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ABSTRACT

Empirical mode decomposition (EMD) based hybrid prediction methods
can be an efficient way to allocate resources for ultra reliable low latency
communication (URLLC). In this thesis, we have considered efficient resource
allocation for the downlink channel at the presence of several interferers.
Initially, we have generated desired signal that we need to transmit in
downlink and total interference signal that will affect the desired signal
transmission. Then, we used EMD to decompose the total interference
signal power into intrinsic mode functions (IMFs) and residual. Due to the
properties of EMD, decomposed IMFs become less random as IMF number
increases. As a result of that property, prediction model training process
become less complex and prediction accuracy also increases as randomness
of signal decreases. Long short term memory (LSTM) deep neural network
method and auto regressive integrated moving average (ARIMA) time series
method are deployed to predict future interference power values based on
historical values. For each decomposed component (IMFs and residual), two
prediction models have been trained using LSTM and ARIMA methods.
Finally, predicted components of IMFs and residual are added together to
form total predicted interference power.

According to the predicted interference power, resources are allocated
for downlink transmission of the signal and evaluated it with the baseline
estimation techniques. The research demonstrates that the suggested method
achieves near optimal resource allocation for URLLC.

Keywords: Auto regressive integrated moving average, block length theory,
empirical mode decomposition, intrinsic mode functions, long short term
memory, residual, ultra reliable low latency communication.
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1 INTRODUCTION

Demand for higher data rates was the main driving factor over the past generations
(first generation (1G) to fourth generation (4G)) of telecommunication. In the
latter part of 4G, different applications and services emerged that require more
diverse infrastructure resource support from wireless technology than the higher data
rates [1]. Some applications are autonomous vehicles, drone-based deliveries, smart
cities and factories, remote medical diagnosis and surgery, and artificial intelligence-based
personalised assistants [2]. A telecommunication network must have features like massive
connectivity, high reliability, low latency, and greater energy efficiency to facilitate the
above applications. To address these diversified feature requirements, the international
telecommunication union (ITU) has categorised fifth generation (5G) services into three
main streams: ultra-reliable low latency communication (URLLC), massive machine-type
communication (mMTC), and enhanced mobile broadband (eMBB) [3,4].

Among the three streams mentioned above, the design of URLLC to simultaneously
meet high-reliability and low-latency requirements is the most challenging task [5]. To
improve reliability, additional resources must be devoted for signaling, re-transmission,
redundancy, and parity checks, which leads to increase redundancy. Because many
URLLC applications’ throughput requirements are not stringent, when URLLC packet
size is small, we can achieve high reliability without exceeding latency targets by utilizing
resources in the frequency, antenna, and spatial domain [2].

The primary objective of this thesis is to provide an up-to-date summary of URLLC
developments and advancements by emphasizing potential obstacles and proposing
feasible solutions to overcome those challenges. First, we briefly describe the three
service classes of 5G, and then we discuss the issues and enabling technological solutions.
This remaining chapters of this thesis are structured as follows. Chapter 2 discusses
the theories and methods we are going to use to solve the identified issues. Chapter 3
represents the system model and we propose the EMD based prediction and resource
allocation scheme. Simulation results and performance analysis are given in Chapter 4.
Conclusions are presented in Chapter 5.

The eMBB service category has been defined to address the conventional requirements
of higher data rates and high bandwidth. This is useful for applications such as high-
resolution video streaming, virtual reality (VR), and augmented reality (AR). The
following physical layer technologies were introduced to address the above application
requirements: higher-order modulation transmission schemes, carrier aggregation
(CA), cell densification, massive multiple input multiple output (massive MIMO)
transmission [6], millimeter-wave communication [7], and use of unexplored spectrum.

The mMTC service category has been defined to provide access to a substantial number
of machine-type devices. This is useful for applications such as sensing, tagging, metering,
and monitoring that require high connection density and better energy efficiency [8].
Throughout the years, a number of technology solutions have emerged to satisfy the
aforementioned needs, including narrowband internet of things (NB-IoT) in a licensed
band and SigFox and LoRa in an unlicensed band [9]. In addition to supporting the
above mentioned requirements, it facilitates benefits like reduced power consumption,
low operation cost, and enhanced coverage. However, the performance of the mMTC
service degrades when the number of devices outweighs the resources. To address this
issue, an aggressive connection strategy violating the orthogonal transmission principle is



required [2]. More user accommodation with limited number of resources can be realized
by using non-orthogonal spreading sequences and user-specific interleaving [8, 10,11].

The URLLC service category has been defined to assist mission-critical applications
that require uninterrupted, reliable, and fast data exchange. It is useful for factory
automation, process automation, smart grids, intelligent transport systems, and
professional audio [9]. Although latency has improved from third generation (3G) to
4G, long term evolution (LTE) end-to-end (E2E) latency is still in the range of 30 − 100
ms. Most of the URLLC services require E2E latency to be in the range of 1 ms. The
targeted quality of service (QoS) requirement in URLLC is 1 − 10−5 [12]. To address the
latency requirement, fundamental changes in wireless links and backbone networks are
suggested. In the backbone link, software-defined networking (SDN) and virtual network
slicing can be used to establish a private connection to the URLLC service [8]. Thus,
the backbone link latency can be decreased. In wireless networks, overheads must be
minimized and the transmission process must be optimized to decrease latency.

