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ABSTRACT  

This thesis takes an in-depth look on parameterized register models, their generation and 

use. The aim is to discover improvements to the current method of generating 

parameterized register models. The thesis is divided into two halves: a practical section 

that consists of a study on the generation of parameterized register models, and a theory 

section that supports the topics gone over in the practical section.  

The practical section studied the generation flow and tools currently used at Nordic 

Semiconductor. The flow was analyzed to discover changes that would enable the 

generation of more flexible parameterized register models. The suggested changes were 

then used to generate a dynamic register model for a highly configurable intellectual 

property (IP) core. The register model was validated using a register test sequence and 

functional tests. Finally, the functionality of the generated register model was compared 

to a manually implemented model. 

In the end, the test sequences and functional tests passed without errors. The 

generated register model could be configured directly from the testbench without editing 

the model manually. This also meant that the applied configurations would not be lost 

even if the register model were to be regenerated. The resulting register model was 

significantly more flexible than the previous generated models. 

 

Keywords: parameterized register model, register model generation, register verification, 

UVM.  
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TIIVISTELMÄ  

Tässä opinnäytetyössä tutustutaan parametrisoituihin rekisterimalleihin, niiden 

generointiin, ja niiden käyttöön. Tavoitteena on löytää parannuksia nykyiseen 

parametrisoitujen rekisterimallien generointitapaan. Opinnäytetyö on jaettu kahteen 

puoliskoon: käytännön osuuteen, joka koostuu parametrisoitujen rekisterimallien 

tutkimuksesta, ja teoreettisesta osuudesta, joka tukee käytännön osuudessa käsiteltyjä 

aiheita. 

Käytännön osuus tutki Nordic Semiconductorilla tällä hetkellä rekisterimallin 

generointiin käytettyjä prosesseja ja työkaluja. Niitä analysoimalla pyrittiin löytämään 

muutoksia, joiden avulla voisi generoida joustavampia parametrisoituja rekisterimalleja. 

Kyseisten muutosten avulla generoitiin sitten dynaaminen rekisterimalli IP lohkolle, joka 

sisältää paljon konfiguroitavia parametrejä. Generoitu malli varmennettiin rekisterien 

testisekvenssillä ja toiminnallisilla testeillä. Lopuksi rekisterimallin toiminnallisuutta 

verrattiin käsin kirjoitetun rekisterimallin toiminnallisuuteen. 

Testisekvenssi ja toiminnalliset testit läpäistiin simuloinnissa lopulta ilman virheitä. 

Generoitu rekisterimalli oli konfiguroitavissa suoraan testipenkistä, eikä sitä tarvinnut 

muokata manuaalisesti. Tämä tarkoitti myös sitä, että testipenkissä asetettuja 

konfiguraatioita ei menetetä, jos rekisterimalli generoidaan uudelleen. Lopullinen 

rekisterimalli oli merkittävästi joustavampi kuin aikaisemmat generoidut mallit. 

 

Avainsanat: parametrisoitu rekisterimalli, rekisterimallin generointi, 

rekisterivarmennus, UVM. 
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FOREWORD  

The goal of this thesis is to discover and validate ways to improve the way parameterized 

register models are implemented, reducing the amount of manual tinkering of generated register 

models. The study was done by analyzing the register description formats, tools, and scripts 

used at Nordic Semiconductor. This thesis was conducted at Nordic Semiconductor Finland Oy 

from March 2022 to December 2022. 
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my gratitude to all my colleagues at Nordic Semiconductor who assisted me throughout the 
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to the generation tool. Lastly, I want to thank Jukka Lahti of Oulu University for supervising 

this thesis. 
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1. INTRODUCTION  

Registers are an integral part of integrated circuits. They are used to store data, control and 

observe the operation of various systems and sub-systems, and to act as an interface between 

software and hardware. Registers are widely used in today’s integrated circuit (IC) designs, and 

each design typically contains a large number of registers for different purposes. 

As the number of registers contained in a design keeps growing larger and larger, the 

complexity of register verification starts to become an issue. To meet the required production 

times, the industry has adopted various tools and standards to increase the efficiency of 

verification. One of these tools is the Universal Verification Methodology (UVM) register model 

[13]. 

UVM register models provide an efficient way of accessing and observing design registers. 

They consist of a set of base classes that model the corresponding design registers. Register 

models are typically generated from a textual register description, which describes the properties 

of each register and the block they are contained in. The UVM register models can also be written 

manually, but the process can be very tedious and prone to errors due to the number of registers. 

