. It’s main purpose is
to coordinate operations on the device, such as initiating the execution of device code and
transferring data between host and device memory spaces. The device code is executed in
parallel on the device. The device program is executed in kernels which are scalar functions,
in which the operations are processed on a single datum of a data-parallel task. Whenever the
programmer launches a kernel, he can specify the hierarchy of independent kernel instances
that execute on the device. Each kernel instance is a thread (in CUDA FigR.11]). Individual
threads are arranged into thread blocks. All the thread blocks of a kernel invocation make up
the grid. The CUDA threads of a single thread block can cooperate with each other through
special instructions, fast barrier synchronizations, atomic functions and a very fast memory
space called shared memory. Because it is on-chip, shared memory is much faster than local
and global memory. In fact, shared memory latency is roughly 100x lower than uncached
global memory latency (provided that there are no bank conflicts between the threads) [32].
Shared memory is allocated per thread block, so all threads in the block have access to the
same shared memory. Threads can access data in shared memory loaded from global mem-

ory by other threads within the same thread block. This capability (combined with thread

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



2.2.4 CPUvs GPU Data Processing 23

CUDA Grid

blockldx (0,0) blockldx {1,0) blockldx (2,00
S|Rolno|eo| 0002 0000 @0
E E E
Slenfon|en| glonjonfen| 8 lon|nn|{en
82 £ 82
-] £ -]
©.2|0.2|22 ©2|0,2|22 ©.2|0.2| 22
blockDim.x blockDim.x blockDim.x
blockld:x (0,1) blockldx {1,1) blockldx (2,1)
L|eolojeal |eolooleol |0of0o o
= E E E
E Slenjonfen| Zlenfonfan len|on|en
o 2 £ 2
2 ©.2|012|22 020,222 ©.2|01,2| 22
(=]
blockDim x blockDim.x blockDim.x

bl

ockldx (0,2) blockldx {1,2) blockldx (2,2)

(0,0)| (1,0 | {2,0) 0,01 (1,0)] (2.0) 0,0| (1,0} (2,0)

blockDim.y

blockDim.y

blockDim.y
=l

oo oyjon @y anan
©0.2)((1,2)]i22) ©,2)(0,2)(22) ©0.2)((1,2))(22)
blockDim x blockDim.x blockDim.x
< gridDim.x »

Figure 2.11: CUDA threads, thread blocks and grid.

synchronization) has a number of uses, such as user-managed data caches, high-performance
cooperative parallel algorithms (parallel reductions, for example), and to facilitate global
memory coalescing in cases where it would otherwise not be possible. In contrast, threads
from different thread blocks execute completely independently.

Using this two-tiered hierarchy of threads and thread blocks, CUDA programming mod-
els support scalable parallelism. The programmer, in order to use this programming model,
should partition the algorithm in two discrete levels. The first one, the individual thread
blocks, work on coarse-grained subproblems which can be solved independently in parallel.
Each thread block executes on a dedicated SM (or compute unit for OpenCL). Multiple thread
blocks can execute on different SMs in parallel or on the same compute unit sequentially.
The second one, the threads within a single thread block, work on fine-grained subproblems
which can be solved cooperatively in parallel. The GPU hardware supports this fine-grained
thread and data parallelism through fast barrier synchronization, access to shared memory,
lightweight thread creation, and zero-overhead scheduling. Additionally, independent grids

can execute concurrently given sufficient hardware resources.

2.2.4 CPU vs GPU Data Processing

The main and most obvious difference between programming on GPUs and CPUs are the

total number of running threads, and how these threads cooperate. Generally, on CPUs, few

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



24 Chapter 2. Advanced Spatial query Processing

threads operate independently on coarse-grained subproblems. On multi-core CPUs, each
CPU core typically occupies a single hardware thread that operates on an independent parti-
tion of the data. Usually threads running on different CPU cores that communicate with each
other, should avoid programming practices that cause decreased performance like accessing
shared or nearby data. In contrast, GPUs execute a plethora of threads to hide the latency
of such operations. Occasionally, individual threads have to cooperate with each other to
achieve maximum performance. A classic example of a data processing task, where threads
cooperate to achieve high throughput, is parallel reduction on GPUs [33]. Another significant
difference between GPU and CPU programming is the Single Instruction, Multiple Thread
(SIMT) [34] execution model.

SIMT is an execution model used in parallel computing where single instruction, multiple
data is combined with multithreading. It is different from SPMD in that all instructions in
all “threads” are executed in lock-step. The SIMT execution model has been implemented
on several GPUs and is relevant for general-purpose computing on graphics processing units
(GPGPU), e.g. some supercomputers combine CPUs with GPUs. The SIMT execution model
is similar to the Single Instruction, Multiple Data (SIMD) execution model supported by CPU
vector instructions. However, a crucial difference is that GPU kernels are written as scalar

functions, independent of the SIMD instruction width of the processor.

The GPU hardware also takes care of masking results when different threads follow sep-
arate branches in the kernel code. Nevertheless, to maximize performance, programmers still
have to take hardware details, such as the warp size, into account. Programmers should avoid
diverging code paths for the threads inside a warp; utilize warp-level primitives, e.g., warp-
level reductions or ballot and shuffle instructions; and let the threads of a warp access adjacent
global memory locations, so that the GPU can coalesce these accesses into as few memory

transactions as possible.

2.3 Architectural research focus

Distributed systems such as Apache Hadoop and Apache Spark are already heavily used
for big data analysis in data centers. Surely, these systems to achieve efficient performance,
they need to use a multitude of processing nodes. Unavoidably, the hardware cost will in-

crease analogously to the number of the nodes. If we need to operate on big spatial data using

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



2.3 Architectural research focus 25

mainstream hardware, the only viable solution is to exploit the multi-core CPU on a single
workstation or take advantage of its GPU. Furthermore, this solution is not only cost efficient
but also eliminates the latency derived from large amounts of data transferred between the
nodes of a distributed system. In the next chapters we will focus our research in the multi-core
CPU and GPU architectures. We will present novel methods and we will conduct extensive

experiments to determine their performance.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



Chapter 3

Query Processing with CPU and SSD

Nowadays, the volume of available spatial data (e.g. location, routing, navigation data,
etc.) is continuously increasing world-wide. To exploit these data, efficient processing of
spatial queries is of great importance due to the wide area of applications that may address
such queries. The most common spatial queries where points are involved are point-location,
window, distance-range and K nearest-neighbor queries (PLQs, WQs, DRQs and £-NNQs,
respectively, in the sequel). At a higher level, such queries have been used as the basis of many
complex operations in advanced applications, for example, geographical information systems
(GIS), location-based systems (LBS), geometric databases, CAD, or economic forecasting
[35].

The use of efficient spatial indices is very important for performing spatial queries and
retrieving efficiently spatial objects from datasets according to specific spatial constraints
[36]. Hierarchical indices are useful due to their ability to focus on the interesting subsets
of data. This focusing results in an efficient representation and execution times on query
processing and thus, it is particularly useful for performing spatial operations. An example of
such indices is the Quadtree [37], which is based on the principle of recursive decomposition

of space and has become an important access method for spatial applications [38].

The External Balanced Regular (xBR)-tree [39] is a secondary memory structure that be-
longs to the Quadtree family (widely used in GIS applications, which is suitable for storing
and indexing points and, in extended versions, line segments, or other spatial objects). We
use an improved version of xBR-tree, called xXBR " -tree [40], which is also a disk-resident
structure. The xBR " -tree improves the xBR-tree in the node structure and in the splitting pro-

cess. The node structure of the xBR " -tree stores information which makes query processing

27

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



28 Chapter 3. Query Processing with CPU and SSD

more efficient. In addition, the xBR " -tree outperforms R*-tree and R*-tree (in terms of I/O
activity and execution time) for the most common spatial queries, like PLQs, WQs, DRQs,

k-NNQs, etc. [41].

The advent of non-volatile memories (NVM) has enabled a brand-new class of storage
devices with exciting features that will prevail in the storage market in the near future. Their
high read and write speeds, small size, low power consumption and shock resistance are some
of the reasons that made them storage medium of choice. NAND flash is undoubtedly the most
popular NVM today. Storage devices based on NAND Flash are found both in consumer
devices and enterprise data-centers. However, upcoming technologies, such as 3D XPoint
from Intel and Micron, make possible even more efficient devices [42]. At the very beginning,
raw Flash memory chips were embedded in mobile devices and other electronics. However,
soon enough, the increasing needs for efficient storage drove the emergence of Solid-State
Drives (SSDs). SSDs are composed by Flash chips, embedded controllers and DRAM [43].
Contemporary devices incorporate from a few to many NAND chips, supplying capacities
even of tens of terabytes in high-end systems. Flash controller, usually a 32-bit embedded
CPU, executes the firmware that controls SSD operation, while DRAM is utilized to store
metadata, information regarding address mapping and for user data caching. Firmware is
fundamental for SSD operation [44]. Its main responsibility is to map virtual addresses, as
they are seen by the host, to physical addresses in flash chips. For this reason is also known as
Flash Translation Layer (FTL). FTL performs tasks for garbage collection, wear leveling and
management of bad blocks. SSDs exhibit higher write and especially read performance than
Hard Disk Drives. This performance advantage is maximized when issuing commands that
massively write to / read from SSDs large sequences of consecutive pages (due to exploiting
the internal parallelism of SSDs), instead of issuing commands that write to / read from SSDs

the pages of such sequences in small subsequences, or even, one-by-one [45].

Due to power limitations of chips, the possible increase of CPU clock speed that can be
achieved in new generations of CPUs is limited and, therefore, manufacturers improve per-
formance by creating CPUs with multiple cores. Multi-core CPUs are common in today’s
commodity hardware. On the other hand, processing of spatial queries has been widely in-
vestigated for decades, focusing mainly on single threaded code. Processing of spatial queries
usually demands significant processing power and developing algorithms that utilize multiple

cores can improve overall performance considerably.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



3.1 Related Work and Motivation 29

New algorithms where presented [46] for processing large sequences of common spa-
tial queries (PLQs, WQs, DRQs) using xBR ' -trees in SSDs. These algorithms are especially
designed to massively read from SSDs large sequences of pages needed for answering such
queries and are also included in this chapter. Such large sequences of queries (batch queries)
appear frequently in applications. Moreover, in this chapter, we elaborate on the algorithms
of [46] and create new algorithms that additionally take advantage of the multiple CPU cores.
Extending the experimentation presented in [46], based on small and large datasets, we exper-
imentally study the performance of these new, SSD based, algorithms against processing of
batch queries by repeatedly applying existing algorithms for these queries and further study
the performance of the new algorithms that utilize parallelism against the ones taking ad-
vantage of SSDs only. Our experiments show that the new algorithms taking advantage of
SSDs and even further the ones that also utilize multiple cores are clear performance win-
ners. However, the performance achieved by the mutiple cores of a CPU, or the amount of
data a centralized system can process might not be enough for future applications. Therefore,
we also discuss how these new parallel algorithms can be extended to work in a distributed
environment, like the ones presented in Section .1, taking advantage of parallelism between

machines, while processing data of larger scales.

The sequel is organized as follows. In Section B. 1) we review related work on spatial query
processing over xBR-trees, as well as, on indices taking advantage of SSDs performance, on
processing spatial queries using multiple cores and provide the motivation of this work. In
Section B.2, we describe the most important characteristics of the xBR*-tree. Section B.3
presents new algorithms for batch queries processing using xBR*-tree in SSDs. Section 3.4
presents extensions of these new algorithms that further take advantage of multiple cores. The
results of our experiments are discussed in Section B.5. Section B.§ discusses how the new
parallel algorithms can be extended to work in a distributed environment. Finally, Section 3.7

provides the conclusions arising from our work and discusses future work directions.

3.1 Related Work and Motivation

In this section, we first briefly review the xBR-tree family and continue with the most
representative spatial indexes, taking advantage of SSD performance and spatial processing

on multi-core processors. Finally, the main motivation of this work is exposed.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



30 Chapter 3. Query Processing with CPU and SSD

3.1.1 The xBR-tree Family

The xBR-tree was initially proposed in [39] as a secondary-memory pointer-based struc-
ture that belongs to the Quadtree family. The original xBR-tree was enhanced in [47]. The
xBR T -tree [40,41] is a further improved extension of the xBR-tree regarding performance
of tree creation and spatial query processing. Bulk-loading and bulk-insertion methods for
xBR ™ -trees are presented in [48] and [49], respectively.

In [41], an exhaustive performance comparison (I/O activity and execution time) of XBR " -
trees (non-overlapping trees of the Quadtree family), R -trees (non-overlapping trees of the
R-tree family) and R*-trees (industry standard belonging to the R-tree family) is performed.
In this comparative study, several performance aspects are studied, like tree building and
processing single point dataset queries (PLQs, WQs, DRQs and £-NNQs) and distance-based
join queries (DJQs), using medium and large spatial (real and synthetic) datasets. As a conclu-
sion, the xXBR " -tree is a clear winner for tree building and query performance. The excellent
building performance of the xXBR " -tree is due to the regular subdivision of space that leads
to much fewer and simpler calculations. The higher query performance of the xBR " -tree is
due to the combination of the regular subdivision of space, the additional representation of
the minimum rectangles bounding the actual data objects, the algorithmic improvements of

certain spatial queries and the storage order of the entries of internal nodes.

3.1.2 Spatial Indexes for Flash SSDs

NAND Flash provides superior performance compared to traditional magnetic disks but
has some intrinsic characteristics. It exhibits asymmetry in the read, write, and erasure speeds
and a page must be erased first before being re-programmed. Erase operations take place at
block level, while reads and writes are performed at page level. SSDs inherit some of these
characteristics, thus in most devices read operations are faster than writes, while difference
exist among the speeds of sequential and random I/Os as well. Especially, random writes
may initiate garbage collection which is impacts the efficiency of the device. On the other
hand, the high degree of internal parallelism of latest SSDs substantially contributes to the
improvement of I/O performance [50]. Many research efforts have been made for Flash effi-
cient database indexes. The works for spatial data processing mostly concern the R-tree.

The RFTL [51] is the first effort towards a flash efficient implementation of the R-tree.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



3.1.3 Spatial Processing on Multi-core Processors 31

It is based on recording deltas for update operations. An in-memory buffer is utilized to hold
the deltas before be persisted in batches. The same method has also been applied for the
Aggregated R-tree in [52].

The LCR-tree [53] exploits a small section of SSD to log update operations. In contrary
to other works it accumulates all the deltas for a particular node to one page in Flash. This
way it ensures only one additional page reading to reach a tree node. The LCR-tree exhibits
better performance than the original R-tree and the RFTL in mixed search/insert experimental
scenarios. In the FOR-tree [54] authors aim to reduce small random writes by introducing
overflow nodes to the R-tree. They propose new search and insert algorithms and a buffering
algorithm for efficient caching of original and overflow nodes.

Regarding to non R-tree spatial indexes, the F-KDB [55] is a log-structured implemen-
tation of the K-D-B-tree for Flash, the MicroGF [56] is a 2D Grid File like structure for raw
Flash, that is embedded in wireless sensor nodes, while a first effort towards to an efficient
Grid-File for SSDs is presented in [57].

Furthermore two generic frameworks for spatial indexing have been proposed so far,
which can encapsulate different data structures. FAST [58] utilizes the original insertion and
update algorithms, buffers updates in RAM and flashes them to the SSD at once. eFIND [59]
is a newer generic framework that provides better performance than FAST.

MPSearch [50] [60] is a multi-path search algorithm for the BT -tree that performs batch
searches considering the characteristics of SSDs to accelerate performance. To the best of
our knowledge, there are not any works concerning spatial batch-queries processing for Flash
SSDs. Motivated by this observation, in [46], we developed new algorithms for processing
common spatial batch queries (PLQs, WQs, DRQs), using xBR"-trees in SSDs. These al-
gorithms are designed for maximizing performance by exploiting the internal parallelism of

SSDs.

3.1.3 Spatial Processing on Multi-core Processors

Multi-core processors usually have a small number of cores (in most cases, between two
and eight) as opposed to high performance computing systems. This characteristic constitutes
a challenge for the parallelization of algorithms, since extensive use of parallelism can de-
grade performance, due to the overhead of parallelization and competition for resources, like

shared memory. Instead, parallelism on a small scale might prove more appropriate. Spatial

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



32 Chapter 3. Query Processing with CPU and SSD

operations used for processing spatial data, even I/O bound ones, require significant core pro-
cessing power; therefore, it is worthwhile to re-design and parallelize such spatial algorithms
for multi-core CPU architectures that are commonly available in nowadays computers.

There are several parallelisms that can be mapped to different parallel hardware (e.g.,
multi-core CPUs, GPUs and MICs) at different levels (e.g., multi-processor, thread-blocks,
SIMD elements). In the context of spatial processing, most of the research has been applied
on multi-core CPUs, GPUs and MICs. In [61], data-parallel designs and implementations of
point-to-polyline shortest distance computation and point-in-polygon topological test on dif-
ferent commodity hardware using real large-scale spatial data are proposed, comparing their
performance and discussing important factors that may significantly affect the performance.
Moreover, parallel designs and implementations of spatial indexes on commodity parallel
hardware are becoming available, like GPU-based R-trees [62], Quadtrees [63] and simple
flat Grid files [64] for spatial indexing and spatial filtering.

In [65] a parallel version of the plane-sweep algorithm targeted towards the small num-
ber of processing cores available on commonly available multi-core systems is presented.
Experimental results show that the proposed algorithm significantly outperforms the serial
plane-sweep on such spatial systems. An improved version of parallelizing plane-sweep al-
gorithms for spatial computations on multi-core processors has been published in [66].

To the best of our knowledge, there has not appeared any work in the literature on pro-
cessing spatial batch-queries which combines the use of SSDs and also takes advantage of
multiple CPU cores, to improve performance. Therefore, in this chapter, we elaborate on the
algorithms of [46] and develop new algorithms for processing such queries that combine the
utilization of an efficient index (the xXBR " -tree), exploit the massive I/O advantages of SSDs

and make use of the multiple cores existing in a modern CPU.

3.2 The xBR " -tree Structure

In this section, we present the basics of the xBR " -tree (its advantages over trees belong-
ing to the R-tree family are summarized in Section B.1.1)). The xBR-tree [4(] is a hier-
archical, disk-resident Quadtree-based index for multidimensional points (i.e. it is a totally
disk-resident, height-balanced, pointer-based tree for multidimensional points). For 2d space,

the space indexed is a square and is recursively subdivided in 4 (= 2%) equal subquadrants,

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



3.2 The xBR " -tree Structure 33

while for 3d space, the space indexed is a cube and it is recursively subdivided in 8 (= 2%).
In this chapter, we focus on 2d data. The tree nodes are disk pages of two kinds: leaves,
which store the actual multidimensional data and internal nodes, which provide a multiway

indexing mechanism.

Internal node entries in xBR*-trees contain entries of the form (Shape, gside, DBR,
Pointer). Each entry corresponds to a child-node, having a region related to a subquadrant of
the original space. Shape is a flag that determines if this region is a complete or non-complete
square (the area remaining, after one or more splits; explained later in this subsection). This
field is heavily used in queries. gside is the side length of the subquadrant of the original space
that corresponds to this child-node. DBR (Data Bounding Rectangle) stores the coordinates
of the rectangular subregion of this child-node region that contains point data (at least two

points must reside on the sides of the DBR), while Pointer points to this child-node.

The subquadrant of the original space related to a child-node is expressed by an Address.
This Address (which has a variable size) is not explicitly stored in the xBR ™ -tree, although
it is uniquely determined and can be easily calculated using gside and DBR. Here, we depict
the Address only for demonstration purposes. Each Address represents a subquadrant that
has been produced by Quadtree-like hierarchical subdivision of the current space (of the
subquadrant of the original space related to the current node). It consists of a number of
directional digits that make up this subdivision. The NW, NE, SW and SE subquadrants of a
quadrant are distinguished by the directional digits 0, 1, 2 and 3, respectively. For example,
the Address 1 represents the NE quadrant of the current space, while the Address 12 the SW

subquadrant of the NE quadrant of the current space.

The actual region of the child-node is, in general, the subquadrant of its Address minus a
number of smaller subquadrants, i.e. the ones corresponding to the next entries of the internal
node. The entries in an internal node are saved in sequential groups, consisting of subgroups.
The first entry of each group is the parental entry of the rest entries of this group. Each entry
of a group is a descendant of the entry on its left, or it is the parent of a new (sub)group. To
study the contents of a node more easily and understand the mechanism behind subtracting of
subregions, it is suggested to examine the node entries from right to left. For example, in Fig.
an internal node (a root) that points to 5 internal nodes that point to 15 leaves is depicted.
The region of the root is the original space, which is assumed to have a quadrangular shape

with origin (0,0) on the upper left corner and side length 1. The region of the rightmost entry

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



34 Chapter 3. Query Processing with CPU and SSD

(220%*) is the NW subquadrant of the SW subquadrant of the SW quadrant of the original space
(the * symbol is used to denote the end of a variable size Address). The flag shape is set at the
value ‘S’ which expresses that this subquadrant is a complete square and thus, no part of its
region will be found anywhere in the index, except for the child nodes of the subtree rooted at
this entry. The region of the next (on the left) subquadrant is the SW subquadrant of the SW
quadrant of the whole space. For this subquadrant, the Address is 22* (non-complete square,
denoted by ‘noS’, since the descendent region 220* has been subtracted, while handling an
overflow during an insertion, or update). The next two (on the left) entries cover the whole
space of the NE quadrant (1*) and the NW quadrant (0*) of the whole space, respectively.
Finally, the first entry in the root of this example expresses the whole space minus the four
descendant regions (0*, 1*, 22* and 220*), and of course it is a non-complete square area.
To further demonstrate the tree structure and the relation between parent region and child, the
child of the last root entry (220*) can be examined. This child divides the region addressed
by 220* in two parts: the first part is the SW subquadrant of address 220* (denoted by 2*),
corresponding to the absolute address 2202%*, and the second part is the remaining area of
address 220* (denoted by *), after subtracting its SW subquadrant. During a search, or an
insertion of a data element with specified coordinates, the appropriate leaf and its region is

determined by descending the tree from the root.

External nodes (leaves) of the xBR™-tree simply contain the data elements and have a
predetermined capacity C';. When (', is exceeded, due to an insertion in a leaf, the region of

this leaf is partitioned in two subregions.

An example that demonstrates split of a leaf and an internal node follows. In the upper
part of the Fig. B.2], an xBR *-tree having one internal (root) node with 5 entries (its cardinality
equals the maximum capacity of internal nodes, C; = 5) is depicted. The 5 entries point to
5 leaves containing the first 25 points of the total number of 64 points of the dataset of Fig.
B.1. The next (26" point p must be inserted in a leaf that already contains 6 points and is
pointed by the first entry of the root (*) . Since C', = 6, this leaf overflows and is split in
two (itself and a new leaf). The new leaf covers the region of the subquadrant 2* and holds 3
points (middle part of Fig. B.2). The other 4 points remain in the existing leaf (*). An entry for
the new leaf (2*) must be inserted in the root node which is already full. The root overflows
and is split in two internal nodes (itself and a new node). In order to maintain the cohesion of

the tree, a new root node having 2 entries is created. The first entry (*) points to the old root

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



3.3 Algorithms for Batch-Queries Processing 35

0

0.25 . '.

0.5 3 e : 4

075 fm | . )
o 0.25 0.5 0.75 1

*
o
*

i-Node Capacity C,:5 1* 22* [220*
Leaf Capacity C,=6 Lgn°S o S S| _noS| _s

-
ot

300* *
S

noS| _S

Zsl
A
* *

2* |32* | 33" o1 |10 |13
npS| S| S| _S noS| noS| 8| _S

Figure 3.1: A collection of 64 points, its grouping to xBR™-tree nodes and its xBR " -tree.

node and the second entry points to the new node (0*). The resulting xBR " -tree, consisting
of 3 internal nodes with 6 entries pointing to 6 leafs, is depicted in the lower part of Fig.
B.2. The final tree, after inserting the rest of the 64 points and the space partitioning of the
xBRT-tree are shown in Fig. B.1. Note that the leaf corresponding to the SW (2*) of the
NE (1*) subquadrant of the whole space contains 5 points, since there is one point on the
top left corner of this subquadrant. The minimum coordinates of a leaf / internal node region
belong to these regions, while the maximum ones do not. This means that regions are closed
regarding their left and top borders. Details on the algorithms for splitting leaf and internal

nodes appear in [40].

3.3 Algorithms for Batch-Queries Processing

In the following, we present algorithms for processing the batch versions of three com-

mon single-dataset queries, using XBR"-trees in SSDs. These algorithms are designed for

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



36 Chapter 3. Query Processing with CPU and SSD

i-Node Capacity C=5

Cas m Leaf Capacity C,=6

0* |02* (1* |12*
noS S 0S S

2*’
S

Figure 3.2: Up: an xBR " -tree root pointing to 5 leaves. Middle: an overflown xBR " -tree root

pointing to 6 leaves. Down: the resulting xXBR " -tree after splitting of the root.

maximizing performance when applied on SSDs. They make use of a main memory area
(denoted by M in the following), group read accesses needed by several queries of the batch,
reorder the pages to be read and, at the same time, avoid unnecessary re-reading of the same
pages and issue massive read operations of large sequences of consecutive pages (exploiting

the internal parallelism of SSDs).

3.3.1 Algorithm for Processing of Batch Point-Location Queries

In this subsection, we present our new processing method for Batch Point - Location
Queries (BPLQ) using xBR " -trees in SSDs. The definition of this query is as follows: Given
an index Zp of a dataset P of points and a set of query points (), the BPLQ returns the largest
subset R C @ suchthat R={p:p € Q Ap € P}.

The basic idea is as follows. We use the main memory area M (the size of M is defined
by the system administrator and its size, a few MBs, is not significant in comparison to the
size of the datasets) and we divide () in subsets such that each subset can be processed within
M . Hierarchically, we visit the tree nodes and partition the query points in groups as fol-
lows: we examine the node entries from right to left and for each entry, using a variation of
quicksort, we partition the query points to the points falling inside the current node entry and
the remaining ones; we repeat for the next (to the left) node entry with the remaining points,
until we reach the leftmost node entry, or the remaining points are exhausted. This procedure
guarantees that each group of points uniquely falls within one subregion of the current node.

Next, we massively read the child nodes corresponding to the node entries containing non-

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



3.3.2  Algorithm for Processing of Batch Window Queries 37

empty groups of points into M. This process continues down to the leaf level, where we read
the leaves corresponding to the resulting subregions into M. For each leaf, we determine all
the query points of () that exist in this leaf. The algorithm is described in more details as

follows.

* Considering the maximum memory size of M available to our program, we calculate
the maximum cardinality of each subset of () that can be processed within M. We

divide () in subsets that do not exceed this maximum cardinality.
» For each of these subsets, we begin at the root.

— For a subset of query points, we call a procedure that visits a tree node and parti-
tions this subset in groups such that each group uniquely falls within one subre-

gion of this node.

— If this node points to internal nodes, we calculate and allocate the memory (part
of M) that is required for reading the node entries that contain query points and

massively read the nodes pointed by these entries.

% For each of the nodes read and the group of points that fall within the region

of this node, we recursively apply this procedure.

— Ifanode points to leaf nodes, we calculate and allocate the memory (part of M)
that required for reading the leaves that contain query points and massively read

the leaves pointed by the node entries.

% For each of the leaves which have been read and the group of points that fall
within this leaf, we sort this group of points according to the axis along which
the leaf points have been sorted and determine the query points that exist in

the leaf (using a plane-sweep based technique to minimize comparisons).

3.3.2 Algorithm for Processing of Batch Window Queries

Here, we present our processing method for Batch Window Queries (BW(Q) using xBR -
trees in SSDs.

The definition of this query is as follows: Given an index Zp of a dataset P and a set
of rectangular query windows W, the BWQ returns the largest set R that contains pairs of
objects (p, w) such that R = {(p,w) : p € P A p falls inside w € W'}.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



38 Chapter 3. Query Processing with CPU and SSD

The basic idea (an extension of the method in Section B.3.1)) is as follows. We use a main
memory area M and we divide W in subsets such that processing of each subset can be done
within M. Hierarchically, we visit the tree nodes and for each node we process the regions of
the entries contained within, to create a list of the query windows corresponding to each entry,
since each region intersected with a query window may be a candidate for containing points
of the pairs of the result (R). For the entries of the current node that contain a non-empty list
of query windows, we massively read the nodes corresponding to these entries into M. This
process continues down to the leaf level, where we read the leaves corresponding to these
entries into M. For each leaf, we determine all the points of P that exist into the leaf and fall
inside the regions of the query windows of the list. The algorithm is described in more details

as follows.

* Considering the maximum memory size of M available to our program, we calculate
the maximum cardinality of each subset of 1¥ that can be processed within M. We

divide I in subsets that do not exceed this maximum cardinality.
* For each of these subsets of query windows, we begin at the root.

— For a subset of query windows, we call a procedure that visits a tree node and
in each entry of the node we append a list of query windows whose region is
intersected with the region of the entry (in Section B.3.1|, we didn’t need such

lists, since a query point falls in at most one region).

— If this node points to internal nodes, we calculate and allocate the memory (part
of M) that is required for reading the node entries that contain non-empty lists of

query windows and massively read the nodes pointed by these entries.

% For each of the nodes read and the list of query windows that has intersection

with the region of this node, we recursively apply this procedure.

— Ifanode which has been read points to leaf nodes, we calculate and allocate the
memory (part of M) that is required for reading the leaves that contain non-empty

lists of query windows and massively read the leaves pointed by the node entries.

% For each of the leaves read and the list of query windows that have intersec-
tion with the region of this leaf we apply the refinement step as follows. We

sort this list of windows using as key the maximum coordinate of the axis

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



3.3.3 Algorithm for Processing of Batch Distance-Range Queries 39

along which the leaf points have been sorted and determine the leaf points
that fall inside the regions of the query windows (using a plane-sweep based

technique, to minimize comparisons).

3.3.3 Algorithm for Processing of Batch Distance-Range Queries

In this subsection, we present our processing method for Batch Distance-Range Queries
(BDRQ) using xBR*-trees in SSDs.

The definition of this query is as follows: Given an index Zp of a dataset P and a set
of query pairs of form (query point, distance threshold) (), the BDRQ returns the largest
set R that contains objects (p, (¢,€)) such that R = {(p,(q,¢)) : p € P,(q,e) € Q A
distance(p, q) < e}.

The basic idea is as follows. We utilize a main memory area M. We divide () in subsets

such that processing of each subset can be done within M.

* One method of processing is the following. Every query pair could be seen as a query
window with circular schema. Therefore, we can follow the filtering step of the BWQ
method (presented in Section B.3.2) down to the leaf level for the Minimum Bounding
Square (MBS) of each query pair. At the leaf level, we apply a refinement step for the
leaves and the actual query pairs (which are circles). Hierarchically, we visit the tree
nodes and for each node we process the regions of the entries contained within, to create
a list of the corresponding query pairs for each entry, since each region intersected
with the minimum bounding square of a query pair may be a candidate for containing
points of the objects of the result (). For the entries of the current node that contain
a non-empty list of query pairs we massively read the nodes corresponding to these
entries into M. This process continues down to the leaf level, where we read the leaves
corresponding to these entries into M. For each leaf, we determine all the points of P
that exist into the leaf and fall inside the regions of the query pairs of the list. Since, in

this method we utilize bounding squares, we call it BDRQ-B.

» According to an alternative processing method, every query pair could be seen as the
actual circle it represents. Therefore, we can apply the filtering step as follows. Hi-
erarchically, we visit the tree nodes and for each node we process the regions of the

entries contained within, to create a list of the corresponding query pairs for each en-

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



40 Chapter 3. Query Processing with CPU and SSD

try. For each entry e of a tree node, we calculate the minimum distance between the
region of the entry and the point of the query pair ¢ (minDist(e, q)). Every point ¢
with minDist(e,q) < ¢ is added into the query list of e. It is expected that each re-
gion entry having intersection with a query pair may be a candidate to contain points
of the objects of the resulting set (R). For the entries of the current node that contain
a non-empty list of query pairs, we massively read the nodes corresponding to these
entries into M. To simplify the calculations (reduce the execution time) we calculate
the square of min Dist between a point and the region of an entry and we compare this
metric with the square of the given . This process continues down to the leaf level,
where we read the leaves corresponding to these entries into M. For each leaf, we de-
termine all the points of P that exist into the leaf and fall inside the regions of the query

pairs of the list. Since, in this method we utilize minimum distance, we call it BDRQ-D.

3.4 Algorithms for Parallel Batch-Queries Processing

In this section, we present the techniques we have utilized, the general idea and the spe-
cific algorithms that we developed for processing of the queries studied by taking advantage

of the multiple cores of a CPU.

3.4.1 Parallelization techniques

Although, the queries we study are I/O bound (the factor that dominates performance is
the cost of accessing secondary storage) and the algorithms we present in Section are
designed to take advantage of the internal parallelism of SSDs, the CPU cost of processing
such queries is not negligible. In this section we further evolve our algorithms so as to utilize
the multiple cores of the CPU as much as possible and minimize the time of CPU processing
(the cumulative time of CPU processing may be enlarged, since multiple cores are used,
however, the actual time of CPU processing is reduced).

Processing of batch PLQs, WQs, or DRQs includes the following operations.

* Filtering at internal nodes, where we determine which query objects (points, windows,
circular ranges, or their bounding squares) satisfy the query criterion for the regions of

the entries (children) of each internal node.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



3.4.2 Basic Ideas of Parallel Query Processing 41

* Refinement at leaf nodes, where we determine which query objects (points, windows,
circular ranges, or their bounding squares) exist (in the case of query points), or include

data points (in the other cases of query objects) in each leaf.

If we have to process multiple internal nodes, filtering can be done in parallel, by assign-
ing a number of such nodes to each CPU core. If, however, we have to process one, or a few
internal nodes, filtering can still take advantage of parallelism by assigning a number of en-
tries of this (these) node(s) to different cores, during partitioning the query objects according
to the query criterion for the regions of these entries.

Accordingly, since in practice during refinement we always have to process multiple
leaves, refinement can be done in parallel by assigning a number of leaves to each CPU
core.

Moreover, when processing PLQs, query points that fall within the region of a leaf should
be sorted by one of their coordinates, before applying plane-sweep to discover which of these
points exist within this leaf. We utilize QuickSort which can also be done with parallelism if
the number of elements to be sorted exceed a predefined number (through experimentation
we concluded that an effective setting for this threshold is 256).

Note that, if each of the available cores is engaged in some kind of parallel processing of
the ones mentioned above, using an additional type of parallel processing might not improve
the total CPU processing efficiency. For example, if parallel processing between nodes during
filtering is employed, using parallel processing between entries also would likely have no
positive effect. On the contrary, since employing parallelism has always some overhead, it
might have a negative effect. Note also that the effect of each type of parallelism depends on
the distribution of the specific dataset and the query being processed.

Therefore, for each type of query, we have tested four configurations for the parallel
algorithms we developed. These are depicted in Table .1|. The 1st configuration employs no
parallel processing. However, the algorithm used is the same as in the other configurations
(described in the following) and, depending on the dataset and the query, it may be faster due

to the absence of overhead.

3.4.2 Basic Ideas of Parallel Query Processing

The algorithms we presented in Section B.3 work on a depth-first basis. Processing starts

at the root and recursively reaches the leaves. In order to better utilize the parallelization

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



42 Chapter 3. Query Processing with CPU and SSD

config. filtering refinement  sorting
1 no no no
2 yes (nodes) no yes (>256)
3 yes (partitioning) yes (nodes) yes (>256)
4 yes (nodes) yes (nodes) yes (>256)

Table 3.1: The configurations of parallel processing tested.

techniques exposed previously, we redesigned our algorithms to work on a breadth-first basis
as much as possible. This means that each algorithm processes (exploiting multiple cores) as
many nodes of each level as possible, before proceeding to the next level. “As many - - - as
possible” is related to the main memory available. Since main memory is limited, loading the
data for a whole level of the tree might not be possible. Therefore, considering the memory
limit, for each level (iteratively) we load as many nodes and as many query objects as possible,
process them in parallel and continue processing in-depth (recursively), before returning to
the level where there are more nodes waiting to be processed. This idea is applied on every
new tree level we visit.

Our technique employs a combination of breadth-first and depth-first processing to ex-
ploit parallelism. Therefore, we call the technique we use as restricted breadth depth-first
processing. We believe that this technique can also be applied to other algorithms working

on trees, so as to take advantage of parallel processing.

3.4.3 Parallel Algorithm for Processing of Batch Point-Location Queries

In this subsection, we present our new processing method for Parallel Batch Point-Location
Queries (PBPLQ) using xBR " -trees in SSDs. The basic idea is as follows. We use two buffers
with predefined sizes by the system administrator, the node buffer My and the query point
buffer Mg. We divide () in subsets such that each subset can be processed within M. For
each tree level, starting at the root level, we massively read as many nodes of the current level
as possible into M y. Using parallelism between nodes, or between entries of nodes (depend-
ing on the number of nodes read), we partition the query points in groups and distinguish the
ones that uniquely fall within a subregion (region of a child entry) of the nodes read. Next,

we massively read the child nodes corresponding to the resulting subregions (belonging to

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



3.4.3  Parallel Algorithm for Processing of Batch Point-Location Queries 43

possibly multiple nodes of the same level) into M. This process continues recursively down
to the leaf level, where we read the leaves (children of possibly multiple nodes of the same
level) corresponding to the resulting subregions into M. We process leaves in parallel and,
for each leaf, we determine all the query points of () that exist in this leaf. If the number
of query points to be examined in such a leaf is large enough, parallel sorting can also be
employed. As recursive calls return, as many nodes as possible of the respective level that
have not been processed yet are loaded into M and the process is repeated for them.