When we try to achieve the expected reliability and latency requirements of URLLC,
there are some key challenges associated with it. Those are: performance degradation of
the other two services (eMBB, mMTC) when prioritizing URLLC, unable to achieve the
expected 1 ms E2E delay due to routing, and propagation delays in backhauls and core
networks. To address the above challenges, solutions such as mobile edge computing
(MEC), SDN, network slicing, multi-connectivity, and anticipatory networking have
been proposed [13]. However, some of the proposed solutions also have limitations
at the implementation stage. For example, MEC implementation is difficult due to
complex optimization due to the non-convexity of the problem [14], and task offloading
is difficult due to high user mobility and high overhead on exchanging information. Deep
learning frameworks have been widely used to solve the above-mentioned limitations
of the proposed solutions. The deep learning framework can be categorised into four
sub-categories: federated learning, deep transfer learning, lifelong deep learning, and
distributed deep learning [13].

Therefore, simultaneously achieving low latency and high reliability is crucial for future
improvements and enhancements of URLLC not only in 5G but also in future generations
such as sixth generation (6G). Reducing re-transmissions of URLLC packets is one way to
achieve the high reliability while minimizing latency [15]. Interference signals will lead to
data packet collisions. To achieve the reliability targets packets must be re-transmitted
at the expense of ensuring low latency. If we can predict the interference signal that will
affect the desired transmission, we will be able to reduce the number of re-transmissions
by efficiently allocating the resources that can withstand the interference while meeting
the reliability targets.

In our study, we addressed the URLLC’s latency and reliability issues and proposed
an effective resource allocation mechanism in the downlink.



1.1 Thesis Contribution

This thesis is conducted on the topic of predictive resource allocation for URLLC using
EMD, to efficiently allocate resources for URLLC services in downlink channel. The
system model consists of N number of interfering links with one desired link. Base station
(BS) is trying to allocate downlink resources as efficiently as possible to minimize the
effect of actual interference by predicting possible interference values and pre-allocating
resources. Our goal is to implement an algorithm for above predictive resource allocation
purpose to ensure both reliability and latency targets of the URLLC.

1.2 Thesis Outline

The remainder of the thesis is structured as follows:

• Chapter 2: All the necessary concepts, associated theories, summaries of prior
works, and study proposals are included.

• Chapter 3: In depth analysis of the study is provided. It includes a system model,
a problem statement, a solution approach, and performance evaluation criteria.

• Chapter 4: The results of the study are discussed in this chapter. addressing the
problem using simulation tools and benchmarking of results are presented.

• Chapter 5: In this chapter, we summarise the contribution of our study and
suggest potential areas for further investigation.
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2 BACKGROUND

This chapter depicts the principles associated with our study and assessment about
using empirical mode decomposition (EMD) to predict URLLC interference and resource
allocation. Existing 5G URLLC enabling technologies separately focus on achieving
low latency and high reliability. The independently created reliability and latency-
enabling technologies can collectively meet the 5G standards. Also, note that beyond
5G requirements have a stricter cap than 5G. Therefore, under efficient and scalable
resource allocation beyond 5G communication, the current 5G latency and reliability
criteria are unacceptable. For example, 5G achieves reliability requirements by over-
provisioning resources, which otherwise could have been allocated for some other service,
such as eMBB or mMTC. To ensure the efficient allocation of resources for URLLC
traffic, it is crucial to anticipate its interference beforehand. Then we can preallocate the
required resources for URLLC traffic and reduce the effect of the interference. Prediction
algorithms must be implemented to identify the URLLC interference in advance.

Due to the complexity and uncertainty of the URLLC interference, decomposition-
based combination prediction models have been selected. These decomposition methods
include EMD, principal component analysis (PCA), dynamic tensor completion, spectral
analysis, wavelet transform methods, variational mode decomposition (VMD) [16].
These approaches deconstruct the original interference pattern into multiple distinct
components. Then, the relevant prediction algorithms for each component are selected.
Finally, predicted component values are combined to obtain the total prediction.

In wavelet transform, since it is not straightforward to select the right wavelet basis
function and decomposition level, its adaptability is low. In VMD, we need to predefine
the number of decomposition levels, but in practice its hard to define ideal number of
decomposition levels beforehand. Although PCA is capable of preserving the original
data’s information content to the greatest extent, it cannot be used with nonlinear
interference signals since it is a linear dimension reduction technique. Therefore, EMD
is the most suitable method for URLLC traffic signal decomposition due to its ability to
process non-linear and non-stationary data. Modes obtained by the EMD have physical
meaning and importance, while modes obtained form other decomposition methods are
mathematically important but difficult to relate to the real world.

2.1 Empirical Mode Decomposition

EMD decomposes given data into intrinsic mode functions (IMF) using the heuristic
decomposition method. Because these functions are not set analytically but determined
by an analyzed sequence alone, the term "empirical" refers to that property. Therefore,
essential functions are derived adaptively directly from the input sequence. The IMF’s
derived from EMD needs to satisfy the below conditions [17].

• The total number of minima and maxima needs to be equal or differ at most by
one with the number of zero crossings.

• At any given time, the IMF mean value derived from envelopes formed by local
maxima and local minima must equal zero.
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As a result of this decomposition method, we can obtain frequency-ordered IMF
components. Initial few IMFs contain high-frequency oscillations, and the rest have low-
frequency components, where oscillation frequency reduces as the IMF number increases,
as shown in Figure 2.1. Finally, only one component with a mean non-zero element
remains at the end, called the residue. Due to the above property of EMD, decomposed
signals become less random as the IMF number increases. Developing a model to predict
a less random (linear) signal over a random (non-linear) signal is much easier and more
accurate. Therefore, it is advantageous to use the decomposed signals for prediction.
To clearly understand and visualize the step-by-step procedure of EMD, we show the
complete decomposition of a particular signal in Figure 2.1. Further, the mathematical
background and the algorithms are discussed below.