Another common method the industry has adopted to increase productivity is the use of 

reusable design and verification components. To improve the efficiency of verification, 

verification components are implemented with reusability in mind, allowing them to be used 

again in other projects or even in the same project. One aspect of reusable design is the use of 

configurable parameters. They increase the flexibility of the component, so that it can operate in 

different environments and situations. 

Challenges arise when these two tools, register models and configurable parameters, are used 

in conjunction with each other. Main issue is the handling of register parameters when the register 

model is generated from a text-based register description. In the case of complex designs that 

contain numerous parameters, the generated register model usually has to be edited manually to 

contain the required parameters. When the register model must be regenerated, the manual 

editing process must also be repeated, significantly lessening the productivity gains received 

from automatic register model generation. 

The goal of this thesis is to discover and validate ways to improve the way parameterized 

register models are implemented, reducing the amount of manual tinkering of generated register 

models. This thesis is done from Nordic Semiconductor point of view, meaning this thesis 

focuses mainly on parameterized register model related issues present at Nordic Semiconductor. 

Chapter 2 provides a brief overview on the System-on-Chip (SoC) design flow. It goes into 

more detail on SoC verification and its different levels. Additionally, it describes how the quality 

of the verification is determined. 

Chapter 3 discusses the basic IP-based design methodology and explains the concept of 

reusability. It also goes into more detail on how configurable parameters are used to increase the 

flexibility of design and verification elements. 

Chapter 4 of this thesis provides an overview of registers. It includes some common 

information on registers, how registers are implemented in SoC environments, how they are 

described using register description standards, and how they are verified. The chapter also 

provides a more in-depth view on UVM register models. 

Chapter 5 is the main practical section of the thesis. It describes the found issues related to 

parameterized register models, and documents the possible improvements, their implementation 

and validation. 

Chapter 6 discusses the results of this thesis, alternative solutions, and possible future work.  
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2. SOC DESIGN AND VERIFICATION 

As circuits are becoming increasingly complex and expensive to produce, the industry has begun 

to embrace new design and reuse methodologies that are collectively called system-on-chip 

(SoC) design methodologies [22]. SoCs are typically implemented using IP cores, also referred 

to as IP blocks, and IP sub-systems, which are designed to handle specific functions using 

several IP cores. 

IP cores include both custom-made, and pre-designed and pre-verified third-party cores. 

They may include embedded processors, memory blocks, interface blocks, analog blocks, and 

blocks that are designed to handle specific functions [22]. IP cores are integrated to the SoC by 

defining the connections between them, implementing various design-for-test (DFT) 

techniques, and by verifying and validating the system-level design as a whole. 

This chapter describes the design flow of IP-based designs and explains the different levels 

of integration. Additionally, methods for determining the quality of the verification are gone 

over briefly.  

 

 

2.1. SoC design flow 

The classic top-down SoC design flow begins with specification and division of the design into 

IP blocks, and ends with integration and verification. First step is to write complete 

specifications for the system or sub-system being designed. Next, its architecture and algorithms 

are refined, and the architecture is decomposed into well-defined IP blocks. The IP blocks are 

then designed and verified or selected from pre-designed blocks [24]. 

When the IP blocks are finished and their test coverage is sufficient, they are integrated into 

the next level of integration, for example, sub-system or top. Next, the system/sub-system level 

verification is performed, and the timing is checked. The designed system or sub-system is then 

delivered to the next higher level of integration; on the highest integration level this is the tape-

out of the design. Finally, all the aspects of the design, including functionality and timing, are 

verified as a whole [24]. 

The top-down methodology assumes that the lowest level specified blocks can be 

implemented, but it can often turn out to be unfeasible, in which case the whole specification 

process needs to be repeated [24]. Hence, the design methodology is a combination of bottom-

up and top-down philosophies. The methodology is based on hardware-software codevelopment 

while simultaneously considering physical design and performance [28]. An illustration of this 

flow can be seen in figure 1.  
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Figure 1. Interlaced codevelopment design methodology. 

 

 

2.2. Levels of SoC verification 

One basic practice with solving large problems is to break them into smaller, more manageable 

challenges. In SoC verification this is done by using the existing hierarchical structure of the 

design. Instead of verifying the whole design at once, the verification work is done in parts, 

starting from the smaller building blocks of the system before moving up to the larger structures 

[30].  

