

Gallage Malith Thiwanka (2022) Codesign of Edge Intelligence and Automated Guided Vehi-

cle Control Faculty of Information Technology and Electrical Engineering, Degree Programme in

Electronics and Communications Engineering, 36 pages.

ABSTRACT

In recent years, edge Artificial Intelligence (AI) coupled with other technologies such as au-

tonomous systems have gained a lot of attention. This work presents a harmonic design of

Autonomous Guided Vehicles (AGV) control, edge intelligence, and human input to enable au-

tonomous transportation in industrial environments. The AGV has the capability to navigate

between a source and destinations and pick/place objects. The human input implicitly provides

the preferences of the destination and exact drop point, which are derived from the AI at the

network edge and shared with the AGV over a wireless network. Design and integration of au-

tonomous control of AGV, edge intelligence, and communication therein are carried out in this

work and presented as a unified demonstration. The demonstration indicates that the proposed

design of hardware, software, and intelligence design achieves the Technology Readiness Level

(TRL) of range 4-5.

Keywords: Edge AI, Image Processing, Autonomous Navigation

CONTENTS

ABSTRACT

CONTENTS

PREFACE

1 INTRODUCTION . 6

1.1 Background study and literature review . 6

1.2 Research objectives and thesis organization . 8

2 PROPOSED SYSTEM ARCHITECTURE . 9

2.1 Overall System Architecture . 9

2.2 Communication Architecture . 10

3 SYSTEM DESIGN AND IMPLEMENTATION . 12

3.1 Hardware . 12

3.2 Intelligence For Navigation . 13

3.3 Intelligence For Object Placement . 23

4 Conclusion and Future Work . 34

4.1 Conclusion . 34

4.2 Future Work . 34

5 BIBLIOGRAPHY . 35

PREFACE

This master’s thesis titled “Codesign of edge intelligence and automated guided vehicle control” was

conducted at the Center of Wireless Communication at the University of Oulu as a part of the master’s

degree program in Wireless Communication Engineering. I hope that the results and insights presented

in this thesis will be useful and informative to the reader. I would like to begin by expressing my heartfelt

gratitude to my primary supervisor, Asst. Prof. Sumudu Samarakoon, and my secondary supervisor,

Dr. Rafaela Scaciota. Their guidance, support, and expertise have been invaluable throughout my

master’s program and the development of this thesis. Also, I would like to take this opportunity to

extend my appreciation to Prof. Mehdi Bennis for bringing me under the wings of the ICON group

which was instrumental in my growth as a researcher. I would also like to thank my family and friends

for their unwavering love and support. I am especially thankful to Nimni Tharuni, for being my rock

and my source of strength during the long hours of hard work. I must also acknowledge the incredible

opportunities that the University of Oulu and my research group have provided me. The resources,

facilities, and support that they have given me have been invaluable in allowing me to pursue my passion

and achieve my goals. Finally, I would like to take this opportunity to thank everyone who has played a

role in my journey. This thesis is as much a tribute to them as it is to me. Thank you for everything.

Malith Gallage

LIST OF SYMBOLS AND ABBREVIATIONS

AGV Autonomous Guided Vehicles.

AI Artificial Intelligence.

DoF Degrees of Freedom.

fps Frames per Second.

GPIO General Purpose Input/Output.

HITL Human-in-the-Loop.

IoT Internet of Things.

ML Machine Learning.

PID Proportional-Integral-Derivative.

px Pixels.

RGB Red, Blue and Green.

RoI Region-of-Interest.

TRL Technology Readiness Level.

6

1 INTRODUCTION

The rapid growth of customer demands and the increasing costs of resources, labour, and energy

have driven industries to seek new technologies that improve productivity and efficiency [1]. In

particular, the modern logistics industry is an ever-evolving sector and one of the key players to adopt

and leverage the power of autonomous automation technologies including the Human-in-the-Loop

(HITL), in which, human operators can provide the preferences required for automation [2]. With

the introduction of Autonomous Guided Vehicles (AGV), it is expected to bring about revolutionary

changes to the logistics industry as AGVs are one of the pivotal components that is essential to enable

“smart logistics” in manufacturing plants [3]. Realizing full/semi-autonomy with the fusion of control

systems, communication networks, and computation servers at the edge over repetitive tasks naturally

calls for the concepts of Artificial Intelligence (AI) [4]. While using AI to automate a wide variety of

tasks and processes, such as route optimization and warehouse resource management, on the other hand

Edge AI facilitates the processing at the edge itself leading to low latency, low bandwidth inference

while preserving privacy which becomes an ideal candidate for industrial application in logistics [5].

With the increasing interest in utilizing AGVs in industrial applications, there is a growing need

for developing AI-driven efficient and reliable solutions for navigation tasks [4]. Towards this, line-

following robots have been at the center of attention due to their ease of use and low complexity and

robust operations [6]. The benefits of using AGVs in the logistics industry are numerous. First, they can

improve efficiency and accuracy by reducing the need for manual labour. AGVs can be programmed to

follow predetermined paths and perform specific tasks without the need for human intervention, which

can save time and money. Furthermore, AGVs can provide better tracking and control of goods as they

can be programmed to monitor and record the progress of their tasks. But their use is still limited due

to the potential safety risks that are associated with autonomous navigation. In order to minimize these

risks, many organizations are beginning to incorporate the use of HITL systems whereby providing an

additional layer of safety and security with the use of a human operator to monitor and control robotic

operations. This allows companies to safely deploy AGVs in their operations while minimizing the risk

of accidents or other unforeseen events by having the best of both worlds of AGVs and HITL systems.

Overall, the introduction of AGVs, HITL, and edge AI is likely to usher into a new era of manufacturing

and logistics industry.