Figure 2.1. Empirical mode decomposition of a signal.

The first step of the EMD algorithm is to find all the local extremas of the signal (local
maxima and minima). Next, we fit two envelopes, one with the selected maximas and
another with the selected minimas. Typically, cubic spline functions are used to fit the
envelopes, but we can use other functions that cover all the data in between them. The
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mean envelope is then calculated from the upper and lower envelopes at each point in
time, as given by

Emean(t) = Eup(t) + Elow(t)
2 , (1)

where Eup(t) is the upper envelope, Elow(t) is the lower envelope, and Emean(t) is the
mean envelope. The above three envelopes are shown in the Figure 2.2.
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Figure 2.2. Maxima envelope, minima envelope, and mean envelope of a signal.

Finally, the residual is calculated by subtracting the previously calculated mean from
the original signal as

res(t) = f(t) − Emean(t), (2)
where the original signal is f(t) and the obtained residual value is res(t).

Next, we must determine if the residual obtained from the preceding equation has
a mean of zero. If it has a mean of zero, we consider it to be our initial IMF. To
determine this, a stopping criterion is applied. In the initial version of the EMD, the
stopping criterion is essentially a standard deviation that takes into account the squared
difference of the original signal f(t) and the newly obtained residual normalised by the
squared signal. The values are summed over all time steps t, and the resulting single
outcome is compared to a threshold value ϵ as follows

∞∑
t=1

(res(t) − f(t))2

f(t)2 < ϵ. (3)

Usually, the first residual we obtain does not possess the characteristics of an IMF and
the stopping criteria are not satisfied. This is because extrema fitting often produces
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over and undershoots. Before we can call this first residual an IMF, we must eliminate
newly formed extremes. If the stopping criterion is not met, we repeat the process with
the residual res(t) until the stopping criterion is met, as shown in below

Emean2(t) = Eup(res(t)) + Elow(res(t))
2 , (4)

res2(t) = res(t) − Emean2(t), (5)

∞∑
t=1

(res2(t) − res(t))2

res(t)2 < ϵ. (6)

During the above stopping criterion check (6), if it satisfies the conditions, we update
the residual as our first IMF

IMF 1(t) = res2(t), (7)
Where res2(t) is the residual value which satisfied the stopping criterion check. Then,
we subtract IMF 1(t) from the original signal to obtain an updated version of signal f(t)
for use of finding the remaining IMFs as

fupdate1(t) = f(t) − IMF 1(t). (8)
Once IMF 2(t) is determined, it needs to be subtracted from the previously updated

signal fupdate1(t) to obtain a new updated version of the signal fupdate2(t) and so on.
Typically, we stop the above process when we obtained a monotonic function as a residual
and we are unable to extract extremas anymore. Thus, at the end of the process, only
one residual remains. Finally, the original signal f(t) can be recreated by adding all IMFs
and the residual as shown by

f(t) =
L−1∑
i=1

IMF i(t) + res(t), (9)

where L is the number of decomposed components.

2.2 Time Series Forecasting

Time is the most crucial factor upon which the majority of critical parameters depend.
Since people are more interested in predicting the future, various prediction mechanisms
have been developed over time. "Time Series Data" refers to the data that has been
collected at evenly spaced time intervals. A time series is any parameter that is ordered
sequentially over time at consistent intervals, such as hours, days, weeks, or months.
"Time Series Forecasting Techniques" refers to the methods we use to predict future
values based on the preceding time series data. There are numerous statistical time
series forecasting methods and a few of those are listed below [18].

• Simple Moving Average (SMA).

• Exponential Smoothing.
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• Autoregressive Integration Moving Average (ARIMA).

• Neural Networks (NN).

2.3 Auto Regressive Integrated Moving Average (ARIMA)

Due to its ability to work with non-stationary data sequences, ARIMA is a widely used
and popular time series forecasting method. The ARIMA model applies an equation
to time series data for forecasting purposes. The fitted model can be one of three
varieties [19].

• Autoregressive model (AR).

• Moving Average Model (MA).

• mixed of AR and MA models.

The AR model linearly predicts the current value of the variable based on its previous
values as far back as p periods, as demonstrated by

Yt = c + ϕ1Yt−1 + ϕ2Yt−2 + ...... + ϕpYt−p + et, (10)
where Yt is the current value and (Yt,Yt−1...,Yt−p) are previous values. Constants ϕ1 to
ϕp and c must be estimated in this instance and denoted by AR(p).