SoC verification can generally be divided into three levels of integration: IP level, sub-system 

level and system/top level. First the functionality of the individual IP cores is verified. When 

the IP core functionality is verified with a sufficient test coverage, testing can be started on the 

sub-system level. On the sub-system level, the interfaces and transactions between IPs and the 

overall functionality of the sub-system are verified. Top, or system, verification is the highest 

level in the verification hierarchy, and it comprises the verification of the entire design. The 

following sections describe the verification process on the different levels of abstraction. 

 

 

2.2.1. IP level verification 

The goal of IP level verification is to ensure that the IP core is correct in its functionality and 

timing. In comparison to single use IP cores, the verification of reusable IP cores presents 

additional challenges. The goal of the verification should be to have zero defects, because the 

reusable IP can have a wide range of different applications from consumer electronics to 

mission-critical aerospace applications. It should cover all legal configurations of the IP, and all 

legal values of its parameters. Additionally, to increase the efficiency of the verification process, 

the verification components should be made reusable, so they can be used again in sub-system 
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and top level verification environments. The reusability also allows the components to be used 

again if the IP is substantially redesigned in the future [24]. 

 Achieving a high level of test coverage can be a daunting task, and it requires a significant 

investment in developing a robust verification environment and a complete set of tests. A wide 

range of tools and techniques are used in IP verification: verification IPs, high-level verification 

languages, automated regression tests, tools for checking code coverage, emulators, and others 

[24]. 

 

 

2.2.2. Sub-system level verification 

When the IP cores have been tested with sufficient coverage, they can be integrated into the 

higher level of hierarchy in the design [24]. Sub-systems are typically formed by several IP 

cores that are focused to perform a specific function of the overall design. Sub-system 

verification focuses on testing the interfaces between the IP cores, and the overall functionality 

of the sub-system.  

Interface verification comprises of transaction verification and behavioral verification. 

Interface verification begins by checking all the transaction types that can occur at each 

interface. Then the behavior of the IP cores is tested to different data values in the transactions. 

Thus, it is preferable to use a common communication architecture to minimize the complexity 

of interface verification [24]. 

 

 

2.2.3. Top level verification 

Top, or system, level verification is the final level of verification before tape-out. After the 

functionality of individual sub-systems and IP cores is verified, their interfaces and 

interconnectivity are tested on the top level. Top level verification also consists of the functional 

testing of the entire system and software testing [24]. Top level testing requires a lot of time and 

effort, which is why it should be started as soon as possible. 

Top level interface verification is like the interface verification on sub-system level but is 

more complicated due to the larger scale of the verification environment. Once the basic 

functionality of the system has been verified by checking the transactions and interconnections 

between sub-systems and IP cores, system verification consists of exercising the entire design. 

The goal is to test the system as it is intended to be used. This means running software 

applications on the design to get as accurate representation of the design’s final operation as 

possible [24].  

Application code-based verification is essential for guaranteeing the quality of the design, 

but it also presents major challenges for verification teams. It is not feasible for conventional 

simulation to execute the millions of vectors required to run even the smallest fragments of 

application code, let alone to boot an operating system. This problem can be addressed by 

increasing the level of abstraction so that software simulators can run faster, or by using 

specialized hardware for performing verification, such as emulators or prototyping systems [24].  
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2.3. Determining verification quality 

The estimation of verification quality is very important when integrating IP cores to higher 

design hierarchies, preparing a design for tape-out, and determining when functional 

verification is complete. There are several common methods used to estimate the quality of 

functional verification. They each use different approaches to achieve the best possible overall 

measurements. Five common methods are: code coverage, functional coverage, fault insertion 

coverage, bug tracking, and design and test plan reviews. Code coverage is a simulation-based 

method that in its simplest form counts which lines of register transfer layer (RTL) have been 

executed during verification. Functional coverage checks that all valid states of a specific block 

of code have been verified. Fault insertion coverage inserts a bug and checks if the test catches 

it. It uses a set of bugs to measure test case quality. Bug tracking is used to count all found bugs, 

and to correlate them to the RTL. Design and test plan reviewing is used to compare the 

verification test plan to the architectural and implementation specifications. It checks that all 

components of the specifications have a measurable verification item, such as a test or an 

assertion [37]. 

The use of configurable parameters increases the complexity of verification significantly. 

Ideally, each functional coverage item would be tested against each specific parameterization. 

As the coverage space grows exponentially, and additional parameters are added, this 

comprehensive method quickly becomes unfeasible [34]. Crossing two design parameters, each 

with two different values, would lead to four different parameterizations, which means four 

times the amount of functional coverage space. 