The algorithm is described in more details in Alg. [I|. To be able to handle multiple nodes of
the same level, using of stacks is needed. Although, a single stack could be used, for efficiency
of copying operations of consecutive multiple stack records, we use two synchronized stacks,
a stack of pointers to nodes, called Sy, and a stack holding information of query points groups,

called Sg;.

Algorithm 1 Algorithm PBPLQ

Input: Stack of pointers to nodes, =Sy, Stack of query points groups=Sgi

Output: PBPLQ Result=Result

1: Mg < readQueryPoints();

2: Sqi.push(Mq);

3: My < readRoot();

4: Sy .push(My);

5: if #nodes > threshold then

6: forrin Sy do // Parallel For

7: createStack(Sn);

8: createStack(Sqir);

9: for ¢ in r.nodes() do

10: partitionInParallel(e.queryPoints());

11: if points.intersect(e.region) then

12: S nr.push(e.childNode);

13: Sqir.push(e.points);

14: SN .merge(SnT);

15: Sgi.merge(Sqir);

16: if level is leafParentLevel then

17: while S .size>0 or Syi.size>0 do

18: transferAndReplacePointedLeavesInto(M x);
19: if #leaves > threshold then
20: for each leaf in parallel do
21: sort(leaf.points);

22: Result < PlaneSweep(leaf.points)
23: else

24 transferAndReplacePointedLeavesInto(M v );
25: callRecursivelyPBPLQ(S i ,Sg1);

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



44 Chapter 3. Query Processing with CPU and SSD

3.4.4 Parallel Algorithm for Processing of Batch Window and Distance-

Range Queries

In this subsection, we present our processing methods, using xBR™-trees in SSDs, for
Parallel Batch Window Queries (PBW(Q) and our Parallel Batch Distance-Range Queries
based on circular ranges (PBDRQ-D), or on range bounding squares (PBDRQO-B).

The basic idea (an extension of the method in Section B.4.3) is as follows. We use two
buffers with predefined sizes by the system administrator, the node buffer My and the query
object (window, circular range, or bounding square) buffer M. We divide () in subsets such
that each subset can be processed within M. For each tree level, starting at the root level,
we massively read as many nodes of the current level as possible into M. Using parallelism
between nodes, or between entries of nodes (depending on the number of nodes read), we
partition the query objects in groups and distinguish the ones that intersect with a subregion
of the nodes read, since each subregion intersected with a query object may be a candidate
for containing points of the pairs of the result (). Next, we massively read the child nodes
corresponding to the intersected subregions (belonging to possibly multiple nodes of the same
level) into M . This process continues recursively down to the leaf level, where we read the
leaves (children of possibly multiple nodes of the same level) corresponding to the resulting
subregions into M. We process leaves in parallel and, for each leaf, we determine the points
of this leaf that fall inside any of the query objects of (). As recursive calls return, as many
nodes as possible of the respective level that have not been processed yet are loaded into My
and the process is repeated for them. The algorithm is described in more details as follows.

Again, we use two synchronized stacks, a stack of pointers to nodes, called Sy, and a stack
holding information of query object (window, circular range, or bounding square) groups,
called Sg; and two buffers with predefined sizes, the node buffer M and the query object
buffer M, (Alg. B).

3.5 Experimental Results

We run a large set of experiments to compare the repetitive application of the existing
algorithms for processing batch queries to the new algorithms, designed especially for batch

queries in SSDs, which either use one [46], or multiple CPU cores.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



3.5 Experimental Results 45

Algorithm 2 Algorithm PBPLQ / PBDRQ-D / PBDRQ-B

Input: Stack of pointers to nodes,=S, Stack of query points groups=Sqi
Output: PBPLQ / PBDRQ-D / PBDRQ-B Result=Result

1: Mg + readQueryObject();

2: sort(Mq);

3: Sgi.push(Mg);

4: Mpy + readRoot();

5: Sn.push(Mp);

6: if #nodes > threshold then

7: forrin Sy do // Parallel execution

8: createStack(Sn);

9: createStack(Sqir);

10: for e inrnodes() do  // Parallel execution

11: if queryObjectsIntersect(e.region) then

12: Sr.push(e.childNode);

13: Sqir.push(e.points);

14: S .merge(SyT);

15: Sgi.merge(Sqir);

16: if level is leafParentLevel then

17: while Sy .size>0 or Sgi.size>0 do

18: transferAndReplacePointedLeavesInto( My );
19: if #leaves > threshold then
20: for each leaf do // Parallel execution
21: Result < PlaneSweep(leaf.points)
22: else
23: transferAndReplacePointedNodesInto(M y);
24: callAlgorithmRecursively(Sn,Sq%);

We used real spatial datasets of North America representing roads (NArdN with 569082
line-segments) and rail-roads (NArrN with 191558 line-segments). To create sets of 2d points,
we transformed the MBRs of line-segments from NArdN and NArrN into points by taking
the center of each MBR (i.e. [NArdN| = 569082 points, [NArrN| = 191558 points). Moreover,
to get the double amount of points from NArdN, we chose the two points with min and max
coordinates of the MBR of each line-segment (i.e. we created a new dataset, [NArdND| =
1138164 points. The data of these three files were normalized in the range [0, 1]2. We have
also created synthetic clustered datasets of 250000, 500000 and 1000000 points, with 125
clusters in each dataset (uniformly distributed in the range [0, 1]?), where for a set having N
points, N /125 points were gathered around the center of each cluster, according to Gaussian
distribution. We also used three big real datasets (retrieved fromhttp://spatialhadoo
p.cs.umn.edu/datasets.html), which represent water resources of North America

(Water) consisting of 5836360 line-segments and world parks or green areas (Park) consisting

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14


http://spatialhadoop.cs.umn.edu/datasets.html
http://spatialhadoop.cs.umn.edu/datasets.html

46 Chapter 3. Query Processing with CPU and SSD

of 11503925 polygons and world buildings (Build) consisting of 114736539 polygons. To
create sets of points, we used the centers of the line-segment MBRs from Water and the

centroids of polygons from Park and Build.

The C programming language was used for implementing the algorithms and the OpenMP
library was used for implementing parallelism. All experiments were performed on a Dell Pre-
cision T3500 workstation, running CentOS Linux 7 with Kernel 4.15.4 and equipped with a
quad-core Intel Xeon W3550 CPU (supporting Hyper-Threading technology, with 8 logical
cores), 8GB of main memory, an 1TB 7.2K SATA-3 Seagate HDD used for the operating
system and a 512GB SM951A Samsung SSD hosted on PCI-e 2.0 interface, storing our exe-
cutables and data. Since our algorithms are especially designed for maximizing performance
when applied on SSDs, the xBR"-tree was stored on the SSD of our system. However, we
tested storing our structure on the HDD, too and obtained execution times 2 orders of magni-
tude larger than the ones on the SSD. Therefore, we present results of execution on the SSD

only.

We run experiments for studying the performance of existing and new algorithms for
processing batches of PLQs, WQs and DRQs (DRQs were processed in two versions, using
an MBS and the actual circular range). We tested batches consisting of 217, 218, 219 and 22
queries. We also tested tree node sizes equal to 4KB, 8KB and 16KB. In each experiment,

we counted actual disk accesses and total execution time.

The existing algorithms answer batch queries by repetitive application for each query of
the batch (One-by-One, or ObO, execution) with and without the use of LRU buffer equal to
256 internal nodes and 256 leaf nodes. This discrimination of the two parts of LRU buffer is
necessary, since internal nodes are significantly fewer and a common LRU buffer would get
frequently emptied from internal nodes, although the same internal nodes are more likely to
be needed for separate queries of the batch. Our experiments showed that this buffer size is
adequate for maximizing performance, even for the largest trees tested. The maximum size of
M was comparable to LRU size (although, in many cases this maximum size was not utilized
by the algorithms studied). Following the results presented in [46], in this chapter we present
only results for ObO execution with LRU enabled.

Therefore, for each query (PLQ, WQ and DRQ in two versions), we tested LRU ObO,
the respective new, SSD optimized, single-core algorithm and the respective new multi-core

algorithm (using 2, 4 and 8 cores and 4 configurations for each case). The total number of

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



3.5.1 PLQ Experiments 47

experiments performed equals 6048 (combinations of 9 datasets, 3 node sizes, 4 batch sizes, 4
queries and 14 algorithmic versions for each query). Due to space limitations, in the following
we present indicative (or, a limited part of the) experimental results, expressing the general
trends found. In all experiments performed, the query batches used contain 217, 218 219 and

229 query objects (column Q in tables with experimental results).

3.5.1 PLQ Experiments

To study PLQs, we created batches consisting of 50% existing and 50% non-existing
points in each dataset. Both existing and non-existing points cover the whole indexed space.
In Table B.2, for the SOOKC dataset and 3 page sizes, we depict the gain (as a percentage)
of BPLQ over LRU ObO, regarding disk accesses. We also depict the absolute total execution
times (in ms) of LRU ObO and BPLQ and the execution time gain (as a percentage) of BPLQ
over LRU ObO. Note that the gain is defined (for both metrics) as the fraction of the difference
of performance of the second and the first algorithms over the performance of the second
_ LRUObO—BPLQ

algorithm (gain ===55,5—=) and expresses the speedup obtained by first algorithm, in

relation to the time cost of the first algorithm.

Disk Read Acc Exec Time
4KB 8KB 16KB 4KB 8KB 16KB

# | gain gain  gain | time time gain | time time gain | time time  gain

BPLQ vs LRU ObO

217 170.6% 72.6% 64.4% | 1995 163.4 91.8% | 1530 164.0 89.3% | 1183 180.2 84.8%
218 1 71.8% 73.2% 64.8% | 2428 273.5 88.7% 2099 283.6 86.5% | 1790 3232 81.9%
219172.1% 73.3% 64.9% | 3135 486.7 84.5% | 3268 518.1 84.1% | 2994 592.7 80.2%
2201 74.5% 75.4% 68.1% | 4666 925.8 80.2% | 4776 986.2 79.3% | 5506 1140 79.3%

Table 3.2: PLQ: (Disk Accesses % performance gain and Total Exec. Time absolute values

and % time performance gain) BPLQ vs LRU ObO, for the S00KC dataset.

As another indicative result set, in Table 3.3, we depict analogous data for the Park dataset.
It is evident from both tables that BPLQ saves a significant number of disk accesses over LRU
ObO and it is even more efficient regarding execution time. Analogous remarks can be made

for the other dataset cases.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



48 Chapter 3. Query Processing with CPU and SSD

Disk Read Acc Exec Time

4KB 8KB 16KB 4KB 8KB 16KB

# | gain  gain  gain |time time gain | time time gain | time time gain
BPLQ vs LRU ObO
217 132.0% 34.7% 36.7% | 1039 454.7 56.3% | 1095 451.6 58.8% | 1469 530.9 63.9%
218 133.7% 35.9% 37.1% | 1585 668.5 57.8% | 1709 680.0 60.2% | 2431 845.5 65.2%
219134.4% 36.1% 37.0% | 2566 1057 58.8% 2870 1092 61.9% |4232 1413 66.6%
220137.7% 39.0% 40.6% | 4568 1818 60.2% | 5065 1914 62.2% | 7918 2562 67.6%

Table 3.3: PLQ: (Disk Accesses % performance gain and Total Exec. Time absolute values

and % time performance gain) BPLQ vs LRU ObO, for the Park dataset.

In Tables B.4 and B.3, for the same datasets as the ones of Tables 3.2 and B.3, respectively,
we depict the total execution time gain (as a percentage) of PBPLQ over BPLQ, for 3 page
sizes and 2, 4 and 8 cores used (for each number of cores, this gain has been calculated using
the best of the 4 configurations of Table B.1]). Studying these results, it can be noted that the
parallel algorithms tend to maximize their gain over BPLQ for the larger page size. For both
datasets depicted, the parallel algorithms are clearly faster than BPLQ and justify their use,

although the query studied is I/O bound.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



3.5.1 PLQ Experiments 49

Exec Time Gain

Q
2 cores 4 cores 8 cores
# 4KB 8KB 16KB | 4KB 8KB 16KB | 4KB 8KB 16KB
PBPLQ vs BPLQ

2171 07.1% 10.1% 13.6% | 17.1% 23.8% 30.6% | 14.7% 23.9% 21.7%
2181 09.5% 11.4% 142% | 21.0% 24.4% 32.6% | 18.8% 24.9% 27.0%
219109.9% 11.5% 13.8% | 21.3% 252% 32.0% | 21.2% 24.2% 24.7%
220 110.5% 12.0% 14.8% | 21.3% 25.9% 32.3% | 20.5% 25.7% 25.8%

Table 3.4: PLQ: (Total Exec. Time % performance gain) PBPLQ vs BPLQ, for the S00KC

dataset.

Exec Time Gain
2 cores 4 cores 8 cores

# 4KB 8KB 16KB | 4KB 8KB 16KB | 4KB 8KB 16KB

PBPLQ vs BPLQ

217 1 14.9% 10.8% 19.4% | 18.0% 13.6% 26.1% | 17.7% 15.9% 23.6%
218 1202% 12.1% 23.2% | 20.5% 14.9% 30.7% | 19.1% 17.8% 29.0%
2191 18.1% 133% 25.9% | 21.2% 18.6% 31.8% | 21.2% 20.5% 30.4%
220 119.4% 17.9% 29.3% | 22.1% 25.1% 37.0% | 23.3% 22.7% 32.8%

Table 3.5: PLQ: (Total Exec. Time % performance gain) PBPLQ vs BPLQ, for the Park
p g

dataset.

In Fig. B.3, for the larger page size, we depict the smaller, larger and average total ex-
ecution time gain (represented by the lower, upper and middle dash of each vertical line,
respectively) of the parallel algorithms over BPLQ for all datasets, small real datasets, small
synthetic datasets and big real datasets. The top, middle and lower diagram corresponds to
parallel algorithms utilizing 2, 4 and 8 cores, respectively. These diagrams further justify
that it is worth utilizing the parallel algorithms and making use of the multiple CPU cores for

processing batch PLQs. For example, for 8 cores, considering all datasets, the minimum gain

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



50 Chapter 3. Query Processing with CPU and SSD

is over 10% and the maximum gain is close to 40%. This is important, considering that the

PLQ is I/O bound.

Time Gain BPLQ-par-2 vs BPLQ

to, ]

1 1 1 1
all data small R small S big R
node size = 16KB

50%
40%
30%
20%
10%

0%

Time Gain BPLQ-par-4 vs BPLQ
50%
40% T
30% |- 1
20% } }
10%
0%

1 1 1 1
all data small R small S bigR
node size = 16KB

Time Gain BPLQ-par-8 vs BPLQ

50%
40%

30% E f I }

20%
10%
0%

all data smallR small S big R
node size = 16KB

Figure 3.3: PLQ: min, max and average gain of PBPLQ vs BPLQ.

3.5.2 WQ Experiments

To study WQs, we created batches with query windows that cover the whole indexed
space. Tables B.§ and 3.7 are analogous to Tables and B.3, for the NArdND and Water
datasets, respectively. Depending on the dataset, BWQ saves disk accesses over LRU ObO,
while for both datasets and it is significantly more efficient than LRU ObO regarding execu-
tion time.

Tables B.§ and B.9 are analogous to Tables B.4 and B.3, for the NArdND and Water
datasets, respectively. Studying these results, we reach analogous conclusions the ones for
PLQ: the parallel algorithms maximize their gain over BWQ for the larger page size. For both
datasets depicted, the parallel algorithms are clearly faster than BWQ and justify their use,
although the query studied is I/O bound.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



3.5.2 WQ Experiments 51

Disk Read Acc Exec Time
4KB 8KB 16KB 4KB 8KB 16KB

# | gain gain  gain | time time gain | time time gain | time time gain

BWQ vs LRU ObO
217 | 4.4% 122% 263% | 1447 386.0 73.3% | 1322 271.1 79.5% | 1192 246.8 79.3%
218 | 4.4% 122% 263% | 1927 483.9 74.9% |2064 445.6 78.4% | 1900 4332 77.2%
219 | 4.4% 122% 26.4% | 2689 789.0 70.7% | 2890 836.4 71.1% |2747 820.9 70.1%
220 | 4.4% 122% 26.4% | 4145 1499 63.8% | 5781 1612 72.1% | 4806 1598 66.7%

Table 3.6: WQ: (Disk Accesses % performance gain and Total Exec. Time absolute values

and % performance gain) BWQ vs LRU ObO, for the NArdND dataset.

Disk Read Acc Exec Time

4KB 8KB 16KB 4KB 8KB 16KB

# | gain gain gain | time time gain | time time gain | time time gain
BWQ vs LRU ObO
21710.2% 0.2% 0.3% | 1841 673.9 63.4% | 1387 597.5 56.9% | 1369 630.8 53.9%
21810.1% 0.1% 0.2% | 3011 1033 65.7% | 2254 913.0 59.5% | 2313 1044 54.9%
21910.1% 0.1% 0.2% | 4630 1516 67.3% |3476 1344 61.3% (3802 1717 54.8%
22010.1% 0.1% 0.2% | 6906 2248 67.4% | 5062 2062 59.3% | 6299 2908 53.8%

Table 3.7: WQ: (Disk Accesses % performance gain and Total Exec. Time absolute values

and % performance gain) BWQ vs LRU ObO, for the Water dataset.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



52 Chapter 3. Query Processing with CPU and SSD

Exec Time Gain
2 cores 4 cores 8 cores

# 4KB 8KB 16KB | 4KB 8KB 16KB | 4KB 8KB  16KB

PBWQ vs BWQ

2171 06.5% 053% 10.0% | 09.2% 10.8% 18.3% | 08.5% 10.3% 17.6%
218 1103% 07.1% 10.4% | 142% 12.7% 19.6% | 13.1% 11.6% 18.4%
219 1 11.5%  10.5% 11.8% | 16.8% 14.6% 21.6% | 16.4% 13.5% 19.8%
220 | 14.6% 09.9% 13.4% | 19.5% 15.7% 23.1% | 18.3% 14.9% 21.4%

Table 3.8: WQ: (Total Exec. Time % performance gain) PBWQ vs BWQ, for the NArdND

dataset.

Exec Time Gain
2 cores 4 cores 8 cores

# | 4AKB 8KB 16KB | 4KB 8KB 16KB | 4KB 8KB 16KB

PBWQ vs BWQ

2171 04.0% 05.1% 08.7% | 06.1% 08.2% 12.3% | 05.1% 06.4% 12.8%
218 106.7% 08.7% 15.6% | 08.0% 12.8% 19.5% |07.3% 11.6% 20.0%
219109.0% 13.2% 20.8% | 11.0% 17.7% 26.1% | 10.7% 17.2% 25.9%
2201 11.1% 17.1% 22.9% | 14.8% 23.1% 29.5% | 13.4% 22.4% 28.9%

Table 3.9: WQ: (Total Exec. Time % performance gain) PBWQ vs BWQ, for the Water
g

dataset.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



3.5.3 DRQ Experiments 53

Fig. B.4 is analogous to Fig. B.3. The diagrams of this figure, like in the case of PLQ,
further justify that it is worth utilizing the parallel algorithms and making use of the multiple
CPU cores for processing batch WQs. For example, for 8 cores, considering all datasets, the
minimum gain is positive, the average gain is over 20% and the maximum gain is around
35%.

Time Gain BWQ-par-2 vs BWQ
50%
40%
30%
20% } 1 i l
10%
0% L L -

all data small R small S big R

node size = 16KB

Time Gain BWQ-par-4 vs BWQ

|

1 1 1 1
all data smallR small S big R
node size = 16KB

50%
40%
30%
20%
10%

0%

50%
40%
30%

Time Gain BWQ-par-8 vs BWQ
20%
10%

I

all data small R small S big R
node size = 16KB

Figure 3.4: WQ: min, max and average gain of PBWQ vs BWQ.

3.5.3 DRQ Experiments

To study DRQs, we created batches with query windows that cover the whole indexed
space. We run experiments for both BDRQ-D and BDRQ-B and the respective parallel ver-
sions.

Tables B.10//B.12 and B.11] / B.13 are analogous to Tables B.2 and B.3, for the 1000KC /
NArd and Build / Park datasets, respectively. Depending on the dataset, BDRQ-D / PBDRQ-

B saves disk accesses over LRU ObO, while for both datasets and it is significantly more

efficient than LRU ObO regarding execution time.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



54 Chapter 3. Query Processing with CPU and SSD

Disk Read Acc Exec Time
4KB 8KB 16KB 4KB 8KB 16KB

# | gain  gain  gain |time time gain | time time gain | time time gain

BDRQ-D vs LRU ObO

217 135.9% 45.6% 50.6% | 2054 298.8 85.4% | 1762 289.8 83.6% | 1732 316.1 81.8%
218 135.4% 45.1% 50.3% | 2497 4753 81% |2288 502.5 78% |2427 559.4 76.9%
219135.1% 44.9% 50.2% | 3702 882.7 76.2% | 3437 949.5 72.4% 4616 1091 76.4%
220135.0% 44.9% 50.2% | 5182 1751 66.2% | 5715 1871 67.3% | 7026 2515 64.2%

Table 3.10: DRQ: (Disk Accesses % performance gain and Total Exec. Time absolute values
and % performance gain) BDRQ-D vs LRU ObO, for the 1000KC dataset.

Disk Read Acc Exec Time
4KB 8KB 16KB 4KB 8KB 16KB

# | gain gain gain | time time gain | time time gain | time time  gain

BDRQ-D vs LRU ObO

217104.1% 03.1% 01.7%| 20314 3021 85.1%|13631 2576 81.1%| 9021 2174.0 75.9%
218112.1% 09.2% 05.8% | 35928 4725 86.8% |23801 4038 83% |15175 3440.4 77.3%
219125.4% 21.0% 14.1% | 66770 7136 89.3% 42339 6129 85.5%|26075 5059 80.6%
220145.3% 39.6% 28.4%|127312 9919 92.2%|77916 8931 88.5% |44075 7285 83.5%

Table 3.11: DRQ: (Disk Accesses % performance gain and Total Exec. Time absolute values

and % performance gain) BDRQ-D vs LRU ObO, for the Build dataset.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



3.5.3 DRQ Experiments

55

Disk Read Acc

4KB

gain

8KB

gain

16KB

gain

4KB

time time gain

Exec Time
8KB
time

time gain

16KB

time time gain

BDRQ-B vs LRU ObO

217
218
219

220

11.3%
11.4%
11.4%
11.5%

24.9%
25.0%
25.0%
25.0%

32.5%
34.2%
34.2%
34.2%

9443 216.6 77.1%
1260 359.7 71.4%
1851 695.5 62.4%

3049 1424 53.3%

830.2 201.0 75.8%
1181 371.6 68.5%
1875 716.8 61.8%

3273 1437 56.1%

229.8 73.1%
446.4 67.0%
1025 56.8%
2128 58.6%

852.9
1352
2374
5134

Table 3.12: DRQ: (Disk Accesses % performance gain and Total Exec. Time absolute values

and % performance gain) BDRQ-B vs LRU ObO, for the NArd dataset.

Disk Read Acc

4KB

gain

8KB

gain

16KB

gain

4KB

time time gain

Exec Time
8KB
gain

time time

16KB

time time gain

BDRQ-B vs LRU ObO

02.9%
03.3%
07.1%
14.9%

03.6%
03.2%
03.9%
08.4%

05.0%
03.9%
03.9%
04.7%

3546 1094 69.1%
5664 1613 71.5%
8900 2299 74.2%
13111 3273 75.0%

64.5%
69.6%
71.5%
71.4%

2607
4297
6284
9194

926.5
1305
1794
2627

62.8%
64.8%
66.9%
64.5%

918.2
1408
2123
3598

2466
3995
6409
10143

Table 3.13: DRQ: (Disk Accesses % performance gain and Total Exec.
and % performance gain) BDRQ-B vs LRU ObO, for the Park dataset.

Time absolute values

Tables B.14 / B.16 and .15 / B.17 are analogous to Tables B.4 and B.3, for the 1000KC

/ NArd and Build / Park datasets, respectively. Studying these results, we reach analogous

conclusions the ones for PLQ: the parallel algorithms maximize their gain over BDRQ-D /

BDRQ-B for the larger page size. For all datasets depicted, the parallel algorithms are clearly

faster than BDRQ-D / BDRQ-B and justify their use, although the query studied is I/O bound.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



56 Chapter 3. Query Processing with CPU and SSD

Exec Time Gain
2 cores 4 cores 8 cores

# 4KB 8KB 16KB | 4KB 8KB 16KB | 4KB 8KB  16KB

PBDRQ-D vs BDRQ-D
217 | 09.8% 12.7% 19.9% | 18.6% 21.1% 32.5% | 16.3% 18.8% 26.9%
218 1 12.0% 15.0% 21.2% | 20.6% 24.6% 34.7% | 19.1% 20.0% 27.8%
219 1 157% 16.7% 23.7% | 25.4% 26.4% 36.4% | 23.7% 21.8% 29.0%
220 1203% 19.3% 35.6% | 28.7% 28.4% 44.3% | 25.0% 22.9% 38.3%

Table 3.14: DRQ: (Total Exec. Time % performance gain) PBDRQ-D vs BDRQ-D, for the
1000KC dataset.

Exec Time Gain
2 cores 4 cores 8 cores
# 4KB 8KB 16KB | 4KB 8KB 16KB | 4KB 8KB 16KB
PBDRQ-D vs BDRQ-D
217 1 05.6% 04.8% 03.1% | 07.2% 064% 05.8% | 06.9% 04.9% 04.5%
218 1 04.9% 05.4% 03.9% | 08.0% 07.7% 08.3% | 06.8% 07.7% 06.9%
2191 07.4% 07.1% 05.7% | 10.7% 10.1% 11.0% | 08.6% 09.7% 09.6%

2201 08.9% 09.8% 08.4% | 12.2% 14.0% 16.1% | 11.5% 14.1% 15.3%

Table 3.15: DRQ: (Total Exec. Time % performance gain) PBDRQ-D vs BDRQ-D, for the

Build dataset.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



3.5.3 DRQ Experiments 57

Exec Time Gain
2 cores 4 cores 8 cores

# 4KB 8KB 16KB | 4KB 8KB 16KB | 4KB 8KB  16KB

PBDRQ-B vs BDRQ-B

2171 05.7% 11.1% 18.1% | 15.9% 14.7% 27.1% | 05.7% 11.1% 18.1%
218 107.9% 11.9% 19.7% | 17.9% 15.6% 30.8% | 07.9% 11.9% 19.7%
219 113.3% 13.9% 30.2% | 21.5% 18.3% 42.0% | 13.3% 13.9% 30.2%
220 | 17.6% 17.0% 34.0% | 25.7% 20.3% 43.8% | 17.6% 17.0% 34.0%

Table 3.16: DRQ: (Total Exec. Time % performance gain) PBDRQ-B vs BDRQ-B, for the

Nard dataset.

Exec Time Gain
2 cores 4 cores 8 cores

# 4KB 8KB 16KB | 4KB 8KB 16KB | 4KB 8KB  16KB

PBDRQ-B vs BDRQ-B

2171 043% 01.4% 04.8% | 05.3% 04.8% 06.1% | 04.3% 01.4% 04.8%
2181 05.9% 022% 063% | 07.9% 06.0% 07.8% | 05.9% 02.2% 06.3%
219109.7% 03.9% 09.0% | 12.7% 09.9% 10.8% | 09.7% 03.9% 09.0%
220 1 14.1% 11.0% 15.6% | 17.8% 17.2% 17.7% | 141% 11.0% 15.6%

Table 3.17: DRQ: (Total Exec. Time % performance gain) PBDRQ-B vs BDRQ-B, for the

Park dataset.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



58 Chapter 3. Query Processing with CPU and SSD

Fig. B.3/B.6 is analogous to Fig. B.3. The diagrams of this figure, like in the case of PLQ,
further justify that it is worth utilizing the parallel algorithms and making use of the multiple
CPU cores for processing batch DRQs. For example, for 8 cores and PBDRQ-D / PBDRQ-B,
considering all datasets, the minimum gain is positive, the average gain is around 35% / 20%

and the maximum gain is over 40% / 35%.

Time Gain BDRQ-par-2 vs BDRQ
50%
40%
30% }
20%
10%
O% 1 1

all data small R small S big R

node size = 16KB

Time Gain BDRQ-par-4 vs BDRQ

B

1 1 1 1
all data small R small S big R
node size = 16KB

50%
40%
30%
20%
10%

0%

Time Gain BDRQ-par-8 vs BDRQ

]

all data small R small S big R
node size = 16KB

50%
40%
30%
20%
10%

0%

Figure 3.5: WQ: min, max and average gain of PBWQ vs BWQ.

3.6 Processing in a Distributed Environment

So far, we presented centralized algorithms that take advantage both of SSDs and multiple
CPU cores, to accelerate spatial query processing. If the data to be processed is too large to
be handled in a centralized system, a distributed computing environment could be utilized.
More specifically, a cluster of computers interconnected through a fast LAN could handle
data which are larger by orders of magnitude.

For several problems, related algorithms cannot be easily transferred to such a shared-
nothing computing environment. However, this is not the case for the algorithms we have

presented. Due to the nature of the queries studied, these algorithms can be easily applied

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



3.6 Processing in a Distributed Environment 59

Time Gain BDRQ-B-par-2 vs BDRQ-B
50%
40%
30% }
20% }
10%
O% 1 1

all data small R small S big R

node size = 16KB

Time Gain BDRQ-B-par-4 vs BDRQ-B

H;

1 1 1 1
all data small R small S big R
node size = 16KB

50%
40%
30%
20%
10%

0%

Time Gain BDRQ-B-par-8 vs BDRQ-B

S

all data smallR small S big R
node size = 16KB

50%
40%
30%
20%
10%

0%

Figure 3.6: WQ: min, max and average gain of PBWQ vs BWQ.

in such a distributed setting. If data is distributed among nodes, each node could index its
data using an xBR " -tree, based on SSDs. The query batch would have to be transmitted to
every node of the cluster, each node would compute the answer, as far as the data it stores
are concerned, and the results from all nodes could be merged in a node that will act as a
coordinator of query processing. This is possible, since the answer of any of the queries we
studied for a node would be independent to the answers for other nodes.

Although, this approach will work, efficiency requires that data are not blindly distributed
among nodes. Each node should keep data that are spatially close, even in case partial inter-
section between the areas covered by nodes is allowed. In the case, the coordinating node
should transmit to each computing node only the part of the query batch that spatially in-
tersects the area of this node. Therefore, the coordinating node should be aware of the areas
covered by computing nodes.

Such processing could be embedded in a parallel and distributed system, like Spatial-
Hadoop (http://spatialhadoop.cs.umn.edu/) that already incorporates spatial
indexing methods and distributes data to nodes according to such a method. In [67,68], spatial

query processing techniques have been added to SpatialHadoop. We could build on [67, 68]

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14


http://spatialhadoop.cs.umn.edu/

60 Chapter 3. Query Processing with CPU and SSD

to embed into Spatiahadoop SSD-based xBR*-trees that process spatial queries, taking ad-

vantage of multiple cores.

3.7 Conclusions

In this chapter, extending the algorithms presented in [46], for the first time in the lit-
erature, we present algorithms for common spatial batch queries on single datasets, using
xBR*-trees in SSDs that take advantage of multiple cores. Processing of spatial queries in
SSDs has not received considerable attention in the literature, so far. Even more, the utiliza-
tion of multiple cores, based on a combination of breadth-first and depth-first tree traversals,
is anew approach that further accelerates processing. The algorithms proposed in [46] exploit
the massive I/O advantages of SSDs and outperform the repetitive application of existing al-
gorithms by exploiting the massive I/O advantages of SSDs, both regarding actual disk access
and execution time, even if the I/O of existing algorithms are assisted by LRU buffering. The
parallel extensions of these algorithms clearly outperform the ones of [46], although the three
queries studied are I/O bound. The new algorithms can be applied to a parallel and distributed
environment and deal with very big data. The algorithms documented in this chapter were

published in [69].

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



Chapter 4

k—NN Query Processing with GPU and
RAM

The k Nearest Neighbor (k-NN) algorithm is widely used for classification in many prob-
lems areas (medicine, economy, entertainment, etc.). For example, k-NN classification has
been used for economic forecasting, including bankruptcy prediction. [[70] present a model
for bankruptcy prediction using adaptive fuzzy k-NN, where £ and the fuzzy strength pa-
rameter are adaptively specified by particle swarm optimization, while [71]] use k-NN for
predicting financial distress (a key factor for bankruptcy).

Let a group of query points, for each of which we need to compute the £k-NNs within a
reference dataset to derive the dominating feature class. When the reference points volume
is extremely big, it can be proved challenging to deliver low latency results and GPU-based
techniques may improve efficiency. Furthermore, when the query points are originating fast
from streams, the computational overhead is even larger and the need for new parallel meth-
ods arises.

Processing of big spatial data is demanding, and it is often assisted by parallel processing.
GPU-based parallel processing has become very popular during last years [[72]. In general,
GPU devices have much larger numbers of processing cores than CPUs and device memory
which is faster than main memory accessed by CPUs, providing high computing capabilities
even to commodity computers.

In this chapter, we propose and implement three in-memory GPU-based algorithms for the
k-NN query, using the CUDA API [[73] and the Thrust library [[72]. The first one is Brute-force

based, the second one is using heuristics to minimize the reference points near a query point

61

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



62 Chapter 4. k—NN Query Processing with GPU and RAM

and the third one is using an in-memory partitioning algorithm. The first two algorithms use
extensively the Thrust Library. The third one doesn’t have external library dependencies and
is designed to run as a kernel function, in the GPU device. More over we have implemented
two different list buffers that facilitate the temporary point distance storage, needed by our
method.

We also present an extensive experimental comparison against existing algorithms, using
synthetic and real datasets. The results show that our algorithms outperform these algorithms,
in terms of execution time as well as total volume of in-memory reference points that can be
handled.

The rest of this chapter is organized as follows. In Section }.1|, we review related work
and present the motivation for our work. Next, in Section #.2, we present the new algorithms
that we developed for the k&-NN GPU-based Processing and in Section §.3, we present the
experimental study that we performed for studying the performance of our algorithms and
for comparing them to their predecessors. Finally, in Section §.4, we present the conclusions

arising form our work.

4.1 Related Work and Motivation

In this section, we review the most representative algorithms to solve k-NN queries in
GPU. k-NN is typically implemented on GPUs using brute force (BF) methods applying
a two-stage scheme: (1) the computation of distances and (2) the selection of the nearest
neighbors. For the first stage, a distance matrix is built grouping the distance array to each
query point. In the second stage, several selections are performed in parallel on the different
rows of the matrix.

There are different approaches for these two stages. In [74], the distance matrix is split
into blocks of rows and each matrix row is sorted using radix sort method. In [75], the previ-
ous distance matrix calculation scheme is used, but insertion sort method is applied instead
of radix sort. [[76] uses the same approach as [[74] and [[75] to compute the distance matrix
and, for the selection phase, they calculate a local k-NN for each block of threads and ob-
tain a global k-NN by merging. In [[77], for the matrix computation uses the [[74] and [75]
scheme and modifies the selection phase with a quicksort-based selection. Each block per-

forms a selection operation with a large number of threads per block. In [78], the truncated

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



4.1 Related Work and Motivation 63

sort algorithm was introduced in the selection phase.

In [79], the GPU-FS-kNN algorithm was presented. It divides the computation of the
distance matrix into squared chunks. Each chunk is computed using a different kernel call,
reusing the allocated GPU-memory. A selection phase is performed after each chunk is pro-

cessed.

In [80], an incremental neighborhood computation that eliminates the dependencies be-
tween dataset size and memory is presented. The iterative process copies several reference
point subsets into the GPU. Then, the algorithm runs the local neighborhood search to find the
k nearest neighbors from the query points to the reference point subsets. Merging candidate

result sets with new reference point subsets is used to reach the final solution.

In [B1]], a GPU heap-based algorithm (called Batch Heap-Reduction) is presented. Since
it requires large shared memory;, it is not able to solve k-NN queries for high k values. In [82],
new approaches to solving k-NN queries in GPU using exhaustive algorithms based on the

selection sort, quicksort and state-of-the-art heaps-based algorithms are presented.

[83] proposes a new algorithm that is also suitable for several GPU devices. The distance
matrix is split into blocks of rows. Each thread computes the distances for a row. Parallel
threads push new candidates to a max-heap using atomic operations. [84] presents a multi-

GPU implementation of a k-NN algorithm.

In [85], a new BF k-NN implementation is proposed by using a modified inner loop of
the SGEMM kernel in MAGMA library, a well-optimized open source matrix multiplication
kernel. This brute force k-NN approach has been used in [86] to accelerate calibration process

of a k-nearest neighbors classifier using GPU.

Some of these algorithms (like the ones of [[75] and their improved implementations [87])
consume a lot of device memory, since a Cartesian product matrix, containing the distances
of reference points to the query points, is stored. In this chapter, we present alternative al-
gorithms that focus on maximizing the total reference points stored in the device memory,
which could accelerate execution by avoiding the creation of extra (unnecessary) data chunks

and could scale-up to larger reference datasets.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



64 Chapter 4. k—NN Query Processing with GPU and RAM

4.2 k-NN In-memory GPU-based Algorithms

In this section, we present the two new in-memory algorithms that we developed and

implemented using the CUDA Thrust library.