The moving average model linearly predicts the current value Yt by calculating the
weighted average of past errors heading back q periods as demonstrated by

Yt = c + et − θ1et−1 − θ2et−2...... − θqet−q, (11)
where (et,et−1...,et−q) are past errors. Constants θ1 to θq and c must be estimated in
this instance and denoted by MA(q) . By combining the AR and MA models described
above, the ARMA model can be created as

Yt = c + ϕ1Yt−1 + ϕ2Yt−2 + ...... + ϕpYt−p + et − θ1et−1 + θ2et−2 + ...... + θqet−q. (12)

The data used in ARIMA modelling must be stationary. In other words, an upward
or downward trend should not exist in the time series data, and the variable’s value
should fluctuate around a constant mean. Since most practical data is non-stationary
and exhibits a trend, the trend must be eliminated before its use in this model. To
eliminate the trend and produce a stationary data set, the ARIMA model subtracts the
data that varies from one period to the next, as shown by

∆Yt = Yt − Yt−1, (13)
where ∆Yt is the first difference. Typically, the first difference in non-stationary data is
stationary. If the first difference is also non-stationary, however, the second difference
may be utilised. Order of the integration refers to the number of times the difference
must be taken to arrive at a stationary data set; I in ARIMA, parameter d in ARIMA
(p,d,q) model denotes this. To obtain accurate forecasts using the ARIMA model, the
p, d, q parameters of the dataset must be optimised. The process of ARIMA modeling
includes four basic steps
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• Identification First, determine whether the data is stationary; if not, calculate
the difference until the remaining data becomes stationary. Then, determine the
values for p and q. There is no exact method for determining these values. We
must instead rely on our judgement and certain rules. The value of d is typically
one, but it can vary depending on the data set.

• Estimation To estimate the coefficient values θ and ϕ, various types of models
may be employed. (e.g SPSS software)

• Diagnostics The residuals, which represent an estimate of the error terms, must
be completely random. In ARIMA modelling, the autocorrelation function (ACF)
and partial autocorrelation function (PACF) are utilised to assess randomness [20].
Since multiple values of p and q may result in the residual having a completely
random pattern, the bayesian information criterion (BIC) is utilised to discover
the optimal combination. As the preferred model, the p and q value pair with the
lowest BIC will be chosen.

• Forecasting Use formulated model equation to calculate forecasts.

2.4 Neural Networks

A neural network can be defined as a differentiable mathematical function that maps one
type of variable to another. In classification problems, vectors are converted to vectors.
In regression problems, vectors are transformed into scalars. Recurrent networks simply
transform sequences into a variety of outputs. Consequently, we can observe the following
application-specific architectures:

• Vector to sequence model Here, a vector is used to generate a sequence of
the specified length. This method is used for image captioning. It takes a vector
representation of an image as input and generates a sequence of words describing
or captioning that image as output.

• Sequence to vector model It accepts a sequence as input and returns a vector
of fixed length. This method is frequently employed in sentiment analysis, where it
takes as input a sequence of words or phrases and returns a vector describing the
sentiment (mostly two-dimensional vector stating whether the sentiment is positive
or negative).

• Sequence to sequence model In this case, both inputs and outputs are
sequences. This method is frequently employed by text prediction platforms to
predict the next word in an input sequence. In this method, the length of the
sequence is crucial. Theoretically, the length of the sequences can be infinite, but
there are some practical issues, as illustrated by the following Section 2.4.1.

2.4.1 Vanishing and exploding gradient problem in neural networks

Consider a simple recurrent network with no hidden units other than the repetition of
some scalar X(0). After n time steps its value would be X(n). In discrete dynamic systems
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Figure 2.3. Simple recurrent network with no hidden units.

we can write X(n) as
X(n) = W nX(0), (14)

where W is a scalar. To determine the scalar W , we must employ back propagation
through the time. At large values of n, the value of X(n) depends on the value of W . If
the value is greater than 1, X(n) tends to explode, and if it is less than 1, X(n) would
vanish.

W nX(0) →

∞; W > 1
0; W < 1

(15)

The same will also be applied for its gradients as

∂W nX(0)

∂W
→

∞; W > 1
0; W < 1

(16)

These results can be generalized to matrices as well. For W entries with values greater
than 1, the corresponding eigenvectors of W (n) will then explode. This signifies that the
input values in the direction of the eigenvectors will explode to infinity and information
will be lost. For values of W less than one, the opposite is observed: the corresponding
eigenvectors approach 0 and the input components in the direction of these eigenvectors
vanish, leading to a loss of input information. To address the problem of vanishing and
exploding gradients in recurrent neural networks, researchers have developed the Long
Short Term Memory method (LSTM).

2.4.2 Recurrent Neural Network (RNN)

RNN architecture was created for the first time in the 1980s [21]. There are three
types of layers in this architecture: input layer, one or more hidden layers, and output
layer. The RNN is composed of modules that are repeated and arranged in a chain
structure. The significance of this module structure is that it can be used as memory
cells to store previous data, which is essential for making predictions. The RNN is
comprised of an input-accepting feedback loop. This feedback loop enables the effect
of the previous state’s outcome to influence the current state’s outcome. This effect
propagates throughout the chain due to its chain-like structure, resulting in successful
learning.

Figure 2.4 depicts the simple RNN with single input, single output, and single recurrent
hidden unit that has grown to a complete network. Xt represents the input at time t,
whereas ht represents the output. This RNN uses a backpropagation algorithm during
the training process.
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Figure 2.4. Sequential processing in RNN.

2.4.3 Long Short Term Memory (LSTM)

Hochreiter and Schmidhuber invented LSTM [21] to solve the limitation of conventional
RNNs, such as vanishing or exploding gradient problems. LSTM is a specialised RNN
capable of learning long-term dependencies and carrying forward learned information
for a long period by supporting future decisions. As traditional RNNs, LSTM also has
a chain structure. However, the repeating module of LSTM has a different structure
compared to a traditional RNN.

In addition to the hidden state vector, every LSTM cell contains a cell state vector.
Using an explicit gating mechanism, the subsequent LSTM may choose to read from,
write to, or even reset the memory at each time step. There are three types of LSTM
cell gates.

• Input Gate Control whether the memory cell is updated.