In this work, we present the co-design of an intelligent crawler robot that uses its camera to sense

the environment and navigate to deliver objects to their corresponding locations with the aid of an

edge server with AI capabilities. The preferences for the destination and exact drop point are set by

a human operator, allowing the robot to accurately meet these preferences. This co-designed system

demonstrates the potential for intelligent robots to perform tasks in industrial environments with a high

degree of accuracy and efficiency while having the human-in-the-loop.

1.1 Background study and literature review

The sudden rise of AI has spurred a significant amount of research on the potential applications of edge

AI for automating tasks across a range of industries [7–9]. In addition to its potential for improving task

automation, the integration of edge AI with other technologies such as the Internet of Things (IoT) and

robotics has the potential to expand its capabilities and enable new applications [9, 10]. In this section,

we will delve into several key concepts that were used in this study including edge AI, supervised

learning and U-net architecture [11] for image classification and Proportional-Integral-Derivative (PID)

controller [12] for guided navigation [13], providing explanations and elaborations.

Edge AI refers to the implementation of AI algorithms and technologies at the edge of a network,

closer to the source of data, in order to enable real-time analysis and decision making without the need

7

for extensive data transfer. This approach has the potential to improve the efficiency and speed of task

automation, particularly in industries where large amounts of data must be processed quickly [14, 15].

One key advantage of edge AI is its ability to reduce the amount of data that must be transferred across

networks, which can improve the speed and efficiency of task automation. By performing data analysis

and decision making at the edge of the network, edge AI can reduce the need for extensive data transfer,

which can be time-consuming and potentially introduce latency [16]. This is particularly important

in industries where real-time analysis and decision making are critical, such as manufacturing and

transportation [17]. Edge AI also has the potential to improve the security of data and systems. By

performing data analysis and decision making at the edge of the network, edge AI can reduce the risk

of data breaches and other security threats. [18] This is particularly important in industries where data

security is critical, such as healthcare and finance [14]. Thus, the use of edge AI has the potential to

improve the efficiency and speed of task automation and holds significant promise in various industries.

Machine Learning (ML) is the enabler of artificial intelligence that involves the use of algorithms

to analyze and learn from data, without being explicitly programmed. Supervised learning is a type

of machine learning algorithm that uses labeled training data to learn to predict outputs for new data.

It is a powerful tool for image classification because it allows a system to learn complex patterns and

relationships in the data. By training a supervised learning model on a labeled dataset of images, the

model can learn to identify and distinguish different objects, scenes, and other visual concepts that may

not be easily identifiable using rule-based image processing techniques. This is achieved through the

use of algorithms that interactively adjust the model’s parameters to minimize the difference between

the predicted labels and the true labels in the training data.

The U-Net architecture is a deep learning model that has been widely used for image classification

and segmentation tasks [11]. The U-Net architecture is composed of two parts: a contracting path

and an expanding path. The contracting path consists of a series of convolutional layers that extract

features from the input image, while the expanding path consists of a series of deconvolutional layers

that combine these features to predict the final label or segmentation map. The U-Net architecture is

notable for its use of skip connections, which allow the model to combine low-level and high-level

features to improve the accuracy of its predictions. The combination of supervised learning and the

U-Net architecture has been shown to be effective for image classification tasks. Many researchers have

demonstrated the effectiveness of these approaches for tasks such as object recognition and medical

image analysis where segmentation is needed [19].

The PID controller is a widely used control system that has been applied to a variety of tasks, from

industrial control systems to navigation in line following robots. PID Controllers are a type of feedback

control mechanism that uses feedback from the environment to regulate the behaviour of a system. A

PID controller consists of three components, a proportional term, an integral term, and a derivative

term. The proportional term is used to regulate the magnitude of the output, the integral term is used to

regulate the rate of change of the output, and the derivative term is used to regulate the acceleration of

the output. These terms work together to provide precise and stable control of a system, by constantly

adjusting the control signal based on the error between the desired and measured states of the system.

PID controllers are used in the navigation and control of robots in terms of providing the necessary

control decisions to achieve their desired position, velocity, and/or acceleration. In the context of line-

following robots, a PID controller can be used to control the motion of the robot along a predefined path,

by constantly adjusting the control signal based on the error between the desired and actual position of

the robot such as the speed of its motors or the position of its joints. This allows the robot to follow the

desired path accurately and reliably, even in the presence of noise and other disturbances. A detailed

explanation for the use of PID controllers in this work is provided in later sections.

8

1.2 Research objectives and thesis organization

In this work, we are evaluating the suitability of the co-design of the edge intelligence with an AGV

to automate tasks to aid in logistics by building a system prototype that could be aided by a human

operator to provide preference. The system prototype is realized from its conceptual design to the

actual implementation in this work. The designed system is incorporated with ML models and control

algorithms to help the AGV carry out its tasks accurately and efficiently. The preliminary results of

this work are further used to refine the design of the edge intelligence, AGV, and their communication

aspects.

The rest of this thesis is organized as follows. The second chapter contains an overview of the

proposed system architecture and the communication architecture of the various components of the

proposed system design. The third chapter elaborates on the used hardware as well as provides an

extensively detailed explanation of the implantation of the two key software solutions that work as the

decision maker. Finally, the fourth chapter summarizes the work carried out in this thesis and provides

recommendations for potential future extensions of this work.

10

AGV picks up the object from the source, the next object is placed by the operator on the source for the

next delivery task.

The destination and the precise drop location of the object referred to as delivery information

hereinafter, are determined by the edge server using the ML inference service running on it with the

help of the camera images. Derived delivery information is to be shared with the AGV upon its request

before the beginning of each delivery task. The delivery information is derived based on the shape of

the custom drop areas defined by an external party (e.g., a human operator) and the location of these

drop areas.