4.2.1 Thrust Brute-Force

The first method is based on a “brute force” algorithm (Fig.4.1)), using the Thrust library
(denoted by T-BF). Brute force algorithms are highly efficient when executed in parallel. The
algorithm has three input parameters, the £ value, a dataset R consisting of m reference points
R = {ry,ro,r3..7,} in a 3d space and a dataset () of n query points Q = {q1, g2, ¢3.-¢n } also

in a three-dimensional space. For every query point ¢ € (), the following steps are executed

(Alg. B):

1. Calculate all the Euclidean distances between the query point ¢ and the reference points
r E R. Store the calculated distances in a dataset [ consisting of m distances D =

{di,dy,ds..dp, }
2. Sort the distances D dataset

3. Create the £-NN dataset K of the k nearest neighbor points
K = {ky, ko, k3..k; }. These points contain the sorted distances as well as the R dataset

indices.

Algorithm 3 Brute-force Host algorithm
Input: NN cardinality=K, Reference filename=RF, Query filename=QF
Output: Host k-NN Buffer=HostK NNBufferVector

HostQueryVector <— readFile(QF);
. queryPoints <— HostQuery Vector.size();
. HostReferenceVector <— readFile(RF);

. referencePoints <— HostReferenceVector.size();

1:
2
3
4
5: DeviceReferenceVector < HostReferenceVector;
6: DeviceDistanceListVector(referencePoints);

7: DeviceKnnListVector(K); /I k-size device vector

8: for q in HostQueryVector do

9 thrust::transform(DeviceReference Vector.begin(),DeviceReferenceVector.end(),DeviceDistanceList Vector.begin(), CalcDist(q));
10: thrust::sort( DeviceDistanceListVector.begin(),DeviceDistanceListVector.end(), DistanceCompare());

11: thrust::copy(DeviceDistanceListVector.begin(), DeviceDistanceListVector.begin() + k, DeviceKnnBufferVector.begin());

12: HostKNNBufferVector <— DeviceKnnBufferVector;

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



4.2.2  Thrust Distance Refinement 65

Figure 4.1: Query point (red), £ = 5 nearest neighbors (black)

After n repetitions, all the £-NN points will be calculated. Although the BF is perfectly
suitable for a GPU implementation, we noticed that the sorting step is extremely GPU com-
putationally bound. The CUDA profiler revealed the 90% (or more in large datasets) of the

GPU computation is dedicated to sorting.

4.2.2 Thrust Distance Refinement

The aforementioned method T-BF is memory efficient and well-performing but when
the reference dataset is extremely big, the distance sorting step deteriorates the overall per-
formance. This observation led us to our next implementation, which radically refines the
nearest reference points.

The main concept of distance refinement method (denoted by T-DS) is that we can calcu-
late the number of reference points by searching in concentric ranges. We count the reference
points of each concentric range until the total points counted exceed the needed k points.

Our first approach was to search in concentric rings of equal width. The width of the ring
[ 1s constant and is calculated as k& times double the maximum width of reference points area

tmax, divided by the number of reference points tp.
[ =k« 2t x tmax/tp

Experimentation revealed that this approach was only efficient in dense and uniformly dis-
tributed reference points without gaps. When we used synthetic or real data, the results were
the same or only a bit better than the T-BF method. The problem was that the search area did

not scale quickly enough.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



66 Chapter 4. k—NN Query Processing with GPU and RAM

Figure 4.2: Distance Refinement, query point in red, reference points in black, £ = 10

On our second approach, we used a hybrid area incrementation step. Every two search
rings, we doubled the search ring width (Fig.4.2). This way the search increment was semi-
exponential. The algorithm can scale quickly and produce excellent results for all kinds of
datasets.

By refining the initial dataset, we create a very small intermediate dataset that contains at
least k reference points. This dataset will be used in the costly sorting part of the algorithm
and will speed up the execution time (as we will experimentally show).

The algorithm (Alg. ) has three input parameters, the k value, a dataset R consisting of
m reference points R = {ry, ry,73..7,} in a three-dimensional space and a dataset () of n
query points @ = {q1, ¢z, q3-.q, } also in a three-dimensional space. For every query point

q € Q, the following steps are executed:
1. Calculate the starting ring width [

2. Calculate all the Euclidean distances between the query point ¢ and the reference points
r E R. Store the calculated distances in a dataset D consisting of m distances D =

{di,da, d3..dp }
3. While the count of reference points c is less than equal of & repeat

* If repetion%2 = 0, count the distance points of the area ring between the circles

with radius repetion * [ and (repetition + 1)

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



4.2.2  Thrust Distance Refinement 67

* If repetion%?2 = 1, count the distance points of the area ring between the circles

with radius repetion x [ and (repetition + 1) % [. Double the ring width [ = 2 %

4. Refine the distance points of less than or equal to distance (repetition + 1) % wr and

copy them to dataset D R consisting of ¢ distances DR = {dry, drs, drs..dr.}
5. Sort the distances D R dataset

6. Create the £-NN dataset K of the k nearest neighbor points
K = {ky, ko, k3..k; }. These points contain the sorted distances as well as the R dataset

indices.

Algorithm 4 Distance Refinement Host algorithm
Input: NN cardinality=K, Reference filename=RF, Query filename=QF
Output: Host k-NN Buffer=HostK NNBufferVector

HostQueryVector <— readFile(QF);
queryPoints <— HostQuery Vector.size();
HostReferenceVector <— readFile(RF);

referencePoints <— HostReferenceVector.size();

1:
2:
3:
4:
5: DeviceReferenceVector <— HostReferenceVector;
6: DeviceDistanceListVector(referencePoints);

7: DeviceKnnListVector(K); // k-size device vector
8: for q in HostQueryVector do

9:

thrust::transform(DeviceReference Vector.begin(),DeviceReference Vector.end(), DeviceDistanceList Vector.begin(), CalcDist(q));

10: countpoints<—0;

11: step<—0;

12: sensestep <—0;

13: while countpoints <k do

14: countpoints<— countpoints + thrust::count_if(DeviceDistanceListVector.begin(), DeviceDistanceListVector.end(), countstep-
points(step,sensestep)); // Caclulate next concentric ring point cardinality

15: step++;

16: if (step % 2 == 0) then

17: step < step / 2;

18: sensestep <— sensestep * 2;

19: ReducedDistanceList(countpoints);  // “countpoints”-size device vector

20: thrust::copy_if(DeviceDistanceListVector.begin(), DeviceDistanceListVector.end(), ReducedDistanceList.begin(), countstep-
points(0,sensestep*step));

21: sensestep <— (sensestep + step * sensestep ) / 2;

22: if countpoints >=2 * k then

23: sensestep <— sensestep / 2;

24: thrust::sort(ReducedDistanceList.begin(), ReducedDistanceList.end(), DistanceCompare());

25: thrust::transform(ReducedDistanceList.begin(), ReducedDistanceList.begin() + k, DeviceKnnBufferVector.begin(), calc_sqrt());

26: HostKNNBufferVector < DeviceKnnBufferVector;

After n repetitions, all the k-NN points will be calculated. For example in Fig. #.2, we

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



68 Chapter 4. k—NN Query Processing with GPU and RAM

calculated a distance refinement of radius 4/ resulting to a total of 12 distance points.

4.2.3 Symmetric Progression Partitioning Algorithm

A common practice to address the need of extremely big data analysis is data partitioning,
which has driven us to design and implement the novel method “Symmetric Progression
Partitioning”, denoted as SPP. Every query point is assigned to a GPU thread. The GPU
starts the £-NN calculation simultaneously for all threads. If the number of query points is
bigger than the total available GPU threads, then the execution progresses whenever a block

of threads finish the previously assigned query points calculation. Our algorithm consists of

4 main steps (Fig. B.3)):
1. The kernel function requests N threads
2. The requested N threads are assigned to N query points
3. Every thread carries out the calculation of SPP

4. The k-NN list is populated with the results of all the query points

N GPU Threads

GPU starts N
threads

Thread 1 Query point 1 Computations KNN 1 is found
Thread 2 Query point 2 Computations KNN 2 is found
Thread N Query point N Computations KNN N is found

Figure 4.3: SPP Algorithm steps. Every thread computes one query point.

At this point, we should outline that SPP approach is completely different than the ap-
proach we used in our previous methods T-BF and T-DS [88]. In our previous methods we
used all the available GPU threads to calculate £-NN for one query point at a time. In our cur-
rent implementation every thread is in charge of delivering the £-NN of a single query point.

We have experimentally verified that our previous methods, and especially T-DS, when using

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



4.2.3  Symmetric Progression Partitioning Algorithm 69

small groups of query points performed better than previous methods by other researchers. In
our new implementation, when using larger query point groups, SPP should perform much
better. In our experiments we will show that SPP outperforms all the existing algorithms.

In order to properly partition the reference dataset, the dataset points should be sorted. The
partitioning technique we are using, partitions the dataset in equally sized bins throughout the
X-axis. SPP searches for £-NN starting from the partition that it’s bounding box contains the
query point (partition number 5, in our example, Fig}4.4). If k-NN are not found the thread
searches for k-NN in the next closest partition (partition 6). Similarly, the process continues
until all reference points are processed. In Fig. .4 we search for 20 nearest neighbours. We
processed 7 out of 10 partitions and found the £-NN. Partitions 1, 9 and 10 were excluded

because the 20 nearest neighbors were already found.

o © o ...... b *
Y o /,/ < - \\\\ O o [ ]
X
o x x ® o
o X
b 4
°® * + X% x °
X ) .
X X x %
[ )
(o) X x °
o X x o °
o - IRSN x
o
o o >
1 2 3 4 5 6 7 8 9 10
NS

Figure 4.4: SPP in-memory Partition example, query point represented by + symbol, refer-
ence points represented by x symbols (£-NN points), analyzed points represented by empty

circles, non-analyzed points represented by filled circles, k£ = 20 [g].

A new optimization that we introduce in SPP is the way the k-NN distance buffer is
populated. This buffer is presented in Section §#.2.5. The k-NN Distance List Buffer (KNN-
DLB) is an array where all calculated distances are stored. KNN-DLB array size is K per

thread, resulting to a minimum possible device memory utilization. Another advantage of

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



70 Chapter 4. k—NN Query Processing with GPU and RAM

KNN-DBL is that we do not need to use a sorting algorithm like radix sort, insertion sort or
quick sort. The resulting buffer contains the right £-NNs, but not in an ascending order.

The algorithm is divided in two parts. The first one is executed in the host (Alg. ) and
the second one is executed in the device (Alg. [), as a device kernel. The algorithm has
two input parameters, a dataset R consisting of m reference points R = {ry,79, 757 }
in a three-dimensional space sorted by the X-axis and a dataset () of n query points () =

{¢1,92,q3 - - ¢, } also in a three-dimensional space. The following steps are executed:
1. Partition the whole dataset in j equally sized bins B = {by, b, b3 - - - b;}
2. Forevery q € @, assign a GPU thread
3. Find the initial partition b, that contains the query point ¢
4. Repeat until all £-NN are found

* Calculate all the Euclidean distances of the query point ¢ and the initial partition
b, or the next closest partition reference points b, € B. For example, the partition

calculation steps in Fig. B4 are5 -6 -4 -7 -3 -8 —2

« Addorreplace (Fig. #.1)) the calculated distances in the k-NN Distance List Buffer
D consisting of k distances, D = {d;, ds,ds3 -+ - dg}

4.2.4 Heap Symmetric Progression Partitioning

Heap Symmetric Progression Partitioning Algorithm is a new algorithm that extends SPP
by adding max heap (presented in Section }.2.6) for k-NN as the list buffer. SPP is using k-
NN Distance List Buffer (KNN-DLB). KNN-DLB is adequate for smaller ks but when the &
number increases SPP performance deteriorates, primarily due to KNN-DLB O(n) complex-
ity. On the other hand max heap is O(log(n)) complexity and we will prove experimentally

that HSPP outperforms SPP, especially for larger & values.

4.2.5 k—NN distance list buffer

In our methods we implemented two different £-NN list buffers. The first one is the k-
NN Distance List Buffer (denoted by KNN-DLB) [89,90]. KNN-DLB is an array where all
calculated distances are stored (Table }.1]). KNN-DLB array size is k per thread, resulting to

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



4.2.5 k—NN distance list buffer 71

Algorithm 5 SPP Host algorithm

Input: NN cardinality=K, Reference filename=RF, Query filename=QF, Partition size=S
Output: Host k-NN Buffer=HostK NNBufferVector

: HostQueryVector < readFile(QF);

. queryPoints <— HostQuery Vector.size();

. DeviceQueryVector <— HostQuery Vector;

. createEmptyHostVector(HostK NNBufferVector,queryPoints*K);
. DeviceKNNBufferVector <— HostKNNBufferVector;

. subPartitionPoints < S/CB;

HostReferenceVector < readFile(RF);

. referencePoints <— HostReferenceVector.size();

. DeviceReferenceVector <— HostReferenceVector;

—_
(=]

. cudaSort(DeviceReferencePartition);

11: PartitionsCount < referencePoints/S

12: createEmptyHostVector(HostReferencePartitionIndex, 1+CB);

13: HostReferencePartitionIndex.add(0,HostReference Vector[0].x);

14: for i=0 to PartitionsCount-1 do

15: HostReferencePartitionIndex.add(HostReference Vector[i*S].x, HostReference Vector[(i+1)*S].x,i*S,(i+1)*S);

16: DeviceReferencePartitionIndex <— HostReferencePartitionIndex;

17: runKNN< < <(queryPoints-1)/256 +1, 256>>>(DeviceReferencePartition,DeviceQueryVector,DeviceKNNBufferVector,K,S);
/1256 cores

18: HostKNNBufferVector < DeviceKNNBufferVector;

Algorithm 6 SPP Device Kernel algorithm (runKNN)

Input: NN cardinality=K, Reference array=R, Query array=Q, Partition size=S,

Device Partition Index=DeviceReferencePartitionIndex

Output: Device k-NN Buffer array=DKB

1: qldx < blockldx.x*blockDim.x+threadldx.x;

2: for currentPartition <— 0 to DeviceReferencePartitionIndex.size()-1 do

3: if DeviceReferencePartitionIndex[currentPartition].right-X-Limit<Q[qldx].x then break;

4: if currentPartition < DeviceReferencePartitionIndex.size()-1 then currentPartition- -;

5: while maxdistance>>Q[qldx].x-DeviceReferencePartitionIndex[currentPartition].left-X-Limit or

maxdistance >DeviceReferencePartitionIndex[currentPartition].right-X-Limit-Q[qldx].x do

idx1 < DeviceReferencePartitionIndex(currentPartition).left-X-Limit-Index;

for i < idx1 to idx2-1 do

6
7. idx2 < DeviceReferencePartitionIndex(currentPartition).right-X-Limit-Index;
8
9

dist — /(R[] — Qlaldal2)? + (Rlil-y — Qlaldal-y)? + (Rli].z — Qlglda].2)?

10: insertIntoBuffer(DKB,i,qldx,dist);
11: maxdistance <— calcMaxDistance(DKB);
12: currentPartition <— FindNextClosestPartition;

a minimum possible device memory utilization. When the buffer is not full, we append the
calculated distances. When the buffer is full, we compare every newly calculated distance
with the largest one stored in KNN-DLB. If it is smaller, we simply replace the largest distance
with the new one. Therefore, we do not utilize sorting. The resulting buffer contains the

correct k-NNs, but not in an ascending order. The usage of KNN-DLB buffer is performing

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



72 Chapter 4. k—NN Query Processing with GPU and RAM

better than sorting a large distance array [§].

Distance 1 2 3 4 5 6 7 8 9 10

5.1 5.1

2.7 5.1 2.7

4.0 51 27 4.0

2.8 51 27 40 238
First 10 distances

11.2 51 27 40 28 112
are appended to the

1.7 51 27 40 28 112 1.7
list

35 51 27 40 28 112 1.7 3.5

0.6 51 27 40 28 112 1.7 3.5 0.6

0.1 51 27 40 28 112 1.7 3.5 0.6 0.1

7.1 51 27 40 28 112 1.7 35 06 01 7.1
] 8.5 51 27 40 28 8.5 1.7 35 06 0.1 7.1
Distances smaller

) 6.9 51 27 40 28 6.9 1.7 35 06 0.1 7.1

than the maximum
) 1.6 51 27 40 2.8 6.9 1.7 35 06 0.1 1.6
distance, replace it

5.8 51 27 40 2.8 58 1.7 35 06 0.1 1.6

Table 4.1: k-NN Distance List Buffer, k=10

4.2.6 k—NN max-Heap distance list buffer

The second list buffer that we implemented is based on a max-Heap (a priority queue rep-
resented by a complete binary tree which is implemented using an array) [89,90]. max-Heap
array size is k + 1 per thread, because the first array element is occupied by a sentinel. The
sentinel value is the largest value for double numbers (for C++ language, used in this work, it
is the constant DBL._ MAX). (FigJ4.3). KNN-DLB is adequate for smaller k values, but when
k value increases performance deteriorates, primarily due to KNN-DLB O(n) insertion com-
plexity. On the other hand, max-Heap insertion complexity is O(log(n)) and for large enough

k max-Heap implementations are expected to outperform KNN-DLB ones.

4.3 Experimental Study

We run a large set of experiments to compare the repetitive application of the existing al-

gorithms and the newly implemented ones for processing batch k-NN queries. We conducted

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



4.3 Experimental Study 73

+00

Sentinel

50

19 36

17 3 1

Figure 4.5: Max-Heap structure example.

three different sets of in-memory experiments.

The first set evaluates the performance of T-BF and T-DS. T-DS is designed to query
small query datasets, suitable for streaming applications that require fast response times. In
this set, we run experiments to compare the performance of batch K-NN queries, regarding
execution time as well as memory utilization. We tested a total of five algorithms. Three of
them are existing ones and the other two are the new algorithms we implemented. The list of

algorithms is as follows:

1. BF-Global, Brute Force algorithm using the Global memory [[75]

2. BF-Texture, using the GPU texture memory [87]

3. BF-Cublas, using CUBLAS (BLAS highly optimized linear algebra library) [75]
4. T-BF, Brute Force algorithm using Thrust library [88]

5. T-DS, Distance Refinement algorithm using Thrust library [8§]

The second set evaluates the performance of SPP. SPP is targeting larger query datasets.
We run experiments to compare the performance of multiple k-NN queries, regarding ex-
ecution time as well as memory utilization. We tested a total of seven algorithms. Four of
them are existing ones, T-BF and T-DS are our previous k-NN algorithms and SPP is the new

proposed algorithm. The list of algorithms is as follows:

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



74 Chapter 4. k—NN Query Processing with GPU and RAM

1. BF-Global, Brute Force algorithm using the Global memory [[75]
2. BF-Texture, using the GPU texture memory [87]
3. BF-Cublas, BLAS highly optimized linear algebra library [[75]

4. AIDW, Fast k-NN search used for Adaptive Inverse Distance Weighting
(AIDW) interpolation algorithm [91]

5. T-BF, Brute Force algorithm using Thrust library [88§]
6. T-DS, Distance Refinement algorithm using Thrust library [88]
7. SPP, Symmetric Progression Partitioning algorithm [§]

The third set evaluates the performance of HSPP. HSPP is designed to perform better for

higher k values.We are testing the following three algorithms:
1. T-DS, Distance Refinement algorithm using Thrust library [88§],
2. SPP, Symmetric Progression Partitioning algorithm [8]

3. HSPP, Heap Symmetric Progression Partitioning algorithm. [89]

4.3.1 In-memory, 1st set of experiments

All experiments query at least 100K reference points. We did not include less than 100K
reference points because we target the maximum in-memory utilization and reference point
less than 100K do not fit in this context. The maximum reference points limit is 200M, which
only our algorithm T-DS achieved.

We have created random and synthetic clustered datasets of 100.000, 250.000, 500.000
and 1.000.000 points. All the existing methods could only be executed with 100.000 reference
points and only one of them scaled to 1.000.000 points. Furthermore, in order to check our
method scaling we also created random datasets of 10.000.000, 100.000.000 and 200.000.000
reference points. We also used three big real datasets [|1], which represent water resources
of North America (Water Dataset) consisting of 5.836.360 line-segments and world parks or
green areas (Parks Dataset) consisting of 11.503.925 polygons and world buildings (Buildings
Dataset) consisting of 114.736.539 polygons. To create sets of points, we used the centers of

the line-segment MBRs from Water and the centroids of polygons from Park and Build. For

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



4.3.1 In-memory, Ist set of experiments 75

all datasets the 3-dimensional data space is normalized to have unit length (values [0, 1] in
each axis).

We run a series of experiments searching for 20 Nearest Neighbors (k = 20), using the
aforementioned datasets with groups of 1,10,100,250,500,750 random query points. Every
experiment was run at least 10 times and the mean of the experiment results were calculated
for every method.

All experiments were performed on a Dell Inspiron 7577 laptop, running Windows 10
64bit, equipped with a quad-core (8-thread) Intel [7 CPU, 16GB of main memory, a 256SSD
disk used for the operating system, a 1'TB 7.2K SATA-3 Seagate HDD storing our data and a
NVIDIA Geforce 1060 (Mobile Max-Q) GPU with 6GB of memory.

4.3.1.1 Random reference points

In our first series of tests, we used random datasets for the reference points. We created
the datasets in various volumes using normalized random points. The resulting datasets’ den-
sity increased analogously to the reference points cardinality. The datasets created are near
uniformly distributed.

In the first chart (Fig. B.6) with one query point, we can see that our algorithms T-BF
and T-DS are extremely faster than the other methods. For one query point T-BF finished in
0,53ms and T-DS in 0,59ms for the 100K reference points experiment. The best of the other
methods was BF-Texture achieving 39,68ms. It worths mentioning that the 100K experiment
was the only one that BF-Texture and BF-Cublas finished. These two methods (BF-Texture
and BF-Cublas) could not scale at higher volumes of reference points, mainly due to execu-
tion exceptions regarding memory allocation problems. For the 1M reference points experi-
ment the execution time difference is much greater, the BF-Global implementation finished
in 369,18ms while T-BF finished in 3,6 1ms and T-DS in 0.92ms. The maximum speedup gain
that T-DS achieved was 529 (times faster) than BF-Global, at 750K reference points (Table
4.2).

In the second chart with 10 query points, we can observe about the same results as with
the one query experiment. At 100K reference points, the best of existing algorithms was again
BF-Texture, finishing at 40ms, while T-BF finished at 4.29ms and T-DS at 5.11ms. For the
IM reference points experiment the execution time difference is again much greater, the BF-

Global implementation finished in 377,91ms while T-BF finished in 36.11ms and T-DS in

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



76 Chapter 4. k—NN Query Processing with GPU and RAM

Query Points =1 Query Points =10
0,40 —e—BF-Global 0,40 —e—BF-Global
0,30 BF-Texture 0,30 BF-Texture
0,20 BF-Cublas 0,20 BF-Cublas
T-BF T-BF
0,10 0,10
T-DS T-DS
0,00 0,00
100K 250K 500K 750K iMm 100K 250K 500K 750K iM
Query Points =100 Query Points =250
0,50 —e—BF-Global 1,00 —e—BF-Global
0,40 BF-Texture 0,80 BF-Texture
0,30 BF-Cublas 0,60 BF-Cublas
0,20 T-BF 0,40 T-8F
0,10 0,20
T-DS — T-DS
0,00 0,00
100K 250K 500K 750K iMm 100K 250K 500K 750K iMm
Query Points =500 Query Points =750
2,00 —e—BF-Global 3,00 —e—BF-Global
2,50
1,50 BF-Texture ! BF-Texture
2,00
1,00 BF-Cublas 1,50 BF-Cublas
T-BF 1,00 T-BF
0,50 —
e T-DS 0,50 . T-DS
0,00 - 0,00 @
100K 250K 500K 750K iMm 100K 250K 500K 750K iMm

Figure 4.6: Random reference points, £ = 20. X-axis: reference point cardinality, Y-axis:

execution time measured in ms.

&.28ms. T-DS was 45 times faster than BF-Global.

When reaching the group of 100 query points, we can see that the execution time of T-BF
is a slightly better than the BF-Global. The overhead of sorting large volumes of distance
datasets begin to emerge. The T-DS on the other hand continued its excellent performance,

finishing in 81.8ms at 1M reference points, while BF-Global finished in 397.42ms.

In the following experiments, using groups of 250,500 and 700 query points, T-BF per-
formance was inferior compared to BF-Global. The T-DS algorithm kept on outperforming

the other ones, especially on the large volumes of reference points.

In order to explore the limits of the algorithms, we created random datasets ranging from
10M to 200M reference points (Fig. §.7). The existing algorithms could not scale higher
than 1M reference points. The T-BF reached 100M reference points. The only algorithm
that succeeded in 200M reference points is T-DS. T-BF using one query point, executed in
10M reference points in 28.96ms and T-DS in just 4.07ms. The T-DS finished in the 200M
reference points experiment in 61.93ms. The 10 points query group, resulted analogously in

291.93ms for T-BF and 37.08ms for T-DS. All the other experiments resulted to close linear

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



4.3.1 In-memory, Ist set of experiments 77

Random Reference Points

Algorithm Query Points 100K 250K 500K 750K M

T-BF 1 117,27 101,69 123,58 122,25 102,41
T-DS 1 104,33 251,95 405,79 529,63 401,72
T-BF 10 1536 11,62 11,98 13,82 10,47
T-DS 10 12,88 26,07 41,74 48,79 45,64
T-BF 100 1,80 124 140 138 1,15
T-DS 100 1,46 3,03 426 521 4386
T-BF 250 0,86 0,54 059 0,63 0,71
T-DS 250 0,69 133 194 239 293

Table 4.2: Speedup gain of new methods T-BF, T-DS versus BF-Global, using Random dataset

performance, in respect to query points groups. The T-DS implementation executed 10 times

faster than the T-BF one, in extremely large volumes of reference datasets.

Query Points =1 Query Points = 10
0,40 —T8F * —o—T-BF
T-DS T-DS
0,20 2
0,00 0
10M 100M 200M 10M 100M 200M
Query Points = 100 Query Points = 1000
40 —o—T.BF 400 —o—T-BF
T-DS T-DS
20 200
0 0
10M 100M 200M 10M 100M 200M

Figure 4.7: Maximum reference points, £ = 20. X-axis: reference point cardinality, Y-axis:

execution time measured in ms.

In terms of memory scaling the new algorithm T-DS can compute up to 200M reference
points. The maximum reference points that other methods could achieve are 1M reference
points, thus our methods can scale up to 200 times more than the other ones. It worths men-

tioning that T-DS is much faster than T-BF, because of the sorting overhead of T-BF.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



78 Chapter 4. k—NN Query Processing with GPU and RAM

4.3.1.2 Synthetic reference points

We have also used synthetic datasets following different data distributions, and each data
set contains 100.000, 250.000, 500.000, 750.000 and 1.000.000 points (Fig. §.§). We have
created these datasets because they are not uniformly distributed, like the random ones and
they resemble real-life data distributions. The synthetic reference points datasets are created
according to Zipf’s law. The Zipf distribution is defined as follows, and the value of z that
we have used is 0.7.

1

f(l): nZ_Z 7221,277n
> 5

The random experiment results are confirmed in this experiment. In the one query point exper-
iment, in ascending order, T-BF finished in 0.48ms, T-DS in 0.65ms, BF-Texture in 49,76ms,
BF-Global in 62.04ms and BF-Cublas in 74.41ms, for the 100K reference dataset. The 1M
experiment resulted to T-DS 2.18ms, T-BF 3.56ms and BF-Global 367.57ms. The maximum
speedup gain that T-DS achieved was 270 (times faster) than BF-Global, at 750K reference

points (Table §.3)).
Query Points =1 Query Points = 10
0,4 —e—BF-Global 04 —e—BF-Global
0,3 BF-Texture 0,3 BF-Texture
0.2 —+—BF-Cublas 0,2 —e—BF-Cublas
—=—T-BF —=—T-BF
0,1 0,1
T-DS T-DS
- —— %
0 o— o Tt e E——] 0 o— =
100K 250K 500K 750K M 100K 250K 500K 750K M
Query Points = 100 Query Points = 250
0,5 —e—BF-Global 1.0 —e—BF-Global
04 BF-Texture 08 BF-Texture
03 —+—BF-Cublas 0.6 —+—BF-Cublas
02 —=—T-BF 04 —=T-BF
0,1
= T-DS 02 = T-DS
0 0,0
100K 250K 500K 750K M 100K 250K 500K 750K 1M

Figure 4.8: Synthetic reference points, £ = 20. X-axis: reference point cardinality, Y-axis:

execution time measured in ms.

The 10 query point experiment resulted to a similar outcome. The T-DS again was faster
and outperformed BF-Global by 25 times. When the query points reached up to 100, we
noticed that the performance of T-BF is similar and slightly better than BF-Global. On the

other hand T-DS is still performing good, especially for > 500K reference points. Finally

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



4.3.1 In-memory, Ist set of experiments 79

Synthetic Reference Points

Algorithm Query Points 100K 250K 500K 750K M

T-BF 1 128,45 89,87 101,04 118,75 103,25
T-DS 1 94,57 134,70 196,90 270,53 168,76
T-BF 10 15,64 9,02 9,52 13,22 10,86
T-DS 10 10,34 11,56 20,48 25,04 24,58
T-BF 100 1,82 1,06 1,02 1,44 1,10
T-DS 100 1,20 1,21 1,94 3,65 2,54
T-BF 250 0,82 0,58 0,64 0,68 0,70
T-DS 250 0,54 0,66 1,25 1,44 1,74

Table 4.3: Speedup gain of new methods T-BF,T-DS versus BF-Global, using Synthetic

dataset

in the 250 query points experiment, BF-Global surpasses T-BF, but is still slower than T-DS
algorithm.
For one more time, T-DS is much faster than T-BF, because of the sorting advantage

reduction, as documented in the previous section.

4.3.1.3 Real reference points Comparison

We conducted 6 experiments using three different real datasets using groups of query
points of 10 and 100 points (Fig. #.9). In order to compare all the algorithms we created two
reference datasets of 100K and 1M points per every real dataset, by reducing them (the real
datasets) uniformly.

The only experiment that all the algorithms completed, is the one with 100K reference
points. The BF-Texture and BF-Cublas algorithm failed in all subsequent experiments. The
fastest algorithm in the 100K case was T-BF, finishing in 4.53ms (Water), 4.38ms (Parks)
and 4.36ms (Buildings), while querying 10 points and 43.78ms (Water), 43.99ms (Parks)
and 41.1ms (Buildings) while querying 100 points. In the case of 1M reference points the
T-DS was slightly faster than T-BF. When we queried the hole datasets the T-DS was about
2 times faster than T-BF.

The maximum speedup gain that T-DS achieved was 391 (times faster) than BF-Global,

at 1M water reference points, using one query point (Table #.4). Furthermore, in the real

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



80

Chapter 4. k—NN Query Processing with GPU and RAM

0,6
0,5
0,4
0,3
0,2
0,1
0,0

0,6
0,5
0,4
0,3
0,2
0,1
0,0

0,6
0,5
0,4
0,3
0,2
0,1
0,0

Water Dataset, Query Points = 1

I

—

100.000 1.000.000

5.836.

360

Parks Dataset, Query Points = 1

It

—_—

100.000 1.000.000

11.504.035

Buildings Dataset, Query Points = 1

\

100.000 1.000.000

114.736.539

—e—BF-Global
BF-Texture
—e—BF-Cublas
—=—T-BF
—4+—T-DS

—e—BF-Global
BF-Texture
—e—BF-Cublas
—=—T-BF
—4+—T-DS

—e—BF-Global
BF-Texture

—e—BF-Cublas

—=—T-BF

—+—T-DS

Water Dataset, Query Points = 10

0,60
0,50
0,40
0,30
0,20
0,10
0,00

100.000

Parks Dataset, Query Points = 10

0,60
0,50
0,40
0,30
0,20
0,10
0,00

100.000

1.000.000

1.000.000

K

5.836.360

\

11.504.035

—e—BF-Global
BF-Texture
——BF-Cublas
—=—T-BF
—4+—T-DS

—e—BF-Global
BF-Texture

——BF-Cublas

—=—T-BF

—+—T-DS

Buildings Dataset, Query Points = 10

5,00
4,00
3,00
2,00
1,00

0,00
100.000

1.000.000

\

114.736.539

—e—BF-Global
BF-Texture
—e—BF-Cublas
—=—T-BF
—4+—T-DS

Figure 4.9: Real reference points, & = 20. X-axis: reference point cardinality, Y-axis: execu-

tion time measured in ms.

dataset example, we certify once more that T-DS is much faster than T-BF, because of the

sorting advantage.

Water Ref. Points  Parks Ref. Points  Buildings Ref. Points

Algorithm  Query Points 100K M 100K 1M 100K IM
T-BF 1 120,98 13549 128,43 131,26 119,25 136,10
T-DS 1 38,31 391,19 74,74 102,16 78,85 352,03
T-BF 10 16,71 14,55 22,33 14,54 23,81 15,64
T-DS 10 5,55 15,73 11,07 16,95 10,97 32,28
T-BF 100 2,72 1,84 2,52 1,71 4,00 1,98
T-DS 100 1,14 1,81 1,53 2,31 2,19 3,22
T-BF 250 1,51 1,02 1,37 0,76 1,50 0,89
T-DS 250 0,61 1,08 0,79 1,04 0,80 1,47

Table 4.4: Speedup gain of new methods T-BF, T-DS versus BF-Global, using Real datasets

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



4.3.2 In-memory, 2nd set of experiments 81

4.3.2 In-memory, 2nd set of experiments

We run a large set of experiments to compare the repetitive application of the existing
algorithms and the proposed one (SPP) for processing batch £-NN queries. All experiments
query at least 100K reference points. We did not include less than 100K reference points
because we target the maximum in-memory utilization and reference point less than 100K,
do not fit in this context. All the experiments, fit the reference and input datasets into device
memory.

We have created random and synthetic datasets of 100K, 250K, 500K and 1M points.
All the existing methods could only be executed with 100K reference points and only two of
them scaled to 1M points. Furthermore, in order to check our method scaling we also created
random datasets of 10M, 100M, 200M and 300M reference points. We also used three big
real datasets [|1], which represent water resources of North America (Water Dataset) consist-
ing of 5,836,360 line-segments and world parks or green areas (Parks Dataset) consisting
of 11,503,925 polygons and world buildings (Buildings Dataset) consisting of 114,736,539
polygons. To create sets of points, we used the centers of the line-segment MBRs from Water
and the centroids of polygons from Park and Buildings. For all datasets the 3-dimensional
data space is normalized to have unit length (values [0, 1] in each axis).

We run a series of experiments searching for 20 Nearest Neighbors (k= 20), using the
aforementioned datasets with groups of 250, 500, 750 and 1,000 random query points. By
using these larger groups of query points we will demonstrate the effectiveness of SPP. Every
experiment was run at least 10 times and the mean of the experiment results were calculated
for every method.

All experiments were performed on a Dell Inspiron 7577 laptop, running Windows 10
64bit, equipped with a quad-core (8-thread) Intel I7 CPU, 16GB of main memory, a 256GB
SSD disk used for the operating system, a ITB 7.2K SATA-3 Seagate HDD storing our data
and a NVIDIA Geforce 1060 (Mobile Max-Q) GPU with 6GB of memory.

4.3.2.1 Random reference points Comparison

In our first series of tests, we used random datasets for the reference points. We created the
datasets in various volumes using normalized random points. The resulting datasets’ density

increased analogously to the reference points cardinality. It is worth mentioning that due to

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



82 Chapter 4. k—NN Query Processing with GPU and RAM

Query Points = 250 —e—BF-Global Query Points = 500 —e—BF-Global
100,00 BF-Texture 100,00 BF-Texture
10,00 AIDW 10,00 AIDW
1,00 ‘?“—’/:#:: T-BF 1,00 —tr—— T-BF
\ ——
0.10 /-———-———' ——T-DS 010 ./_/-—-/' ——T-DS
0,01 0,01
100K 250K 500K 750K 1M =-SPP 100K 250K 500K 750k 1m  wSPP
Query Points = 750 —e—BF-Global Query Points = 1000 —e—BF-Global
1000,00 BF-Texture  1000,00 BF-Texture
100,00 BF-Cublas 100,00
AIDW
10,00 AIDW 10,00
T-BF
1,00 —— — T-BF 1,00 ———
0,10 o 0,10 o g
.,/—I/'__—.—__. —+TDS /_.———I ——T-DS
0,01 0,01
100K 250K 500K 750K 1M = SPP 100K 250K 500K 750k 1m  oPP

Figure 4.10: Random reference points, k = 20. X-axis denotes reference point cardinality,

Y-axis (in logarithmic scale) denotes execution time measured in sec.

the nature of the random number generator, the datasets created, are in a way, near uniformly

distributed.

In the first chart (Fig. #.10), we can see that our algorithm SPP is faster than the other
methods. For 250 query points SPP finished in 18.51ms for the 100K reference points exper-
iment. The best of the other methods was BF-Texture achieving 77.07ms and the worst was
AIDW with 2.63 sec. It worth mentioning that the 100K experiment was the only one that
BF-Texture and BF-Cublas finished. These two methods (BF-Texture and BF-Cublas) could
not scale at higher volumes of reference points, mainly due to execution exceptions regard-
ing memory allocation problems. For the 1M reference points experiment the execution time
difference is even larger, the BF-Global implementation finished in 606.88ms, T-BF finished
in 854.04ms, T-DS in 206.98ms and SPP in just 68.31ms. The AIDW method was by far the
slowest finishing in 52.16sec. The maximum speedup gain that SPP achieved was 8.88 (times
faster) than BF-Global, at IM reference points (Table §.9). In this gain comparison we notice
that some numbers are less than zero. This means that the performance was worse than the
basic comparison method BF-Global. For example, at 100K, for 250 query points T-BF is
slower by 0.86 (1/0.86 = 1.1627 times slower).