A couple of options exist to ensure adequate functional coverage in various 

parameterizations. The first step is to cover each parameter setting without crossing them. This 

verifies that all parameter values have been tested. Then, only important parameters, or 

parameters that have a direct effect on another should be crossed. Finally, specific functional 

coverage items should be crossed with parameters that affect that functionality [34]. Parameters 

and configurable IP blocks are gone over in more detail in the following chapters. 
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3. REUSABILITY IN SOC DESIGN 

This chapter examines the challenges caused by the increasing complexity of SoC designs, and 

explores different methods of increasing designer productivity, such as IP reusability and 

parameterization.  

Reusability is a key aspect of today’s SoC designs. Solutions are required to increase designer 

productivity and to keep development times and costs under control. When IP cores are built 

with reusability in mind, integration engineers can work more efficiently. To make IP cores 

usable for a broad range of different applications, they are designed to be configurable, for 

example, using parameterized registers. 

 

 

3.1. IP-based design methodology and reusability 

Integrating more and more functionality on a chip has been a constant trend, as predicted by the 

Moore’s Law. It predicts that the number of transistors on a chip will double every 18-24 

months. One of the key challenges in SoC development is to increase designer productivity to 

keep up with the complexity increase predicted by the Moore’s Law. For that reason, today’s 

notion of SoCs is defined in terms of overall productivity gains through reusable design and 

integration of components [22][5]. Figure 2 illustrates the annual growth rate estimates of chip 

complexity (58%) and designer productivity (21%). The increasing separation between the two 

lines is referred to as the productivity gap. 

Three approaches have been proposed to solve the productivity gap problem: platforms, 

synthesis, and reuse. In the platform approach, semiconductor vendors provide a universal pre-

designed SoC platform that contains one or more processors and several peripherals for handling 

different input/output (I/O) protocols and encoding/decoding functions. In the synthesis 

approach, the SoC chip is synthesized from a high-level functional description using a common 

language such as C. Finally, in the reuse approach, the design is assembled using many different 

IP cores from internal and/or external sources [27]. 

 

 
Figure 2. Productivity gap. 
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3.1.1. IP core reuse 

Reusability is a central aspect of today’s chip design. It can significantly increase designer 

productivity by enabling the use of previously designed and verified components. Hence, the 

use of reusable IP cores is a necessity for efficient implementation of SoC designs [23]. 

Reusable IP cores allow the designer to optimize the design for a specific application by mixing 

and matching different IPs. The development of reusable IP cores, however, typically takes 

more time and effort compared to a single-use IP. 

IP core reuse comprises both, design reuse and verification reuse. Design reuse is the use of 

previously designed functional components for different projects, or different roles of the same 

project. Verification reuse means the use of previously implemented verification environments 

and components.  

In the case of IP reuse, the terms “vertical” and “horizontal” are used to describe the context 

into which the IP is reused. In the case of vertical reuse, the IP is used again on a different level 

of design hierarchy. One example of this is the use of verification elements from IP level to sub-

system and system levels. Horizontal reuse can be used by including pre-designed and pre-

verified IP cores in other projects in roughly the same level of abstraction, but it can also be 

used to implement several different instances of the same IP in the same project [31] [30].  

To support as many applications as possible, and provide the highest reuse benefits, IP cores 

should include a few key features: they should be configurable to meet the requirements of many 

different designs, and they should be compliant with defensive design practices to facilitate 

timing closure and functional correctness. Additionally, they should have standard interfaces 

and a complete set of deliverables to facilitate integration into a chip design [24]. 

IP cores have to be configurable to meet the needs of various applications. If their possible 

applications are too limited, it is usually not worth making the investment to make them 

reusable. For example, interface blocks like Universal Serial Bus (USB) may support multiple 

configurations and multiple interfaces for different physical layer interfaces [24]. IP core 

configuration includes the use of parameterized registers to customize the IP operation. 

Configurability is important for the usability of an IP, but it also poses additional challenges 

since it makes the core harder to verify [24]. 

Defensive design practices are design and coding practices for making the later parts of the 

design flow easier, including timing closure, verification, and packaging for reuse. These 

practices ultimately come down to one key principle of good engineering: keep the design as 

simple as possible [24]. 

Reusable IP cores should adopt industry standard interfaces rather than unique or core 

specific interfaces whenever possible. This enables the integration of various cores without 

having to build custom interfaces between them and the rest of the chip [24]. 