The path between the source and the destinations was defined to aid the AGV’s navigation and it is

drawn on the surface with black color, and it contains curves and junctions. Here, a single path starting

from the source branches out to four different paths leading to four adjacent destinations. These four

adjacent destinations are defined as storage areas and the drop location of the object is inside of these

storage areas in each delivery task. Each destination is a square of width 280 mm and the corners of

the area are marked by cross-hair markers. Altogether 10 cross-hair markers have been used to mark

4 adjacent storage areas as shown in Fig. 2.1 with the furthest marker at the bottom left being defined

as the origin of the 2D coordinate system. Custom drop locations are set as irregular shapes made by

an external party which is located inside the storage areas. The precise drop location is defined as the

center point of the largest circle placed inside the custom drop area. It should be noted that the largest

circle is not necessarily a unique circle. Also, it is worth highlighting that the drop point coordinates

provided by the edge server need to be computed with respect to the actual coordinates whereas the

camera images used by the edge server, have their measurements in Pixels (px). Thus, the placement of

cross-hair markers is predefined and this knowledge is utilized to translate the px distances to the actual

measurements during the image processing at the edge server. Then the translated coordinates can be

utilized by the AGV to move its robotic arm to the correct position along the plane of the robot platform

and place the object in the desired position.

2.2 Communication Architecture

All the components mentioned in the proposed architecture are connected to the same access point

via WiFi, thus, enabling them to communicate and coordinate with each other to achieve their final

goal. The network architecture of the proposed system is illustrated in Fig. 2.2 where the AGV, camera

observing the destinations and the edge server are connected to the same WiFi network.

The communication between the AGV and the edge server takes place through a REST API over the

WiFi network. The AGV requests delivery information from the edge server only once, before each

transport job is initiated. The edge server provides delivery information in JSON format via its exposed

endpoint and an example of the received delivery information is provided in Listing 1.

Listing 1 JSON response from the edge server.

1 {

2 "confidence": 95.86259095408846

3 "radius-mm" : 47.84779950254917,

4 "xcoordinate" : 100.0340522133938,

5 "ycoordinate" : 228.59250851305333

6 }

12

3 SYSTEM DESIGN AND IMPLEMENTATION

The demonstration setup for this project consists of various hardware components and two primary

software solutions that provide intelligence for navigation and object placement. The hardware compo-

nents include sensors such as a camera for perception, actuators such as servos for object manipulation,

and an AGV that interacts with the environment. The software solutions, on the other hand, provide the

intelligence for the demonstration setup in terms of algorithms and models for navigation and object

placement. The intelligence for navigation solution enables the system to move through its environ-

ment. The intelligence for object placement solution, on the other hand, provides information about the

location of objects which enables the system to pick up and manipulate objects, placing them in specific

locations.

In the following sections, we provide a comprehensive overview of the hardware components and

software solutions that make up the demonstration setup, as well as a detailed explanation of their

implementation.

3.1 Hardware

All the hardware components that are used in the demonstration are shown in Fig. 2.1. AGV is an off-the-

shelf mobile crawler robot known as ”Jetank AI kit” which is powered by Nvidia Jetson nano developer

module with 16GB eMMC and 4GB RAM [20]. This is capable of running resource-demanding

modern computing algorithms related to machine learning and computer vision and supports many

popular libraries and frameworks. The robot has two motors that could be controlled individually and

a 4-Degrees of Freedom (DoF) mechanical arm with a gripper. The only sensor it has to sense the

surrounding environment is a robust 8MP wide-angle camera with 160◦ field-of-view and it comes with

a Sony IMX219 image sensor. The camera can provide static images up to 3280 × 2464 px resolution.

With the Jetson Nano board’s General Purpose Input/Output (GPIO) pins there is a possibility to integrate

different types of sensors, but, for this demonstration we have only utilized the onboard camera.

The camera which observes the destinations consists of a Raspberry Pi V2 camera module [21]

which comes with a robust 8MP Sony IMX219 image sensor and connects with a Raspberry Pi 4 Model

B computer [22], which hosts a web server that serves high resolution images of the storage area upon

the requests from the edge server. This camera is able to provide static images up to 3280 × 2464 px

resolution and it has a manually adjustable focal length.

A powerful multi-purpose 64-bit Windows 10 computer acts as the edge server and it hosts the AI

service and share the delivery information with the AGV upon request.

14

Figure 3.2. Raw image to gray scale conversion.

are only interested in the structure and the intensities of the image rather than using 3 color channels.

The gray-scale conversion is done as [23],

𝑌 = 0.299 · 𝑋𝑅 + 0.587 · 𝑋𝐺 + 0.114 · 𝑋𝐵 (3.1)

where 𝑋𝑅, 𝑋𝐺 and 𝑋𝐵 denote the red, green, and blue color intensity values respectively. A sample

frame of the raw image and its gray-scale converted image is shown in Fig. 3.2.

In the next step, the unwanted Gaussian noise is removed from the image by convoluting the gray-scale

image using a 3×3 Gaussian kernel. After this de-noising process, the image will appear smoothened

and less noisy as illustrated in Fig. 3.3. The reason for resorting to a 3×3 Gaussian kernel was, the

details of the image were declining when the kernel size was higher. Therefore, a 3×3 Gaussian kernel

was used to remove the Gaussian noise of the image while preserving other details of the frame. The

3×3 Gaussian filter is constructed using the 2-dimensional Gaussian distribution [24],

𝐺 (𝑥, 𝑦) =
1

2𝜋𝜎2
𝑒
−

𝑥
2+𝑦2

2𝜎2 (3.2)

and using a discrete approximation to it.

Even after the de-noising process, small-scale inconsistencies can be observed in the detected path

mainly due to the glare of the surrounding light sources. In order to remove those undesired white spots

on the path, we apply one of the gray-scale morphological operators known as gray-scale erosion (see

step 4 in Fig. 3.1). The mathematical expression for the gray-scale erosion is expressed as follows [24]:

(𝑓 ⊖ 𝑏) (𝑥) = inf
𝑦∈𝐵

[𝑓 (𝑥 + 𝑦) − 𝑏(𝑦)] (3.3)

where 𝑓 (𝑥) is the given gray-scale image and 𝐵 is the space where structuring element 𝑏(𝑥) is defined.