In the second chart with 500 query points, we can observe about the same results as with
the 250 query points experiment. With 100K reference points, the best of existing algorithms
was again SPP, finishing at 17.76ms, while T-BF finished at 212.54ms, T-DS at 270.61m:s,
BF-Global at 107.07ms, and BF-Texture at 89.27ms. AIDW was the slowest at 3.64sec. For

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



4.3.2  In-memory, 2nd set of experiments 83

Algorithm Query Random Reference Points Query Random Reference Points
Points 100K 250K 500K 750K 1M Points 100K 250K 500K 750K 1M

AIDW 250 0.04 0.02 0.01 0.01 0.01 500 0.03 0.02 0.01 0.01 0.01
T-BF 250 0.86 0.54 0.59 0.63 0.71 500 0.5 035 036 037 042
T-DS 250 0.69 1.33 194 239 293 500 04 079 122 148 1.78
SPP 250 5.02 5.65 6.79 7.84 8.88 500 6.03 6.6 8.11 9.66 10.3

AIDW 750 0.02 0.01 0.01 0.01 0.01 1000 0.02 0.01 0.01 0.01 0.01
T-BF 750 0.36 0.27 027 0.3 032 1000 0.29 0.22 0.23 0.26 0.19
T-DS 750 028 0.46 0.8 1.07 1.34 1000 024 0.5 0.76 094 0.77
SPP 750 6.8 7.75 8.9510.69 12.04 1000 7.46 8.7110.07 12.00 10.02

Table 4.5: Speedup gain of AIDW, T-BF, T-DS, SPP versus BF-Global, Random dataset.

IM reference points, the execution time difference is once more larger, the SPP algorithm

finished in 70.8ms and it was 10.3 times faster than BF-Global (Table 4.9).

When reaching the group of 1,000 query points, we can see that the execution time of
SPP is again better than the other methods. The overhead of sorting large volumes of distance
datasets begins to emerge resulting to poor performance for T-BF. The SPP on the other hand

continues its excellent performance, finishing in 69.42ms 10.2 times faster than BF-Global.

In the following experiments, using groups of 250, 500, 750 and 1,000 query points, T-
BF, T-DS and AIDW performance was inferior compared to BF-Global. The SPP algorithm

kept on outperforming all of them, especially on the large volumes of reference points.

SPP is faster because of two main reasons. The first one is because it only processes
part of the reference dataset to find £-NN, in contrast to the other algorithms, which always
process the whole dataset. The second one is that the whole £-NN algorithm is executed in the
GPU device and there is no need to hand over the process control and transfer data between
the GPU and the host. In contrast, T-BF and T-DS always hand over the process control and
transfer data between the GPU device and the host for every single query point. We observe

that in the whole range of reference points, SPP outperforms all other methods.

In all cases, the AIDW algorithm was several times of magnitude slower than the other
methods. In the 1M with 250 query points experiment, AIDW was 763 times slower than

SPP and 61 times slower than T-BF. The only way to visualize all methods in the same charts

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



84 Chapter 4. k—NN Query Processing with GPU and RAM

was to display the X-axis in a logarithmic scale. In the forthcoming experiments we decided

not to include AIDW.

In order to explore the memory capacity limits of the algorithms, we created random
datasets ranging from 10M, 100M, 200M and 300M reference points (Fig. §.11)). The ex-
isting algorithms of other researchers could not scale higher than 1M reference points. T-BF
implementation reached 100M reference points and T-DS reached 200M. The only algorithm
that succeeded in 300M reference points is SPP. T-BF using 250 query points, executed 10M
reference points in 7.55sec, T-DS in 927ms and SPP in just 254ms. The T-DS finished in the
200M reference points experiment in 14.31sec, while SPP in 1.63sec, 8.7 times faster. The

500, 750 and 1,000 points query groups, resulted analogously in favor of SPP.

Therefore, it is obvious that SPP is able to handle much larger reference datasets, because
it uses a buffer (KNN-DLB) which holds only distances and IDs to the closest k points, in

contrast to other algorithms which store distances and IDs for the whole reference dataset.

Query Points = 250 Query Points = 500

—o—T-BF —o—T-BF

100 1.000
100
10

10

10M 100M 200M 300M 10M 100M 200M 300M
Query Points = 750 Query Points = 1000
—o—T-BF —o—T-BF
1.000 1.000
100 / 100 /
T-DS T-DS
10 10
1 1
0 Spp 0 Spp
10M 100M 200M 300M 10M 100M 200M 300M

Figure 4.11: Maximum reference points, k = 20. X-axis denotes reference point cardinality,

Y-axis denotes execution time measured in sec

In terms of memory scaling, SPP can compute up to 300M reference points, taking ad-
vantage of our KNN-DLB optimization. T-DS and T-BF could scale up to 200M and 100M
respectively. Thus our new method can scale up to 300 times more than other existing ones

and 100M reference points more than T-DS.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



4.3.2 In-memory, 2nd set of experiments 85

4.3.2.2 Synthetic reference points Comparison

We have also used synthetic datasets following different data distributions, and each data
set contains 100K, 250K, 500K, 750K and 1M points (Fig. .12). We have created these
datasets because they are not uniformly distributed, like the random ones and they resemble
real-life data distributions. The synthetic reference points datasets are created according to

Zipf’s law. The Zipf distribution is defined as follows, and the value of z that we used is 0.7.

1

fi) = =E—,i=1,2,---,n
D

The random experiment results are confirmed in this experiment. In the 250 query points
experiment, in ascending order, SPP finished in 55.55ms, BF-Texture in 74.65ms, BF-Global
in 89.20ms, T-BF in 109ms and T-DS in 165ms. BF-Cublas did not finish any of the synthetic
tests. The 1M experiment resulted to the following: T-DS 350ms, SPP 559ms, BF-Global
609ms and T-BF 867ms. T-DS is still performing very well in small volumes of query point.

In larger volumes of query points, T-DS’s performance decreases.

Query Points = 250 Query Points = 500
1,0 —e—BF-Global 2,0 —e—BF-Global
0,8 BF-Texture 15 BF-Texture
06 ~—T-BF , ——T-BF
—=—T-DS 1,0 —=—T-DS
0,4
! —+—SPP —+—SPP
0.2 0,5
0,0 0,0
100K 250K 500K 750K M 100K 250K 500K 750K M
Query Points = 750 Query Points = 1000
3,0 —e—BF-Global 40 —e—BF-Global
3,5
2,5 BF-Texture 30 BF-Texture
2,0 ——TBF 25 ——T-BF
L5 —=-T-DS 2,0 —=—T-DS
1,0 —a—SPP 15 —a—SPP
1,0
0,5 0,5 ,’—'—ﬁ
0,0 0,0
100K 250K 500K 750K iM 100K 250K 500K 750K iM

Figure 4.12: Synthetic reference points, £ = 20. X-axis denotes reference point cardinality,

Y-axis denotes execution time measured in sec.

The maximum speedup gain that T-DS achieved was 1.74 (times faster) than BF-Global,
at 1M reference points (Table §.6). For SPP the maximum gain was 1.61 at 100K. T-DS and
SPP perform equally at 250 query points and they are faster than the other methods.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



86 Chapter 4. k—NN Query Processing with GPU and RAM

Query Synthetic Reference Points Query Synthetic Reference Points
Algorithm Points 100K 250K 500K 750K 1M Points 100K 250K 500K 750K 1M

T-BF 250 0.82 0.58 0.64 0.68 0.7 500 045 034 03 0.39 041
T-DS 250 0.54 0.66 1.25 1.44 1.74 500 0.28 0.38 0.64 0.92 0.98
SPP 250 1.61 1.14 101 1.11 1.09 500 1.86 1.28 1.04 1.07 1.14

T-BF 750 032 025 0.28 0.29 031 1000 0.28 0.16 0.18 0.25 0.21
T-DS 750 0.22 0.28 0.57 0.67 0.76 1000 0.18 0.17 0.37 0.56 0.53
SPP 750 192 1.34 1.25 1.23 1.32 1000 2.04 1.08 1.18 1.33 1.17

Table 4.6: Speedup gain of T-BF, T-DS, SPP versus BF-Global, Synthetic dataset.

The 500 query point experiment resulted to slightly different outcome. SPP was the fastest
one and outperformed BF-Global by 1.86 times. T-DS and T-BF where slower than BF-
Global, and only T-DS could match BF-Global’s performance at 1M points. When the query
points reached up to 1,000, we noticed that the performance of SPP is continuously ascending
and reached to a maximum gain of 2.04 over BF-Global. On the other hand, T-DS and T-BF
are much slower than BF-Global. In the synthetic dataset experiment, SPP is much faster than
BF-Global, T-BF and T-DS.

SPP is again faster than all the other methods because of the two same reasons exposed in
Section (processing part of the reference dataset and execution of the whole algorithm
in the GPU device).

4.3.2.3 Real reference points Comparison

We conducted 6 experiments using three different real datasets using groups of 250, 500,
750 and 1,000 query points (Fig. #.13)). In order to compare all the algorithms, we created
two reference datasets of 100K and 1M points per every real dataset, by reducing them (the
real datasets) uniformly.

All the algorithms except BF-Cublas finished at least one experiment. BF-texture could
only complete the one with 100K reference points. BF-Texture and BF-Cublas algorithm
failed in all subsequent experiments. The fastest algorithm in the 100K case was SPP, fin-
ishing in 49.59ms (Water), 107.49ms (Parks) and 55.24ms (Buildings), while querying 250
points and 53.64ms (Water), 97.54ms (Parks) and 102.84ms (Buildings) while querying 1,000

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



4.3.2 In-memory, 2nd set of experiments 87

Water, Query Points = 250 Water, Query Points = 500
5 —e—BF-Global 10 —e—BF-Global
4 BF-Texture 8 BF-Texture
3 —TBF 6 ——TBF
2 —=-T-DS 4 —=-T-DS
1 —asPP 2 —asPP
0 0
100.000 1.000.000 5.836.360 100.000 1.000.000 5.836.360
Water, Query Points = 750 Water, Query Points = 1000
15 —e—BF-Global 20 —eo—BF-Global
10 BF-Texture 15 BF-Texture
——T-BF 10 ——T-BF
5 —=—T-DS 5 —=—T-DS
—+—SPP —+—SPP
0 0
100.000 1.000.000 5.836.360 100.000 1.000.000 5.836.360
Parks, Query Points = 250 Parks, Query Points = 500
10 —e—BF-Global 20 —eo—BF-Global
8 BF-Texture 15 BF-Texture
6 ——T-BF 10 ——T-BF
4 —=-T-DS . —=-T-DS
2 —a—SPP —aSPP
0 0
100.000 1.000.000 11.504.035 100.000 1.000.000 11.504.035
Parks, Query Points = 750 Parks, Query Points = 1000
30 —e—BF-Global 40 —e—BF-Global
: BF-Texture 30 BF-Texture
15 ——T-BF 20 ——T-BF
10 —=—T-DS 10 —=—T-DS
5 —+—SPP —+—SPP
0 0
100.000 1.000.000 11.504.035 100.000 1.000.000 11.504.035
Buildings, Query Points = 250 Buildings, Query Points = 500
120 —e—BF-Global 250 —e—BF-Global
100 BF-Texture 200 BF-Texture
80 150
60 ——T-BF ——T-BF
40 —=-T-DS 100 —=-T-DS
20 —a—SPP 50 —asPP
0 0
100.000 1.000.000 114.736.611 100.000 1.000.000 114.736.611
Buildings, Query Points = 750 Buildings, Query Points = 1000
400 —e—BF-Global 500 —e—BF-Global
300 BF-Texture 400 BF-Texture
200 ——T-BF 300 ——T-BF
—=-T-DS 200 —=-T-DS
100 100
—+—SPP —4—SPP
0 0

100.000 1.000.000 114.736.611 100.000 1.000.000 114.736.611

Figure 4.13: Real reference points, £ = 20. X-axis denotes reference point cardinality, Y-axis

denotes execution time measured in sec.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



88 Chapter 4. k—NN Query Processing with GPU and RAM

points. In the case of 1M reference points, the T-DS was slightly faster than SPP, only in the
250 query points experiment. When we queried the hole datasets with 1,000 query points,

SPP was about 3 times faster than T-DS and about 6 times faster than T-BF.

We could only compare all the methods at the smaller reference datasets of 100K and
IM. SPP had a maximum of 4.87 gain over BF-Global at 1M buildings reference points,
when queried with 750 points (Table #.7). Generally, SPP was over than 2 times faster than

BF-Global at the real dataset experiment.

Furthermore, we showed SPP’s efficiency in big real datasets, that reach well over than

100M reference points. So SPP is the fastest method in the real dataset experiment.

Again, processing part of the reference dataset and execution of the whole algorithm in
the GPU device (as explained in Section §.3.2.1]), makes SPP much faster than all the other
methods. Moreover, again the use of KNN-DLB allows SPP to handle much larger reference
datasets than BF-Global and AIDW (as explained in Section }.3.2.1)).

Query  Water Ref. Points  Parks Ref. Points  Buildings Ref. Points

Algorithm  Points 100K IM 100K IM 100K M
T-BF 250 1.51 .02 1.37 0.76 1.5 0.89
T-DS 250 0.61 1.08  0.79 1.04 0.8 1.47
SPP 250 33 1.91 1.34 097  2.86 1.09
T-BF 500 0.77 0.62  0.65 0.55 0.88 0
T-DS 500 0.31 0.67 043 06 054 0
SPP 500 2.73 2.06 1.4 115 2.24 0
T-BF 750 0.73 043 051 037 286 1.44
T-DS 750 0.29 0.41 0.3 0.5 1.57 2.49
SPP 750 4.42 199 1.78 1.38 7.72 4.87
T-BF 1000 0.53 037 044 0.31 0.49 0.33
T-DS 1000 0.22 0.34  0.26 04 0.26 0.54
SPP 1000 4.23 249  1.88 1.33 197 1.34

Table 4.7: Speedup gain of T-BF, T-DS, SPP versus BF-Global, Real datasets.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



4.3.3 In-memory, 3rd set of experiments 89

4.3.3 In-memory, 3rd set of experiments

We run a large set of experiments to compare the repetitive application of our algorithms
and the newly implemented one for processing batch k-NN queries. All experiments query
100K and 1M reference points. We have created random and synthetic clustered datasets
of 100K and 1M points. Furthermore we created analogously 100K and 1M sample refer-
ence points from real world buildings (Buildings Dataset) dataset [|l]. For all datasets the
3-dimensional data space is normalized to have unit length (values [0, 1] in each axis).

We run a series of experiments searching for 10, 20, 50 and 100 Nearest Neighbors, using
the aforementioned datasets with groups of 100 and 1,000 random query points. By using
small and larger groups of query points and a wide range o ks, we will demonstrate the
effectiveness of HSPP versus the other two methods. Every experiment was run at least 10

times and the mean of the experiment results were calculated for every method.

4.3.3.1 Experimental evaluation

In our experimental evaluation (Fig$.14)), we used three kinds of reference datasets:
random (uniform), synthetic (random clustered) and real. The experiments were conducted
firstly with the 100 and then with the 1,000 query dataset.

The first set of experiments where against random reference dataset. HSPP and SPP per-
formed equally at £ = 10 and k£ = 20, at both reference datasets. At smaller ks than 10, SPP
is faster than HSPP, in experiments we conducted and they are not presented in this chapter.
T-DS has performed very well,it was very close to the HSPP’s performance and was better
than SPP with £ = 50 and £ = 100. HSPP completed the £ = 50 and k£ = 100 experiments,
finishing at 16ms and 26ms respectively when querying the 100K reference dataset and at
41ms and 67ms when querying the 1M reference dataset. The highest speedup gain of HSPP
versus T-DS was approximately 27 times (Table §.8). HSPP outperformed the other ones in
all random dataset experiments.

The second set of experiments where against synthetic reference dataset. At the 100 query
point dataset experiment, HSPP was better than the other ones at 100K reference points at
all k£s. HSPP performed slightly better than T-DS perfomed at £ = 100. HSPP finished at
29ms, 31ms, 34ms and 36ms for £ = 10, 20, 50, 100 and 100 query points respectively. At

the 1,000 query point dataset experiment, HSPP was even faster than the other. It worth’s

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



90 Chapter 4. k—NN Query Processing with GPU and RAM

Random Dataset
2,0
18
16
1,4
12
1,0
08
06

0,4

0,2
> e _m .2 - M o i

T-DS, SPP, Qry=100, HSPP, T-DS, SPP, Qry=100, HSPP, T-DS, SPP, HSPP, T-DS, SPP, HSPP,
Qry=100, Ref=100K Qry=100, Qry=100, Ref=1M Qry=100, Qry=1000, Qry=1000, Qry=1000, Qry=1000, Qry=1000, Qry=1000,
Ref=100K Ref=100K Ref=1M Ref=1M Ref=100K Ref=100K Ref=100K Ref=1M Ref=1M Ref=1M

k=10 k=20 mk=50 m k=100

Synthetic Dataset
6,0

55
5,0

4,5

4,0

3,5

3,0

2,5

2,0

15

1,0

0,5

_ _ _ | I ] | n

SPP,

T-DS,  SPP,Qry=100,  HSPP, T-DS,  SPP,Qry=100,  HSPP, T-DS, SPP, HSPP, T-DS, HSPP,
Qry=100,  Ref=100K  Qry=100,  Qry=100, Ref=1M Qry=100,  Qry=1000, ~ Qry=1000, Qry=1000,  Qry=1000, ~ Qry=1000,  Qry=1000,
Ref=100K Ref=100K Ref=1M Ref=1M Ref=100K  Ref=100K  Ref=100K Ref=1M Ref=1M Ref=1M

k=10 " k=20 mk=50 mk=100

Real Dataset

95
9,0
8,5
8,0
75
7,0
65
6,0
55
5,0
45
4,0
35
3,0
25
2,0
15
1,0

s M a = B = . |

T-DS,  SPP,Qry=100,  HSPP, T-DS,  SPP,Qry=100,  HSPP, T-DS, sPp, HSPP, T-DS, s, HSPP,
Qry=100,  Ref=100K  Qry=100,  Qry=100, Ref=1M Qry=100,  Qry=1000,  Qry=1000, ~ Qry=1000, ~Qry=1000, ~ Qry=1000,  Qry=1000,
Ref=100K Ref=100K Ref=1M Ref=1M Ref=100K  Ref=100K  Ref=100K Ref=1M Ref=1M Ref=1M

k=10 " k=20 wk=50 m k=100

Figure 4.14: Experiment charts. Y-axis is measured in seconds.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



4.4 Conclusions 91

Random Synthetic Real

Qry Ref k=10 k=20 k=50 k=100 k=10 k=20 k=50 k=100 k=10 k=20 k=50 k=100
SPP 100 100K 5,65 343 097 04 1,27 1,19 0,92 0,64 1,69 1,36 0,91 0,54
HSPP 100 100K 5,57 3,43 1,71 1,04 1,28 1,21 1,09 0,98 1,69 1,38 1,28 1,11
SPP 100 1M 9,74 74 252 1 447 3,14 1,31 0,59 1,33 1,07 0,84 0,57
HSPP 100 1M 9,73 7,59 3,88 234 442 3,18 2,14 1,50 1,37 1,13 1,16 1,07
SPP 1000 100K 24,24 17,54 5,29 1,86 6,69 6,59 4,52 2,59 3,36 2,52 1,04 0,55
HSPP 1000 100K 23,72 17,58 8,61 5,01 6,72 6,58 591 4,51 3,4 2,775 1,9 1,56
SPP 1000 1M 27,37 21,5 991 4,42 44 432 4,04 3,51 3,04 2,52 1,26 0,84
HSPP 1000 1M 27,03 21,81 13,05 8,6 4,52 4,4 4,53 4,16 3,07 2,69 2,04 1,72

Table 4.8: Speedup gain of SPP, HSPP vs. T-DS.
noticing that with £ = 100, HSPP was about 2 times faster than SPP and 4.5 times faster than
T-DS. T-DS as we mentioned before, is designed to perform optimal at small groups of query
points, thus this difference was expected at larger query datasets. The highest speedup gain
of HSPP versus T-DS was 6.72 times (Table %.§). As a result HSPP outperformed the other

ones in all synthetic dataset experiments.

The last set of experiments where against real reference dataset. Using real data resulted
again in favor of HSPP. In fact HSPP, once again outperformed T-DS and SPP in all the
experiments.

All the experiments resulted to similar conclusions. HSPP is outperforming all the other
methods. SPP is better than T-DS but it’s performance is deteriorating in a linear way regard-

ing depending on £’s increments.

4.4 Conclusions

In this chapter, we presented the first four in-memory algorithms for k-NN query pro-
cessing in GPUs. These algorithms maximize the utilization of device memory, handling
more reference points in the computation. Through an experimental evaluation on synthetic
and real datasets, we concluded that T-DS only work faster than existing methods for small
groups of query points, SPP outperforms existing methods for larger groups of query points,
HSPP further enhances SPP performance for larger £ values and all of them scale-up to much

larger reference datasets. We validated that T-DS algorithm is faster than T-BS, because of the

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



92 Chapter 4. k—NN Query Processing with GPU and RAM

extra refinement step minimizing the sorting overhead. In terms of memory scaling, SPP and
HSPP can compute up to 300M reference points, taking advantage of our KNN-DLB or Max-
Heap optimizations. T-DS and T-BF could scale up to 200M and 100M respectively. SPP and
HSPP can scale up to 300M points, about 300 times more than other existing algorithms and
100M reference points more than T-DS. HSPP is an overall performance winner, especially

for larger k values. The algorithms documented in this chapter were presented in [8, 88, 89].

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



Chapter 5

k—NN Query Processing with GPU and
SSD

The GPU device memory is expensive, so it is very important to take advantage of this
memory as much as possible and scale-up to larger datasets and avoid the need for distributed
processing which suffers from excessive network cost, sometimes overcoming the benefits of
distributed parallel execution. However, since device and/or main memory may not be able
to host an entire, rather big, reference dataset, storing this dataset in a fast secondary device,
like a Solid State Disk (SSD) is, in many practical cases, a feasible solution.

In this Chapter,

* We propose and implement the first (Brute-force and Plane-sweep) GPU-based algo-

rithms for processing the £-NN query on big reference data stored on SSDs.

+ We utilize either an array-based, or a max-Heap based buffer for storing the distances of
the current k& nearest neighbors, which are combined with Brute-force and Plane-sweep

techniques, deriving four algorithmic variations.

* Based on 3d synthetic big data, we present an extensive experimental comparison of
these algorithmic variations, varying query dataset size, reference dataset size and k
and utilizing reference data files which are either presorted in one of the dimensions,

or unsorted in all dimensions.

* These experiments highlight that Plane-sweep, combined with either an array or a max-

Heap buffer and applied on unsorted reference data, is the performance winner.

93

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



94 Chapter 5. k—NN Query Processing with GPU and SSD

The rest of this chapter is organized as follows. In Section 5.1, we review related material
and present the motivation for our work. Next, in Section 5.2, we present the new algorithms
that we developed for the k-NN GPU-based processing on disk-resident! data and in Section
5.3, we present the experimental study that we performed for analyzing the performance of
our algorithms and for determining the performance winner among four algorithmic varia-
tions tested on presorted and unsorted big reference data. Finally, in Section 5.4, we present

the conclusions arising from our work and discuss our future plans.

5.1 Related Work and Motivation

Recent trend in the research for parallelization of nearest neighbor search is to use GPUs.
Parallel £-NN algorithms on GPUs can be usually implemented by employing a Brute-force
(BF) method or by using indexing data structures. In the first category, £-NN on GPUs using
a Brute-force method applies a two-stage scheme: (1) the computation of distances and (2)
the selection of the nearest neighbors. For the first stage, a distance matrix is built grouping
the distance array to each query point. In the second stage, several selections are performed
in parallel on the different rows of the matrix. There are different approaches for these two
stages and the most representative ones can be found are presented in Section .. Further-
more [88] use heuristics to minimize the reference points near a query point and [8] use of
symmetrical partitioning technique with £-NN list buffer. See [§] for a more complete expla-
nation of the Brute-force approaches. In the second category, we can find effective £-NN GPU
implementations based on known indexing methods: k-d tree-based [92], grid-based [93], R-
tree-based [94], LSH-based [95], etc.

Flash-based Solid State Drives (SSDs) have been widely used as secondary storage in
database servers because of their improved characteristics compared to Hard Disk Drives
(HDDs) to manage large-scale datasets [96]. These characteristics include smaller size, lighter
weight, lower power consumption, better shock resistance, and faster reads and writes. In
these secondary devices, read operations are faster than writes, while difference exist among
the speeds of sequential and random I/Os as well. Moreover, the high degree of internal
parallelism of latest SSDs substantially contributes to the improvement of 1/O performance

[50].

I'We used an SSD and in the rest of the text “SSD” instead of “disk” is used.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



5.2 k—NN Disk Algorithms 95

To address the necessity of fast nearest neighbor searches on large reference datasets
stored in fast secondary devices (SSD), in this chapter, we design and implement efficient

k-NN GPU-based algorithms.

5.2 k—NN Disk Algorithms

A common practice to handle big data is data partitioning. In order to describe our new
algorithms, we should firstly present the mechanism of data partition transfers to device mem-
ory. This step is identical in all our methods. Each reference dataset is partitioned in /V par-
titions containing an equal number of reference points. If the total reference points is not
divided exactly with IV, the Nth partition contains the remainder of the division. Initially the
host (the computing machine hosting the GPU device) reads a partition from SSD? and loads
it into the host memory. The host copies the in-memory partition data into the GPU device
memory.

Another common approach in all our four methods is the GPU thread dispatching. Every
query point is assigned to a GPU thread. The GPU device starts the £-NN calculation simul-
taneously for all threads. If the number of query points is bigger than the total available GPU
threads, then the execution progresses whenever a block of threads finishes the previously

assigned query points calculation. The thread dispatching consists of 4 main steps:
1. The kernel function requests N threads.
2. The requested N threads are assigned to N query points.

3. Every thread carries out the calculation of reference point distances to its query point
and updates the £-NN buffer holding the current (and eventually the final) nearest

neighbors of this point.

4. The final £-NN list produced by each algorithm is populated with the results of all the

query points.

In the next sections we will describe our new methods. These methods are based on two

new main algorithms, “Disk Brute-force” and “Disk Plane-sweep”. In both of them we have

ZReading from SSD is accomplished by read operations of large sequences of consecutive pages, exploiting
the internal parallelism of SSDs, although our experiments showed that reading from SSD does not contribute

significantly to the performance cost of our algorithms.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



96 Chapter 5. k—NN Query Processing with GPU and SSD

implemented two k-NN buffer variations resulting in a total of four new methods (algorithmic

variations).

5.2.1 Disk Brute-force Algorithm

The Disk Brute-force algorithm (denoted by DBF) is a Brute-force algorithm enhanced
with capability to read SSD-resident data. Brute-force algorithms are highly efficient when
executed in parallel. The algorithm accepts as inputs a reference dataset R consisting of m
reference points R = {ry,ry,73..7, } in 3d space and a dataset () of n query points Q) =
{q1, 2, q3..q, } also in 3d space. The host reads the query dataset and transfers it in the device
memory. The reference dataset is partitioned in equally sized bins and each bin is transferred
to the device memory (Alg. [7; note that the notation <<< b, t >>> denotes execution using
b blocks with t threads each). For each partition, we apply the £-NN Brute-force computations
for each of the threads.

For every reference point within the loaded partition, we calculate the Euclidean distance
(Alg. B) to the query point of the current thread. The first % distances are added to the k-NN
buffer of this query point. Every other calculated distance is compared with the current largest
one and, if it is smaller, it replaces the current largest one in the £-NN buffer.

The organization and implementation of the £-NN buffer is essential for the effective
k-NN calculation, because by using it we elude sorting large distance arrays. The sorting
step is extremely demanding, regarding GPU computations. Depending on the algorithm,
the CUDA profiler revealed that 90% (or more in large datasets) of the GPU computation

may be dedicated to sorting [88]. We will use and compare two alternative k-NN buffer

implementations, presented in Sections and {4.2.4.

5.2.2 Disk Plane-sweep Algorithm

An important improvement for join queries is the use of the Plane-sweep technique, which
is commonly used for computing intersections [97]. The Plane-sweep technique is applied
in [98] to find the closest pair in a set of points which resides in main memory. The basic idea,
in the context of spatial databases, is to move a line, the so-called sweep-line, perpendicular
to one of the axes, e.g., X-axis, from left to right, and process objects (points, in the context

of this research) as they are reached by this sweep-line. We can apply this technique for

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



5.2.2 Disk Plane-sweep Algorithm 97

Algorithm 7 Brute-force Host algorithm

Input: NN cardinality=K, Reference filename=RF, Query filename=QF, Partition size=S
Output: Host k-NN Buffer=HostK NNBufferVector

: HostQueryVector < readFile(QF);

. queryPoints <— HostQuery Vector.size();

. DeviceQueryVector <— HostQuery Vector;

. createEmptyHostVector(HostK NNBufferVector,queryPoints*K);
. DeviceKNNBufferVector <— HostKNNBufferVector;

. while not end-of-file RF do

HostReferencePartition <— readPartition(RF,S);

DeviceReferencePartition <— HostReferencePartition;

runKNN < < <(queryPoints-1)/256 +1, 256> > >(DeviceReferencePartition,
DeviceQuery Vector,DeviceKNNBufferVector,K); // 256 cores assumed

10: HostKNNBufferVector < DeviceKNNBufferVector;

Algorithm 8 Brute-force Device Kernel algorithm (runKNN)
Input: NN cardinality=K, Partition Reference array=R, Query array=Q, Partition size=S
Output: Device k-NN Buffer array=DKB

: qldx < blockldx.x*blockDim.x+threadldx.x;

. knnBufferOffset <— qldx*K;

. fori< 0toS-1do
dist «+ ¥/(R[i].x — Q[qldx].z)? + (R[i].y — Qlqldx].y)2 + (R[i].z — Q[qldx].2)2
insertIntoBuffer(DKB,knnBufferOffset,i,qldx,dist);

. maxdistance <— calcMaxDistance(DKB);

restricting all possible combinations of pairs of objects from the two datasets. The Disk Plane-
sweep algorithm (denoted as DSP) incorporates this technique which is further enhanced with

capability to read SSD-resident data.

Like DBF, DSP accepts as inputs a reference dataset R consisting of m reference points
R = {ry,re,r3..1, } in 3d space and a dataset () of n query points Q = {q1, ¢2, ¢3..¢» } also in
3d space. The host reads the query dataset and transfers it in the device memory. The reference
dataset is partitioned in equally sized bins, each bin is transferred to the device memory and
sorted by the z-values of its reference points. (Alg. B). For each partition we apply the k-NN
Plane-sweep technique (Fig. B.1)).

Starting from the leftmost reference point of the loaded partition, the sweep-line moves
to the right. The sweep-line hops every time to the next reference point until it approaches the
z-value of the query point (Fig. 5.1)). Using the 2-value of the query point, a virtual rectangle
is created. This rectangle has a length of 2 x [, where [ is the currently largest £-NN distance

in the £-NN buffer of the query point of the current thread.

For every reference point within this rectangle, we calculate the Euclidean distance (Alg.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



98 Chapter 5. k—NN Query Processing with GPU and SSD

[L0) to this query point. The first & distances are added to its k-NN buffer. Every subsequent
calculated distance is compared with the largest one in the £-NN buffer and if it is smaller, it

replaces the largest one in the £-NN buffer.

In Fig. b.1,, we observe that all the reference points located on the right of the right rect-
angle limit are not even processed. The reference points located on left of the left rectangle
limit are only processed for comparing their z-axis value. The costly Euclidean distance cal-

culation is limited within the rectangle.

T
Yads 4L o
] o T o
' ~. |0
i o o ; ° lo)
i (@) o o
: ° 5 o o o
1
A ol L e R L o
:H” Sweep Direction (X axis) > .
1 A4 o
! o ° lo- ° °© o
e e
i o (o] O | T (o]
Left Limit Sweep Line Right Limit

Figure 5.1: Plane-sweep k-NN algorithm. Cross is the Query point, selected reference points

in solid circles and not selected reference points in plain circles.

Algorithm 9 Plane-sweep Host algorithm

Input: NN cardinality=K, Reference Filename=RF, Query filename=QF, Partition size=S
Output: Host £-NN Buffer=HostKNNBufferVector

1: HostQueryVector<readFile(QF);

2: queryPoints « HostQueryVector.size();

3: DeviceQueryVector<HostQuery Vector;

4: createEmptyHostVector(HostK NNBufferVector,queryPoints*K);

5: DeviceKNNBufferVector«HostK NNBufferVector;

6: while not end-of-file RF do

7 HostReferencePartition<—readPartition(RF,S);

8 DeviceReferencePartition<—HostReferencePartition;

9 cudaSort(DeviceReferencePartition);

10:  runKNN<<<(queryPoints-1)/256 +1, 256> >>(DeviceReferencePartition,

DeviceQuery Vector,DeviceKNNBufferVector,K); // 256 cores assumed

11: HostKNNBufferVector«DeviceKNNBufferVector;

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



5.3 Experimental Study 99

Algorithm 10 Plane-sweep Device Kernel algorithm (runKNN)

Input: NN cardinality=K, Partition Reference array=R, Query array=Q, Partition size=S, Largest distance in k-NN

buffer=maxknnDistance
Output: Device k-NN Buffer array=DKB
: qldx < blockldx.x*blockDim.x+threadldx.x;
. knnBufferOffset <— qldx*K;
: xSweepline +— R[0].x;

1 i+0;

inc(i);
xSweepline <— R[i].x;
leftldx < i-1;
while (R[leftIdz].x — Q[qldx].2) < maxknnDistance and leftIdz > 0 do
10: dec(leftldx);

1

2

3

4

5: while xSweepline<Q[qldx].x and i < S loop do
6

7

8:

9:

11: rightldx=i;

12: while (R[rightIdz].z — Q[gldz].x) < mazxknnDistance and leftIdz > 0 do

13: inc(rightldx);

14: for i < leftldx to rightldx do

15:  dist« ¥/(R[il.z — Q[¢ldx].z)2 + (R[i].y — Qlqldz].y)2 + (R[i].z — Qlqldx].z)2
16: insertIntoBuffer(DKB,knnBufferOffset,i,qldx,dist);

5.3 Experimental Study

We run a large set of experiments to compare the application of our proposed algorithms.
All experiments query at least S00M reference points. We did not include less than 500M
reference points because we target reference datasets that do not fit in the device memory.
The largest dataset that could fit in device memory in our previous work was 300M [8].
Furthermore, we increased the points accuracy representation from single precision numbers

to double precision (Alg. [L1]) to be able to discriminate among small distance differences.

Algorithm 11 Point Structure

// Point record structure, used in reference datasets. Record size 32 bytes

1: record point_struct begin

2: id, // Point ID, type unsigned long long, 8 bytes

3: X, Y, Z // 3 Dimensions, type double, 8 bytes per dimension
4: end;

All the datasets were created using the SpiderWeb [99] generator. This generator allows
users to choose from a wide range of spatial data distributions and configure the size of the
dataset and its distribution parameters. This generator has been successfully used in research
work to evaluate index construction, query processing, spatial partitioning, and cost model

verification [[100].

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



100 Chapter 5. k—NN Query Processing with GPU and SSD

Table 5.1 lists all the generated datasets. For the reference dataset, we created four datasets
using the “Bit” distribution (Fig. 5.2 right), with file sizes ranging from 16GB to 64GB. The
reference points dataset size ranges from 500M points to 2G points. For the query points
dataset we created one “Uniform” dataset (Fig. 5.2, center) of 10 points and five “Gaussian”

datasets (Fig. 5.2, left) ranging from 10K to 50K points.

Table 5.1: SpiderWeb Dataset generator parameters.

Distribution  Size  Seed File Size Dataset usage

Bit 500M 1 16GB  Reference
Bit 1G 2 32GB Reference
Bit 1.5G 3 48GB Reference
Bit 2G 4 64GB Reference
Uniform 10 5 32B  Query
Gaussian 10K 6  320KB Query
Gaussian 20K 7 640KB  Query
Gaussian 30K 8  960KB Query
Gaussian 40K 9 1,3MB  Query
Gaussian 50K 10 1,6MB  Query

Figure 5.2: Experiment distributions, Left=Uniform, Middle=Gaussian, Right=Bit .

Three different sets of experiments were conducted. In the first one, we scaled the refer-
ence dataset size, in the second one we scaled the query dataset size and in the last one we
scaled the number of the nearest neighbors, k. For every set, we used presorted and unsorted
reference datasets to evaluate their effect on the methods’ performance. We also evaluated the
performance of the two alternative list buffers to clarify the pros and cons of using KNN-DLB
and max-Heap buffer.

All experiments were performed on a Dell G5 15 laptop, running Ubuntu 20.04, equipped

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



5.3.1 Reference dataset scaling 101

with a six core (12-thread) Intel I7 CPU, 16GB of main memory, a 1TB SSD disk used and a
NVIDIA Geforce 2070 (Mobile Max-Q) GPU with 8GB of device memory. CUDA version
11.2 was used.