A complete set of deliverables includes the synthesizable RTL, the verification IP for 

verifying the core individually and for top-level verification, the synthesis scripts, and the 

documentation of the IP. They enable smoother integration IP cores, and significantly increase 

their reusability [24]. 

Reusability is the most effective when the reused IP core is pre-designed and pre-verified, 

and the integration engineer can integrate it into the SoC without large modifications. However, 

in practice, IP reuse usually is not as effective as intended. Integrating reusable IP cores often 

requires additional work from the integration team because of issues surrounding IP quality. 
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This is because the cost and time required for designing a “completely reusable” IP is too high. 

The IP cores are usually designed for a specific product, and due to schedule pressure, the 

designer has to optimize it targeting the chip specific goals, sacrificing reusability. Hence, 

“complete reusability” is rarely achieved. [26]. 

 

 

3.1.2. Soft, firm, and hard IP cores 

There are three main forms of reusable IP architecture in terms of flexibility and silicon 

optimization: soft, firm, and hard. These forms and their relations are shown in figure 3. Soft IP 

blocks are specified using RTL or higher level descriptions. This form is flexible, portable, and 

reusable, but it does not have guaranteed timing or power characteristics because the 

implementation in different processes and applications produces variations in performance [22].  

Hard IP blocks have fixed layouts and are highly optimized for a specific application. The 

advantage of hard IP blocks is that they have predictable performance. Their downsides are the 

higher cost and effort, and the lack of flexibility, portability, and reusability. This form of IP is 

usually prequalified, meaning it has already been tested by the provider [22].  

Firm IP cores are provided as parameterized circuit descriptions so that they can be optimized 

for various design needs. Firm IP offers a compromise between soft and hard IPs, being more 

predictable than a soft IP and more flexible than a hard IP [22]. 

Today, memory cells are designed at the transistor level, and memory arrays are tiled from 

these cells using a compiler. Analog blocks, such as digital-to-analog and analog-to-digital 

converters, are designed at least partially at the transistor level. For the most part all other digital 

designs, however, start out as soft IP, and the RTL is considered as the golden reference. 

Synthesis, placement, and routing are then used to map the RTL to gates [24]. 

 

 
Figure 3. Different types of IP blocks. 

 

 

3.2. IP configuration using parameters 

The RTL descriptions of reusable IP cores are typically configurable, meaning that they contain 

user-definable parameters to tailor the core to the requirements of different applications. In the 

case of a processor core, the configurable parameters may include, for example, the bus width, 
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number of registers, cache sizes, and instruction set. Such flexibility provides improved 

performance, and lower area and power, since unneeded features can be removed [22]. Today’s 

IPs are often highly parameterized; large SoCs may contain hundreds of thousands of 

configurable parameters.  

There are two main types of parameters: static and dynamic parameters. A static parameter 

is set before instantiating the IP core, meaning they will be fixed in the fabricated SoC. They 

are used to specify various structural or behavioral aspects of an IP, for example, bus widths, 

register field widths, or timing properties. 

A dynamic parameter is set in an already instantiated IP core, and it is typically implemented 

as a part of the IP. Since the parameters are set after IP core instantiation, they are also run-time 

configurable [25]. They are typically configured by software but may also be handled by other 

hardware. Dynamic parameters are used to configure the functional operation of the IP core. 

Configuration registers are an example of dynamic parameters. 

Configuration registers are typically IP specific and affect its operation in various ways. They 

can be accessed during run-time to, for example, start and stop processes, set operation modes, 

and enable interrupts. The number and properties of configuration registers can also be 

parameterized using static parameters, in which case there are two levels of parameterization. 

The parameterizable register properties include, for example, access policies, addresses, field 

sizes, and reset values [36]. 

Additionally, parameters can be classified by their level of abstraction, independent of 

whether they are static or dynamic. The three levels are circuit, architecture, and application. 

Circuit level parameters keep the same general logic structure when set but make small 

modifications to how the information bits are stored and transferred. Architecture level 

parameters can significantly reconfigure the architecture of the system. Application level 

parameters can change the operation of the system in a non-essential way [25].  

Each of the parameters of an IP should be defined in the functional description of the IP. The 

description should include the parameter name, legal values, default value, and a description of 

its function. In addition, any dependencies to other parameters should be described [24]. 