This is an extension of the binary morphology operator erosion. The structuring element we have used

here is a 3×3 kernel with value 1 and the erosion process is applied 8 times interactively. The resulting

image after applying the erosion process is illustrated in Fig. 3.4.

Erosion helps to remove bright objects smaller than the structuring element. This can be confirmed

from the resulting image in Fig. 3.4 that the small bright areas which were on the path are removed. But,

as a result of erosion, darker regions of the image have expanded and the image appears darker. To avoid

these undesired dark regions and to preserve the shape and the structure of the path, the next gray-scale

15

1/16 1/8 1/16

1/8 1/4 1/8

1/16 1/8 1/16

Figure 3.3. De-noising gray-scale image.

1 1 1

1 1 1

1 1 1

Figure 3.4. Result after erosion.

morphological operator, dilation is applied (see step 5 in Fig. 3.1). The mathematical expression for

gray-scale dilation is given by [24]

(𝑓 ⊕ 𝑏) (𝑥) = sup
𝑦∈𝐸

[𝑓 (𝑦) − 𝑏(𝑥 − 𝑦)], (3.4)

16

where 𝑓 (𝑥) is the given gray-scale image which is in the Euclidean space 𝐸 and 𝑏(𝑥) is the structuring

element. This is an extension of the binary morphology operator dilation. A 3 kernel with value 1

has been used as the structuring element and it has been applied 5 times interactively to remove the

undesired outcome of erosion. Dilation causes the image to appear brighter and to extend bright regions.

The resulting image after dilation can be seen in Fig. 3.5 and it can be observed that the size and the

structure of the path have been restored closer to its original size. The combination of the dilation and

erosion such that dilation is performed on the result of the eroded image by the same structuring element

is known as morphological opening.

1 1 1

1 1 1

1 1 1

Figure 3.5. Result after dilation.

The next step is image segmentation to identify the path from the rest of the background. For this,

the following two methods were evaluated:

1. Binary thresholding.

2. OTSU method [25].

Due to the simplicity of the binary thresholding method, it was first used to segment the image [26].

But as the AGV moves, the intensities of the frame rapidly change due to the surrounding environment,

different light sources, shadows, and uneven illumination. Hence, having a constant threshold value

was not successful as seen in Fig. 3.6.

Hence, to make the segmentation more robust, the OTSU method was evaluated, as it dynamically

calculates the thresholding value depending on the intensity values. In the OTSU method, it assumes

that the intensity distribution of the image follows a bimodal distribution [27]. The optimal threshold

value corresponds to the value which minimizes the intra-class variance of the two pixel groups that are

separated by the threshold value. The histogram of the dilated image approximately follows a bimodal

distribution as shown in Fig. 3.7 if there are no drastic changes in the illumination. Hence, the OTSU

method was chosen to segment the image.

17

Figure 3.6. An example of a failure in binary thresholding.

The resulting binary image after applying the OTSU method is illustrated in Fig. 3.8. In the binary

image, the path appears in black while the background appears in white. However, due to the low

illumination in the horizon of the image, it appears in black as well. To neglect the undesired black

areas corresponding to the horizon, a rectangular window that is likely to contain the path has been

defined as the Region-of-Interest (RoI) (see Fig. 3.10). If the detected lines are within the RoI, it

proceeds to issue the control commands.

After detecting the line, the next step of the navigation would be to issue control commands. To

ensure the AGV stays on track and to ensure a smooth navigation, a PID controller [12] is used to

produce control commands.

25 50 75 100 125 150 175
0.00

0.01

0.02

0.03

0.04

0.05

Figure 3.7. Histogram of the eroded image.

19

is referred to as pid value hereinafter. This is calculated in each image frame and applied to control the

angular velocities of the left and right DC motors separately. The measured process variable in the AGV

is the coordinates of the center of mass of the RoI in the segmented binary image. The center of mass

is calculated by assigning weights ones and zeros to black and white px, respectively, and referred to as

the center of the path hereinafter. The desired set-point is defined as the vertical symmetrical axis of the

image. Then the error term is produced as the displacement of the center of the path from the desired

set point and it is fed to the control function after normalizing. The constructed RoI, the center of path

and the error is shown in Fig. 3.10 for reference. Then the pid value is added to the base speed of the

left DC motor whereas it is reduced by the base speed of the right DC motor to regulate their angular

velocities such that it attempts to minimize the error in the next iteration and over time, controller

converges into the steady state where the error term is nullified and the center of path coincides with

the vertical symmetrical axis of the image frame. Thus, the AGV navigates smoothly within the path.

This control procedure is repeated on each image frame in such a manner it ensures that the AGV stays

within its course of navigation.

Error

RoI

Center of
the path

Figure 3.10. Region of interest, center of mass and error calculation.

In order to achieve the optimal control function, the PID controller should be tuned to have a balance

of the proportional, derivative and integral terms. Initially, the coefficient values of proportional,

derivative and integral terms which are 𝐾𝑝, 𝐾𝑑 and 𝐾𝑖, respectively, set to an arbitrary value and tested

the AGV on the laboratory environment to observe its control function response in (3.6). Then by trial

and error sub optimal control function coefficients were obtained which provided a smoother navigation

of the AGV. The obtained 𝐾𝑝, 𝐾𝑑 and 𝐾𝑖 values are 1,1 and 0 respectively for the AGV which was

tested on the platform shown in the Fig. 2.1 and for the hardware that was specified under Sec. 3.1.

If this system is to be replicated in another environment or another type of AGV, the PID controller

coefficients should be tuned accordingly.