• Forget Gate Controls whether the memory cell is reset to zero.

• Output Gate Controls whether information of the current cell state is made
visible.
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Figure 2.5. LSTM Structure [21].

All three type of gates described above and included in Figure 2.5 have sigmoid
activation functions due to the smoothness of the sigmoid curve in the range of zero to
one [0, 1]. Other than the above gates, there is additional vector associated with LSTM
that alter the cell state. It possess the tanh activation function due to its capability to
distribute the gradients with a zero-centered range for long sequences. It allows cell state
information to flow for a longer time without vanishing or exploding. Each gate in an
LSTM cell receives a current input and a hidden state as inputs. After concatenating
the vectors, the sigmoid is applied. The aforementioned vector is then applied to the cell
state to introduce candidate values.
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3 URLLC INTERFERENCE PREDICTION AND
RESOURCE ALLOCATION

3.1 System Model

In this study, the downlink of a wireless network is examined. The objective is to
determine the optimal resource allocation for a URLLC service operating in the presence
of N interferers, as shown in Figure 3.1. It is assumed that the desired channel has
a signal-to-noise ratio (SNR) of γ̄ and the interference-to-noise ratios (INR) for each
interfering link are uniformly distributed within a given range [γmin, γmax]. The previously
mentioned INR is also known as the SNR of the interference signal.

The desired link is assumed to be established with the base station which has the
highest SNR. Therefore, it is assumed that the interfering link with the highest SNR
value (γmax) has a lower SNR value compared to the desired link (γ̄ > γmax). In addition,
it is assumed that there is no cooperation between transmitters, and the single antenna
Rayleigh block fading method is employed.

Figure 3.1. System model: desired link operates with N interferers.

URLLC transmissions typically happen in mini-slots that last less than 0.1 ms. This
makes the transmission time interval (TTI) shorter and more flexible than the 1 ms TTI of
LTE [22]. Since the coherence time of a conventional wireless transmission is much wider
compared to the mini slot duration, the fading of the URLLC transmission may occur
over multiple TTIs [23]. Within that coherence time, it is assumed that the transmitter
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acquires sufficient knowledge about the desired channel state information (CSI). Also, it
is expected that the user equipment (UE) will update the serving base station with the
total interference values it has seen in the past. This will facilitate adequate knowledge
about the interference at the transmitter, which will lead to a more efficient resource
allocation in the downlink.

A brief packet of D bits with a target outage/block error rate (BLER) ε is transmitted
by the desired transmitter. The power of the total interference signal is estimated by
the transmitter using the EMD based prediction methods. Then the necessary resources
(R) are subsequently allocated in accordance with the predicted interference power. To
guarantee effective resource allocation, it is important to estimate the SINR (γ̂) of the
predicted signal as precisely as possible.

3.2 Prediction Model Training

Figure 3.2. Proposed method for interference prediction.

The system model given above 3.1 has been addressed utilizing the theories discussed in
the background Chapter 2, as shown in Figure 3.2. Initial interference signal generation
has been done using presumptive INR parameters. The total interference signal that the
mobile station experiences have then derived by adding all of the individual interference
signals together as shown in

Totalinterference =
N∑

i=1
Interference(i), (17)

where Interference(i) is the interference from ith interferer. The obtained total
interference signal samples are split into two sets training samples and validation samples.
The split can be performed using the predetermined training sample percentage value (ex
80%). The number of samples in the total interference signal is taken as T . The number
of samples in training data and validating data are taken as N and M respectively. The
total number of samples can be describe as

T = N + M. (18)
Since developing a model to predict a linear (less random) signal over a nonlinear

(random) signal is much easier and more accurate, IMFs and residual are used as inputs
to the prediction models rather than directly feeding the signal as an input.

Then obtained training samples of total interference power N are decomposed into
IMFs and residual using EMD. As described in the background section, the number of
IMFs obtained after the EMD method is not a predetermined parameter and it only
depends on the nature of the signal. For descriptive purposes, the total number of IMFs
and residual is shown as L. Each IMF as well as the residual are fed into two forecasting
algorithms: LSTM and ARIMA. Here, forecasting models have been trained individually
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for each IMF and residual. The total number of models deployed in the LSTM method is
equal to the sum of the numbers of IMFs and residuals (L). The same number of models
will be used in ARIMA method as well (L). These two forecasting methods predict
the next sample value based on the trained neural networks and time series forecasting
methods as shown by

LSTM reconstructed =
L−1∑
i=1

IMF LST M(i) + ResidualLST M , (19)

ARIMAreconstructed =
L−1∑
i=1

IMF ARIMA(i) + ResidualARIMA, (20)

where IMF LST M(i) is the predicted value of IMF i using the LSTM method,
IMF ARIMA(i) is the predicted value of IMF i using ARIMA method, ResidualLST M is
the predicted value of residual using LSTM method, and ResidualARIMA is the predicted
value of residual using ARIMA method.

Since there are M validating data points, the above one-step prediction method is
repeated M times to obtain the predicted value set, as depicted in Figure 3.3. The
advantage of iteratively predicting one future value at a time over predicting all M
future values at once is that we can optimize the model by comparing the most recent
predicted value to the actual value at each step. By always incorporating the most recent
data points into model training, we can achieve higher prediction accuracy.

Figure 3.3. Training window selection over dataset.