 

 

3.3. Reusable verification components 

Verification process is typically the most difficult and time-consuming part of the overall design 

[24]. In many cases, between 40% and 70% of the entire effort of a project is spent on 

verification. This high level of required effort indicates the possible gains to be made with 

successful reuse are significant. Reuse may occur between projects or within the same project 

[37]. Vertical reuse of verification components is a common example of reuse within the same 

project. 

Without careful planning, the reused verification components are not likely to fit together 

well in the higher-level verification environments. To reuse verification components between 

the different hierarchy levels, it is important to plan the structure of each environment so that 

components can be shared. This means that the verification environment structure of each level, 

IP, sub-system, and top, must be designed so that there is a high degree of overlap of testbenches 

and test cases. Component modularity and high abstraction are also key aspects of successful 

reuse of verification components [37]. 

In the case of top level verification, the verification requirements cannot be fulfilled by 

looking only at the external pins in a complex top level chip. This means that verification teams 
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need to measure coverage and check operation of critical functional data paths inside the DUT 

including validating relationships between IPs while running top level test cases. An additional 

advantage of reusing the IP level verification components in the top level is that it can test the 

operation of the IP more accurately. Often a core that is comprehensively validated in a stand-

alone system finds itself under different and unexpected conditions in the top level environment. 

Thus, vertical reuse can sometimes lead to improvements in the IP level verification [31].  

When testing IP cores in sub-system or top levels, the reused verification components are 

typically passive, meaning they themselves do not generate any stimulus. In those cases, 

verification stimulus is provided by active components of the verification environment outside 

the scope of the reused IP level environment [31]. A passive IP level verification environment 

is illustrated in figure 4, and a top level environment can be seen in figure 5. In figure 5, the 

functionality of IP block A is verified using the reused verification environment shown in figure 

4. 

 

 
Figure 4. Passive IP level test environment. 

 

 
Figure 5. A reused IP level environment in top level environment. 
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4. REGISTERS 

This chapter provides a general description of registers, and the ways they are used in SoC 

designs. Section 4.1 gives an overview on registers and section 4.2 describes more specifically 

the key registers and their properties from SoC development point of view. Section 4.3 provides 

an explanation on register description standards and gives a more in-depth view on IP-XACT. 

It also gives a general explanation of how registers are described using IP-XACT elements. 

Finally, section 4.4 introduces UVM and register models, and describes how they are utilized 

in verification. It also describes register verification using register models. 

 

 

4.1. Introduction to registers 

Digital designs contain many functional blocks for performing specific operations. If the 

operations are performed once a specific command or a clock pulse is given, the blocks are 

called synchronous, or clocked. Registers are an example of a clocked functional block [1]. 

Registers are an important component of digital systems. They are primarily responsible for 

momentary storage of small amounts of data and can be implemented in wide variety of ways. 

Registers can be implemented using individual flip-flops, standard static random-access 

memory (SRAM), register files, or high-speed core memory. Depending on the register, data 

can be transferred in and out of the register in parallel or in series. In the parallel case each of 

the data bits is transferred at once, and in the series case, the data is transferred one bit at a time. 

 There are several different types of registers, which can be divided to processor registers and 

hardware registers. Processor registers can be further classified according to their content or 

instructions that operate on them. Some of the most common user accessible registers are data 

registers, address registers, and general-purpose registers. Processors also contain internal 

registers that are no accessible by instructions, such as instruction registers, memory buffer 

registers, and memory address registers. 

Hardware registers occur outside central processing units (CPU), and they often have similar 

characteristics as memory, such as the ability to read and write multiple bits at a time, and the 

use of addresses to select particular registers. They are usually implemented as components of 

peripheral devices that are connected to the CPU using a bus. The most common uses for 

hardware registers include configuration and start-up of different features, data buffering, status 

reporting, and functioning as different kinds of inputs and outputs. 

 

 

4.2. Implementation of registers in an SoC environment 

Hardware registers have a great importance in SoC designs. They are used to configure and 

control various features that are separate from the CPU. The registers work as an interface 

between software and hardware. Software is able to perform write and read accesses to them, 

transferring data between the peripheral devices and the CPU.  

To enable this communication, IPs are connected to a bus, and the internal register banks and 

registers are assigned addresses in the bus address space. Register banks group together a 

number of registers that are referred to by adding an address offset to the base address of the 

register bank. 
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4.2.1. IP registers 

An SoC design can contain several different IP cores and memory blocks, and the CPU requires 

a way to access and control them. A common way to interconnect IP cores and memory blocks 

with a processor is to use buses.  