The robot platform consists of several types of T-intersections and those intersections are labelled

according to the way they are perceived by the AGV, which are namely, T junction, Left junction and

Right junction. The images of these junctions perceived by the AGV is shown in the Fig. 3.11. From

20

Figure 3.11. Different types of junctions.

the last step in image pre-processing pipeline, a junction can be identified and its type can be decided

by analyzing the boundaries of the RoI. For instance, if the lines are within the RoI and the majority

of the pixels in top left boundary of the RoI are black while the majority of the pixels in the top right

boundary of the RoI are white, then the type of the junction is derived as a left junction. Fig. 3.13 shows

the types of junctions and the corresponding RoI which is used to derive the type of the junction.

Figure 3.12. Terminal points with the corresponding RoI.

When the AGV encounters a junction, its PID controller might not work as expected as it cannot

utilize the standard line following method. Hence, an alternative control procedure has been introduced

to navigate around intersections. With the ability to identify and classify junctions, when the AGV

21

encounters the junction, the controller overrides the PID algorithm and switches to the alternative

control procedure that relies on the type of the junction and the knowledge on the direction of moving

and the delivery information. Based on the current goal as per the delivery information, a predefined

sequence of control commands are issued to turn the AGV by 90◦ or 180◦. After turning the AGV at

the junction, the control is handed over to the PID algorithm to continue the navigation on the line.

Figure 3.13. Junction identification with the corresponding RoI.

The robot platform consists of terminal points which help the AGV to identify source and destination

areas. These terminal points can be identified by analyzing the RoI by following the same procedure

which was used to identify and classify junctions. Terminal points are created such that its thickness is

larger than the thickness of the path as it could be differentiated from a junction. The AGV identifies

terminal points by analyzing the RoI where line is within the RoI and the majority of the pixels in the

top and bottom boundary are black pixels. Fig. 3.12 illustrate the terminal points and the corresponding

RoI as perceived by the AGV. When the AGV encounters the terminal point, it classifies it as a source

22

or destination based on the current delivery information and the direction of the move. Then according

to the predefined sequence of control commands it if is a source point the AGV will request the delivery

information from the edge server and proceed to pick the object, otherwise if it is a destination point,

the AGV will proceed to drop the object in the correct position according to the delivery information

and then it will return again to the source point for the next job.

When there is no path segment present in the RoI, three scenarios can be assumed.

1. AGV has come to end point of the line which is identified by the terminal points.

2. AGV has drifted off from the line.

3. The line is damaged and the AGV cannot identify the path.

In the first scenario, the terminal points are identified by the AGV and acted accordingly as mentioned

in the above section. In the other two scenarios, the AGV is stopped immediately to avoid unwanted

motion and to ensure the safety of the surround environment.

The size and the shape of the objects that are transported by the AGV are known beforehand. The

end effect of the robotic arm of the AGV is knows as the gripper and it is programmed to grab/loose

such objects with a pre-defined size and shape. Also, the place of the object in the source is static

and the AGV has the knowledge of that static coordinate. The movement of the 4-DoF robotic arm

is programmed to move to a given coordinate along its moving plane using inverse kinematics. The

coordinates given in the delivery information are translated to the coordinate system in the AGV and

then it is fed to the robotic arm to move to the correct coordinate in the source or destination and pick

or drop the object accordingly.

24

Figure 3.15. Creating the master sample.

sends a request to the Raspberry pi to acquire the bird’s eye view of all the four storage areas. A high

resolution image of the storage area is required by the edge server to successfully detect the cross-hair

markers. Hence, the camera is configured to provide a high quality image which has a resolution of

3280 × 2464 px. Furthermore, the focal length of the camera is manually adjust to capture sharp and

crisp details of the cross-hair markers and the objects that are on the robot platform. A sample image

of the bird’s eye view of the storage areas are shown in the step 1 in Fig. 3.15. Upon receiving the

image from the camera, edge server proceeds to detection of cross-hair markers by using a pre-trained

ML model. The ML model was trained under supervised training setting where 256 × 256 px images

extracted from the camera is used as inputs while the labels are the images with the same dimensions

having white areas corresponding to the cross-hair markers and black areas reflecting everything else.

The labels were created manually by using the MATLAB image labelling tool by drawing a mask on

the cross-hair markers.

In order to avoid handcrafting the whole dataset, data augmentation procedure is adopted. First,

using the camera image as the master sample, a master label is generated by filtering out the background

while keeping the cross-hair markers. The creation of master sample using the raw camera image is

shown in Fig. 3.15. In the figure, it can be seen that the areas corresponding to cross-hair markers in

the original image are labeled as white circle while the rest is set to black. Then the original image is

converted into gray-scale to prepare it for the data augmentation procedure. In order to generate more

data samples, different sizes of rectangles with different orientation are extracted randomly from the

gray-scale converted master sample and correspondingly from the master label to generate the datasets.

Fig. 3.16 illustrates an extracted sample of the dataset created by augmented images using the master

label and master sample.

The extracted samples and their corresponding labels are then resized to 256 × 256 px images to

generate the training and testing datasets for the ML model with the sizes of 1024 and 128, respectively.

Next, a ML model based on the U-NET architecture [11] with the input and output dimensions of

256 × 256 is trained and tested with the aforementioned dataset. The trained ML model is uploaded to

the edge server and it is used for the inference of the cross-hair marker detection.

The received image is up-scaled into a pre-defined resolution of 4056×3040 px which makes it easier

to partition the image as detailed in the next step. Before feeding the camera image to the ML model

for inference, it is converted into gray-scale. During the inference, the camera image is partitioned into

10 segments where the size and the shape of the segments are pre-defined by a set of pixel coordinates

such that each segment includes one cross-hair marker. This is possible as the prior knowledge of the

distance of the cross-hair markers are known by the edge server and the cross-hair markers are laid with

a distance of 280 mm. The image segments are then resized into to 256 × 256 px images and fed to the

29

angles for each storage area and to avoid camera distortions due to camera position, the perspective

transformation which is implemented in the OpenCV package [31] is used.