According to the equations (19) and (20), the forecasted IMF and residual values are
then added to obtain the final forecasted interference signal. At this time, the ARIMA
reconstructed signal and the LSTM reconstructed signal will be available as anticipated
signals.
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LSTM reconstructed =
M∑

t=1
(

L−1∑
i=1

IMF LST M(i)(t) + ResidualLST M (t)), (21)

ARIMAreconstructed =
M∑

t=1
(

L−1∑
i=1

IMF ARIMA(i)(t) + ResidualARIMA(t)), (22)

Apart from the decomposed signals, training samples of the total interference are also
fed into the LSTM and ARIMA models individually and predictions are obtained, as
shown below

LSTMSignal =
M∑

i=1
SignalLST M(i)(t), (23)

ARIMASignal =
M∑

i=1
SignalARIMA(i)(t). (24)

In order to evaluate the performance of the EMD method, we compare the results of the
reconstructed signal which we obtained from the EMD method with the straightforward
prediction results obtained without using the EMD method. The above comparison
can be done with the ARIMA model as well as with the LSTM model. The performance
comparison is done by comparing the root mean squared error (RMSE) of the predictions.
If the EMD results in a lower RMSE value compared to a simple prediction, it is
considered as the desired output. Otherwise, parameter optimization and retraining
of models are required. Then, an optimized model will be used to predict interference
in a real-world scenario and radio resources will be allocated accordingly. The preceding
process is depicted as a flowchart in Figure 3.4.

Figure 3.4. Model training procedure.
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3.3 Resource Allocation

The predicted SINR γ̂ will be calculated assuming that the power of the desired signal
S is known using channel state information estimates, as given by

γ̂ = S

Î + N0
, (25)

where Î is the predicted interference power and N0 is the normalized noise power.
According to finite block length theory [24], the amount of information bits D that

can be dispatched with the given decoding error probability ε using R channel uses in
additive white Gaussian noise (AWGN) channel can be calculated as (26)

D = RC(γ̂) − Q−1(ε)
√

RV (γ̂) + O(log2R), (26)

C(γ̂) = log2(1 + γ̂), (27)

V (γ̂) = 1
ln(2)2

(
1 − 1

(1 + γ̂)2

)
. (28)

In the above (26), C(γ̂) represents the Shannon capacity of AWGN under a finite block
length regime and calculated as shown in (27). V (γ̂) represents the channel dispersion and
is measured in squared information units per channel, as shown in (28). Q−1 represents
inverse of the Q-function. Using the preceding information, the channel utilization R can
be estimated as below (29) [25]

R ≈ D

C(γ̂) + Q−1(ε)2V (γ̂)
2C(γ̂)2

1 +

√√√√1 + 4DC(γ̂)
Q−1(ε)2V (γ̂)

, (29)

By rearranging the elements in (26), the block error rate can be calculated as (30)

ε ≈ Q

RC(γ̂) − D√
RV (γ̂)

. (30)

3.4 Performance Evaluation

Given that the performance of the LSTM and ARIMA methods is evaluated during
prediction model training 3.2, this section examines the performance of resource
allocation based on LSTM and ARIMA outputs.

First, we compute the SINR of predicted signal γ̂ by (25) using predicted interference
value Î as an input. In 25 the power of the desired signal S is assumed to be known
using the CSI. The normalised noise power is denoted by N0 and is assumed to be one.
Next, we compute the number of resources R required to transfer D bits with a target
error probability ε. This resource allocation happens within one time step prior to the
actual transmission (t − 1) as shown in timeline Figure 3.5.

After the transmission of D bits using allocated R number of resources at time t, we
can obtain the actual total interference I that D number of bits had to gone through.
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Figure 3.5. Resource allocation and performance evaluation timeline.

Therefore, we can obtain the actual SINR γ as shown below. It is important to note
that, this time γ will be calculated using actual total interference I value.

γ = S

I + N0
(31)

Since initially we have allocated the resources R based on target error probability
ε, we can now obtain the achieved error probability using the same equation (30) but
substituting predicted SINR value γ̂ with the actual SINR value γ as shown below

εachieved ≈ Q

RC(γ) − D√
RV (γ)

. (32)

Finally, we will be able to compare the target error probability with the achieved error
probability. The above mentioned procedure can be iterated over different target error
rate values to obtain different achieved error rate values.

The performance of the proposed scheme needs to be compaired against the baseline
schemes. So the following two baseline schemes have been used [24].

• Moving Average Based Estimation
This is a conventional weighted average based estimation procedure and it has been
adapted to predict interference signal power as the first baseline scheme. Here,
interference measured at time t is passed through the first order, low pass, infinite
impulse response (IIR) filter and interference estimates are obtained according to
the below equation

Ît+1 = αIt−1 + (1 − α)Ît, (33)

where, α is the forgetting factor (FF) of the filter (0 < α < 1) and it determines
weight given to the most recent measurement compared to previous one. Based on
a simulation-based heuristic analysis, it has been determined that an α = 0.01 is
optimal for latency performance [26].

• Genie Aided Estimation
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The genie aided estimator is considered as an optimal estimator. In this interference
prediction scenario, it is assumed that the transmitter knows precisely what
interference condition the transmitted signal will encounter. In other words, Î = I.