We run experiments to compare the performance of £-NN queries regarding execution
time, as well as memory utilization. We tested a total of four algorithms, listed in the follow-

ing.
1. DBF, Disk Brute-force using KNN-DLB buffer
2. DBF Heap, Disk Brute-force using max Heap buffer
3. DPS, Plane-sweep using KNN-DLB bufter
4. DPS, Plane-sweep using max Heap buffer

To the best of our knowledge, these are the first methods to address the £-NN query on SSD-

resident data.

5.3.1 Reference dataset scaling

In our first series of tests, we used the “Bit” distribution synthetic datasets for the refer-
ence points. The size of the reference point dataset ranged from 500M points to 2G points.
Furthermore, we used a small query dataset of 10 points, with “Uniform” distribution and a
relatively small £ value, 10, in order to focus only on the reference dataset scaling.

In Fig. .3, we can see the presorted dataset results in blue and the unsorted dataset re-
sults in stripped yellow. In the presorted experiment, we notice that the execution time of all
methods is quite similar, for each reference dataset size. For example, for the S00M dataset
the execution time is 172 sec. for DBF, 171 second for DBF Heap, 181 for DPS and 178 sec.
for DPS Heap. The execution times increase proportionally to the reference dataset size. As
expected, we get the slowest execution times for the 2G dataset, 691 sec. for both DBF, 683
sec. for DBF Heap, 730 sec. for DPS and 729 for DPS Heap.

In the unsorted dataset experiments, we observe that all execution times are smaller, es-
pecially for the Plane-sweep methods. The Brute-force methods are slightly faster in the un-
sorted dataset experiments than in the presorted ones. For the 500M unsorted dataset, the
execution time for DBF is 154 sec., for DBF Heap is 156 sec., for DPS 67 sec. and for DPS

Heap just 68 sec.. Once again, the execution times increase proportionally to the reference

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



102 Chapter 5. k—NN Query Processing with GPU and SSD

dataset size. For the 2G unsorted dataset, we get 638 sec. for DBF, 640 sec. for DBF Heap,
262 sec. for DPS and 262 for DPS Heap.

The reference dataset scaling experiments reveal that all the methods performed better for
the unsorted dataset. For the unsorted dataset, the Brute-force methods performed slightly
better, but the Plane-sweep methods performed exceptionally better than for the presorted
dataset. Furthermore, the Plane-sweep methods were more than 1.7 times faster than Brute-

force ones, in the unsorted dataset experiments.

800
700
600
500
400
300
200

10

o

DBF
500M

M Presorted 172

DBF
Heap
500M

171

DPS
500M

181

T EL

DPS
Heap
500M

178

1G

346

DBF
Heap
1G

337

|

1G

353

Iﬂ

DPS
Heap
1G

352

DBF DBF

1.5G

518 | 510

541

I

DPS

Heap ?zz Heap

1.5G

1.5G
538

DBF
2G

691

DBF
Heap
2G

683

DPS

730

DPS
Heap
2G

729

COUnsorted 154 | 156 67 68 319 320 134 134 479 480 198 198 638 640 262 @ 262

B Presorted [EUnsorted

Figure 5.3: Reference scaling experiment (Y -axis in sec.).

5.3.2 Query dataset scaling

In our second set of experiments, we used between 10K and 50K query points with
“Gaussian” distribution. For the reference points we used a S00M “Bit” distribution syn-
thetic dataset. These experiments also used a relatively small £ value of 10, in order to focus
only on query dataset scaling.

In Fig. f.4, we can see the presorted dataset results in blue and the unsorted dataset results
in stripped yellow. In the presorted experiments, we notice that the execution time of the
Brute-force algorithms is always larger. Depending on the query dataset size, we observe
that the execution time gradually increases. For the 10K dataset, the execution time is 585
sec. for DBF, 618 second for DBF Heap, 512 for DPS and 520 sec. for DPS Heap. The slowest
execution times were recorded for the 50K dataset, 1882 sec. for DBF, 3475 sec. for DBF
Heap, 1504 sec. for DPS and 1584 for DPS Heap.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



5.3.3 kscaling 103

In the unsorted experiments, we observe once more that all execution times are smaller,
especially for the Plane-sweep methods. The Brute-force methods are slightly faster for the
unsorted dataset than for the presorted one. For the 10K unsorted query dataset, the execution
time for DBF is 579 sec., for DBF Heap is 616 sec., for DPS 81 sec. and for DPS Heap also
81 sec.. Once again, the execution times increase proportionally to the query dataset size. For
the 50K unsorted query dataset, we get 1846 sec. for DBF, 3377 sec. for DBF Heap, 218 sec.
for DPS and 225 for DPS Heap.

The results of the query dataset scaling experiments conform with the ones of the refer-
ence scaling experiments. All the methods performed better with the unsorted dataset. For
the unsorted dataset, the Brute-force methods performed slightly better, but the Plane-sweep
methods performed once again exceptionally better than for the presorted dataset. Further-
more, the Plane-sweep methods were more than 7 to 15 times faster than Brute-force ones,
in the unsorted dataset experiments.

4000
3500
3000
2500

2000

1500
1000
TR AR AARRAd
0 IH IH Im Ir—| = = M M [l B [ 1§
PS DPS

DBF DPS DBF DPS DBF DPS DBF DPS DBF DBF DPS

DBF DPS DBF DPS DBF DPS DBF D
10K Heap 10K Heap 20K Heap 20K Heap 30K Heap 30K Heap 20K Heap 40K Heap 50K Heap 50K Heap

10K 10K 20K 20K 30K 30K 40K 40K 50K 50K
W Presorted 585 618 512 520 935 1051 788 822 1265 1465 1037 1076 1592 1760 1283 1337 1882 3475 1504 1584
OUnsorted 579 616 81 81 924 1020 113 113 1221 1416 140 144 1539 1649 189 194 1846 3377 218 225

M Presorted [DUnsorted

Figure 5.4: Query scaling experiment (Y -axis in sec.).

5.3.3 k scaling

The k scaling is our last set of experiments. In these tests we used £ values of 10,20,50
and 100. For the reference points we used the S00M “Bit” distribution synthetic dataset and
a small query group of 10 points, with “Uniform” distribution, in order to focus only on the
k scaling.

In Fig. 5.5, we can see the presorted dataset results in blue and the unsorted dataset results

in stripped yellow. In the presorted experiments, we notice that the execution time of the

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



104 Chapter 5. k—NN Query Processing with GPU and SSD

Brute-force algorithms is slightly smaller than the Plane-sweep ones. Depending on the k
value, we observe that the execution time increases slightly for larger £ values. For k£ equal
to 10 the execution time is 172 sec. for DBF, 171 second for DBF Heap, 181 for DPS and
178 sec. for DPS Heap. The slowest execution times were recorded for k equal to 100, 180
sec. for DBF, 181 sec. for DBF Heap, 210 sec. for DPS and 208 for DPS Heap.

In the unsorted experiments, we observe once more that the execution is faster, especially
for the Plane-sweep methods. The Brute-force methods are slightly faster for the unsorted
dataset than for the presorted one. For k equal to 10 and the unsorted query dataset, the
execution time for DBF is 158 sec., for DBF Heap is 156 sec., for DPS 68 sec. and for DPS
Heap also 63 sec.. Once again, the execution times increase proportionally to the & value. For
the £ = 100, we get 168 sec. for DBF, 166 sec. for DBF Heap, 98 sec. for DPS and 93 for
DPS Heap.

The results of the k scaling experiments also conform with the results of the previous
experiments. All the methods performed better with the unsorted dataset. For the unsorted
dataset, the Brute-force methods performed slightly better, but the Plane-sweep methods
performed once again exceptionally better than for the presorted dataset. Furthermore, the
Plane-sweep methods were about 2 times faster than Brute-force ones, in the unsorted dataset
experiments. Although, the two k-NN list buffer methods were shown equal, for even larger
k values than the ones studied in this chapter, the £ max-Heap list buffer is expected to out-

perform the KNN-DLB one.

250

200

]

150

100

50 H
0 DBF DPS DBF DPS DBF DPS DBF DPS
DBF DPS DBF DPS DBF DPS Heap

_ Heap _ Heap _ Heap _ Heap _ Heap _ Heap Heap  _
k=10 k=10 k=10 k=10 k=20 k=20 k=20 k=20 k=50 k=50 k=50 k=50 k=100 k=100 k=100 =100
W Presorted 172 171 181 178 174 173 185 184 181 178 190 189 180 181 210 208

OUnsorted 158 156 68 63 160 159 69 69 161 160 72 71 168 166 98 93

M Presorted [ Unsorted

Figure 5.5: k scaling experiment (Y -axis in sec.).

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



5.3.4 Interpretation of Results 105

5.3.4 Interpretation of Results

Exploring why the application of the Plane-sweep algorithms on unsorted reference data
is significantly more efficient, we observed that, when the reference dataset is presorted,
each partition contains points that fall within a limited z-range and in case the query point
under examination is on the right side of this partition regarding z-dimension, most of the
reference points of this partition will likely replace points already included in the current set
of k-NNs for this query point (Fig. B.g left), since partitions are loaded from left to right
and previous partitions examined were less x-close to this query point. However, when the
reference dataset is unsorted, each partition contains points that cover a wide x-range and it
is likely that many of the reference points of this partition will be rejected by comparing their

z-distance to the distance of the k-th NN found so far (Fig. 5.4 right).

5.4 Conclusions

In this chapter, we presented the first GPU-based algorithms for parallel processing the
k-NN query on reference data stored on SSDs, utilizing the Brute-force and Plane-sweep
techniques. These algorithms exploit the numerous GPU cores, utilize the device memory as
much as possible and take advantage of the speed and storage capacity of SSDs, thus pro-
cessing efficiently big reference datasets. Through an experimental evaluation on synthetic
datasets, we highlighted that Plane-sweep on unsorted reference data (with either an array
or a max-Heap buffer for organizing the current £-NNs) is a clear performance winner. The

algorithms documented in this chapter were presented in [90].

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



106 Chapter 5. k—NN Query Processing with GPU and SSD

Reference Dataset Buffer
. o . . . o . .

Legend
Query Point
Reference Point currently processed

O Reference Point currently added to buffer

@ Reference Point added to buffer in previous step
Reference Point removed from buffer

Processed reference point in previous steps

Presorted dataset - Buffer usage

Presorted Dataset Total Buffer Transfers
18
total 41

Reference Dataset
Ld L e L[] Y . e e

Legend
Query Point
Reference Point currently processed

O Reference Point currently added to buffer

@ Reference Point added to buffer in previous step
Reference Point removed from buffer

Processed reference point in previous steps

Unsorted dataset - Buffer usage

Unsorted Dataset Total Buffer Transfers

total 15

Figure 5.6: Presorted versus unsorted reference dataset buffer update.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



Chapter 6

k—NN Query Processing with IoT Edge
Devices and SSD

Edge computing is a distributed computing paradigm bringing computation and data stor-
age as close to the source of data as possible. Its target is to improve performance by avoiding
transferring data over a (possibly long-distance) network. Since a dataset may be rather big,
instead of transferring it as a whole from the network’s edge (e.g., the data collection point) to
a centralized or cloud-based location for processing a demanding query, this rather limited-
size query is transferred to a device at the network’s edge. Then, this device processes this
query on its locally stored data and transfers back only the rather limited-size result to the
coordinating machine.

Modern applications utilize big spatial data which are collected from distant network
edges. Processing of these data is demanding and the use of parallel processing plays a crucial
role. Parallelism based on GPU devices is gaining popularity during last years [72].

A GPU device can host a very large number of threads accessing the same device mem-
ory. In most cases, GPU devices have much larger numbers of processing cores than CPUs
and faster device memory than main memory accessed by CPUs, thus, providing higher com-
puting power. GPU devices that have general computing capabilities appear in many modern
commodity desktop and laptop computers. Therefore, GPU-devices can be widely used to
efficiently compute demanding queries.

In [8], we presented a new in-memory GPU-based algorithm for the k-NN query, using
the CUDA run-time API [73]. This algorithm takes advantage of symmetrical partitioning, to
efficiently compute the k-NN of all query points. Moreover, it utilizes a k-NN list buffer to

107

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



108 Chapter 6. k—NN Query Processing with loT Edge Devices and SSD

avoid distance sorting of big datasets (resulting to expensive computations) and to store only &
candidates for each query point (saving device memory). Through extensive experimentation,
this algorithm was shown to outperform existing ones, in terms of execution time as well as
total volume of in-memory reference points that can be handled.

Since GPU device memory is expensive, it is very important to take advantage of this
memory as much as possible and scale-up to larger datasets. However, since device and/or
main memory may not be able to host an entire, rather big, reference dataset, storing this
dataset in a fast secondary device, like a Solid State Disk (SSD) is, in many practical cases,
a feasible solution.

Considering the above scenery of large amounts of data being collected from distant lo-
cations, the need for storing these data in fast secondary devices and, at the same time, for
processing demanding queries from them and the processing benefits GPU-enabled devices

can offer, in this chapter:

* We propose an architecture of a distributed edge-computing environment where large-
scale processing of the k-NN query can be accomplished by executing an efficient
algorithm for processing the £-NN query on the GPU and SSD enabled edge nodes of

this environment.

» We propose a new algorithm for this purpose, a GPU-based partitioning algorithm for
processing the k-NN query on big reference data stored on SSDs. This algorithm ex-
tends the algorithm of [§], which utilizes memory resident data only. Moreover, it stores
the candidate neighbors of each query point in an array-based distance list buffer, while
the algorithm proposed in this chapter has two variations, one which uses the same
buffer as [8] and another which uses a max-Heap distance list buffer (as proposed

in [89,0]).

* We implement this algorithm in a GPU-enabled edge-computing device, hosting ref-
erence data on an SSD. We have chosen a popular such device, NVIDIA Jetson Nano
(https://developer.nvidia.com/embedded/jetson-nano-deve
loper-kit). It is an IoT device specialized for edge computing. It is vastly used
by professional developers to create breakthrough Al products across all industries.
It features CPU-GPU heterogeneous architecture where CPU can boot the OS and

the CUDA-capable GPU can be quickly programmed to accelerate complex machine-

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14


https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit

6.1 Related Work and Motivation 109

learning tasks [[101].

 Using synthetic datasets, we present an extensive experimental performance compar-
ison of the new algorithm against two existing ones proposed by other researchers
for GPU-based processing of the query under study on memory-resident data and two
existing ones recently proposed by us in [90] for GPU-based processing of the same
query on disk resident data. Our algorithms in [90] are the first GPU-based ones for
processing the k£-NN query for big reference data stored on SSDs and each of them has
a variation which stores the candidate neighbors of each query point in an array-based
distance list buffer and another one which uses a max-Heap distance list buffer for the

same purpose. The results show that our new algorithm outperforms all its competitors.

The rest of this chapter is organized as follows. In Section .1, we review related material
and present the motivation for our work, while in Section [6.2 we present our proposal of the
distributed edge-computing environment architecture for processing queries like the £-NN
one. Next, in Section 6.3, we briefly present the algorithms of [90], present the new algo-
rithm that we developed for the £-NN GPU-based processing and the two buffering methods
utilized by all three algorithms. In Section .4, we present the experimental study that we
performed for analyzing the performance of our algorithm and for comparing it to algorithms
by other researchers and the algorithms presented in [90]. Finally, in Section 5.3, we present

the conclusions arising from our work and discuss our future plans.

6.1 Related Work and Motivation

A recent trend in the research for parallelization of nearest neighbor search is to use GPUs.
Parallel £-NN algorithms on GPUs can be usually implemented by employing a Brute-Force

methods or by using Space Subdivision techniques.

6.1.1 Brute-Force Techniques

k-NN on GPUs using a Brute-Force method applies a two-stage scheme: (1) the com-
putation of distances and (2) the selection of the nearest neighbors by using sorting algo-
rithms [[102]. For the first stage, a distance matrix is built grouping the distance array to each

query point. In the second stage, several selections are performed in parallel on the different

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



110 Chapter 6. k—NN Query Processing with loT Edge Devices and SSD

rows of the matrix. In the last decade, many Brute-Force approaches have been proposed in

the literature, and the most representative ones are briefly reviewed in the following.

[[103] was one of the first approaches to implement a Brute-Force £-NN algorithm on
GPUs, highlighting two important characteristics: (1) each thread computes the distance be-
tween a given query point and a reference point, and (2) each thread sorts, by using an inser-

tion sort algorithm, all the distances computed for a given query point.

In [[74], the distance matrix is split into blocks of rows and each matrix row is sorted using
radix sort method, obtaining a performance more than 10x faster than the sequential counter-

part. Moreover, the authors used a segmentation method for pair-wise distance computations.

[76] proposed the CUKNN algorithm, a CUDA based parallel implementation of £-NN. It
used the same approach as [[103] and [[74] to compute the distance matrix. But for the selection
phase, a local £-NN for each block of threads is computed, then merging and sorting them in

order to obtain a global k-NN.
In [75], an improved GPU-based approach by using the CUBLAS (CUDA Basic Lin-

ear Algebra Subroutines) API is proposed for a faster Brute-Force k-NN parallelization to
efficiently calculate a distance matrix. A modified version of the insertion sort algorithm

proposed in [[103] is applied when each column of the distance matrix is sorted.

In [81], a GPU heap-based algorithm (called Batch Heap-Reduction) is presented, which
achieves a better performance than the sorting-based GPU-Quicksort algorithms. The Batch
Heap-Reduction algorithm uses a heap for each thread of a CUDA Block, by means of a
three-step algorithm to obtain the final £-NN. First, the distance vector is evenly distributed
across the CUDA block threads. Each thread determines its own partial k-NN by the heap

sort algorithm. The other two stages implement the reduction of the partial heaps.

In [[78], the truncated sort algorithm is introduced in the selection phase for £-NN search.
For this sorting algorithm, elements are discarded from the sorting when it is clear that they
cannot belong to the smallest k. That is, the algorithm first locates the k-th element as a
threshold, then searches all the elements smaller than that threshold, followed by another
search to finish the k-list with elements equal to the threshold.

In [79], the GPU-FS-kNN algorithm is presented. It divides the computation of the dis-
tance matrix into smaller sub-matrices (squared chunks) in all dimensions in order to par-
allelize distance calculations and k-NN search over these chunks. Each chunk is computed

using a different kernel call, reusing the allocated GPU-memory. In selection phase, each

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



6.1.1 Brute-Force Techniques 111

chunk is processed with a modified version of the insertion sort algorithm.

[83] proposed a Brute-Force k-NN algorithm that is also suitable for several GPU de-
vices. The distance matrix is split into blocks of rows where each thread computes the dis-
tances for a matrix row. Then a max-heap is built for each query and parallel threads push new
candidates to the max-heap using atomic operations. Therefore, only smallest £ distances are

computed by heap sort algorithm in parallel on each thread in the thread block.

In [77], a hybrid parallelization approach for Brute-Force computation of multiple £-NN
queries on GPUs is proposed. For the matrix computation uses the [[74] and [[75] scheme, mod-
ifying the selection phase with a quicksort-based selection. An additional optimization was
implemented, using voting functions available on the latest GPUs along with user-controlled

cache.

In [85], a Brute-Force £-NN implementation is proposed by using a modified inner loop of
the SGEMM kernel in MAGMA library, a well-optimized open-source matrix multiplication
kernel. Besides, they search only k& smallest squared distances for each query by using the

merge-path function from the Modern GPU library and a truncated merge sort.

In [80], an incremental neighborhood computation scheme that eliminates the depen-
dencies between the dataset size and memory is presented. As a result, a new scalable and
memory efficient design for a GPU-based £-NN rule, called GPU-SME-kNN, is proposed.
It takes advantage of asynchronous memory transfers, making the data structures fit into the

available memory while delivering high run-time performance independently of the data size.

In [82], Brute-Force approaches to solving k-NN queries in GPUs on the selection sort,
quick sort and state-of-the-art heaps-based algorithms are proposed. Due to the fact that the
best approach depends on the £ value of the £-NN query, the authors also proposed a multi-
core algorithm to be used as reference for the experiments and a hybrid algorithm which
combines the proposed sorting algorithms.

In [[104], a Brute-Force parallel algorithm to solve £-NN queries on a multi-GPU platform
is presented. The proposed method is comprised of two stages, which first is based on pivots
using the value of & to reduce the search space, and the second one uses a set of heaps to

return the final results.
Some of these Brute-Force algorithms (like the ones of [75] and their improved imple-
mentations [87]) consume a lot of device memory, since a Cartesian product matrix, con-

taining the distances of reference points to the query points, is stored. In [88], two new al-

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



112 Chapter 6. k—NN Query Processing with loT Edge Devices and SSD

gorithms based on GPUs to process £-NN queries on spatial data are proposed, using the
Thrust library [72], that maximize device memory utilization. The first algorithm is based on
Brute Force scheme and the second one uses heuristics to minimize the reference points near

a query point.

6.1.2 Spatial Subdivision Techniques

Spatial subdivision is a well-known technique for improving the query performance used
in a variety of applications. There are many data structures that handle spatial subdivision
efficiently and, they can be used as GPU index-based data structures to find effective £-NN.
The most representative approaches of this category are briefly reviewed in the following.

kd-trees [[105] have been successfully used for nearest neighbor searching for long time.
For this reason, several variations of kd-trees have been implemented on GPUs. In [[106],
an algorithm for constructing kd-trees on GPUs is developed. The building process adopts
a top-down, breadth-first search order, starting from the root bounding box. The k£-NN im-
plementation is based on a range search on the tree (with a given radius), and it continues to
increase the size of the radius until k£ elements are retrieved. In [92], a buffer kd-tree for GPUs
is presented. The buffer kd-tree algorithm avoids several drawbacks of the GPU’s architec-
ture. In particular, the buffer refers to a query buffer located in every node of kd-tree, which
is used to delay the execution of queries by waiting for sufficient work to be accumulated
into a buffer before accessing leaf nodes. Each node in the buffer £d-tree corresponds to a
set of reference patterns. Therefore, a lazy nearest neighbor search schema is applied. The
algorithm also focuses on improving the fraction of coalesced memory accesses by having
threads within a warp access either consecutive or nearby memory addresses.

Locality Sensitive Hashing (LSH) [[107] was introduced as a solution to approximate near-
est neighbor problem. It is a hashing based indexing structure that clusters the data points
to the closer hash buckets by using multiple probabilistic hash functions and storing them
in different hash tables. Several contributions have been proposed for LSH-based similar-
ity searching algorithms using GPUs, and the most representative ones are [95,108], where
variants of LSH are built to develop an efficient GPU-based parallel LSH algorithm to per-
form approximate k-NN computation in high-dimensional spaces. The running times of these
approximate methods are competitive with existing Brute-Force implementations, but they

return approximate results. Another approximate £-NN approach is proposed in [[109], where

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



6.1.2  Spatial Subdivision Techniques 113

the idea of product quantization is extended. The algorithm also includes a parallelizable re-
ranking method for candidate vectors by efficiently reusing already computed intermediate

values that can be used in a parallel GPU implementation.

Efficient spatial indexing structures such as R-trees [[110] are promising in speeding up
such computing on GPUs; therefore, several papers have been proposed for this purpose.
The most significant one is [62], where parallel designs of bulk loading R-trees and several
parallel query processing techniques (range query) on GPUs using R-trees are implemented.
Moreover, in [94], a parallel bottom-up construction of SS-tree [[111] on GPUs is proposed.
And the develop a data parallel tree traversal algorithm, called Parallel Scan and Backtrack
(PSB), for k-NN query processing on the GPU. This algorithm traverses a SS-tree index
while avoiding warp divergence problems. In order to take advantage of accessing contiguous
memory blocks, the proposed PSB algorithm performs linear scanning of sibling leaf nodes,

which increases the chance to optimize the parallel algorithm.

In the context of a spatial index, a grid structure is a regular tessellation of a manifold that
divides the space into a series of contiguous cells, which can then be assigned unique iden-
tifiers and used for spatial indexing purposes. According to this subdivision of the space, a
GPU grid-based data structure is appropriate for massively parallel nearest neighbor searches
over dynamic point datasets. A key contribution is [93], where a grid-based indexing solu-
tion for 3-dimensional k-NN searches on the GPU is proposed. The £-NN algorithm works
as follows: for a given query point, the algorithm expands the number of grid cells searched
to ensure that at least k neighbors are found. That is, the algorithm uses a query-centric ap-
proach that expands the search radius when the number of found neighbors is less than k. The
proposed £-NN algorithm minimizes the memory transfer between device and system mem-
ories, improving overall performance. More recently, in [91]], the Adaptive Inverse Distance
Weighting (AIDW ) interpolation algorithm on GPU is presented, where a fast k-NN search

approach based on an even grid 1s used.

Effective spatial data partitioning [[112] is critical for task parallelization, load balancing,
and directly affects system performance. A proper spatial partitioning schema is essential
for optimal query performance and system efficiency for parallel spatial query processing.
Keeping this in mind, in [8], a new algorithm for the £-NN query processing in GPUs is pre-
sented. It implements a new GPU-based partitioning algorithm based on a sort-tile partition-

ing method for the k-NN query (called Symmetric Progression Partitioning, SPP), using the

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



114 Chapter 6. k—NN Query Processing with loT Edge Devices and SSD

CUDA runtime API, avoiding the calculation of distances for the whole dataset. Moreover,
this £-NN query algorithm maximizes the utilization of device memory (using KNN-DLB
buffer) and therefore permits larger reference datasets to take part in the processing of the
query. Thus, by processing only the necessary parts of the reference dataset and by executing
the whole process in the GPU device only, it minimizes execution speed. A thorough exper-
imental evaluation proved that the proposed algorithm, not only works faster than existing

methods, but also scales-up to much larger reference datasets.

6.1.3 Motivation

Flash-based Solid State Drives (SSDs) have been widely used as secondary storage in
database servers because of their improved characteristics compared to Hard Disk Drives
(HDDs) to manage large-scale datasets [96]. These characteristics include smaller size, lighter
weight, lower power consumption, better shock resistance, and faster reads and writes. In fact,
in the recent years, SSD storage devices, based on NAND flash technology, started replac-
ing magnetic disks due to their appealing characteristics: high throughput/low latency, shock
resistance, absence of mechanical parts and low power consumption. In these secondary de-
vices, read operations are faster than writes, while difference exist among the speeds of se-
quential and random I/Os as well. Moreover, the high degree of internal parallelism of latest
SSDs substantially contributes to the improvement of I/O performance [50].

In this chapter, we significantly extend our work in [§8] adapting it to reference data stored
on SSD storage. We present a new algorithm, called “Disk Symmetric Progression Partition-
ing” (Section [6.3.3)), which has two variations, depending on the list-buffer structure used
for storing nearest neighbors of each query point: either an array based list buffer (Section
#.2.9), as in [8], or a max-Heap based buffer (Section #.2.6), as in [89]. To the best of our
knowledge, our recent paper [90] and [|113] are the first ones to deal with GPU processing of
the £-NN query on SSD-resident data.

Edge computing devices are based on ultra-low-power solutions, and they are designed
with a higher computational power relying on heterogeneous processors. As we can see
above, many articles in the literature have discussed parallel versions of k-NN on GPUs
of typical (non-edge) computing devices.

In this chapter, we present a distributed architecture embedding nodes performing edge-

based query processing. We also apply the variations of our new algorithm to an edge com-

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



6.2 Edge Computing with loT Distributed Architecture 115

puting device (NVIDIA Jetson Nano) which can be used within such an architecture and
compare it against existing algorithms of other researchers ( [87,91]) and algorithms devel-
oped by us ( [90]). None of the methods by previous researchers used disk-resident data, so

we chose two rather recent ones which could be adapted to loading their dataset from disk.

To the best of our knowledge, our work is the first effort investigating the potentials and
the possibilities of the modern edge computing devices (like NVIDIA Jetson Nano) in the
context of performing £-NN algorithms with big spatial datasets stored in SSD storage de-
vices. The most closely related works, using the NVIDIA Jetson Nano as edge device to study
its performance in the solution of problems different to the one we study and without utiliz-
ing a fast secondary device for big data storage, are: [114], where an evaluation of clustering
algorithms on GPU-based modern edge computing platforms is presented; [115,116], where
the computational capability of up-to-date accelerator-based edge devices in the context of
scientific computing is evaluated; and [117], where a deep learning benchmark on the latest

GPU-accelerated edge devices to measure its performance is proposed.

6.2 Edge Computing with IoT Distributed Architecture

If the data to be processed is too large to be handled in a centralized system, a distributed
computing environment could be utilized. In most cases, a cluster of computers intercon-
nected through a fast LAN could handle data which are larger by orders of magnitude. When
dealing with IoT a fast network connection is not a feasible option. [oTs are remotely deployed
and the interconnection network is slow. For example, in agricultural field deployments the
[oTs are equipped with a multitude of sensors and deliver their raw data to a gateway, through
wireless networks like Lora, Teensy, XBee, Beaglebone and others. The data is stored in
the gateway device and then transmitted to a remote database through an API or a MQTT
technology. In this context, the gateways are responsible for delivering all the data occasion-
ally with missing values (network unavailability or power downs). Furthermore, most of the
transmitted data will be poorly or maybe never processed by an analysis service. It will not be
processed because the density of the data is excessive (usually an aggregate or an approxima-
tion of the data is needed) or it will never be queried. It makes sense, for the aforementioned
reasons and when the data is not so critical, the raw sensor data not to be transmitted to the

remote database. Due to the nature of the queries studied, the related algorithms can be easily

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



116 Chapter 6. k—NN Query Processing with loT Edge Devices and SSD

applied in such a distributed setting. If data is distributed among edge computing nodes (the
gateways), each node can compute the query result for its local data, stored on SSD. The
query batch would be transmitted to every remote node, which would compute the answer
based on its own data, and the results from all nodes would be sent to and merged by an An-
alytics Server acting as a coordinator of query processing. This is possible, since the answer
of queries like the one we study for a node is independent to the answers for other nodes. An
architecture that makes such processing possible is presented in Fig. p.1. The application of
this architecture can be done in agricultural fields deployments, where we collect agricultural
and meteorological data.

Furthermore, this approach will work efficiency because the data are not blindly dis-
tributed among nodes. Each node keeps data that are spatially close, even in case partial
intersection between the areas covered by nodes is allowed.

As shown in Fig. b.1], on the client side, a request of a batch k-NN query is transferred to
the Web Server. The Web Server parses the request and requests a k-NN query result from the
Analytics Server. The Analytics Server requests the query results from every edge computing
node, in parallel way. The query results are accumulated and merged in the Analytics Server.
The Analytics Server is equipped with a GPU and computes in the GPU device the final

result. The query results are transferred to the Web Server and the client request is served.

Web Clients Web Server Analytics Server Edge Computing loT Devices

E,\ /Q
- @l —o
S

— \®

Web Local Network Remote Network Wireless Field Network

Figure 6.1: Edge Computing Architecture.

To achieve this interoperability, appropriate APIs should be developed. The Edge Com-

puting nodes can be integrated with a Node.js instance which can serve such requests. Another

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



6.3 k—NN Disk Algorithms 117

possible integration for the back-end can be Ballerina.io, which is a cloud native development
language.

In the rest of the chapter, we present our proposal for an efficient £-NN algorithm to be
executed in the edge computing nodes of such a distributed architecture, taking advantage

both of SSD storage and multiple GPU cores, to accelerate spatial query processing.

6.3 k—NN Disk Algorithms

A common practice to handle big data is data partitioning. In order to describe our new
algorithms, we should firstly present the mechanism of data partition transfers to device mem-
ory. This step is identical in all our methods. Each reference dataset is partitioned in N parti-
tions containing an equal number of reference points. If the total number of reference points
is not divided exactly with N, the Nth partition contains the remainder of the division. Ini-
tially the host (the computing machine hosting the GPU device) reads a partition from Sspl
and loads it into the host memory. The host copies the in-memory partition data into the GPU
device memory (the whole process is outlined in Fig. [6.2).

Another common approach in all our four methods is the GPU thread dispatching. Every
query point is assigned to a GPU thread. The GPU device starts the £-NN calculation simul-
taneously for all threads. If the number of query points is bigger than the total available GPU
threads, then the execution progresses whenever a block of threads finishes the previously
assigned query points calculation. The thread dispatching consists of the following four main

steps (also depicted in Fig. #.3):
1. The kernel function requests N threads.
2. The requested N threads are assigned to N query points.

3. Every thread carries out the calculation of reference point distances to its query point
and updates the k-NN buffer holding the current (and eventually the final) nearest

neighbors of this point.

'Reading from SSD is accomplished by read operations of large sequences of consecutive pages, exploiting
the internal parallelism of SSDs, although our experiments showed that reading from SSD does not contribute

significantly to the performance cost of our algorithms.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



118 Chapter 6. k—NN Query Processing with loT Edge Devices and SSD

Partition 2 Partition 3 Partition N

Read
Partition 3

Calculate
kNN

kNN Buffer

Figure 6.2: Datafile partitioning and loading of partitions into device’s memory.

4. The final £-NN list produced by each algorithm is populated with the results of all the
query points.

In the next sections, we will briefly describe two of our existing methods and in detail
a new one we developed. The two existing methods are based on “Disk Brute-force” and
“Disk Plane-sweep” [90]. The new one is based on the “Symmetric Progression Partitioning
Algorithm” [8]. For all methods we have two implementations of k-NN buffer variations

resulting to a total of four existing methods and two new ones (algorithmic variations).

6.3.1 Disk Brute-force Algorithm

The Disk Brute-force algorithm (denoted by DBF) [90] is a Brute-force algorithm en-
hanced with capability to read SSD-resident data. Brute-force algorithms are highly efficient
when executed in parallel. The algorithm accepts as inputs a reference dataset R consisting
of m reference points R = {ry,rs,r3..r,,} in 3d space and a dataset ) of n query points
Q = {q1,92,q3..q,} also in 3d space. The host reads the query dataset and transfers it in
the device memory. The reference dataset is partitioned in equally sized bins and each bin is
transferred to the device memory. For each partition, we apply the k-NN Brute-force com-

putations for each of the threads.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



6.3.2 Disk Plane-sweep Algorithm 119

For every reference point within the loaded partition, we calculate the Euclidean distance
to the query point of the current thread. Every calculated distance is compared to the current
thread maximum distance and if it is smaller we add it to the £-NN list buffer. We will use
and compare two alternative k-NN buffer implementations, presented in Sections and

A
a2 0.

6.3.2 Disk Plane-sweep Algorithm

An important improvement for join queries is the use of the Plane-sweep technique, which
is presented in Section [5.2.2.

Like DBF, DPS accepts as inputs a reference dataset R consisting of m reference points
R = {ry,re,rs..ry} in 3d space and a dataset ) of n query points @ = {q1, 42, 3--Gn }
also in 3d space. The host reads the query dataset and transfers it in the device memory. The
reference dataset is partitioned in equally sized bins, each bin is transferred to the device
memory and sorted by the z-values of its reference points. For each partition we apply the

k-NN Plane-sweep technique.

6.3.3 Disk Symmetric Progression Partitioning

We designed and implemented the novel method “Disk Symmetric Progression Partition-
ing” [[113[], denoted as DSPP. DSPP is enhanced with the capability to read SSD-resident big
data. The DSPP algorithm is using partitioning in both the host and the GPU device. The
first level partitioning is taking place in the host, when reading data from the SSD-resident
datasets, as we discussed in Section .3. The second level partitioning is taking place in the
device memory and is essential for the DSPP execution. We will document in detail the usage
of the two distinct levels of partitioning later in this section.

Like DBF and DPS, DSPP accepts as inputs a reference dataset R consisting of m ref-
erence points R = {ry,re,r3..r,} in 3d space and a dataset ) of n query points @) =
{q1, 42, q3..q,} also in 3d space. The host reads the whole query dataset and transfers it in
the device memory. The reference dataset is partitioned in equally sized bins (first level par-
tition). Each partition is transferred to the device memory and sorted by the x-values of its
reference points (Alg. [12). The host fetches back the sorted partition from the device in order
to further partition it, into smaller sub-partitions (second level partition), and prepare the sub-

partition index data for the SPP execution. This second partitioning will be taking place in the

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



120 Chapter 6. k—NN Query Processing with loT Edge Devices and SSD

device memory and further accelerates the £-NN process, as we will prove experimentally.

The host process, as a last step, executes the device kernel program.