Perspective transformation is useful in processing images taken by a camera as it allows the user to

manipulate the viewing angle of the image. This can be used to correct the distortion of an image due

to the camera’s angle or to create images with a different perspective. It is done by warping the image

so that it appears as if it is viewed from the given perspective. The mathematical form of perspective

transformation is expressed as follows [24]

𝑡𝑖𝑥
′

𝑡𝑖𝑦
′

𝑡𝑖

=

𝑎1 𝑎2 𝑏1

𝑎3 𝑎4 𝑏2

𝑐1 𝑐2 1

𝑥

𝑦

1

(3.7)

where source image coordinates (𝑥, 𝑦) are multiplied by the perspective matrix to apply the perspective

transformation. Pixel coordinates of the transformed image (𝑥′, 𝑦′) can be obtained by scaling down the

result by 𝑡𝑖 factor.

In order to resolve the 8 unknowns in the perspective matrix, we provide 4 pairs of coordinate values

from the input image which defines the source quadrangle and its corresponding pixel coordinate values

that are in the transformed image which defines the target quadrangle as desired per the use-case. This

target quadrangle depends on the required perspective to which it should be transformed. In our case,

it is required to change the perspective of the storage areas as seen by the camera to a bird’s eye view.

The transformation that is needed for the storage areas is graphically illustrated in Fig. 3.20 in which

the quadrangle defined by points 𝐴𝐵𝐷𝐶 is transformed into a rectangle defined by points 𝐴
′
𝐵

′
𝐶

′
𝐷

′
by

providing a correction to the distortion caused by the viewing angle. In a similar fashion, the storage

areas defined by the cross-hair markers are transformed into an area with a perspective of a bird’s eye

view as described below.

To facilitate the above transformation, the input coordinate values are chosen such that it represents

the center points of the cross-hair markers that define the selected storage area and the coordinates of the

target quadrangle are calculated by adding the height and the width of the storage area in pixel values

to the top left coordinates of the storage area. The height and the width are added to the top left corner

coordinates such that it constructs a rectangle. The height is considered as the length of the left border

of the storage area and the width is considered as the top border of the storage area. L1 norm is used to

calculate the height ℎ and the width 𝑤 of the storage area in the original image by using the coordinates

values of the corner points, and it is rounded off to the nearest integer (denoted by ⌊·⌉) as follows:

𝑤 =

⌊√︃
(𝑥tl − 𝑥tr)2 + (𝑦tl − 𝑦tr)2

⌉
, (3.8)

ℎ =

⌊√︃
(𝑥tl − 𝑥bl)2 + (𝑦tl − 𝑦bl)2

⌉
. (3.9)

After deriving the height and width of the storage area, the coordinate pairs of the corners of the target

quadrangle are calculated by

(𝑥
′

tl, 𝑦
′

tl) = (𝑥tl, 𝑦tl), (3.10)

(𝑥
′

tr, 𝑦
′

tr) = (𝑥tl + 𝑤 − 1, 𝑦tl), (3.11)

(𝑥
′

tr, 𝑦
′

tr) = (𝑥tl + 𝑤 − 1, 𝑦tl + ℎ − 1), (3.12)

(𝑥
′

tr, 𝑦
′

tr) = (𝑥tl, 𝑦tl + ℎ − 1), (3.13)

where 𝑥tr, 𝑥br and 𝑥bl represent the 𝑥 coordinate of the top left corner, top right corner, bottom right

corner and bottom left corner respectively and 𝑦 coordinate is defined with the same notation. Then by

using the eight coordinate pairs, the perspective matrix given in (3.7) is resolved.

31

step to identify the custom area inside the storage area by using an edge detection technique. As edge

detection is vulnerable to noise, before the edge detection, the result image goes through a few image

pre-processing steps to reduce the noise present in the image and smoothen it out and enhance the edges.

Applying a Gaussian filter to remove the noise does not yield good results, as it tends to smoothen out

the edges in the image and we may lose the details of the edges of the custom area. Thus, a bilateral

filter [32] is used to remove the noise which is known as an edge-aware filtering method. Bilateral

filtering is a non-linear image processing technique used to reduce noise while preserving the edge

details of the image. The technique is based on a weighted average of pixels within a neighbourhood,

with the weights determined by the similarity of the mean intensity of the pixels. This ensures that the

edges of objects in the image remain sharp, while still smoothing out random noise. It is particularly

useful for preserving edges while smoothing out noise as it allows for a greater degree of control in

determining how much noise is removed. The mathematical expression for the bilateral filter is as

follows:

𝐺 (𝑝) =
1

𝜆

∑︁

𝑞∈𝑆

N(|𝑝 − 𝑞 |)N (|𝐼𝑝 − 𝐼𝑞 |)𝐼𝑞 (3.14)

where N denotes a Gaussian distribution and 𝐼𝑞 denotes the intensity value of the pixel 𝑞. 𝑆 denotes a

pixel neighbourhood around 𝑝 and the normalization factor 𝑤 is given by,

𝜆 =

∑︁

𝑞∈𝑆

N(|𝑝 − 𝑞 |)N (|𝐼𝑝 − 𝐼𝑞 |)𝐼𝑞 . (3.15)