For the purpose of comparing the performance of the proposed model to that of
the aforementioned baseline schemes, interference prediction is performed using the two
baseline schemes. Therefore, the predicted interference values are ÎIIR and ÎGenie. Then,
using the procedure described above, the achieved outages for the same set of target
outages will be obtained. Finally, conclusions were drawn by comparing the results of
the proposed scheme to the results of the baseline scheme.
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4 SIMULATION RESULTS AND DISCUSSION

First, the desired signal and total interference signal are generated using MATLAB.
Next, the total interference signal is decomposed into IMFs and residual using the
"emd" function in MATLAB. Then, the decomposed components are fed to the python
platform. Future values of decomposed components are predicted using ARIMA and
LSTM methods. The performance of the prediction models was also evaluated during the
process. Next, the predicted interference values were forwarded for resource allocation.
Finally, the overall performance of the proposed model is evaluated using the baseline
criteria.

4.1 Signal generation

The following parameters have been used for the generation of desired signal and
interference signal.

Table 4.1. Parameters used to generate desired signal and total interference signal.

Description Value
Number of interferers N 5
SNR values of interferers [5, 3, 0, -2, -5] dB

SINR value of desired signal γ̄ 20 dB
Number of samples considered 100

Channel model Rayleigh block fading

MATLAB was used to generate the total interference and desired signal with the
specified parameters as shown in Figure 4.1 and Figure 4.2.

Figure 4.1. Total interference signal.
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Figure 4.2. Desired signal.

4.2 EMD and Prediction Models

The total interference signal is decomposed using the MATLAB ’emd’ function. The
Python platform with Keras and Tensorflow backend is then used to develop LSTM and
ARIMA models using the resulting IMFs and residuals. Since the desired signal is only
necessary for taking the power, it is fed into python without EMD. For each IMF and
residual, two models are trained. One model employs LSTM, and the other, ARIMA.
The following two model training methods are used:

• Use same hyperparameters for all models.

• Use individually optimized hyperparameters for each model.

Finally, predicted components are summed up together to form the total predicted
value, as shown in equation (19) and equation (20).

4.2.1 Same hyperparameters for all models

This model training method is utilized specifically to validate the EMD-based prediction
accuracy in comparison to conventional prediction methods that do not use the EMD.
Each model of IMFs, residual, and total interference signal are trained with the same
hyperparameters.

Although the prediction models are trained according to individual training datasets
of IMFs, residual, and total signal , the hyperparameters used for all these models remain
the same. For example, all the models are trained using the following hyperparameters
given in Table 4.2.
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Table 4.2. Hyperparameters used to train all models.

Method Hyperparameter Value
LSTM/ARIMA Training window 30

LSTM Number of epochs 100
LSTM Activation function ReLU
LSTM Optimizer function adam
LSTM Loss function MSE
LSTM Number of neurons in LSTM layer 1 100
LSTM Number of neurons in LSTM layer 2 100
LSTM Number of neurons in dense layer 1

ARIMA Number of previous samples for AR p 30
ARIMA Number of previous samples for MA q 0
ARIMA Order of integration d 1

After training the models using the above parameters, predicted values of IMFs and
residual are added together to form the total prediction, known as the reconstructed
signal. Since we use two prediction methods ( LSTM and ARIMA), we will get two
reconstructed signals, known as LSTM reconstructed and ARIMAreconstructed. Apart from
the IMFs and residual components, the total interference signal is also predicted using
LSTM and ARIMA. The names of the total interference signal prediction outputs
are LSTM signal and ARIMAsignal. Using RMSE as the evaluation criterion, the
performance of EMD-based prediction methods is compared to conventional prediction
methods (without EMD). In each method, one RMSE value is obtained by considering
reconstructed signal with the validation dataset of the total interference signal, and the
other RMSE value is obtained by considering predicted value of the interference signal
with the validation dataset of the total interference signal, as shown in below Figure 4.3.

Figure 4.3. Performance evaluation of EMD with LSTM and ARIMA

As shown in the figures, the RMSE value of the reconstructed signal in both the LSTM
and ARIMA methods is less than the RMSE value of the predicted signal. Therefore,
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it suggests that EMD-based prediction methods outperform conventional prediction
methods.

4.2.2 Individually optimized hyperparameters for each model

In this method, each model of IMFs and residual are trained using a unique set of
hyperparameters that are optimized for a given dataset. When we consider the LSTM
method, the hyperparameters used to train one IMF are different from the other IMF.
It results in having different LSTM prediction models for each IMF and residual.
Therefore, training of each LSTM model needs to be done individually using the required
hyperparameters. The ARIMA method also follows the same procedure described above
for the LSTM method. The reason for deploying different models for each IMF is that
the linearity of the IMF increases as the IMF number increases. So, if we use the same
hyperparameters for every model, more liner models will have over-fitting issues and
more random signals will have under-fitting issues. Also, the model training time can be
drastically reduced by using relaxed hyperparameters for higher IMF s. As an example,
using a small trainingwindow for higher IMFs will result in less training time and we
can still obtain highly accurate predictions.

In LSTM, we used a sequential model with two LSTM layers and one dense layer. The
developed LSTM models are compiled with the optimizer "adam" and a loss function of
"mean squared error". The loss function measures how well the model performs during
training. The optimizer is used to improve the performance of the model based on the
output of the loss function. Then the model training is carried out by introducing the
training dataset and setting the number of epochs. An epoch is the number of times
an entire dataset is iterated through a neural network forward and backwards. The
optimized hyperparameter set that we used to train LSTM models is included in Table
4.3.

Table 4.3. hyperparameters used for LSTM models.