Algorithm 12 DSPP Host algorithm

Input: NN cardinality=K, Reference filename=RF, Query filename=QF, Partition size=S, sub-Partition cardinality=CB
Output: Host k-NN Buffer=HostK NNBufferVector

© 0 U A WN —

O T =
B2

15:

16:
17:

18:

: HostQueryVector < readFile(QF);

. queryPoints <— HostQuery Vector.size();

. DeviceQueryVector <— HostQuery Vector;

. createEmptyHostVector(HostKNNBuffer Vector,queryPoints*K);
: DeviceKNNBufferVector <— HostKNNBufferVector;

. subPartitionPoints < S/CB;

. while not end-of-file RF do

HostReferencePartition <— readPartition(RF,S);

DeviceReferencePartition <— HostReferencePartition;
cudaSort(DeviceReferencePartition);
HostReferencePartition <— DeviceReferencePartition;
HostReferencePartitionIndex.clear();
HostReferencePartitionIndex.add(0,HostReferencePartition[0].x);
for i=0 to CB-1 do

HostReferencePartitionIndex.add(HostReferencePartition[i*subPartitionPoints].x,
HostReferencePartition[(i+1)*subPartitionPoints].x);
DeviceReferencePartitionIndex <— HostReferencePartitionIndex;
runKNN < < <(queryPoints-1)/256 +1, 256> > >(DeviceReferencePartition,
DeviceQuery Vector,DeviceKNNBufferVector,K,DeviceReferencePartitionIndex); // 256 cores

HostKNNBufferVector < DeviceKNNBufferVector;

From the device scope, every query point is assigned to a GPU thread. The GPU starts the

k-NN calculation simultaneously for all threads. If the number of query points is bigger than

the total available GPU threads, then the execution progresses whenever a block of threads

finish the previously assigned query points calculation. For every partition the host reads, our

algorithm processes 4 main steps (Fig. #.3):

1. The kernel function requests N threads

2. The requested N threads are assigned to N query points

3. Every thread carries out the calculation of DSPP

4. The k-NN list is populated with the results of all the query points

The in-device-memory partitioning technique we are using, partitions the dataset in equally

sized sub-partitions throughout the X-axis. DSPP searches for £-NN, traversing the partition

index (Alg. [13)), that the host provided, and checks if its bounding box contains the query

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



6.4 Experimental Study 121

point (sub-partition number 5, in our example, Fig. #.4). If k-NN are not found the thread
searches for £-NN in the next closest sub-partition (sub-partition 6). Similarly, the process
continues until all reference points are processed. In Fig. #.4 we search for 20 nearest neigh-
bors. We processed 7 out of 10 partitions and found the k-NN. Sub-partitions 1, 9 and 10

were excluded because the 20 nearest neighbors were already found.

Algorithm 13 DSPP Device Kernel algorithm (runKNN)

Input: NN cardinality=K, Partition Reference array=R, Query array=Q, Partition size=S,

Device Partition Index=DeviceReferencePartitionIndex
Output: Device k-NN Buffer array=DKB
: qldx < blockldx.x*blockDim.x+threadldx.x;
. knnBufferOffest <— qldx*K;
. for currentPartition <— 0 to DeviceReferencePartitionIndex.size()-1 do

if DeviceReferencePartitionIndex[currentPartition].right-X-Limit<Q[qldx].x then break;

. if currentPartition < DeviceReferencePartitionIndex.size()-1 then currentPartition- -;

. while maxdistance>Q[qldx].x-DeviceReferencePartitionIndex[currentPartition].left-X-Limit or

maxdistance >DeviceReferencePartitionIndex[currentPartition].right-X-Limit-Q[qldx].x do

7: idx1 < currentPartition * R.size();
8 idx2 < (currentPartition+1) * R.size();
: for i < idx1 to idx2-1 do
10: dist + /(R[i].x — Q[qldz].2)? + (R[i].y — Qlqldx].y)2 + (R[i].z — Q[qIdx].2)2
11: insertIntoBuffer(DKB, knnBufferOffest,i,qldx,dist);
12: currentPartition <— FindNextClosestPartition;

The host algorithm continuous to read partitions from the reference dataset, process them
and execute the device kernel, until the reference dataset is fully read. Every kernel execution,
merges into the k-NN buffer list the calculated distances that are shorter than the maximum

current ones and produces the final £-NNs upon read reference data completion.

6.4 Experimental Study

We run a large set of experiments to compare the repetitive application of our SSD-
resident data algorithms for processing batch k-NN queries. We performed two kinds of ex-
periments. First, we compared to existing methods by other researchers (working on memory-
resident data) and to methods recently proposed by us (working on SSD-resident data). Next,
we performed scaling experiments of our existing and new methods. The scaling experiments
query at least SM reference points. We did not include less than SM reference points because
we target reference datasets that do not fit in the GPU device memory. We experimentally

found that the largest dataset that we could fit in device memory is about 1M reference points.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



122 Chapter 6. k—NN Query Processing with loT Edge Devices and SSD

The numeric accuracy for storing point data, is double precision (Alg. [14). Another parameter
that we evaluated is the list buffer performance and we will highlight the pros and cons of

using KNN-DLB or max Heap buffer.

Algorithm 14 Point Structure

// Point record structure, used in reference datasets. Record size 32 bytes

1: record point_struct begin

2:id, // Point ID, 8 bytes

3: X, Y, Z // Coordinates of 3D space, 8 bytes per dimension
4: end;

All the datasets were created using the SpiderWeb [99, 100] generator. This generator
allows users to choose from a wide range of widely accepted spatial data distributions and
configure the cardinality of the data and the distribution parameters. This generator has been
successfully used in existing research to evaluate index construction, query processing, spa-
tial partitioning, and cost model verification, as reported in [[100]. While some real spatial
datasets are available in repositories and they can be used for testing the performance of
spatial algorithms, researchers also need to have full control of the parameters of data and
improve the reproducibility of experiments.

Table 6.1 lists all the generated datasets, that will be used in the existing methods compar-
ison experiments. For the reference dataset we created six datasets using the “Bit” distribution
(Fig. b.3), with file sizes ranging from 312KB to 3.125KB. The reference points cardinality
ranges from 10K points to 100K points. For the query points dataset we created one “Gaus-
sian” dataset of 2K points.

Table lists all the generated datasets, that will be used in scaling experiments of our
methods. For the reference dataset we created four datasets using the “Bit” distribution (Fig.
[7.3), with file sizes ranging from 153MB to 611MB. The reference points cardinality ranges
from 5M points to 20M points. For the query points dataset we created one “Uniform” dataset
of 10 points and five “Gaussian” datasets ranging from 10K to 50K points.

All experiments were performed on a NVIDIA Jetson Nano. This device is running Ubuntu
18.04 and is equipped with a Quad-core ARM A57 cpu at 1.43 GHz and 4 GB 64-bit LPDDR4
of main memory. The operating system is installed on a 32GB microSD. The experiment
datasets are stored on a USB-3 external 500GB Samsung 860 EVO SSD. Jetson nano’s GPU
microarchitecture is based on the MAXWELL model, which is the successor to the Kepler

microarchitecture, and is armed with 128 CUDA cores.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



6.4 Experimental Study 123

Distribution Cardinality Seed Binary File Size Usage

Bit 10K 1 312KB Reference Dataset
Bit 20K 2 625KB Reference Dataset
Bit 30K 3 937KB Reference Dataset
Bit 40K 4 1250KB  Reference Dataset
Bit 50K 3 1562KB  Reference Dataset
Bit 100K 4 3125KB Reference Dataset
Gaussian 2K 6 62KB  Query Dataset

Table 6.1: SpiderWeb Dataset generator parameters, for the existing algorithms comparison

experiment.

Figure 6.3: Experimental data distributions, Blue=Uniform, Red=Gaussian, Green=Bit.

We run experiments to compare the performance of multiple k-NN queries, regarding
execution time as well as memory utilization. We tested our three algorithms (two presented
in [90] and a new one, presented in this chapter) in two variations each (depending on the
list-buffer structure used for storing nearest neighbors of each query point). The list of our

algorithms tested is as follows:
1. DBF [90], Disk Brute Force using KNN-DLB buffer.
2. DBF Heap [90], Disk Brute Force using max Heap bufter.
3. DPS [90], Plane Sweep using KNN-DLB buffer.
4. DPS Heap [90], Plane Sweep using max Heap buffer.
5. DSPP, Symmetric Progression Partitioning using KNN-DLB buffer.

6. DSPP Heap, Symmetric Progression Partitioning max Heap buffer.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



124 Chapter 6. k—NN Query Processing with loT Edge Devices and SSD

Distribution Cardinality Seed Binary File Size Usage

Bit M 1 153MB  Reference Dataset
Bit 10M 2 306MB Reference Dataset
Bit 15M 3 458MB Reference Dataset
Bit 20M 4 611MB Reference Dataset
Uniform 10 5 32B  Query Dataset
Gaussian 10K 6 320KB  Query Dataset
Gaussian 20K 7 640KB  Query Dataset
Gaussian 30K 8 960KB Query Dataset
Gaussian 40K 9 1,3MB  Query Dataset
Gaussian 50K 10 1,6MB  Query Dataset

Table 6.2: SpiderWeb Dataset generator parameters, for the new methods scaling experi-

ments.

In order to compare our methods’ performance, we will compare them with existing in-
memory ones. This is because, apart from the methods of [90], to the best of our knowledge
there are not any other methods in the literature to address the £-NN query, using SSD-
resident data.

We slightly altered the code of the following existing methods, in order to load data from
disk:

1. Garcia CPU BF [87], Brute Force algorithm using only the CPU.
2. Garcia GPU BF [87], Brute Force algorithm using the GPU.

3. AIDW [91]], Fast k-NN search used for Adaptive Inverse Distance Weighting (AIDW)

interpolation algorithm.

Garcia CPU BF was included only for showing the advantage of using a GPU against a CPU.

6.4.1 Comparison to existing methods

In our first series of experiments, we are comparing existing in-memory methods of other
researchers (Garcia CPU BF, Garcia GPU BF and AIDW) against four existing of our own
(DBF, DBF Heap, DPS, DPS Heap) and two new ones (DSPP and DSPP Heap). We aim

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



6.4.1 Comparison to existing methods 125

to test all methods under the same conditions. Having this in mind, we altered the code of
existing methods by other researchers in the data load part only. The code added to these
methods is using exactly the same disk read calls that we are using in our methods. This way
we are using the same file structure and exactly the same data files for all methods. The data
loading overhead of the existing methods of other researchers was measured and was found
to be almost negligible when compared to the algorithm execution part. The total execution
time for each of the existing methods of other researchers is calculated by adding the data load

overhead to the algorithm execution time. Data loading is an integral part of our methods.

The existing methods of other researchers are designed for in-memory execution. This
design radically affects the data volume we can experiment on. The maximum reference
points volume we could test was 100K points, because volumes larger than 100K resulted in
memory allocation errors. Under these restrictions, the comparison against existing methods
of other researchers will be conducted for reference point volumes starting from 10K and
scaling up to a maximum of 100K points. The maximum attainable query points volume is
2K. The maximum reference and query points volumes were experimentally found so that the
same test was successfully executed by all methods. We used the “Bit” distribution synthetic

datasets for the reference points and the “Gaussian” distribution for the query dataset.

In Fig. 6.4, we depict the results of the first series of experiments. We observe that in all
reference point volumes the Garcia CPU BF method is the slowest one. This is to be expected,
because this method is executed in the host CPU using only one thread. This results to higher
execution times and this is also the main reason we are using a logarithmic Y -axis scale, just

to produce an easily readable chart.

In the rest of this section we will continue by comparing the results of the GPU-based
methods only. In Fig. we depict the execution time gain of each such algorithm against
one (denoted in each relevant figure) which is considered the comparison baseline (for each
reference dataset volume, we divide the execution time of the baseline method (which is the
slowest method) by the execution time of each of the other algorithms). Starting from the
smallest reference points volume (10K) we observe that the fastest method is DSPP with
0.064 seconds, achieving the fastest execution time in our comparison experiment. DSPP
heap follows with a slightly slower time of 0.081 seconds, DPS Heap with 0.093 seconds,
DPS with 0.096 seconds, DBF Heap with 0.140 seconds, DBF with 0.177 seconds, AIDW
with 0.242 and the slowest one is Garcia GPU BF with 0.625 seconds. As a result DSPP is

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



126 Chapter 6. k—NN Query Processing with loT Edge Devices and SSD

Method Comparison - Reference Points Scaling

100.000
10.000
1.000 3
)
)
o~
) 3 3 N \
0.100 3 3 3 § 3 S
o o o, § w, I
o o o, § ", S
W - o, § o, I
W o o, o, S
0.010 Garcia GPU ) ) )
Garcia CPU BF arc'BaF AIDW GPU DBF DBF Heap DPS DPS Heap DSPP DSPP Heap
m 10K 2215 0.625 0.242 0.177 0.140 0.096 0.093 0.064 0.081
m20K 4.414 0.946 0.303 0.251 0.181 0.176 0.179 0.088 0.105
30K 6.701 1.286 0.367 0.354 0.248 0.271 0.265 0.111 0.128
40K 9.128 1.633 0.421 0.441 0.337 0.375 0.349 0.159 0.157
250K 12.004 2.068 0.484 0.434 0.401 0.413 0.436 0.182 0.176
100K 26.605 4.460 0.875 0.890 0.831 0.814 0.801 0.300 0.274

Figure 6.4: Experiment Comparison. All values are measured in seconds. The Y axis is in

logarithmic scale.

about 9.7 times faster than the Garcia GPU BF method (baseline one).

Methods gain, base method "Garcia GPU BF"

18.00
16.00 ]
14.00 =
12.00
10.00
8.00
6.00
4.00 _ H =
e e DE HE E
AIDW GPU DBF DBF Heap DPS DPS Heap DSPP Heap
W 10K 2.58 3.53 4.48 6.52 6.70 9.74 7.73
[M20K 3.12 3.77 5.22 5.39 5.28 10.78 9.05
30K 3.51 3.64 5.18 4.74 4.85 11.61 10.07
= 40K 3.88 3.71 4.84 4.36 4.67 10.27 10.42
= 50K 4.27 4.76 5.16 5.00 4.75 11.37 11.73
100K 5.10 5.01 5.37 5.48 5.57 14.84 16.27

Figure 6.5: Experiment Comparison, base method DBF.

When experimenting on larger reference point volumes, we observe analogous execution
characteristics. DSPP Heap is the fastest method and DSPP follows closely. For the largest
reference points experiment at 100K points, the execution times are 0.274 seconds for DSPP
Heap, 0.300 seconds for DSPP, 0.801 seconds for DPS Heap, 0.814 seconds for DPS, 0.831
seconds for DBF Heap, 0875 seconds for AIDW GPU, 0.890 for DBF and 4.460 seconds for

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



6.4.2 Reference dataset scaling 127

Garcia GPU BF. DSPP Heap is much faster than the other methods, resulting to a 16.27 gain
(times faster) when compared to the Garcia GPU BF method.

DSPP is executing faster than the other methods, primarily because of the second level
partitioning that is implemented in the device memory. By using this kind of partitioning,
the query points are firstly compared to one partition at a time and in case the query point
is within the desired range the process continues inside this partition and calculates all the
reference point distances. On the contrary, in the other methods the query points distance is

calculated directly upon reference points, resulting to slower performance.

6.4.2 Reference dataset scaling

In our second series of experiments, we used the “Bit” distribution synthetic datasets for
the reference points. The size of the reference point dataset ranged from 5M points to 20M
points. Furthermore, we used a small query dataset of 10 points, with “Uniform” distribution
and a relatively small k value, 10, in order to focus only on the reference dataset scaling.

In Fig. .6, we can see the presorted dataset results in blue and the unsorted dataset results
in stripped yellow. In the presorted experiment, for the SM dataset the execution time is 4.34
seconds for DBF, 3.88 second for DBF Heap, 6.51 for DPS, 6.21 seconds for DPS Heap,
1.47 seconds for DSPP and 1.58 for DSPP Heap. The execution times scale analogously
to the reference dataset size. As expected, we get the slowest execution times for the 20M
dataset, 16.74 seconds for DBF, 16.20 for DBF Heap, 25.05 seconds for DPS, 24.03 seconds
for DPS Heap, 5.58 seconds for DSPP and 5.32 for DSPP Heap.

Reference Scaling
30

25
20
15

10

Z|H|ﬂlnlﬂ.ﬂ.ﬂ|ﬂ|ﬂ‘ﬂ‘ﬂ.ﬂ.ﬂ NEFALAY

DBF '_I‘DeBan DPS :'D;Sp Dspp EZEZ DBF HDein DPS bPs DsppP Ezzi DBF '_?eBan DPS HD;Sp DsppP SZ:'; DBF '_I‘):;Fp DPS '_?;Sp DSpPpP Ezzi
M 5M M 5M M 5M 10M 10M 10M 5m 15M 5m 15M 15m 15M 2om 20M 20Mm 20M 20Mm 20M
HPresorted 4.34 3.88 6.51 6.21 1.47 1.58 8.64 851 1294 12.61 2.84 2.76 12.59 12.36 18.76 18.47 4.11 4.07 16.74 16.20 25.05 24.03 5.58 5.32

BUnsorted 547 4.26 236 237 208 223 868 850 4.65 438 436 4.13 12.66 11.92 6.83 6.51 6.53 6.13 16.92 16.33 8.49 8.19 851 7.94

M Presorted [ Unsorted

Figure 6.6: Reference scaling experiment (Y -axis in seconds).

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



128 Chapter 6. k—NN Query Processing with loT Edge Devices and SSD

In the unsorted dataset experiments, we observe that execution times are smaller than the
presorted ones, for the Plane-sweep methods. The execution of DBF methods is about the
same and for DSPP are slightly slower. For the 5M unsorted dataset, the execution time for
DBF is 5.47 seconds, for DBF Heap is 4.26 seconds, for DPS 2.36 seconds, 2.37 seconds
for DPS Heap, 2.08 from DSPP and 2.23 seconds for DSPP Heap. Once again, the execution
times scale analogously to the reference dataset size. For the 20M unsorted dataset, we get
16.92 seconds for DBF, 16.33 seconds for DBF Heap, 8.49 seconds for DPS,8.19 seconds for
DPS Heap, 8.51 seconds for DSPP and 7.94 for DSPP Heap.

The reference dataset scaling experiments reveal DPS methods performed better for the
unsorted dataset. For the unsorted dataset, the Plane-sweep methods performed exceptionally
better in unsorted than the presorted dataset. The Heap methods were slightly better, in most
cases, than the KNN-DLB ones. The fastest methods overall are DSPP and DSPP Heap and
both methods are 1.94 to 3.14 times faster (Fig. 6.7) than Brute-force one, in both dataset

experiments.

Reference Scale Gain, base method DBF
3.50

3.00

Nt R B Bl

DBF DPS DPS DSPP DSPP DBF DPS DPS DSPP DSPP DBF DPS DPS DSPP DSPP DBF DPS DPS DSPP DSPP
Heap 5\ Heap 5 Heap Heap 10M Heap 10M Heap Heap 15M Heap 15M Heap Heap 20M Heap 20M Heap
5M 5M 5M 10M oM 10M  15M 15M 15M  20M 20M 20M

M Ordered 1.12 0.67 0.70 294 274 1.02 0.67 0.69 3.04 3.13 1.02 0.67 0.68 3.06 3.09 1.03 0.67 0.70 3.00 3.14
HUnordered 1.28 231 231 263 246 1.02 187 198 199 210 106 1.85 194 194 207 1.04 199 207 199 213

Figure 6.7: Reference scaling experiment gain, base method DBF.

6.4.3 Query dataset scaling

In our third set of experiments, we used 10K up to 50K query points with “Gaussian”
distribution. For the reference points we used a SM “Bit” distribution synthetic dataset. These
experiments also used a relatively small £ value of 10, in order to focus only on query dataset

scaling.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



6.4.3 Query dataset scaling 129

In Fig. 6.8, we can see the presorted dataset results in blue and the unsorted dataset results
in stripped yellow. In the presorted experiments, we notice that the execution time of the
Brute-force algorithms is always larger than the other ones. Depending on the query dataset
size, we observe that the execution time gradually increases analogously for every method.
For the 10K dataset, the execution time is 110 seconds for DBF, 105 second for DBF Heap,
95 for DPS, 87 seconds for DPS Heap and 19 for DSPP and 18 for DSPP Heap. The slowest
execution times were recorded for the S0K query dataset, 520 seconds for DBF, 512 seconds
for DBF Heap, 436 seconds for DPS, 417 seconds for DPS Heap, and 81 seconds for both
DSS and 79 for DSPP Heap.

Query Scaling
600

500

400

:IH IH IHI"\ =t mm ”l Iﬂ N my af ‘ | (NN “ IF IH | ‘

DBF DBF DPS bps DspPP bsep DBF DBF DPS DPS DspPP DSPP DBF bBF DPS DPS DSPP DSP DBF B DPS DPS DspPP psep DBF DBF DPS DPS DSpPP DSP

10K 10Kp 10k 9P ok 20K e3P 50k P 50k p 0k M3 3o¢ 30K 40K 40k 40K S0K 2P 50K Kp 50K

10K 10K 20K 20K 30K 3DK 30K 40K 4 K 40K 0K
W Presort ted 110 105 95 87 19 18 206 201 181 170 36 34 307 301 270 247 SO 48 415 406 330 326 66 66 520 512 436 417 81 79
BUnsorted 117 100 27 25 25 23 201 198 41 44 45 43 299 290 58 55 65 62 397 391 76 75 85 83 501 49 92 89 104 99

o
o

M Presort ted [ Unsorted

Figure 6.8: Query scaling experiment (Y -axis in seconds).

In the unsorted experiments, we observe once more that all execution times are about the
same of smaller, except for the Plane-sweep methods which was significantly faster. For the
10K unsorted query dataset, the execution time for DBF is 100 seconds, for DBF Heap is 117
seconds, for DPS 24 seconds, for DPS Heap 25 seconds, for DSPP 25 seconds and for DSPP
Heap 26. Once again, the execution times scale analogously to the query dataset size. For
the 50K unsorted query dataset, we get 496 seconds for DBF, 501 seconds for DBF Heap,
90 seconds for DPS, 94 seconds for DPS Heap, 104 seconds for DSPP and 106 seconds for
DSPP Heap.

The results of the query dataset scaling experiments conform with the ones of the ref-
erence scaling experiments. For the unsorted dataset, the Plane-sweep methods performed
exceptionally better in unsorted than the presorted dataset. The Heap methods were slightly
better than the KNN-DLB ones. The fastest methods overall is DSPP and DSPP Heap and
both methods are 5.5 to 6.6 times faster (Fig. b.9) than the Brute-force one, in both dataset

experiments

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



130 Chapter 6. k—NN Query Processing with loT Edge Devices and SSD

Query Scaling Gain, base method DBF

o kB N W A O o N

ki Ell Nl ER il

e OPS e 25 ene eap 0P e D5 Rert ey OPS e 052 W00 000 b L osee Lo OPS s 05PP O
Pjok N8P qox e3P TEAD oo M€AP oo TeaP AR g FlEAP g AP READ g TEAD g Meap HeAR g, TEaD g Heap

10K 10K 10K 20K 20K 20K = 30K 30K 30K 40K 40K 40K 50K 50K 50K
M Ordered 105 1.16 1.26 580 6.11 1.03 1.14 1.21 574 6.07 1.02 1.14 1.24 6.11 6.40 1.02 1.26 1.27 6.33 6.33 1.02 1.19 1.25 6.41 6.58
EUnordered 1.17 4.33 4.67 4.64 509 1.01 4.86 4.56 4.42 467 1.03 518 543 458 482 1.02 525 530 4.67 478 1.01 545 563 4.84 5.06

Figure 6.9: Query scaling experiment gain, base method DBF.

6.4.4 [ scaling

The £ scaling is our last set of experiments. In these tests we used k values of 10, 20, 50
and 100. For the reference points we used the SM “Bit” distribution synthetic dataset and a
small query group of 10 points, with “Uniform” distribution, in order to focus only on the &
scaling.

In Fig. 6.10], we can see the presorted dataset results in blue and the unsorted dataset results
in stripped yellow. In the presorted experiments, we notice that the execution time of the
Brute-force algorithms is shorter than the Plane-sweep ones. DSPP methods are performing
much better than the other two. Depending on the % value, we observe that seamlessly the
execution time increases. For k equal to 10 the execution time is 3.72 seconds for DBF, 3.69
second for DBF Heap, 6.57 for DPS, 6.36 seconds for DPS Heap, 1.49 seconds for DSPP
and 1.45 for DSPP Heap. The slowest execution times were recorded for £ value of 100, 5.36
seconds for DBF, 4.89 seconds for DBF Heap, 7.45 seconds for DPS, 6.68 for DPS Heap,
1.90 seconds for DSPP and 1.83 for DSPP Heap.

In the unsorted experiments, we observe once more that the execution of DPS is faster
than the presorted ones. The Brute-force methods are slightly faster for the unsorted dataset
than for the presorted one. The DSPP methods are quicker than the other methods. For &
equal to 10 for the unsorted query dataset, the execution time for DBF is 4.47 seconds, for
DBF Heap is 4.26 seconds, for DPS 2.36 seconds, for DPS Heap 2.08 seconds, for DSPP
1.49 and for DSPP Heap 1.45 seconds. Once again, the execution times scale analogously to
the £ value. For £ = 100, we get 4.91 seconds for DBF, 4.50 seconds for DBF Heap, 3.05
seconds for DPS, 2.91 for DPS Heap, 2.26 for DSPP and 2.21 for DSPP Heap.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



6.4.5 Interpretation of Results 131

k Scaling

w

N

AEELEe bt I I

DBF DBF DPS DPS DSPP DSPP DBF DBF DPS DPS DSPP DSPP DBF DBF DPS DPS DSPP DSPP DBF DPS DSPP

_ Heap Heap Heap Heap  — Heap  _ Heap Heap Heap '~ Heap Heap eap
10 g0 K10 1o ke10 K20 ka0 K20 a0 K0 o K0 jeso KO esp K0 o K100 00 KOO oygp K100 (g0

mPresorted 3.72 369 6.57 636 149 145 490 422 6.62 638 165 161 536 489 745 668 1.84 1.80 536 489 745 6.68 190 183
DUnsorted 4.47 426 236 237 208 205 498 446 254 245 210 202 474 410 265 283 204 200 491 450 305 291 226 221

m Presorted [ Unsorted

Figure 6.10: k scaling experiment (Y -axis in seconds).

The results of the k£ scaling experiments also conform with the results of the previous
experiments. The Plane-sweep methods performed once again exceptionally better in the
unsorted dataset than in the presorted dataset. Furthermore, the DSPP methods were overall
quicker, performing more than 2 times faster than the Brute-force one (Fig. .11]), in the all
dataset experiments. The Heap methods were slightly better than the KNN-DLB ones.

k Scaling Gain, base method DBF
3.50
3.00

2.

w

0

Irrnnnrnmr

Hews | PP e DS ol ey OPS e 0P G0 O oes o T e e Fens
P k=10 p p P k=20 P P P k=50 p P P k=100 P k=100 P

k=10 k=10 k=10 = k=20 k=20 k=20 = k=50 k=50 k=50 k=100 k=100 k=100
B Ordered 1.01 057 058 249 257 116 074 077 297 304 110 072 080 291 298 110 0.72 0.80 282 293
EUnordered 1.05 1.89 1.88 215 218 112 19 203 238 247 115 179 167 232 237 109 161 169 217 222

2.

o
=]

1.

n
o

1.

o
]

0.

w
o

0.

o

Figure 6.11: k scaling experiment gain, base method DBF.

Although, the two k-NN list buffer methods were shown equal, for even larger £ values
than the ones studied in this chapter, the £ max-Heap list buffer is expected to outperform the
KNN-DLB one.

6.4.5 Interpretation of Results

As noted in [90], exploring why the application of the Plane-sweep algorithms on unsorted

reference data is significantly more efficient, we observed that, when the reference dataset

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



132 Chapter 6. k—NN Query Processing with loT Edge Devices and SSD

is presorted, each partition contains points that fall within a limited z-range and in case the
query point under examination is on the right side of this partition regarding x-dimension,
most of the reference points of this partition will likely replace points already included in the
current set of k& NN for this query point (Fig. 5.6 top), since partitions are loaded from left to
right and previous partitions examined were less x-close to this query point. However, when
the reference dataset is unsorted, each partition contains points that cover a wide x-range and
it is likely that many of the reference points of this partition will be rejected by comparing
their z-distance to the distance of the k-th NN found so far (Fig. 5.6 bottom).

The best performance was achieved with the DSPP methods. The partition reading from
the SSD reference data was equivalent for every method. So, the computational acceleration
of DSPP was due to the second level partitioning. All the other methods are calculating dis-
tances of points of the reference partition. DSPP incorporates a second level partitioning that
further reduces the distances of points that need to be calculated. In this context, DSPP firstly
selects the closest to the query point partition and then executes the distance calculation. If
needed it advances to the next closest partition, having in mind that its distance does not ex-
ceed the current maximum £-NN distance. In a way, DSPP actively regulates the reference

points search scope.

6.5 Conclusions

In this chapter, we presented a new partitioning algorithm for processing the £-NN query
for big reference data which exploits the parallelism of GPUs and the speed of SSDs, as
secondary memory storage. We implemented this algorithm in an edge-computing device,
showing that answering this query is feasible and efficient using such a device, which has
limited power needs and small size, being versatile for on-site computing applications. Us-
ing synthetic datasets, through an extensive experimental performance comparison of the
new algorithm against (in-memory) existing ones by other researchers and two algorithms
(working on SSD-resident data) recently proposed by us it was shown that the new algorithm
excels in all the conducted experiments and outperforms its rivals. This is due to the two-level
partitioning employed by the new algorithm, since this approach leads to a reduction of the
in-memory reference points distance calculations. We also proposed an architecture of a dis-

tributed environment embedding such edge-computing devices where large-scale processing

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



6.5 Conclusions 133

of the £-NN query through the proposed algorithm can be accomplished. This architecture is
suitable for processing of a wide range of queries on big data, where most of the processing
takes place at the network edges. The algorithms documented in this chapter were published

in [113].

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



Chapter 7

k—NN Query Processing with GPU, SSD
and Full Dataset Partitioning

As we have already stated in our previous chapters, GPU devices can be utilized for
efficient parallel computation of demanding spatial queries, like the & Nearest-Neighbor (k-
NN) query, which is widely used for spatial distance classification in many problems areas.

When dealing with big data, the GPU device’s memory and/or host main memory may
not be able to accommodate an entire, reference and query dataset. As a result, storing this
dataset in a fast secondary device, like a Solid State Disk (SSD) is, in many practical cases,
a feasible solution.

In this chapter,

* We propose and implement (extending the DSPP algorithm [90]) the first GPU-based
algorithms for processing the £-NN query not only on big reference, but also on big

query data stored on SSDs.

» We exploit concurrent CUDA kernel execution to enable multiple concurrent CUDA
stream k-NN calculations, resulting to better utilization of GPU resources and data

transfers/computation overlap.

» We utilize either an array-based, or a max-Heap based buffer for storing the distances
of the current £ nearest neighbors, which are combined with our new methods, deriving

two algorithmic variations.

* Based on 3d synthetic and real big data, we present an extensive experimental compar-

ison of these algorithmic variations, varying query dataset size, reference dataset size

135

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



136~ Chapter 7. k—NN Query Processing with GPU, SSD and Full Dataset Partitioning

and k. These experiments highlight that the new methods, combined with either an ar-
ray or a max-Heap buffer are performance winners, especially for very large reference

and query datasets and big k values.

The rest of this chapter is organized as follows. In Section [7.1], we review related material
and present the motivation for our work. Next, in Section [7.2, we introduce the new algorithm
that we developed for the k-NN GPU-based processing on disk-resident! data and in Section
7.3, we present the experimental study that we performed for analyzing the performance of
all our algorithms and for determining the performance winner among 10 (6 existing and 4
new) algorithmic variations tested on synthetic and real big reference and query data. Finally,

in Section 7.4, we present the conclusions arising from our work and discuss our future plans.

7.1 Related Work and Motivation

A recent trend in the research for parallelization of nearest neighbor search is to use GPUs.
Parallel £-NN algorithms on GPUs can be usually implemented by employing Brute-Force
methods or by using Spatial Subdivision techniques. We have reviewed most of these works in
Section 6.1 where such mechanisms have been applied to improve the performance on GPUs.
Furthermore, concurrent kernel execution is an effective method to improve hardware utiliza-
tion, and it can be used on GPUs to improve resource utilization and system performance,

especially when kernels are running together.

7.1.1 Concurrent Kernel Execution

Recent GPUs support concurrent kernel execution, that enables different kernels to run
simultaneously on the same GPU, sharing the GPU hardware resources. Concurrent kernel
execution can improve GPU hardware utilization and system performance. This feature of the
current GPU programming models can be used in different scenarios to allow better utilization
of GPU resources.

The impact of concurrent kernel execution on performance improvement by funneling
all kernels of a multi-threaded host process into a single GPU context was firstly examined

in [[118]. In the same scenario, a kernel reordering technique is proposed in [[119] to improve

I'We used an SSD and in the rest of the text “SSD” instead of “disk” is used.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



7.1.1 Concurrent Kernel Execution 137

GPU performance by taking advantage of concurrent kernel execution focusing on the order

in which GPU kernels are invoked on the host side.

In [120], the authors experimentally validate the benefits of using concurrent kernel ex-
ecution to improve GPU energy-efficiency for computational kernels. For this purpose, they
design power-performance models to carefully select the appropriate kernel combinations to
be executed concurrently, the relative contributions of the kernels to the thread mix, along
with the frequency choices for the cores and the memory to achieve high performance per

watt metric.

[121] illustrates that compute-intensive kernels may be starved because other memory-
intensive kernels block the memory pipeline on Simultaneous Multitasking (SMK) GPUs. To
solve this problem, a dynamic memory instruction limiting method to mitigate the memory
pipeline contention and accelerate concurrent kernel execution is proposed. The experimental
results show that the proposed approach improves weighted speedup by 27.2% on average

over SMK, with minor hardware cost.

In [[122], the authors highlight that memory interference can significantly affect the through-
put and fairness of concurrent kernel execution. They make a case that even the optimal
Cooperative Thread Array (CTA) combination does not eliminate the negative memory in-
terference impact. To address this problem effectively, a coordinated approach for CTA com-
bination and bandwidth partitioning for GPU concurrent kernel execution is proposed. This
approach effectively reduces the memory latency for the latency-sensitive kernels. In the

meanwhile, the bandwidth utilization is also improved for the bandwidth-intensive kernels.

The performance of compute-intensive kernels is significantly reduced when memory-
intensive kernels block memory pipeline and occupy most L1 data cache (L1D) resources,
and it is highlighted in [[123]. They propose a fair and cache blocking aware warp scheduling
(FCBWS) approach for concurrent kernel execution on GPU to ameliorate the contention on
data cache and improve system performance. FCBWS adopts kernel aware warp scheduling
to provide equal chance of issuing instructions to each kernel. Moreover, for a ready memory
instruction to be issued, if it is predicated that this instruction will block the data cache,
FCBWS will select and issue another ready instruction of the same kernel; otherwise, this
memory instruction will be issued to the memory pipeline. The experiment results indicate

that FCBWS has important advantages over spatial multitasking and previous SMK works.

Another context to use concurrent kernel execution is to implement scheduling policies on

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



138 Chapter 7. k—NN Query Processing with GPU, SSD and Full Dataset Partitioning

GPUs. For example, a software scheduler for GPU applications, called FlexSched, has been
recently presented in [[124], that takes advantage of concurrent kernel execution to imple-
ment scheduling policies aimed at maximizing application execution performance, or meet-
ing Quality of Service (QoS) application requirements such as maximum turnaround time.
An important feature of FlexSched is the use of a productive on-line profiling, employing a
heuristic that compares different co-execution configurations to find a suitable CTA alloca-
tion scheme that fulfills the scheduling requirements: throughput or QoS. In a real scheduling
scenario, where new applications are launched as soon as GPU resources become available,
FlexSched reduces the average overall execution time by a factor of 1.25x with respect to the
time obtained when proprietary hardware (HyperQ) is employed.

For interested readers, [125] is a recent survey on GPU multitasking methods, where

concurrent kernel execution is studied as a feature of GPUs to support multitasking.

7.1.2 Motivation

Based on our literature research we concluded that there are no methods targeting big ref-
erence and query datasets (larger than the available device memory), neither are there meth-
ods that explore concurrent kernel execution, for the calculation of £-NN. Furthermore, our
previous £-NN method implementations, address only big reference data; they can process
only query datasets big enough to fit in device memory.

Based on these facts, there is no work so far that uses the advantages of concurrent ker-
nel execution, to efficiently design and implement k-NN algorithms on GPUs. We will try
to investigate and test how the invocation of this feature would increase £-NN calculation
performance.

Moreover, we will try to extend our methods implementations, to aim also big query
datasets. We will also leverage the trade-offs that arise from new algorithmic overheads and

evaluate the effectiveness of our new methods.

7.2 k—NN Disk Algorithms

A common practice to handle big data is data partitioning. In order to describe our new
algorithms, we first present the mechanism of data partition transfers to device memory. This

step is identical in all our methods. Each reference dataset is partitioned in NV partitions con-

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



7.2.1 Disk Brute-force Algorithm 139

taining an equal number of reference points. If the total reference points is not divided exactly
by NV, the Nth partition contains the remainder of the division. Initially the host (the comput-
ing machine hosting the GPU device) reads a partition from SSDP and loads it into the host
memory. The host copies the in-memory partition data into the GPU device rnernory.E
Another common approach in all our four methods is the GPU thread dispatching. Every
query point is assigned to a GPU thread. The GPU device starts the £-NN calculation simul-
taneously for all threads in the kernel execution geometry. The thread dispatching consists of

4 main steps:
1. The kernel is invoked with a grid of N threads
2. The requested N threads are assigned to N query points.

3. Every thread carries out the calculation of reference point distances to its query point
and updates the £-NN buffer holding the current (and eventually the final) nearest

neighbors of this point.

4. The final £-NN list produced by each kernel invocation is populated with the results

of all the query points.

In the next sections we will describe our existing and new methods. These methods are
based on three main algorithms, “Disk Brute-force”, “Disk Plane-sweep” and “Symmetric
Progression Partitioning”. In all of them we have implemented two £-NN buffer variations

resulting in a total of 6 existing and 4 new methods (algorithmic variations).