The performance of the bilateral filter could be adjusted by varying the variances of the two Gaussian

distributions to achieve the maximum noise reduction. In this work, it was found out that 25 for each 𝜎

value was for sufficient noise reduction while preserving the edges. The bilateral filter with said values

was applied for each pixel with a pixel neighborhood of a diameter of 8. Then, the resulted de-noised

image was used to detect edges in the custom area. For this purpose, we use a popular edge detection

technique known as the Canny Edge Detector [33]. Canny edge detection is widely used in image

processing to distinguish edges in a given picture due to its precision and resiliency and it is known as

an optimal method to identify edges. It is a multi-stage algorithm that employs four primary stages for

edge detection. Initially, noise reduction is achieved via Gaussian filtering, which smooths the image

and eliminates any spurious or false edges. Subsequently, the calculation of the magnitude and direction

of the intensity gradients of the image is conducted by convoluting the image with two distinct kernels

and then determining the magnitude and orientation of the gradients of the image. Then, non-maximum

suppression is used to thin the identified edges and eliminate any undesired edges. Finally, hysteresis

thresholding is done to identify true edges while discarding false edges by employing two threshold

values for the intensity gradient. The final output of the detected edges can be calibrated by adjusting

the threshold values. These threshold values for this work were chosen by using the median value of

the intensities in the given image and adding a correction to it based on the brightness of the image

as the brightness of the image affects the edge detection. Hence, the upper and lower threshold values

provided for the canny edge detector depend on the median intensity value of the image and they are

calculated on the fly. The detected edges of the storage areas are illustrated in Fig. 3.22.

Then the resulted image from the canny edge detector is further processed to enhance the edges by

using the morphological operator dilation which is elaborated in Sec. 3.2. A kernel of size 10× 10 with

the value of 1 was used as the structuring element in this process and it was done in a single iteration.

Then the dilated image was cropped by the boundaries that consist of the transformed cross-hair marker

center points. In order to remove any discontinuities that might remain on the detected edge of the

custom area, another morphological operator known as closing is performed. Morphological closing is

32

Figure 3.22. Image after the edge detection step.

done by performing the erosion on the dilated image by the same structuring element and it is used to

remove any small holes in an image. Small-scale discontinuities along the edges are removed after this

process.

Afterwards, the calculation of the delivery information which is to locate the center point of the

maximum inscribed circle inside the custom area is carried out. This is done by following the same

steps in the process of calculating the center points of the cross-hair markers. A polygon approximation

carried out for the contours that were found in the storage area. In this process, when choosing the

contours, the contour with the second largest area was chosen for the polygon approximation and

subsequently used in the polylabel() function to get the center point coordinates of the maximum

inscribed circle. The second largest area was chosen to get the innermost polygon of the custom area.

The image which was processed by the morphological operators and the final output image where the

center point coordinates were derived and localized are shown in Fig. 3.23.

When providing the delivery information for the AGV, the center coordinates should be in 𝑚𝑚 scale

with respect to the coordinate system of the storage area where the origin resides at the furthest marker

at the bottom left. Hence, the derived local center coordinate points are converted to global center

coordinates and they are translated to the actual physical coordinate system where the origin is at the

furthest cross-hair marker at the bottom left. With the prior knowledge of the setup dimension and the

placement of the cross-hair markers where the distance between each cross-hair marker is 280𝑚𝑚, the

pixel coordinate values are converted into 𝑚𝑚 scale. Then the confidence value is calculated for the

33

Figure 3.23. Cropped image with enhanced edges and the final image with the center point.

received center coordinates by considering the center point coordinates and the radius of the maximum

inscribed circle such that it provides a higher confidence value if the circle is within the storage area up

to a given offset value. Then the coordinate pair, confidence value, and radius are parsed into a JSON

as shown in Listing 1 in Sec.2.2 and then shared with the AGV.

34

4 Conclusion and Future Work

4.1 Conclusion

This demo work is a proof of concept to illustrate how the codesign of edge intelligence and AGV can

be utilized to automate repetitive tasks with a high degree of accuracy and efficiency while having the

human-in-the-loop and thereby improve productivity. The software related to this demo is available at

GitHub https://github.com/ICONgroupCWC/Demo.Percom23.

With a similar platform developed as per specifications provided in Sec. 2.2 and the use of the hard-

ware specified under Sec. 3.1 along with the aforementioned software, this demo can be reproduced.

Please be mindful that the PID coefficients of the AGV have to be tuned according to the new environ-

ment. This demo in action can be seen at https://youtu.be/DhCSCCZbuHo. Further, a proposal for

this demonstration in the form of a technical paper was submitted to ”The 21st International Conference

on Pervasive Computing and Communications” (PerCom 2023) which is a premier annual scholarly

venue in pervasive computing and communications.

4.2 Future Work

The lighting conditions (over/under-exposure and harsh shadows) directly impact the performance of

the AGV. To improve the overall performance, brightness and exposure corrections methods and deep

learning models for denoising and filtering are to be investigated in the future. Furthermore, it is

expected to investigate the obstacle avoidance of the AGV using deep learning models while navigating

on a predefined path.

35

5 BIBLIOGRAPHY

[1] Abri A.G. & Mahmoudzadeh M. (Mar 2015) Impact of information technology on productivity

and efficiency in iranian manufacturing industries. Journal of Industrial Engineering International

11, pp. 143–157.

[2] Tang H., Cheng X., Jiang W. & Chen S. (2021) Research on equipment configuration optimization

of AGV unmanned warehouse. IEEE Access 9, pp. 47946–47959.

[3] Li S., Yan J. & Li L. (2018) Automated guided vehicle: the direction of intelligent logistics. In:

Proc. of IEEE Intl. conf. on SOLI, pp. 250–255.

[4] Shaw J.S., Liew C.J., Xu S.X. & Zhang Z.M. (2019) Development of an AI-enabled AGV with

robot manipulator. In: Proc. of IEEE ECICE, pp. 284–287.

[5] Qiu T., Chi J., Zhou X., Ning Z., Atiquzzaman M. & Wu D.O. (2020) Edge computing in industrial

internet of things: Architecture, advances and challenges. IEEE Communications Surveys &

Tutorials 22, pp. 2462–2488.