A bus is a digital communication mechanism that allows two or more functional units to 

transfer control signals and data [3]. Typically, a bus consists of a number of connections 

running together, called bus lines. These lines can be grouped together for carrying different 

signals, such as address, data, and control signals [4]. Figure 6 shows an example, where two IP 

cores and one memory block are connected to the CPU using a bus. Because buses are typically 

shared by several IPs, buses also have to be defined an access protocol. The access protocol 

specifies how an IP can determine whether the bus is available or is in use, and how the attached 

units take turns using the bus [3]. 

 

 
Figure 6. Bus example. 

 

After connecting the processor to IPs through a bus, it can then control them by dealing with 

their internal registers as if they are regular memory locations. Each of the IPs and their registers 

are assigned addresses, after which the bus masters, such as the CPU or a direct memory access 

(DMA), can configure them by performing write and read accesses to those addresses [4].  

As can be seen from figure 7, IPs require additional logic to enable the transactions between 

the bus master and the IP. Data, address information, and control signals must first pass through 

the bus interface. Next, the signals are passed to the decoder that decodes the address and selects 

the matching register. It also analyzes the control signals to determine if the incoming 

transaction is a write or read transaction. If the transaction coming from the bus is a write 

transaction, the received data is written to the selected register, which is then available to the IP 

logic. In the case of the read transaction, the read data multiplexer reads the data from the 

selected register or from the IP logic, and it is then transmitted to the bus through the bus 

interface [7]. 
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Figure 7. Typical IP core structure. 

 

 

4.2.2.  Register banks 

The registers that have been mapped to the peripheral bus address space can be grouped together 

to form register banks. Register banks function as models for programming the operation of IPs. 

They define how the peripheral bus masters control and supervise the peripheral. IP register 

banks usually contain several types of registers. Two common types are configuration registers 

and status registers. By writing into configuration registers, CPU can configure, start, or stop 

features of the IP. By reading from status registers, CPU can check whether a certain event has 

occurred in the IP. 

Typically, when registers are mapped to the addresses in the bus address space, the register 

bank is appointed a base address. The registers inside of the register bank are then referred to 

by adding a corresponding address offset to the base address. Similarly, the fields inside of the 

registers are referred to by adding a bit offset to the address of the register. 

Depending on the application, registers and register fields can have specific pre-defined 

access policies. The access policies are a part of the decoding logic of IPs and define how the 

registers and register fields are handled when they are accessed using read and write operations. 

Registers have only three possible access policies: read-write (RW), read-only (RO), and write-

only (WO). The policy is configured when the register is mapped to a particular address, and 

the register can have different access policies when it is added to different address maps. 

Register fields have more options when it comes to access policies. The UVM provides a 

comprehensive pre-defined set of field access policies. The access policies are examined in more 

detail in section 4.4. 

The previously mentioned register properties are depicted in figure 8. Register fields also 

store pre-defined reset values that are applied to the fields during reset. Additionally, various 

properties of register blocks, registers, and register fields can be parameterized. These properties 

include the number of register instances, reset values, access policies, and the width of register 

fields. 
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Figure 8. Typical register in a register bank. 

 

 

4.3. Register description standards 

Standards are typically used to provide consistent means of defining information in a specific 

domain. Standards such as IP-XACT and systemRDL are no different. Both define a standard 

way of describing key details about an IP in a way that both the users and tools are able to access 

the information in a consistent and potentially automated fashion [8]. 

Registers and memory elements form a large part of today’s large and complex designs. The 

continuously increasing number of registers makes documentation, implementation, and 

maintenance a growing challenge. Additionally, changing specifications during the design cycle 

require repeated updates to documentation, design, test bench, and to register test cases. 

Manually managing these components can be tedious and increases the probability of 

introducing errors in the process [9]. 

Typically registers have a regular structure that is defined by their field attributes. This makes 

it possible to define a flow where the register architecture is defined using register description 

standards, such as IP-XACT and systemRDL. The register description files can then be used to 

generate the design, verification, and documentation components. This way the efficiency of 

the flow is increased, and the amount of error-prone register management is reduced [9]. 

Machine readable standards, usually based on the Extensible Markup Language (XML), are 

commonly used in the industry to promote IP reuse and automate parts of the flow. IP-XACT is 

one commonly used standard, but companies have also developed their own standards for 

describing the relevant parts of peripheral IPs. 