7.2.1 Disk Brute-force Algorithm

The Disk Brute-force algorithm (denoted by DBF) [90] is a Brute-force algorithm en-
hanced with capability to read SSD-resident data. Brute-force algorithms are highly efficient
when executed in parallel. The algorithm accepts as inputs a reference dataset R consisting
of m reference points R = {ry, 75,73, -7, } in 3d space and a dataset () of n query points

Q ={q1,4,q3, - - qn } also in 3d space. The host reads the query dataset and transfers it in the

2Reading from SSD is accomplished by read operations of large sequences of consecutive pages, exploiting
the internal parallelism of SSDs, although our experiments showed that reading from SSD does not contribute

significantly to the performance cost of our algorithms.
3The hardware we used does not support GPUDirect storage.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



140  Chapter 7. k—NN Query Processing with GPU, SSD and Full Dataset Partitioning

device memory. The reference dataset is transfered to the device memory and is partitioned
into equally sized bins. For each partition, we apply the £-NN Brute-force computations for
each of the threads.

For every reference point within the loaded partition, we calculate the Euclidean distance
to the query point of the current thread. Every calculated distance is compared to the current
thread maximum distance and if it is smaller, we add it to the £-NN list buffer. We will use
and compare two alternative k-NN buffer implementations, presented in Sections and

A
: 0.

7.2.2 Disk Plane-sweep Algorithm

An important improvement for join queries is the use of the Plane-sweep technique, which
is presented in Section 5.2.2.

Like DBF, DPS accepts as inputs a reference dataset R consisting of m reference points
R = {ry,re,rs..r,} in 3d space and a dataset ) of n query points @ = {q1, 42, G3--Gn }
also in 3d space. The host reads the query dataset and transfers it in the device memory. The
reference dataset is partitioned in equally sized bins, each bin is transferred to the device
memory and sorted by the z-values of its reference points. For each partition we apply the

k-NN Plane-sweep technique.

7.2.3 Disk Symmetric Progression Partitioning

A more efficient method than the previous ones is the “Disk Symmetric Progression Parti-
tioning” [[113], denoted as DSPP. DSPP is enhanced with the capability to read SSD-resident
big data. The DSPP algorithm is using partitioning in both the host and the GPU device. The
first level partitioning is taking place in the host, when reading data from the SSD-resident
datasets, as we discussed in Section [7.2. The second level partitioning takes place in the de-
vice memory and is essential for the DSPP execution. We will document in detail the usage
of the two distinct levels of partitioning later in this section.

Like DBF and DPS, DSPP accepts as inputs a reference dataset R consisting of m ref-
erence points R = {ry,r9, 73, -7} in 3d space and a dataset () of n query points () =
{q1,92, 93, - - ¢, } also in 3d space. We have presented the DSPP algorithm in Section 6.3.3.
We will use and compare two alternative £-NN buffer implementations, presented in Sections

and #.2.6, thus resulting to two DSPP method variations.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



7.2.4  Improved Disk Symmetric Progression Partitioning 141

7.2.4 Improved Disk Symmetric Progression Partitioning

One disadvantage of the DSPP method is that it can only process query datasets that fit in
device memory. Surely modern GPUs are equipped with abundant memory, however mod-
ern big data query datasets can easily surpass GPU memory capacity. To fill this gap we
designed and implemented an improved DSPP method, denoted by DSPP+. In our first new
method, we incorporated an extra step of query dataset partitioning, just before the device
k-NN calculation (Fig. [7.1)). This means that the query dataset will be fully read, partition by
partition, every time we need to process the next reference partition (Alg. [[3). If we partition
the reference dataset in NV partitions, then the query dataset will be read N times. Taking
this under consideration, we expect an execution performance decrease, unless we manage
to overlap those transfers with useful computation (which we address in Section [7.2.5) . We
must outline that this approach has some extra advantages, apart from processing big query
datasets. One advantage is that when we initiate kernel processes the scheduled CUDA blocks
query smaller volumes or points resulting in better L2 cache locality. Furthermore, the de-
vice data processed are close to each other and the method benefits from coalesced memory
transaction, when consecutive threads access consecutive memory addresses.

Like our previous methods, DSPP+ accepts as inputs a reference dataset R consisting of
m reference points R = {ry,re,rs,---r,} in 3d space and a dataset () of n query points
Q ={q1,92,q3, - - ¢, } also in 3d space. We partition the reference dataset PR consisting of
pm reference partitions PR = {pry, pra, prs, - - - prpm +. In analogy, we partition the query
dataset Q) R consisting of gn query partitions QR = {qr1, qr2, qrs, - - - qrqn}. For each PR]i]
partition, we traverse sequentially all () R[j] partitions and merge the resulting £-NNs to our
k-NN buffer (Fig. [.1]).

Like our previous methods, we will use and compare two alternative £-NN buffer im-

plementations, presented in Sections #.2.5 and §.2.6|, thus resulting to two DSPP+ method

variations.

7.2.5 Improved Disk Symmetric Progression Partitioning with pinned

memory

The second new method we are presenting, exploits a significant CUDA feature. CUDA

streams, which aim to hide the latency of memory copy and kernel launch from different

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



142 Chapter 7. k—NN Query Processing with GPU, SSD and Full Dataset Partitioning

Partition 1

Copy to KNN
Device Calculate
Copy to KNN
Device Calculate
Read MLCECUIEE  Copy to -
Partition 3 Dataset Device -a kNN Buffer

Copy to KNN
Device Calculate

Figure 7.1: DSPP+ Partitioning and execution path.

Algorithm 15 DSPP+ Host algorithm

Input: NN cardinality=K, Reference filename=RF, Query filename=QF, Reference Partition size=S, Reference sub-Partition cardinal-

ity=CB, Query Partition size=QS
Output: Host k-NN Buffer=HostKNNBufferVector

1: HostQueryVector < readFile(QF);

2: queryPoints < HostQueryVector.size();

3: DeviceQueryVector <— HostQueryVector;

4: createEmptyHostVector(HostK NNBufferVector,queryPoints*K);

5: DeviceKNNBufferVector < HostK NNBufferVector;

6: subPartitionPoints <— S/CB;

7: while not end-of-file RF do

8: HostReferencePartition <— readPartition(RF,S);

9: DeviceReferencePartition «<— HostReferencePartition;

10: cudaSort(DeviceReferencePartition);

11: HostReferencePartition <— DeviceReferencePartition;

12:  HostReferencePartitionIndex.clear();

13: HostReferencePartitionIndex.add(0,HostReferencePartition[0].x);

14:  fori=0to CB-1 do

15: HostReferencePartitionIndex.add(HostReferencePartition[i*subPartitionPoints].x,
HostReferencePartition[(i+1)*subPartitionPoints].x);

16: DeviceReferencePartitionIndex <— HostReferencePartitionIndex;

17:  while not end-of-file QF do

18: HostQueryPartition <— readPartition(QF,QS);

19: DeviceQueryPartition <— HostQueryPartition;

20: runKNN < < <(QS-1)/256 +1, 256> > >(DeviceReferencePartition,

DeviceQueryPartition, DeviceQuery Vector,DeviceKNNBufferVector,K,

DeviceReferencePartitionIndex);  // 256 cores assumed

21: HostKNNBufferVector +— DeviceKNNBufferVector;

independent operations [9], are widely used in computational tasks to increase performance
[[10].

When CUDA Streams are used, together with pinned memory supporting asynchronous
data transfers, we can overlap data transfers with kernel execution, thus effectively hiding
data transfer latency. This improves GPU utilization and reduces execution time.

This new method is the Improved Disk Symmetric Progression Partitioning with pinned

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



7.2.5 Improved Disk Symmetric Progression Partitioning with pinned memory 143

Algorithm 16 DSPP+ Device Kernel algorithm (runKNN)

Input: NN cardinality=K, Partition Reference array=R, Query array=Q,

Reference Partition size=S, Device Partition Index=DeviceReferencePartitionIndex

Output: Device k-NN Buffer array=DKB

1: qldx + blockldx.x*blockDim.x+threadldx.x;
2: knnBufferOffest < qldx*K;
3: for currentPartition < 0 to DeviceReferencePartitionIndex size()-1 do
4: if DeviceReferencePartitionIndex[currentPartition].right-X-Limit<Q[qldx].x then break;
5: if currentPartition < DeviceReferencePartitionIndex.size()-1 then currentPartition- -;
6: while maxdistance>>Q[qldx].x-DeviceReferencePartitionIndex[currentPartition].left-X-Limit or
maxdistance >DeviceReferencePartitionIndex[currentPartition].right-X-Limit-Q[qldx].x do
7: idx1 < currentPartition * R.size();
8 idx2 < (currentPartition+1) * R.size();
: for i < idx1 to idx2-1 do
10: dist + ¥/(R[i].x — Q[qldz].2)? + (R[i].y — Qlqldx].y)2 + (R[i].z — Q[qgIdx].2)2
11: insertIntoBuffer(DK B, knnBufferOffest,i,qldx,dist);
12: currentPartition <— FindNextClosestPartition;

Partition 1 Partition 1 SCR V) Partition 1 SN
Device Calculate
Partition 2 Partition 2 ey Partition 2 KINIY
Device Calculate
- [EEN Reference Copy to KNN Copy t
Partition 3 e py to s KNN
- Partition 3 Device Process (e EmE Device Rartitionis Calculate kNN Buffer
Partition ... Partition ... SeRLO Partition ... KT
Device Calculate
Partition N Partition M Copy to Partition M KNN

Device Calculate

Figure 7.2: DSPP+P Partitioning and execution path.

memory (denoted by DSPP+P).

The DSPP+ algorithm partitions the query dataset and calculates the £-NN for each one.
In this second new algorithm, we process every query partition in a new stream. The CUDA
kernel executes concurrently and the k-NNs are written to the output buffer (Fig. 7.2).

Like DSPP+, DSPP+P accepts as inputs a reference dataset R consisting of m refer-
ence points R = {ry,79,73, -7} in 3d space and a dataset () of n query points () =
{q1,92,q3," - - ¢, } also in 3d space. We partition the reference dataset PR consisting of pm
reference partitions PR = {pry,pra, prs,-- - prpm}. Analogously we partition the query
dataset Q)R consisting of gn query partitions QR = {qr1, qr2, qrs, - - - qrgn}. For each PR]i]
partition, we traverse in a parallel and fully asynchronous way, all () R[j] partitions and merge

the resulting k-NNs to our £-NN buffer (Fig. 7.2).

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



144 Chapter 7. k—NN Query Processing with GPU, SSD and Full Dataset Partitioning

Like our previous methods, we will use and compare two alternative £-NN buffer im-

plementations, presented in Sections #.2.5 and §.2.6, thus resulting to two DSPP+P method

variations.

Algorithm 17 DSPP+P Host algorithm

Input: NN cardinality=K, Reference filename=RF, Query filename=QF, Reference Partition size=S, Reference sub-Partition cardinal-

ity=CB, Query Partition size=QS, Streaming multiprocessors=SMs
Output: Host k-NN Buffer=HostKNNBufferVector

HostQueryVector < readFile(QF);

queryPoints <— HostQuery Vector.size();

DeviceQueryVector <— HostQuery Vector;

createEmptyHostVector(HostK NNBufferVector,queryPoints*K);

subPartitionPoints <— S/CB;

I:
2:
3:
4:
5: DeviceKNNBufferVector < HostK NNBufferVector;
6:
7: while not end-of-file RF do

8:

HostReferencePartition <— readPartition(RF,S);

9: DeviceReferencePartition «+— HostReferencePartition;
10: cudaSort(DeviceReferencePartition);

11: HostReferencePartition <— DeviceReferencePartition;
12:  HostReferencePartitionIndex.clear();

13: HostReferencePartitionIndex.add(0,HostReferencePartition[0].x);

14: for i=0 to CB-1 do

15: HostReferencePartitionIndex.add(HostReferencePartition[i*subPartitionPoints].x,
HostReferencePartition[(i+1)*subPartitionPoints].x);

16: DeviceReferencePartitionIndex <— HostReferencePartitionIndex;

17: QueryPartitionNumber < 0;

18: while not end-of-file QF do

19: HostQueryPartition <— readPartition(QF,QS);
20: DeviceQueryPartition <— HostQueryPartition;
21: runKNN < < <(QS-1)/64 +1, 64, QueryPartitionNumber % SMs >>>

(DeviceReferencePartition, DeviceQueryPartition,
DeviceQueryVector,DeviceKNNBufferVector,K,DeviceReferencePartitionIndex);
// Concurrent kernel execution, 64 cores assumed
22: QueryPartitionNumber <— QueryPartitionNumber + 1;
23: if QueryPartitionNumber % SMs==0 then cudaDeviceSynchronize();

24: HostKNNBufferVector < DeviceKNNBufferVector;

7.3 Experimental Study

We run a large set of experiments to quantify the performance of our proposed algorithms.
All experiments query a variety of dataset volumes of synthetic and real data. We are using
double precision accuracy for the points representation in 3D space (Alg. [L1)) to be able to

discriminate among small distance differences.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



7.3 Experimental Study 145

Algorithm 18 DSPP+P Device Kernel algorithm (runKNN)
Input: NN cardinality=K, Partition Reference array=R, Query array=Q,

Reference Partition size=S, Device Partition Index=DeviceReferencePartitionIndex
Output: Device k-NN Buffer array=DKB
: qldx < blockldx.x*blockDim.x+threadldx.x;
. knnBufferOffest <— qldx*K;
. for currentPartition <— 0 to DeviceReferencePartitionIndex.size()-1 do

if DeviceReferencePartitionIndex[currentPartition].right-X-Limit<Q[qldx].x then break;

. if currentPartition < DeviceReferencePartitionIndex.size()-1 then currentPartition- -;

. while maxdistance>Q[qldx].x-DeviceReferencePartitionIndex[currentPartition].left-X-Limit or

maxdistance >DeviceReferencePartitionIndex[currentPartition].right-X-Limit-Q[qldx].x do

7: idx1 < currentPartition * R.size();
8: idx2 < (currentPartition+1) * R.size();
: for i < idx1 to idx2-1 do
10: dist + ¥/(R[i].x — Q[qldz].2)? + (R[i].y — Qlqldx].y)2 + (R[i].z — Q[qgIdx].2)2
11: insertIntoBuffer(DK B, knnBufferOffest,i,qldx,dist);
12: currentPartition <— FindNextClosestPartition;

All experiments were performed on a Dell G5 15 laptop, running Ubuntu 20.04, equipped
with a six core (12-thread) Intel 17 CPU, 16GB of main memory, a I'TB SSD disk used and
a NVIDIA Geforce 2070 (Mobile Max-Q) GPU with 8GB of device memory (as a represen-
tative setup for everyday computing). CUDA version 11.2 was used.

We run experiments to compare the performance of £-NN queries regarding execution

time, as well as memory utilization. We tested a total of ten algorithms.

1. DBF, Disk Brute-force using KNN-DLB buffer

2. DBF Heap, Disk Brute-force using max-Heap buffer

3. DPS, Disk Plane-sweep using KNN-DLB buffer

4. DPS Heap, Disk Plane-sweep using max-Heap buffer

5. DSPP, Disk Symmetric Progression Partitioning using KNN-DLB buffer

6. DSPP Heap, Disk Symmetric Progression Partitioning using max-Heap buffer

7. DSPP+, Improved Disk Symmetric Progression Partitioning using KNN-DLB buffer

8. DSPP+ Heap, Improved Disk Symmetric Progression Partitioning using max-Heap

buffer

9. DSPP+P, Improved Disk Symmetric Progression Partitioning with pinned memory us-

ing KNN-DLB buffer

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



146  Chapter 7. k—NN Query Processing with GPU, SSD and Full Dataset Partitioning

10. DSPP+P Heap, Improved Disk Symmetric Progression Partitioning with pinned mem-

ory using max-Heap buffer

To the best of our knowledge, these are the first methods to address the £-NN query on SSD-
resident data, that can process big reference and query datasets.
The experimental study is divided in two main subsection. The first one is based on syn-

thetic data and the second one on real data.

7.3.1 Synthetic data experiments

In this section we will evaluate the performance of our methods, based only on synthetic
data. All the datasets were created using the SpiderWeb [99] generator. This generator allows
users to choose from a wide range of spatial data distributions and configure the size of the
dataset and its distribution parameters. This generator has been successfully used in research
work to evaluate index construction, query processing, spatial partitioning, and cost model
verification [[100].

Table [7.1| lists all the generated datasets. For the reference dataset, we created five datasets
using the “Bit” distribution (Fig. right), with file sizes ranging from 32MB to 160MB.
The reference points dataset size ranges from 1M points to SM points. For the query points

dataset we created five “Uniform” datasets (Fig. 7.3, left) ranging from 100K to 500K points.

Distribution  Size Seed File Size Dataset usage

Bit IM 1 32MB Reference
Bit M 2 64MB Reference
Bit 3M 3 96MB Reference
Bit 4M 4 128MB Reference
Bit M 4 160MB Reference
Uniform 100K 6 32MB Query
Uniform 200K 7 6.4MB  Query
Uniform 300K 8 9.6MB Query
Uniform 400K 9 12.8MB Query

Uniform 500K 10 16MB  Query

Table 7.1: SpiderWeb Dataset generator parameters.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



7.3.1 Synthetic data experiments 147

&a

i

&,

-

i’

.

]

:]

-

L)
RO LI I
cefipil, oced .84

o
.
Ay

Figure 7.3: Experiment distributions, Left=Uniform, Right=Bit .

Three different sets of experiments on synthetic data were conducted. In the first one,
we scaled the reference dataset size, in the second one we scaled the query dataset size and
in the third one we scaled the number of the nearest neighbors, k. We also evaluated the
performance of the two alternative list buffers to clarify the pros and cons of using KNN-

DLB and max-Heap buffer.

7.3.1.1 Reference dataset scaling

In our first series of tests, we used the “Bit” distribution synthetic datasets for the ref-
erence points. The size of the reference point dataset ranged from 1M points to SM points.
Furthermore, we used a fixed query dataset of 100K points, with “Uniform” distribution and
a k value of 20, in order to focus only on the reference dataset scaling.

In Fig. 7.4, we can see the experiment results chart. In these results, we notice that the
execution time of the Brute-force methods is larger than the rest of the methods. Apart from
the Brute-force methods, all other methods have quite similar executions times, for each ref-
erence dataset size. For example, for the 1M dataset the execution times range from 6.81
seconds for DBF Heap (slowest) to 2.20 seconds for the DSPP (fastest). The execution times
increase proportionally to the reference dataset size. As expected, we get the slowest exe-
cution times for the SM dataset, ranging from 34.41 seconds for DBF Heap to 9.08 for the
DSPP Heap method.

In order to compare the performance of our methods in Table 7.2, we present the execution
speedup gain, using the slowest method (DFB) as the baseline. Every number in this table
represents the method gain relative to the base method DBF (how many times faster than

DBF). As expected, the DBF Heap method gain is close to 1, meaning that the DBF and

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



148 Chapter 7. k—NN Query Processing with GPU, SSD and Full Dataset Partitioning

DBF Heap are performing equally in all reference datasets. The execution speedup gain of
the other methods ranges from 2.08 (times faster) in DPS for the 1M reference dataset, to
3.69 (times faster) in DSPP for the 5SM reference dataset. We should notice that the method
DSPP+P, is the second fastest method, performing slightly worse than DSPP, and achieved a
speedup of 3.56 for the 4M reference dataset.

The reference dataset scaling experiments reveal that the Brute-force methods did not
perform well. This behaviour is expected because of the naive Brute-force algorithm of these
methods. The DSPP method is faster than the DPS one, confirming our results from our
previous publications [8,90]. The interesting part of this experiment is that our new methods
DSPP+ and DSPP+P performed about equally to DSPP, despite their query partitioning algo-
rithm adding an overall overhead by repeatedly reading the query dataset. Especially DSPP+P
performance is equivalent to DSPP. As we experimentally validate, this overhead was lever-
aged by the concurrent kernel execution invocation of DSPP+P. Furthermore, we can observe
that the two k-NN distance list buffers, KNN-DLB and max-Heap, perform equally in all ref-
erence datasets. The value of k=20 is explicitly selected to be small enough so that the buffer
usage does not affect the experimental results. The difference between the two buffers will

be quantified in the k scaling experiment later on.

Reference points scalling chart

35
30
25
3 20
c
S B1M
215
B2M
10 3M
5 aM
0 ’ | I i 5M
DSPP+ DSPP+P DSPP+P
Heap Heap
1M 2.95 2.23 2.38
@2Mm 5.90 4.46 477
3M 7.66 5.79 6.05
aM 9.86 7.43 7.72
5M 12.22 9.74 9.59

Figure 7.4: Reference scaling experiment (Y -axis in sec.).

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



7.3.1 Synthetic data experiments 149

Method ™M 2M 3M 4M SM

DBF Heap 097 095 1.04 1.00 0.97

DPS 2.08 240 251 2.62 2.76
DPS Heap 2.10 240 250 2.61 272
DSPP 3.00 3.28 3.46 3.59 3.69
DSPP Heap 274 293 325 338 344
DSPP+ 229 247 262 271 274
DSPP+Heap 2.24 238 2.59 2.68 2.74
DSPP+P 296 3.15 343 356 3.44

DSPP+P Heap 2.78 2.94 328 342 3.49

Table 7.2: Reference scale gain, base method DBF.

7.3.1.2 Query dataset scaling

In our second set of experiments, we also used the “Uniform” distribution synthetic
datasets for the query points. The size of the query point dataset ranged from 100K points
to 500K points. Furthermore, we used a fixed reference dataset of 1M points, with “Bit”
distribution and a k value of 20, in order to focus only on the query dataset scaling.

In Fig. [7.5, we can see the experiment results chart. In these results, we see similar results
as in our previous experiment. The execution time of the Brute-force methods is higher than
the rest of our methods. All the other methods have comparable executions times, for each
reference dataset size. For example, for the 200K query dataset the execution times range
from 13.72 seconds for DBF Heap (slowest) to 4.28 seconds for DSPP (fastest). The execution
times increase proportionally to the query dataset size. We get the highest execution times for
the 500K dataset, ranging from 35.87 seconds for DBF Heap to 11.54 for the DSPP method.

To compare the performance of our methods, in Table [7.3 we present the speedup, using
the slowest method (DFB) as the baseline. Similarly to the previous experiment, the two
Brute-force methods are again performing identically for all query datasets. The speedup of
the other methods ranges from 2.07 (times faster) in DPS for the 200K dataset, to 3.06 (times
faster) in DSPP for the 400K query dataset. As was also the case for our reference scale
experiment, we notice that the method DSPP+P, is the second fastest method, performing
slightly worse than DSPP, and achieved a speedup gain of 2.96 for the 100K query dataset.

The query dataset scaling experiment revealed once again that the Brute-force methods

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



150  Chapter 7. k—NN Query Processing with GPU, SSD and Full Dataset Partitioning

did not perform well for the same reasons as in our first experiment. The DSPP method is
faster than the DPS one, confirming our results from our previous publications. Our new
methods DSPP+ and DSPP+P performed about equally to DSPP, even if their query parti-
tioning algorithm is adding an overall overhead by repeatedly reading the query dataset. Es-
pecially DSPP+P performance is equivalent to DSPP. We confirm again in this experiment

that this overhead was leveraged by the concurrent kernel execution invocation of DSPP+P.

Query points scalling chart

40
35
30
» 25
2
S 20
g 0 100K
m 5
15 i _ _ [ 200K
10 i 3 300K
5 g 400K
0 i [ (LEE 500K

DBF DBF DPS DPS DSPP DSPP = DSPP+ DSPP+ DSPP+P DSPP+P
Heap Heap Heap Heap Heap
@ 100K 6.61 6.81 3.17 3.15 2.20 241 2.89 2.95 2.23 2.38

@200K 13.26  13.72 6.42 6.26 4.48 4.76 5.84 6.01 4.69 4.92
300K 19.92 = 20.07 9.53 9.31 6.66 7.04 8.82 9.04 6.95 7.35
400K 27.10 28.78 12.84 1250 8.86 9.41 11.81 1212 9.36 9.81
500K 34.92 3587 1695 16.65 1154 12.04 1639 1564 1214 1255

Figure 7.5: Query scaling experiment (Y -axis in sec.).

7.3.1.3 F scaling

The k scaling is our third experiment. In these tests we used £ values of 20, 40, 60, 80
and 100. For the reference points we used the 1M “Bit” distribution synthetic dataset and for
the query dataset 100K points, with “Uniform” distribution.

In Fig. [7.6, we can see the experiment results chart. The results in this experiment are
quite different than the previous experiments. The execution time of the Brute-force methods
is higher than the rest of our methods and we can see that the execution time of all KNN-DLB
methods (DBF, DPS, DSPP, DSPP+ and DSPP+P), tend to increase in exponential way for
larger k values. On the other hand, the execution time of all heap methods are increasing in

a linear way. For £=100 the execution times range from 10.79 seconds for DBF (slowest) to

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



7.3.1 Synthetic data experiments 151

Method 100K 200K 300K 400K S00K

DBF Heap 097 097 099 094 097

DPS 208 207 209 211 206
DPS Heap 210 212 214 217 210
DSPP 3.00 296 299 3.06 3.03
DSPP Heap 274 278 283 288 290
DSPP+ 229 227 226 230 213
DSPP+Heap 224 221 220 224 223
DSPP+P 296 282 287 289 288

DSPP+P Heap 2.78 2770 271 276  2.78

Table 7.3: Query scale gain, base method DBF.

3.76 seconds for DSPP+P (fastest).

In Table [7.4, we compare the execution performance of our methods, we present the exe-
cution speed gain, based on our slowest method DFB. In contrary to our previous experiments
the two Brute-force methods are not performing identically; the DBF Heap method is faster
for larger k values. Generally all heap methods perform clearly faster for larger k£ values.
The execution gain of our methods for £=100, ranges from 1.25 (times faster) in DBF Heap,
to 2.87 (times faster) in DSPP+P Heap. In this experiment the DSPP+P method is a clear

winner. It is better than DSP in all k£ values except the smallest one, £=20.

In the k£ scaling experiment the heap methods stand out. For larger £ values the max-Heap
buffer is a much faster algorithm, because of its O(log(n)) complexity. Another interesting
result is that DSPP+P Heap is overtaking even the DSPP Heap method. When we increase the
k value, the k-NN calculation is even more computationally bound. The use of CUDA streams
and the associated data transfers/kernel execution overlap, further accelerates this GPU costly
operation, resulting in lower execution times, even if the DSPP+P methods repeatedly read
the query dataset and transfer it to device memory. We confirm again in this experiment that
the read overhead was successfully leveraged by the concurrent kernel execution invocation

of DSPP+P.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



152 Chapter 7. k—NN Query Processing with GPU, SSD and Full Dataset Partitioning

K scalling chart

12
10
8
wv)
he]
c
S 6
O [ K=20
(%]
4 K=40
K=60
2 K=80
0 # A. @ K=100
DSPP+ DSPP+P
Heap Heap Heap Heap
B K=20 6.61 6.31 3.17 3.15 2.20 2.89 2.95 2.23 2.38
EK=40 7.28 7.01 4.25 3.82 2.97 3.68 3.54 3.06 2.85
K=60 8.32 7.71 5.38 4.36 3.78 4.66 3.89 3.90 3.21
K=80 9.39 8.26 6.59 4.75 4.73 5.80 4.19 4.95 3.52
K=100 10.79 8.65 8.03 5.09 5.87 7.21 4.40 6.27 3.76

Figure 7.6: k scaling experiment (Y -axis in sec.).

Method K=20 K=40 K=60 K=80 K=100

DBF Heap 1.05 1.04 1.08 1.14  1.25
DPS 208 1.71 1.55 1.43 1.34
DPS Heap 210  1.90 191 1.98 212
DSPP 3.00 245 220 198 1.84
DSPP Heap 274 250 249 255 277
DSPP+ 229 198 1.78 1.62 1.50
DSPP+Heap 224 206 2.14 224 245
DSPP+P 296 238 213 1.90 1.72

DSPP+P Heap 2.78 255 2.59 2.67 2.87

Table 7.4: K scale gain, base method DBF.

7.3.2 Real data experiments

In this section we will present three real data experiments, using the real datasets docu-
mented in Section [7.3. We used three big real datasets [[]], which represent water resources of
North America (Water Dataset) consisting of 5.8M line-segments and world parks or green
areas (Parks Dataset) consisting of 11.5M polygons and world buildings (Buildings Dataset)
consisting of 114.7M polygons (Table [7.9). To create sets of points, we used the centers of

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



7.3.2  Real data experiments 153

the line-segment MBRs from Water and the centroids of polygons from Park and Buildings.
For all datasets the 3-dimensional data space is normalized to have unit length (values [0, 1]

in each axis).

Description Size File Size Dataset usage
Water SM  186.8MB Reference or Query
Parks 11.5M 368.1MB Reference or Query

Buildings 114.5M 2.8GB Reference or Query

Table 7.5: Real Datasets.

These experiments will evaluate our new methods performance when targeting real life
data. The first of them queries only the smallest datasets, in order to compare our new methods
performance with our previous ones. The second and third experiments query the larger real

datasets, which our previous methods couldn’t target.

7.3.2.1 Real experiment 1 - Parks 11.5M, Water 5.8M

In Fig. [7.7, we can see the first real data experiment results chart. The results in this exper-
iment are similar to the reference and query scaling experiments. The execution time of the
Brute-force methods is much larger than the rest of our methods. The execution times range
from 5,117 seconds for DBF (slowest method) to just 93 seconds for DSPP+P Heap (fastest
method). When data volumes increase, the streaming kernel execution implementation in the
DSPP-+P methods, clearly outperforms all other methods, even the DSPP ones. In Table 7.4
we observe that DSPP+P was 57.23 times faster than DBF.

7.3.2.2 Real experiment 2 - Buildings 114.7M, Water 5.8M

The next real data experiment is presented in Fig. [7.8. In this experiment we evaluated
only our new methods; our previous ones could not target a query dataset so large, because
its footprint exceeds device memory capacity. The execution times range from 1,500 seconds
for DSPP+ (slowest method) to 807 seconds for DSPP+P Heap (fastest method). Once again,
when data volumes increase, the streaming kernel execution implementation in the DSPP+P

methods, clearly outperforms all other methods.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



154 Chapter 7. k—NN Query Processing with GPU, SSD and Full Dataset Partitioning

Real data chart - Parks 11.5M, Water 5.8M

6.000 <

5.000

4.000

3.000

Seconds

2.000

1.000 ~

DBF DBF DPS DPS DSPP DSPP DSPP+  DSPP+ DSPP+P DSPP+P
Heap Heap Heap Heap Heap
5.117 5.029 1.332 1.329 301 298 163 161 98 93

Figure 7.7: Real data experiment (Y -axis in sec.).

Method Gain

DBF Heap 0.94

DPS 3.84

DPS Heap 3.77

DSPP 17.00
DSPP Heap 16.63
DSPP+ 31.42
DSPP+ Heap  31.85
DSPP+P 57.23

DSPP+P Heap 54.79

Table 7.6: Real data gain, base method DBF.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



7.4 Conclusions 155

Real data chart - Buildings 114.7M, Water 5.8M

1.600

1.400

1.200

1.000

800

Seconds

600

400

200

DSPP+ DSPP+ Heap DSPP+P DSPP+P Heap
1.500 1.453 811 807

Figure 7.8: Real data experiment (Y -axis in sec.).

7.3.2.3 Real experiment 3 - Buildings 114.7M, Parks 11.5M

The last real data experiment is presented in Fig. 7.9. In this experiment we evaluated
again only our new methods. The new methods successfully processed these large datasets,
which were the largest in our experiments. The execution times range from 4,010 seconds
for DSPP+ (slowest method) to 1,930 seconds for DSPP+P Heap (fastest method). Our re-
sults are once more validated, when data volumes increase, the streaming kernel execution

implementation in the DSPP+P methods, is the performance winner.

7.4 Conclusions

In this chapter, we introduced the first GPU-based algorithms for parallel processing the
k-NN query on reference and query big data stored on SSDs, utilizing the Symmetric Progres-
sion Partitioning technique. Our new algorithms exploit the manycore GPU architecture, the
concurrent kernel execution feature of Nvidia GPUs, utilize the device memory efficiently,
take advantage of the speed and storage capacity of SSDs and, thus, process efficiently big

reference and query datasets. Through an extensive experimental evaluation on synthetic and

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



156  Chapter 7. k—NN Query Processing with GPU, SSD and Full Dataset Partitioning

Real data chart - Buildings 114.7M, Parks 11.5M

DSPP+ DSPP+ Heap DSPP+P DSPP+P Heap
4.010 3.984 1.973 1.930

Figure 7.9: Real data experiment (Y -axis in sec.).

real datasets, we highlighted that the DSPP+P algorithm and especially its Heap variation,
when using large & values and/or larger dataset volumes, is a clear performance winner. The

algorithms documented in this chapter are submitted for possible publication.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



Chapter 8

Conclusions and Future Directions

In this thesis we presented new and improved existing algorithms for processing several
spatial queries in parallel in CPU and GPU environments. Some of these algorithms were the
first ones in the literature to solve such queries. All the algorithms were presented in detail,
graphically and using pseudocode and furthermore they were extensively tested against a
variety of real world and synthetic datasets in 2 and 3 dimensions, using popular APIs such
as OpenMP and CUDA. Existing implementations were also tested against our GPU methods.
Several scaling experiments were tested for each GPU algorithm, including reference points
scaling, query points scaling and & value scaling. Whenever these algorithms were tested

against other popular ones from the literature, they always performed better.

8.1 Conclusions

The numerous experiments conducted for each algorithm using combinations of different
APIs, datasets and tuning parameters have led to many interesting conclusions which will be

presented separately for CPU and GPU, each query type.

8.1.1 Query Processing with CPU and SSD conclusions

In Chapter B, we extended the algorithms presented in [46], for the first time in the lit-
erature, we present algorithms for common spatial batch queries on single datasets, using
xBRT-trees in SSDs that take advantage of multiple cores. Processing of spatial queries in
SSDs has not received considerable attention in the literature, so far. Even more, the utiliza-

tion of multiple cores, based on a combination of breadth-first and depth-first tree traversals,

157

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



158 Chapter 8. Conclusions and Future Directions

is a new approach that further accelerates processing. The algorithms proposed in [46] exploit
the massive I/O advantages of SSDs and outperform the repetitive application of existing al-
gorithms by exploiting the massive I/O advantages of SSDs, both regarding actual disk access
and execution time, even if the I/O of existing algorithms are assisted by LRU buffering. The
parallel extensions of these algorithms clearly outperform the ones of [46], although the three
queries studied are I/O bound. The new algorithms can be applied to a parallel and distributed

environment and deal with very big data.

8.1.2 Query Processing with GPU conclusions

8.1.2.1 Kk-NN Query Processing with GPU and RAM

In Chapter }, we presented the first four in-memory algorithms for £-NN query processing
in GPUs. These algorithms maximize the utilization of device memory, handling more ref-
erence points in the computation. Through an experimental evaluation on synthetic and real
datasets, we concluded that T-DS only work faster than existing methods for small groups
of query points, SPP outperforms existing methods for larger groups of query points, HSPP
further enhances SPP performance for larger £ values and all of them scale-up to much larger
reference datasets. We validated that T-DS algorithm is faster than T-BS, because of the ex-
tra refinement step minimizing the sorting overhead. In terms of memory scaling, SPP and
HSPP can compute up to 300M reference points, taking advantage of our KNN-DLB or Max-
Heap optimizations. T-DS and T-BF could scale up to 200M and 100M respectively. SPP and
HSPP can scale up to 300M points, about 300 times more than other existing algorithms and
100M reference points more than T-DS. HSPP is an overall performance winner, especially

for larger k values.

8.1.2.2 k-NN Query Processing with GPU and SSD

In Chapter [§, we presented the first GPU-based algorithms for parallel processing the
k-NN query on reference data stored on SSDs, utilizing the Brute-force and Plane-sweep
techniques. These algorithms exploit the numerous GPU cores, utilize the device memory as
much as possible and take advantage of the speed and storage capacity of SSDs, thus pro-
cessing efficiently big reference datasets. Through an experimental evaluation on synthetic

datasets, we highlighted that Plane-sweep on unsorted reference data (with either an array or

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



8.1.2  Query Processing with GPU conclusions 159

a max-Heap buffer for organizing the current £-NNs) is a clear performance winner.

8.1.2.3 k-NN Query Processing with IoT Edge Devices and SSD

In Chapter [, we presented a new partitioning algorithm for processing the k-NN query
for big reference data which exploits the parallelism of GPUs and the speed of SSDs, as
secondary memory storage. We implemented this algorithm in an edge-computing device,
showing that answering this query is feasible and efficient using such a device, which has
limited power needs and small size, being versatile for on-site computing applications. Us-
ing synthetic datasets, through an extensive experimental performance comparison of the
new algorithm against (in-memory) existing ones by other researchers and two algorithms
(working on SSD-resident data) recently proposed by us it was shown that the new algorithm
excels in all the conducted experiments and outperforms its rivals. This is due to the two-level
partitioning employed by the new algorithm, since this approach leads to a reduction of the
in-memory reference points distance calculations. We also proposed an architecture of a dis-
tributed environment embedding such edge-computing devices where large-scale processing
of the £-NN query through the proposed algorithm can be accomplished. This architecture is
suitable for processing of a wide range of queries on big data, where most of the processing

takes place at the network edges.