[6] Bošnak M. & Škrjanc I. (2021) Obstacle avoidance for line-following AGV with local maps. In:

Proc. of IEEE Intl. SACI, pp. 193–198.

[7] Wang X., Han Y., Leung V.C., Niyato D., Yan X. & Chen X. (2020) Convergence of edge computing

and deep learning: A comprehensive survey. IEEE Communications Surveys & Tutorials 22,

pp. 869–904.

[8] Murshed M.G.S., Murphy C., Hou D., Khan N., Ananthanarayanan G. & Hussain F. (oct 2021)

Machine learning at the network edge: A survey. ACM Comput. Surv. 54.

[9] Ke R., Zhuang Y., Pu Z. & Wang Y. (2021) A smart, efficient, and reliable parking surveillance sys-

tem with edge artificial intelligence on iot devices. IEEE Transactions on Intelligent Transportation

Systems 22, pp. 4962–4974.

[10] Mazzia V., Khaliq A., Salvetti F. & Chiaberge M. (2020) Real-time apple detection system using

embedded systems with hardware accelerators: An edge ai application. IEEE Access 8, pp. 9102–

9114.

[11] Ronneberger O., Fischer P. & Brox T. (2015) U-net: Convolutional networks for biomedical

image segmentation. In: Proc. of Intl. Conf. on Medical image computing and computer-assisted

intervention, Springer, pp. 234–241.

[12] Bennett S. (1993) Development of the PID controller. IEEE Control Systems Magazine 13, pp. 58–

62.

[13] Kodagoda K., Wijesoma W. & Teoh E. (2002) Fuzzy speed and steering control of an agv. IEEE

Transactions on Control Systems Technology 10, pp. 112–120.

[14] Amin S.U. & Hossain M.S. (2021) Edge intelligence and internet of things in healthcare: A survey.

IEEE Access 9, pp. 45–59.

[15] Xu P., Wang K., Hassan M.M., Chen C.M., Lin W., Hassan M.R. & Fortino G. (2022) Adversarial

robustness in graph-based neural architecture search for edge ai transportation systems. IEEE

Transactions on Intelligent Transportation Systems pp. 1–10.

36

[16] Shi Y., Yang K., Jiang T., Zhang J. & Letaief K.B. (2020) Communication-efficient edge ai:

Algorithms and systems. IEEE Communications Surveys & Tutorials 22, pp. 2167–2191.

[17] Nain G., Pattanaik K. & Sharma G. (2022) Towards edge computing in intelligent manufacturing:

Past, present and future. Journal of Manufacturing Systems 62, pp. 588–611.

[18] Ansari M.S., Alsamhi S.H., Qiao Y., Ye Y. & Lee B. (2020) Security of distributed intelligence

in edge computing: Threats and countermeasures. In: The cloud-to-thing continuum, Palgrave

Macmillan, Cham, pp. 95–122.

[19] Milletari F., Navab N. & Ahmadi S.A. (2016) V-net: Fully convolutional neural networks for

volumetric medical image segmentation. In: 2016 fourth international conference on 3D vision

(3DV), IEEE, pp. 565–571.

[20] Waveshare, Jetank ai kit. Available at https://www.waveshare.com/jetank-ai-kit.htm

(2022/11/11).

[21] Raspberry pi camera moduke v2. Available at https://www.raspberrypi.com/products/

camera-module-v2/ (2022/11/11).

[22] Raspberry pi 4 model b. Available at https://www.raspberrypi.com/products/

raspberry-pi-4-model-b/ (2022/11/11).

[23] Burger W. & Burge M. (2010) Principles of Digital Image Processing: Core Algorithms. Under-

graduate Topics in Computer Science, Springer London.

[24] Gonzalez R.C. & Woods R.E. (2008) Digital image processing. Prentice Hall, Upper Saddle River,

N.J.

[25] Otsu N. (1979) A threshold selection method from gray-level histograms. IEEE Transactions on

Systems, Man, and Cybernetics 9, pp. 62–66.

[26] Bovik A.C. (2009) Chapter 4 - basic binary image processing. In: Bovik A., editor, The Essential

Guide to Image Processing, Academic Press, Boston, pp. 69–96.

[27] (2022) Dedication. In: Siegel A.F. & Wagner M.R., editors, Practical Business Statistics (Eighth

Edition), Academic Press, p. v, eighth edition edition.

[28] Zaidner G., Korotkin S., Shteimberg E., Ellenbogen A., Arad M. & Cohen Y. (2010) Non linear

pid and its application in process control. In: 2010 IEEE 26-th Convention of Electrical and

Electronics Engineers in Israel, pp. 000574–000577.

[29] Ogata K. (2010) Modern Control Engineering. Instrumentation and controls series, Prentice Hall.

[30] Agafonkin V., A new algorithm for finding a visual cen-

ter of a polygon. Available at https://blog.mapbox.com/

a-new-algorithm-for-finding-a-visual-center-of-a-polygon-7c77e6492fbc

(2022/11/11).

[31] Bradski G. (2000) The OpenCV Library. Dr. Dobb’s Journal of Software Tools .

[32] Tomasi C. & Manduchi R. (1998) Bilateral filtering for gray and color images. In: Sixth Interna-

tional Conference on Computer Vision (IEEE Cat. No.98CH36271), pp. 839–846.

[33] Canny J. (1986) A computational approach to edge detection. IEEE Transactions on Pattern

Analysis and Machine Intelligence PAMI-8, pp. 679–698.

	INTRODUCTION
	Background study and literature review
	Research objectives and thesis organization

	PROPOSED SYSTEM ARCHITECTURE
	Overall System Architecture
	Communication Architecture

	SYSTEM DESIGN AND IMPLEMENTATION
	Hardware
	Intelligence For Navigation
	Intelligence For Object Placement

	Conclusion and Future Work
	Conclusion
	Future Work

	BIBLIOGRAPHY