Predicting element window Epochs LSTM 1 N LSTM 2 N
IMF 1 25 90 70 70
IMF 2 30 80 60 60
IMF 3 35 70 50 50
IMF 4 40 60 40 40
IMF 5 45 50 30 30
IMF 6 50 40 20 20

Residual 30 20 10 10

As shown in Table 4.3, as the IMF number increases, we can relax some training
parameters such as: Epochs, LSTM 1 N , and LSTM 2 N . This is possible due to the
randomness of the IMF signal reducing as the IMF number increases resulting prediction
task being easier. However, the window size needs to be increased as the IMF number
increases. By the nature of the EMD as the IMF number increases it will form signals
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with long-term dependencies rather than short-term dependencies. To capture these
long-term dependencies accurately and make accurate predictions, we would require a
wider training window.

In ARIMA time series forecasting, we just need to input three parameters to the model.
Those are

• Number of past samples used for current prediction p,

• Number of past errors used for current prediction q,

• Order of the integration d.

Table 4.4. Hyperparameters used for ARIMA models.

Predicting element p d q
IMF 1 30 1 0
IMF 2 35 1 0
IMF 3 45 1 0
IMF 4 50 1 0
IMF 5 55 1 0
IMF 6 65 1 0

Residual 70 1 0

As shown in Table 4.4, we can increase the p value as the IMF number increases allowing
it to capture long-range dependencies of higher IMFs. It can be justified by considering
the ACF of the decomposed signals. As shown in the sub figures in Figure 4.4, it can be
seen that the correlation of the samples increases as the IMF number increases.

We can get the intuition about the training model selection method for each IMF and
residual by comparing the accuracy of the prediction between LSTM and ARIMA, as
shown in Figure 4.5 and Figure 4.6.
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Figure 4.4. Auto correlation functions of IMFs.
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Figure 4.5. Prediction of each decomposed component using LSTM (left) and ARIMA
(right).



33

Figure 4.6. Prediction of each decomposed component using LSTM (left) and ARIMA
(right).

4.3 Resource Allocation and Performance Evaluation

Based on predicted interference Î, resources are allocated for downlink channel. For the
simulations, the interference signal and desired signal are generated as described in the
section 4.1. The number of bits that we need to communicate in the downlink D is taken
as 50. Achieved block error rate targets εachieved were obtained by simulating different
target error rate values ε = (10−5, 10−4, 10−3, 10−2, 10−1).
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The performance of the EMD based resource allocation methods are evaluated with
the two baseline schemes described in 3.4.

Figure 4.7. Achieved outage Vs target outage for different prediction methods.

Since the genie-aided estimator assumed that it already knew the achieved SINR, it
could reserve the exact number of resources required to achieve the target outage, as
shown in Figure 4.7. The curve generated by the genie-aided estimator is regarded as the
optimal allocation of resources. Any curve that deviates less from the genie-aided curve
can be considered an efficient allocation of resources, whereas efficiency decreases as the
curve moves further from the genie-aided curve.

The performance of the IIR filter-based estimation is considered very poor, and it will
only be able to achieve the block error rate (BLER) target of around 10%, as shown in
Figure 4.7. The IIR based achieved outage curve shows considerable deviation from the
expected genie-aided achieved outage curve. The achieved BLER targets of IIR filter-
based estimation can be quite resource efficient only for eMBB services [1]. For URLLC
services, stricter outage targets are anticipated.

We can observe that resource allocation without EMD utilizing only LSTM and
ARIMA methods show poor performance compared to genie-aided resource allocation,
but perform better than IIR-based resource allocation. In contrast, achieved outages
using EMD-based prediction methods demonstrate better performance compared to IIR
filter-based methods and methods that do not use EMD. The resource allocation method,
which uses EMD and ARIMA for interference prediction, has allocated resources in
a near-optimal way to meet target error rates, as shown in the ARIMArecon curve.
Then, the second best resource allocation has been achieved with the EMD based LSTM
method, as shown in the LSTM recon curve. It also proves the EMD based prediction
methods were able to allocate resources more efficiently than the non-EMD prediction
methods. The resource usage corresponding to the above outage targets is shown in
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Figure 4.8. The genie-aided estimator has allocated an optimal minimal number of
resources because it is assumed to have exact prior knowledge about the interference.
Our proposed EMD-based prediction schemes have been allocated to a near-optimum
performance, which assigns a lower number of resources compared to state-of-the-art
interference prediction schemes.

Figure 4.8. Resource usage Vs target outage for different prediction methods.
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5 CONCLUSION AND FUTURE WORK

In this thesis, predictive resource allocation for URLLC services was investigated. The
desired downlink at present of N interfering links was considered. We used the EMD
algorithm to decompose the total interference signal power into IMFs and residual. This
decomposition helped us to precisely predict future interference values. Along with the
EMD, two prediction algorithms were used to train the models, LSTM and ARIMA.
While heading towards the final objective of efficient resource allocation, the performance
of an EMD based hybrid prediction scheme was also evaluated. Based on the predicted
interference values, downlink resources were allocated to withstand at presence of actual
interference. Finally, the performance of the suggested scheme was compared to that of
the two baseline schemes and was able to achieve near optimal performance.

In the problem formulation, we assumed that past interference signal powers observed
by UE were reporteded back to the serving base station. So the predictions were made
by the serving base station using collected data from the UE.

In this research predicted interference power was obtained by either adding up all
LSTM decomposed predictions or ARIMA decomposed predictions as shown in equation
(19) and equation (20), further research could be conducted to use above two methods
interchangeably for each decomposed signal element. A new classification criteria can be
employed to select an appropriate prediction model based on the characteristics of the
decomposed elements. So the total prediction will consist of some predicted components
using ARIMA and LSTM.
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