8.1.2.4 k-NN Query Processing with GPU, SSD and full dataset partitioning

In Chapter 7, we introduced the first GPU-based algorithms for parallel processing the
k-NN query on reference and query big data stored on SSDs, utilizing the Symmetric Progres-
sion Partitioning technique. Our new algorithms exploit the manycore GPU architecture, the
concurrent kernel execution feature of Nvidia GPUs, utilize the device memory efficiently,
take advantage of the speed and storage capacity of SSDs and, thus, process efficiently big
reference and query datasets. Through an extensive experimental evaluation on synthetic and
real datasets, we highlighted that the DSPP+P algorithm and especially its Heap variation,

when using large k values and/or larger dataset volumes, is a clear performance winner.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



160 Chapter 8. Conclusions and Future Directions

8.2 Future directions

Although, there are many future research directions that could build on the work presented

in the thesis, the most mature ones are summarized in the following:

* Developing algorithms for parallel and distributed systems. Many of the spatio - tem-
poral data analytics systems we presented in Section 2.1, already incorporate spatial
indexing methods and distributes data to their nodes. In [67, 68], spatial query pro-
cessing techniques have been added to SpatialHadoop. We could build on [67, 68] to
embed into Spatiahadoop SSD-based xBR ™ -trees that process spatial queries, taking

advantage of multiple cores.

* Developing GPU algorithms for other demanding queries and/or queries also address-
ing the temporal dimension of data for the same computing architecture. Such algo-
rithms can be the spatio-temporal polygon range query (STPRQ), which aims to find
all records from a polygonal location in a time interval and the spatio-temporal k near-
est neighbors query (STKNNQ), which directly searches the query point’s k closest
neighbors [[126]. These algorithms can be executed in GPU devices, in a massively

parallel way.

* Examining the utilization of indexes for speeding up GPU processing even further.
Introduce Concurrent GPU Data Structures as presented in [[127] and [[12§] and exploit
such indexes. The usage of these indexes and the utilization of SSDs will accelerate

the spatial query execution.

* Introducing even more advanced partitioning in DSPP algorithm, to further improve its
performance. One technique that can be implemented is 3 dimensional grid based par-
titioning, such as Adaptive grid-based forest-like clustering algorithm [[129] or context

based partitioning for big data [[130].

« Developing and implementing the architecture presented in Section .2, We will try
to research the scaling potential of such architecture, using load balancing techniques
and locality based acceleration. We will try to exploit the distributed edge computers,

using communication based on MQTT technology or ad-hoc transmission techniques.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



8.2 Future directions 161

« implementation of join queries (like k-closest pairs [[131]), based on techniques utilized

in this dissemination.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



Publications

[1] Polychronis Velentzas, Michael Vassilakopoulos, Antonio Corral, and Christos
Antonopoulos. Gpu-based algorithms for processing the £ nearest-neighbor query us-

ing partitioning and concurrent kernel execution. Submitted for possible publication.

[2] Polychronis Velentzas, Michael Vassilakopoulos, and Antonio Corral. Gpu-aided edge
computing for processing the k nearest-neighbor query on ssd-resident data. Internet of

Things, 15:100428, 2021.

[3] Polychronis Velentzas, Antonio Corral, and Michael Vassilakopoulos. Big spatial and
spatio-temporal data analytics systems. Transactions on Large Scale Data Knowledge

Centered Systems, 47:155-180, 2021.

[4] Polychronis Velentzas, Michael Vassilakopoulos, and Antonio Corral. Gpu-based algo-
rithms for processing the k nearest-neighbor query on disk-resident data. In Model and
Data Engineering - 10th International Conference, MEDI 2021, Tallinn, Estonia, June
21-23, 2021, Proceedings, volume 12732 of Lecture Notes in Computer Science, pages
264-278. Springer, 2021.

[5] George Roumelis, Polychronis Velentzas, Michael Vassilakopoulos, Antonio Corral,
Athanasios Fevgas, and Yannis Manolopoulos. Parallel processing of spatial batch-
queries using xbr'-trees in solid-state drives. Cluster Computing, 23(3):1555-1575,
2020.

[6] Polychronis Velentzas, Michael Vassilakopoulos, and Antonio Corral. In-memory k near-
est neighbor gpu-based query processing. In Proceedings of the 6th International Con-
ference on Geographical Information Systems Theory, Applications and Management,
GISTAM 2020, Prague, Czech Republic, May 7-9, 2020, pages 310-317. SCITEPRESS,
2020.

163

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



164 Publications

[7] Polychronis Velentzas, Michael Vassilakopoulos, and Antonio Corral. A partitioning
gpu-based algorithm for processing the k nearest-neighbor query. In MEDES °20: 12th
International Conference on Management of Digital EcoSystems, Virtual Event, United
Arab Emirates, 2-4 November, 2020, pages 2-9. ACM, 2020 (2nd place in Best Papers

Awards: https://medes.sigappfr.org/20/best-paper-awards).

[8] Polychronis Velentzas, Panagiotis Moutafis, and George Mavrommatis. An improved
gpu-based algorithm for processing the k nearest neighbor query. In PCI 2020: 24th
Pan-Hellenic Conference on Informatics, Athens, Greece, 20-22 November, 2020, pages
372-375. ACM, 2020.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14


https://medes.sigappfr.org/20/best-paper-awards

References

[1] Ahmed Eldawy and Mohamed F. Mokbel. Spatialhadoop: A mapreduce framework for
spatial data. In ICDE, pages 1352—-1363. IEEE Computer Society, 2015.

[2] Francisco Garcia-Garcia, Antonio Corral, Luis Iribarne, Michael Vassilakopoulos, and
Yannis Manolopoulos. Efficient large-scale distance-based join queries in spatialhadoop.

Geolnformatica, 22(2):171-209, 2018.

[3] Jia Yu, Zongsi Zhang, and Mohamed Sarwat. Spatial data management in apache spark:

the geospark perspective and beyond. Geolnformatica, 23(1):37-78, 2019.

[4] Louai Alarabi, Mohamed F. Mokbel, and Mashaal Musleh. St-hadoop: A mapreduce
framework for spatio-temporal data. In SSTD, volume 10411 of Lecture Notes in Com-

puter Science, pages 84—104. Springer, 2017.

[5] Louai Alarabi, Mohamed F. Mokbel, and Mashaal Musleh. St-hadoop: a mapreduce
framework for spatio-temporal data. Geolnformatica, 22(4):785-813, 2018.

[6] Stefan Hagedorn, Philipp Goétze, and Kai-Uwe Sattler. The STARK framework for
spatio-temporal data analytics on spark. In BTW, volume P-265 of LNI, pages 123—-142.
GI, 2017.

[7] Stefan Hagedorn, Oliver Birli, and Kai-Uwe Sattler. Processing large raster and vector
data in apache spark. In BTW, volume P-289 of LNI, pages 551-554. Gesellschaft fiir
Informatik, Bonn, 2019.

[8] Polychronis Velentzas, Michael Vassilakopoulos, and Antonio Corral. A partitioning
gpu-based algorithm for processing the k nearest-neighbor query. In MEDES, pages 2—
9. ACM, 2020 (2nd place in Best Papers Awards: https://medes.sigappfr.o

rg/20/best-paper—awards).

165

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14


https://medes.sigappfr.org/20/best-paper-awards
https://medes.sigappfr.org/20/best-paper-awards

166 References

[9] Cuda 7 streams simplify concurrency. https://developer.nvidia.com/b
log/gpu-pro-tip-cuda-7-streams-simplify-concurrency/. Last

accessed: 2022-11-02.

[10] Husheng Zhou, Soroush Bateni, and Cong Liu. S”3dnn: Supervised streaming and
scheduling for gpu-accelerated real-time DNN workloads. In RTAS, pages 190-201,
2018.

[11] Jeftrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large
clusters. In OSDI, pages 137—-150. USENIX Association, 2004.

[12] Dawei Jiang, Beng Chin Ooi, Lei Shi, and Sai Wu. The performance of mapreduce: An
in-depth study. Proc. VLDB Endow., 3(1):472-483, 2010.

[13] Ahmed Eldawy and Mohamed F. Mokbel. The ecosystem of spatialhadoop. ACM
SIGSPATIAL Special, 6(3):3-10, 2014.

[14] Apachehadoop. http://hadoop.apache.orqg/. Lastaccessed: 2022-09-16.

[15] Ahmed Eldawy, Louai Alarabi, and Mohamed F. Mokbel. Spatial partitioning tech-
niques in spatial hadoop. Proc. VLDB Endow., 8(12):1602—-1605, 2015.

[16] Ahmed Eldawy, Yuan Li, Mohamed F. Mokbel, and Ravi Janardan. Cg_hadoop: com-
putational geometry in mapreduce. In SIGSPATIAL/GIS, pages 284-293. ACM, 2013.

[17] Ahmed Eldawy and Mohamed F. Mokbel. Pigeon: A spatial mapreduce language. In
ICDE, pages 1242—-1245. IEEE Computer Society, 2014.

[18] Mohamed F. Mokbel, Louai Alarabi, Jie Bao, Ahmed Eldawy, Amr Magdy, Mohamed
Sarwat, Ethan Waytas, and Steven Yackel. MNTG: an extensible web-based traffic gen-
erator. In SSTD, volume 8098 of Lecture Notes in Computer Science, pages 38-55.

Springer, 2013.

[19] Louai Alarabi, Ahmed Eldawy, Rami Alghamdi, and Mohamed F. Mokbel. TAREEG:
a mapreduce-based web service for extracting spatial data from openstreetmap. In SIG-

MOD, pages 897-900. ACM, 2014.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14


https://developer.nvidia.com/blog/gpu-pro-tip-cuda-7-streams-simplify-concurrency/
https://developer.nvidia.com/blog/gpu-pro-tip-cuda-7-streams-simplify-concurrency/
http://hadoop.apache.org/

References 167

[20] Amr Magdy, Louai Alarabi, Saif Al-Harthi, Mashaal Musleh, Thanaa M. Ghanem, So-
haib Ghani, and Mohamed F. Mokbel. Taghreed: a system for querying, analyzing, and
visualizing geotagged microblogs. In SIGSPATIAL/GIS, pages 163—172. ACM, 2014.

[21] Ahmed Eldawy, Mohamed F. Mokbel, Saif Al-Harthi, Abdulhadi Alzaidy, Kareem
Tarek, and Sohaib Ghani. SHAHED: A mapreduce-based system for querying and vi-
sualizing spatio-temporal satellite data. In ICDE, pages 1585-1596. IEEE Computer
Society, 2015.

[22] Ahmed Eldawy, Mohamed F. Mokbel, and Christopher Jonathan. Hadoopviz: A mapre-
duce framework for extensible visualization of big spatial data. In /CDE, pages 601-612.
IEEE Computer Society, 2016.

[23] Louai Alarabi and Mohamed F. Mokbel. A demonstration of st-hadoop: A mapreduce
framework for big spatio-temporal data. Proc. VLDB Endow., 10(12):1961-1964, 2017.

[24] Louai Alarabi. Summit: a scalable system for massive trajectory data management.

ACM SIGSPATIAL Special, 10(3):2-3, 2018.

[25] Viktor Rosenfeld, Sebastian Brel3, and Volker Markl. Query processing on heteroge-
neous cpu/gpu systems. ACM Comput. Surv., 55(1), 2022.

[26] David A Patterson Hennessy. Computer architecture: A quantitative approach by john
. Hennessy, David A. Patterson, 2017.

[27] David W. Wall. Limits of instruction-level parallelism. In ASPLOS, pages 176—188.
ACM Press, 1991.

[28] Shekhar Borkar and Andrew A. Chien. The future of microprocessors. Commun. ACM,
54(5):67-77, may 2011.

[29] Nvidia al00 tensor core gpu architecture. https://images.nvidia.com/ae
m-dam/en-zz/Solutions/data-center/nvidia-ampere-architectu

re-whitepaper.pdf. Last accessed: 2022-09-08.

[30] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable parallel pro-
gramming with cuda: Is cuda the parallel programming model that application developers

have been waiting for? Queue, 6(2):40-53, mar 2008.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14


https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf

168 References

[31] John E. Stone, David Gohara, and Guochun Shi. Opencl: A parallel programming stan-
dard for heterogeneous computing systems. Comput. Sci. Eng., 12(3):66-73, 2010.

[32] Using shared memory in cuda c/c++. https://developer.nvidia.com/blo

g/using-shared-memory-cuda-cc/. Last accessed: 2022-09-08.

[33] Faster parallel reductions on kepler. https://developer.nvidia.com/blo

g/faster-parallel-reductions-kepler/. Lastaccessed: 2022-09-08.

[34] Mikhail Khalilov and Alexey Timoveev. Performance analysis of CUDA, OpenACC
and OpenMP programming models on TESLA v100 GPU. Journal of Physics: Confer-
ence Series, 1740(1):012056, jan 2021.

[35] S.B. Imandoust and Mohammad Bolandraftar. Application of k-nearest neighbor (knn)
approach for predicting economic events theoretical background. Int J Eng Res Appl,

3:605-610, 01 2013.

[36] Volker Gaede and Oliver Giinther. Multidimensional access methods. ACM Comput.
Surv., 30(2):170-231, 1998.

[37] Hanan Samet. The quadtree and related hierarchical data structures. ACM Comput.
Surv., 16(2):187-260, 1984.

[38] Hanan Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley,
1990.

[39] Michael Vassilakopoulos and Yannis Manolopoulos. External balanced regular (x-BR)
trees: New structures for very large spatial databases. In Advances in Informatics (Proc.

HCI’99), pages 324-333. World Scientific, 2000.

[40] George Roumelis, Michael Vassilakopoulos, Thanasis Loukopoulos, Antonio Corral,
and Yannis Manolopoulos. The xbr'-tree: An efficient access method for points. In

DEXA, volume 9261 of Lecture Notes in Computer Science, pages 43—58. Springer, 2015.

[41] George Roumelis, Michael Vassilakopoulos, Antonio Corral, and Yannis Manolopou-
los. Efficient query processing on large spatial databases: A performance study. J. Syst.

Sofiw., 132:165-185, 2017.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14


https://developer.nvidia.com/blog/using-shared-memory-cuda-cc/
https://developer.nvidia.com/blog/using-shared-memory-cuda-cc/
https://developer.nvidia.com/blog/faster-parallel-reductions-kepler/
https://developer.nvidia.com/blog/faster-parallel-reductions-kepler/

References 169

[42] Frank T. Hady, Annie P. Foong, Bryan Veal, and Dan Williams. Platform storage per-
formance with 3d xpoint technology. Proc. IEEE, 105(9):1822—1833, 2017.

[43] Michael Cornwell. Anatomy of a solid-state drive. Commun. ACM, 55(12):59-63,
2012.

[44] Sangyeun Cho, Sanghoan Chang, and Insoon Jo. The solid-state drive technology, today
and tomorrow. In /ICDE, pages 1520-1522. IEEE Computer Society, 2015.

[45] Hongchan Roh, Sungho Kim, Daewook Lee, and Sanghyun Park. AS b-tree: A study
of an efficient b+-tree for ssds. J. Inf. Sci. Eng., 30(1):85-106, 2014.

[46] George Roumelis, Michael Vassilakopoulos, Antonio Corral, Athanasios Fevgas, and
Yannis Manolopoulos. Spatial batch-queries processing using xbr -trees in solid-state
drives. In MEDI, volume 11163 of Lecture Notes in Computer Science, pages 301-317.
Springer, 2018.

[47] George Roumelis, Michael Vassilakopoulos, and Antonio Corral. Performance compar-
ison of xbr-trees and r*-trees for single dataset spatial queries. In ADBIS, volume 6909

of Lecture Notes in Computer Science, pages 228-242. Springer, 2011.

[48] George Roumelis, Michael Vassilakopoulos, Antonio Corral, and Yannis Manolopou-
los. Bulk-loading xbrt-trees. In MEDI, volume 9893 of Lecture Notes in Computer

Science, pages 57-71. Springer, 2016.

[49] George Roumelis, Michael Vassilakopoulos, Antonio Corral, and Yannis Manolopou-
los. Bulk insertions into xbr™-trees. In MEDI, volume 10563 of Lecture Notes in Com-

puter Science, pages 185—199. Springer, 2017.

[50] Hongchan Roh, Sanghyun Park, Sungho Kim, Mincheol Shin, and Sang-Won Lee. B+-
tree index optimization by exploiting internal parallelism of flash-based solid state drives.

Proc. VLDB Endow., 5(4):286-297, 2011.

[51] Chin-Hsien Wu, Li-Pin Chang, and Tei-Wei Kuo. An efficient r-tree implementation
over flash-memory storage systems. In ACM-GIS, pages 17-24. ACM, 2003.

[52] Maciej Pawlik and Wojciech Macyna. Implementation of the aggregated r-tree over
flash memory. In DASFAA, volume 7240 of Lecture Notes in Computer Science, pages
65-72. Springer, 2012.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



170 References

[53] YanfeiLyv,Jing Li, Bin Cui, and Xuexuan Chen. Log-compact r-tree: An efficient spatial
index for SSD. In DASFAA, volume 6637 of Lecture Notes in Computer Science, pages
202-213. Springer, 2011.

[54] Peiquan Jin, Xike Xie, Na Wang, and Lihua Yue. Optimizing r-tree for flash memory.
Expert Syst. Appl., 42(10):4676—4686, 2015.

[55] Guohui Li, Pei Zhao, Ling Yuan, and Sheng Gao. Efficient implementation of a
multi-dimensional index structure over flash memory storage systems. J. Supercomput.,

64(3):1055-1074, 2013.

[56] Song Lin, Demetrios Zeinalipour-Yazti, Vana Kalogeraki, Dimitrios Gunopulos, and
Walid A. Najjar. Efficient indexing data structures for flash-based sensor devices. ACM
Trans. Storage, 2(4):468-503, 2006.

[57] Athanasios Fevgas and Panayiotis Bozanis. Grid-file: Towards to a flash efficient multi-
dimensional index. In DEXA, volume 9262 of Lecture Notes in Computer Science, pages

285-294. Springer, 2015.

[58] Mohamed Sarwat, Mohamed F. Mokbel, Xun Zhou, and Suman Nath. FAST: A generic
framework for flash-aware spatial trees. In SSTD, volume 6849 of Lecture Notes in

Computer Science, pages 149—167. Springer, 2011.

[59] Anderson Chaves Carniel, Ricardo Rodrigues Ciferri, and Cristina Dutra de Aguiar Ci-
ferri. A generic and efficient framework for spatial indexing on flash-based solid state
drives. In ADBIS, volume 10509 of Lecture Notes in Computer Science, pages 229-243.
Springer, 2017.

[60] Hongchan Roh, Sanghyun Park, Mincheol Shin, and Sang-Won Lee. Mpsearch: Multi-
path search for tree-based indexes to exploit internal parallelism of flash ssds. /EEE Data

Eng. Bull., 37(2):3-11, 2014.

[61] Jianting Zhang and Simin You. Large-scale geospatial processing on multi-core and

many-core processors: Evaluations on cpus, gpus and mics. CoRR, abs/1403.0802, 2014.

[62] Simin You, Jianting Zhang, and Le Gruenwald. Parallel spatial query processing on
gpus using r-trees. In ACM SIGSPATIAL, pages 23-31. ACM, 2013.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



References 171

[63] Jianting Zhang and Simin You. Speeding up large-scale point-in-polygon test based
spatial join on gpus. In ACM SIGSPATIAL, pages 23-32. ACM, 2012.

[64] Jianting Zhang, Simin You, and Le Gruenwald. Parallel online spatial and temporal

aggregations on multi-core cpus and many-core gpus. Inf. Syst., 44:134-154, 2014.

[65] Mark McKenney and Tynan McGuire. A parallel plane sweep algorithm for multi-core
systems. In ACM SIGSPATIAL, pages 392-395. ACM, 2009.

[66] Mark McKenney, Roger Frye, Mathew Dellamano, Kevin Anderson, and Jeremy Harris.
Multi-core parallelism for plane sweep algorithms as a foundation for GIS operations.

Geolnformatica, 21(1):151-174, 2017.

[67] Francisco Garcia-Garcia, Antonio Corral, Luis Iribarne, Michael Vassilakopoulos, and
Yannis Manolopoulos. Efficient large-scale distance-based join queries in spatialhadoop.

Geolnformatica, 22(2):171-209, 2018.

[68] Francisco Garcia-Garcia, Antonio Corral, Luis Iribarne, and Michael Vassilakopoulos.
Voronoi-diagram based partitioning for distance join query processing in spatialhadoop.
In MEDI, volume 11163 of Lecture Notes in Computer Science, pages 251-267. Springer,
2018.

[69] George Roumelis, Polychronis Velentzas, Michael Vassilakopoulos, Antonio Corral,
Athanasios Fevgas, and Yannis Manolopoulos. Parallel processing of spatial batch-
queries using xbr ' -trees in solid-state drives. Cluster Computing, 23(3):1555-1575,
2020.

[70] Hui-Ling Chen, Bo Yang, Gang Wang, Jie Liu, Xin Xu, Sujing Wang, and Dayou Liu.
A novel bankruptcy prediction model based on an adaptive fuzzy k-nearest neighbor

method. Knowl. Based Syst., 24(8):1348—1359, 2011.

[71] Ching-Hsue Cheng, Chia-Pang Chan, and Yu-Jheng Sheu. A novel purity-based k near-
est neighbors imputation method and its application in financial distress prediction. Eng.

Appl. Artif. Intell., 81:283-299, 2019.
[72] Gerassimos Barlas. Multicore and GPU Programming: An Integrated Approach. Mor-

gan Kaufmann, 1st edition, 2014.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



172 References

[73] Nvidia cuda runtime api. https://docs.nvidia.com/cuda/cuda-runtim

e—api/index.html. Last accessed: 2020-01-12.

[74] Quansheng Kuang and Lei Zhao. A practical gpu based knn algorithm. In ISCSCI,
pages 151-155, 2009.

[75] Vincent Garcia, Eric Debreuve, Frank Nielsen, and Michel Barlaud. K-nearest neigh-
bor search: Fast gpu-based implementations and application to high-dimensional feature

matching. In ICIP, pages 3757-3760. IEEE, 2010.

[76] Shenshen Liang, Cheng Wang, Ying Liu, and Liheng Jian. Cuknn: A parallel imple-
mentation of k-nearest neighbor on cuda-enabled gpu. In YC-ICT, pages 415-418, 2009.

[77] Ivan Komarov, Ali Dashti, and Roshan M. D’Souza. Fast k-nng construction with gpu-
based quick multi-select. PloS ONE, 9(5):1-9, 2014.

[78] Nikos Sismanis, Nikos Pitsianis, and Xiaobai Sun. Parallel search of k-nearest neigh-

bors with synchronous operations. In HPEC, pages 1-6. IEEE, 2012.

[79] Ahmed Shamsul Arefin, Carlos Riveros, Regina Berretta, and Pablo Moscato. Gpu-
fs-knn: A software tool for fast and scalable knn computation using gpus. PloS ONE,
7(8):1-13, 2012.

[80] Pablo David Gutiérrez, Miguel Lastra, Jaume Bacardit, Jos¢ Manuel Benitez, and Fran-
cisco Herrera. Gpu-sme-knn: Scalable and memory efficient knn and lazy learning using

gpus. Inf Sci., 373:165-182, 2016.

[81] Ricardo J. Barrientos, José Ignacio Gomez, Christian Tenllado, Manuel Prieto-Matias,
and Mauricio Marin. knn query processing in metric spaces using gpus. In Euro-Par,

volume 6852 of Lecture Notes in Computer Science, pages 380—392. Springer, 2011.

[82] Ricardo J. Barrientos, Fabricio Millaguir, José L. Sanchez, and Enrique Arias. Gpu-
based exhaustive algorithms processing knn queries. The Journal of Supercomputing,

73(10):4611-4634, 2017.

[83] Kimikazu Kato and Tikara Hosino. Multi-gpu algorithm for k-nearest neighbor prob-

lem. Concurrency and Computation: Practice and Experience, 24(1):45-53, 2012.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14


https://docs.nvidia.com/cuda/cuda-runtime-api/index.html
https://docs.nvidia.com/cuda/cuda-runtime-api/index.html

References 173

[84] Jan Masek, Radim Burget, Jan Karasek, Vaclav Uher, and Malay Kishore Dutta. Multi-
gpu implementation of k-nearest neighbor algorithm. In 7SP, pages 764-767. IEEE,
2015.

[85] Shengren Li and Nina Amenta. Brute-force k-nearest neighbors search on the GPU. In
SISAP, volume 9371 of Lecture Notes in Computer Science, pages 259-270. Springer,
2015.

[86] Amreek Singh, Kusum Deep, and Pallavi Grover. A novel approach to accelerate cal-
ibration process of a k-nearest neighbours classifier using GPU. J. Parallel Distributed

Comput., 104:114-129, 2017.

[87] Fast k nearest neighbor search using gpu. http://vincentfpgarcia.github

.10/kNN-CUDA/|. Last accessed: 2020-01-12.

[88] Polychronis Velentzas, Michael Vassilakopoulos, and Antonio Corral. In-memory
k nearest neighbor gpu-based query processing. In GISTAM, pages 310-317.
SCITEPRESS, 2020.

[89] Polychronis Velentzas, Panagiotis Moutafis, and George Mavrommatis. An improved
gpu-based algorithm for processing the k nearest neighbor query. In PCI, pages 372-375.
ACM, 2020.

[90] Polychronis Velentzas, Michael Vassilakopoulos, and Antonio Corral. Gpu-based al-
gorithms for processing the k nearest-neighbor query on disk-resident data. In MEDI,

volume 12732 of Lecture Notes in Computer Science, pages 264-278. Springer, 2021.

[91] Gang Mei, Nengxiong Xu, and Liangliang Xu. Improving gpu-accelerated adaptive
IDW interpolation algorithm using fast knn search. CoRR, abs/1601.05904, 2016.

[92] Fabian Gieseke, Justin Heinermann, Cosmin E. Oancea, and Christian Igel. Buffer k-d

trees: Processing massive nearest neighbor queries on gpus. In /CML, pages 172—180.

JMLR.org, 2014.

[93] Pedro Jose Silva Leite, Jodo Marcelo X. N. Teixeira, Thiago S. M. C. de Farias,
Bernardo Reis, Veronica Teichrieb, and Judith Kelner. Nearest neighbor searches on

the GPU - A massively parallel approach for dynamic point clouds. Int. J. Parallel Pro-
gram., 40(3):313-330, 2012.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14


http://vincentfpgarcia.github.io/kNN-CUDA/
http://vincentfpgarcia.github.io/kNN-CUDA/

174 References

[94] Moohyeon Nam, Jinwoong Kim, and Beomseok Nam. Parallel tree traversal for nearest

neighbor query on the GPU. In ICPP, pages 113—-122. IEEE, 2016.

[95] Jia Pan, Christian Lauterbach, and Dinesh Manocha. Efficient nearest-neighbor com-

putation for gpu-based motion planning. In /ROS, pages 2243-2248. 1EEE, 2010.

[96] Sparsh Mittal and Jeffrey S. Vetter. A survey of software techniques for using non-
volatile memories for storage and main memory systems. [EEE Trans. Parallel Dis-

tributed Syst., 27(5):1537-1550, 2016.

[97] Franco P. Preparata and Michael Ian Shamos. Computational Geometry - An Introduc-

tion. Texts and Monographs in Computer Science. Springer, 1985.

[98] Klaus H. Hinrichs, Jiirg Nievergelt, and Peter Schorn. Plane-sweep solves the closest

pair problem elegantly. Inf. Process. Lett., 26(5):255-261, 1988.

[99] Puloma Katiyar, Tin Vu, Ahmed Eldawy, Sara Migliorini, and Alberto Belussi. Spider-
web: A spatial data generator on the web. In SIGSPATIAL/GIS, pages 465-468. ACM,
2020.

[100] Tin Vu, Sara Migliorini, Ahmed Eldawy, and Alberto Belussi. Spatial data generators.
In SIGSPATIAL/SpatialGems, pages 1-7. ACM, 2019.

[101] Sparsh Mittal. A survey on optimized implementation of deep learning models on the

NVIDIA jetson platform. J. Syst. Archit., 97:428—442, 2019.

[102] Dhirendra Pratap Singh, Ishan Joshi, and Jaytrilok Choudhary. Survey of gpu based
sorting algorithms. [International Journal of Parallel Programming, 46(6):1017-1034,
2018.

[103] Vincent Garcia, Eric Debreuve, and Michel Barlaud. Fast k nearest neighbor search

using GPU. In CVPR Workshops, pages 1-6. IEEE, 2008.

[104] Javier A. Riquelme, Ricardo J. Barrientos, Ruber Hernandez-Garcia, and Cristobal A.
Navarro. An exhaustive algorithm based on GPU to process a knn query. In SCCC, pages
1-8. IEEE, 2020.

[105] Jon Louis Bentley. Multidimensional binary search trees used for associative search-

ing. Communications of the ACM, 18(9):509-517, 1975.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



References 175

[106] Kun Zhou, Qiming Hou, Rui Wang, and Baining Guo. Real-time kd-tree construction
on graphics hardware. ACM Transactions on Graphics, 27(5):126, 2008.

[107] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing

the curse of dimensionality. In STOC, pages 604—613. ACM, 1998.

[108] Jia Pan and Dinesh Manocha. Fast gpu-based locality sensitive hashing for k-nearest
neighbor computation. In SIGSPATIAL/GIS, pages 211-220. ACM, 2011.

[109] Patrick Wieschollek, Oliver Wang, Alexander Sorkine-Hornung, and Hendrik P. A.
Lensch. Efficient large-scale approximate nearest neighbor search on the GPU. CoRR,

abs/1702.05911, 2017.

[110] Antonin Guttman. R-trees: A dynamic index structure for spatial searching. In SIG-

MOD, pages 47-57. ACM, 1984.

[111] David A. White and Ramesh C. Jain. Similarity indexing with the ss-tree. In ICDE,
pages 516-523. IEEE, 1996.

[112] Ablimit Aji, Hoang Vo, and Fusheng Wang. Effective spatial data partitioning for
scalable query processing. CoRR, abs/1509.00910:1-12, 2015.

[113] Polychronis Velentzas, Michael Vassilakopoulos, and Antonio Corral. Gpu-aided edge
computing for processing the k nearest-neighbor query on ssd-resident data. Internet of

Things, 15:100428, 2021.

[114] José M. Cecilia, Juan-Carlos Cano, Juan Morales-Garcia, Antonio Llanes, and Bal-
domero Imbernén. Evaluation of clustering algorithms on gpu-based edge computing

platforms. Sensors, 20(21):6335, 2020.

[115] Pilsung Kang and Sungmin Lim. A taste of scientific computing on the gpu-accelerated

edge device. IEEE Access, 8:208337-208347, 2020.

[116] Sungmin Lim and Pilsung Kang. Implementing scientific simulations on gpu-

accelerated edge devices. In ICOIN, pages 756—760. IEEE, 2020.
[117] Jongmin Jo, Sucheol Jeong, and Pilsung Kang. Benchmarking gpu-accelerated edge

devices. In BigComp, pages 117-120. IEEE, 2020.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



176 References

[118] Lingyuan Wang, Miaoqing Huang, and Tarek A. El-Ghazawi. Exploiting concurrent
kernel execution on graphic processing units. In HPCS, pages 24-32. IEEE, 2011.

[119] Florian Wende, Frank Cordes, and Thomas Steinke. On improving the performance of
multi-threaded cuda applications with concurrent kernel execution by kernel reordering.

In SA4AHPC, pages 74-83. IEEE, 2012.

[120] Qing Jiao, Mian Lu, Huynh Phung Huynh, and Tulika Mitra. Improving gpgpu energy-
efficiency through concurrent kernel execution and dvfs. In CGO, pages 1-11. IEEE,
2015.

[121] Hongwen Dai, Zhen Lin, Chao Li, Chen Zhao, Fei Wang, Nanning Zheng, and Huiyang
Zhou. Accelerate gpu concurrent kernel execution by mitigating memory pipeline stalls.

In HPCA, pages 208-220. IEEE, 2018.

[122] Zhen Lin, Hongwen Dai, Michael Mantor, and Huiyang Zhou. Coordinated cta com-
bination and bandwidth partitioning for gpu concurrent kernel execution. ACM Trans-

actions on Architecture and Code Optimization, 16(3):23:1-23:27, 2019.

[123] Chen Zhao, Wu Gao, Feiping Nie, Fei Wang, and Huiyang Zhou. Fair and cache block-
ing aware warp scheduling for concurrent kernel execution on gpu. Future Generation

Computer Systems, 112:1093—-1105, 2020.

[124] Bernabé Lopez-Albelda, Francisco M. Castro, Jos¢ Maria Gonzalez-Linares, and
Nicolés Guil. Flexsched: Efficient scheduling techniques for concurrent kernel execution

on gpus. The Journal of Supercomputing, 78(1):43-71, 2022.

[125] Chen Zhao, Wu Gao, Feiping Nie, and Huiyang Zhou. A survey of gpu multitask-
ing methods supported by hardware architecture. /EEE Transactions on Parallel and

Distributed Systems, 33(6):1451-1463, 2022.

[126] Xin Li, Huayan Yu, Ligang Yuan, and Xiaolin Qin. Query optimization for distributed

spatio-temporal sensing data processing. Sensors, 22(5), 2022.
[127] Muhammad Abdelghaftar Awad. Fully Concurrent GPU Data Structures. PhD thesis,

University of California, Davis, 2022.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



References 177

[128] George Roumelis, Polychronis Velentzas, Michael Vassilakopoulos, Antonio Corral,
Athanasios Fevgas, and Yannis Manolopoulos. Parallel processing of spatial batch-
queries using xbr ' -trees in solid-state drives. Cluster Computing, 23(3):1555-1575,
2020.

[129] Mingchang Cheng, Tiefeng Ma, Lin Ma, Jian Yuan, and Qijing Yan. Adaptive grid-
based forest-like clustering algorithm. Neurocomputing, 481:168—181, 2022.

[130] Sara Migliorini, Alberto Belussi, Elisa Quintarelli, and Damiano Carra. A context-
based approach for partitioning big data. In EDBT, pages 431-434. OpenProceed-
ings.org, 2020.

[131] Antonio Corral, Yannis Manolopoulos, Yannis Theodoridis, and Michael Vassi-
lakopoulos. Closest pair queries in spatial databases. In SIGMOD, pages 189-200. ACM,
2000.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:45:22 EET - 137.108.70.14



	Abstract
	Abstract in Greek
	Table of contents
	List of figures
	List of tables
	Abbreviations
	Introduction
	Thesis contribution
	Thesis organization

	Advanced Spatial query Processing
	Parallel and distributed spatial processing
	Parallel and distributed architectures
	Big Spatial and Spatio-Temporal Data Analytics Systems

	CPU and GPU Data Processing
	CPU Processing
	GPU Processing
	GPU Programming
	CPU vs GPU Data Processing

	Architectural research focus

	Query Processing with CPU and SSD
	Related Work and Motivation 
	The xBR-tree Family 
	Spatial Indexes for Flash SSDs 
	Spatial Processing on Multi-core Processors 

	The xBR+-tree Structure
	Algorithms for Batch-Queries Processing 
	Algorithm for Processing of Batch Point-Location Queries 
	Algorithm for Processing of Batch Window Queries
	Algorithm for Processing of Batch Distance-Range Queries

	Algorithms for Parallel Batch-Queries Processing 
	Parallelization techniques
	Basic Ideas of Parallel Query Processing
	Parallel Algorithm for Processing of Batch Point-Location Queries 
	Parallel Algorithm for Processing of Batch Window and Distance-Range Queries 

	Experimental Results 
	PLQ Experiments
	WQ Experiments
	DRQ Experiments

	Processing in a Distributed Environment
	Conclusions 

	k-NN Query Processing with GPU and RAM
	Related Work and Motivation
	k–NN In-memory GPU-based Algorithms
	Thrust Brute-Force
	Thrust Distance Refinement
	Symmetric Progression Partitioning Algorithm
	Heap Symmetric Progression Partitioning
	k-NN distance list buffer
	k-NN max-Heap distance list buffer

	Experimental Study
	In-memory, 1st set of experiments
	In-memory, 2nd set of experiments
	In-memory, 3rd set of experiments

	Conclusions

	k-NN Query Processing with GPU and SSD
	Related Work and Motivation
	k-NN Disk Algorithms
	Disk Brute-force Algorithm
	Disk Plane-sweep Algorithm

	Experimental Study
	Reference dataset scaling
	Query dataset scaling
	k scaling
	Interpretation of Results

	Conclusions

	k-NN Query Processing with IoT Edge Devices and SSD
	Related Work and Motivation
	Brute-Force Techniques
	Spatial Subdivision Techniques
	Motivation

	Edge Computing with IoT Distributed Architecture
	k-NN Disk Algorithms
	Disk Brute-force Algorithm
	Disk Plane-sweep Algorithm
	Disk Symmetric Progression Partitioning

	Experimental Study
	Comparison to existing methods
	Reference dataset scaling
	Query dataset scaling
	k scaling
	Interpretation of Results

	Conclusions

	k-NN Query Processing with GPU, SSD and Full Dataset Partitioning
	Related Work and Motivation
	Concurrent Kernel Execution
	Motivation

	k-NN Disk Algorithms
	Disk Brute-force Algorithm
	Disk Plane-sweep Algorithm
	Disk Symmetric Progression Partitioning
	Improved Disk Symmetric Progression Partitioning
	Improved Disk Symmetric Progression Partitioning with pinned memory

	Experimental Study
	Synthetic data experiments
	Real data experiments

	Conclusions

	Conclusions and Future Directions
	Conclusions
	Query Processing with CPU and SSD conclusions
	Query Processing with GPU conclusions

	Future directions

	Publications
	References