 

 

4.3.1. XML 

XML is a markup language that was created to structure, store, and transport information. It 

does not do anything by itself. XML data is stored in a text format which is software and 

hardware independent. This enables the transporting of data between incompatible systems and 

applications with varying formats. XML is also readable to both users and tools. Because XML 

data is in plain text, the only requirement for applications handling XML is text processing [11].  

In addition to text, XML files contain tags. The tags implement the structure of the data. The 

text in the file is surrounded by these tags, which adhere to specific syntax guidelines. All tags 
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are user-defined, meaning that XML has no pre-defined tags. This means that XML is highly 

customizable [10][11]. 

XML schema is used to define constraints of an XML document. It defines the elements and 

attributes that can appear in the document, their child elements and their order, the data types 

for elements and attributes, and the default and fixed values for elements and attributes. 

Additionally, it defines whether an element is empty or can contain text. IP-XACT, which is 

also based on XML, provides XML schemas for different types of XML documents [11]. 

 

 

4.3.2. IP-XACT 

IP-XACT is an industry-wide initiative to systematize the creation of vendor-neutral machine-

readable IP descriptions. The IP descriptions adhere to a specific set of syntax and sematic rules, 

which means that tools and scripts can utilize these “electronic databooks” for documentation 

generation, test generation, or any other operation that require the knowledge about the details 

defining IP components. The IP-XACT standard also defines an Application Programming 

Interface (API) called Tight Generator Interface (TGI), which the different generator scripts can 

use to access the IP data. The IP-XACT standard was originally developed by the SPIRIT 

consortium. It enables a productivity boost in design, transfer, validation, and documentation 

workflows [6][8]. 

The IP-XACT standard provides XML schemas for several different XML documents. The 

document types are component, design, design configuration, bus definition, abstraction 

definition, abstractor, generator chain, and catalog. Figure 9 depicts the IP-XACT design 

environment. 

 

 
Figure 9. IP-XACT design environment. The objects shown in bold are included in the IP-

XACT schema. 
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The purpose of IP-XACT component file is to enable the use of an IP without the need for 

information from the implementation files. To achieve this, component type documents the 

interfaces of an IP, such as parameters, registers, ports, and grouping of ports into bus interfaces. 

It also documents the views of an IP, such as RTL and transaction level modeling (TLM) 

descriptions, and the files implementing each view, such as Verilog, VHDL, and SystemC files. 

The design schema contains the description of a system or sub-system and includes all 

component instantiations and connections between them. The interconnections may also be 

between interfaces or between ports on a component. Design description is comparable to a 

schematic of components. 

An IP-XACT design configuration is a placeholder for additional configuration information 

of a design or generator chain description. Design configuration information is used to support 

configuration of hierarchical designs, for transferring designs between design environments and 

automating generator chain execution for a design, by storing information that would otherwise 

have to be re-entered by the designer. 

The interface definition descriptions bus definition and abstraction definition are used to 

describe groups of ports that together perform a function. These two descriptions are referenced 

by components or abstractors in their bus or abstractor interfaces. The bus definition description 

has the high-level attributes of the interface, including items such as the connection method and 

indication of addressing. The abstraction definition contains the low-level attributes of the 

interface, such as the name, direction, and port widths. 

Designs may contain interconnections between components that have different abstractions 

of the same bus type. The IP-XACT abstractor describes how such interconnections are made. 

An abstractor contains only two interfaces, which shall be of the same bus definition and 

different abstraction definitions. 

The purpose of a generator chain is to describe flows that are enabled by IP-XACT, and it 

documents a sequence of generators. A generator is typically a script or an executable that 

implements a flow step by using, creating, or manipulating information described in IP-XACT 

files [8]. 

The Catalog is used to manage collections of IP-XACT files by documenting the file 

locations and the identifiers of the elements documented in those files [8]. It provides design 

environments a standard means of locating IP-XACT documents [12]. 

IP-XACT generators are invoked from within design environments to perform an operation 

required by the user of the environment. Generators can be provided to, for example, generate 

address maps, and verify the configuration of a subsystem. To perform their operations, most 

generators require an access to the IP-XACT meta-data describing subsystems. The TGI defines 

how the design environment and generator cooperate to perform the required operation. It 

defines the method of communication between the design environment and the generator, the 

method for invoking the generator, and the actual API that can be used to read and write the IP-

XACT meta-data. 

 

 

4.3.3. Register description using IP-XACT elements 

An IP-XACT component file describes the meta-data associated with any IP that can be 

instantiated in a design. It can describe IP such as cores, peripherals, buses, or any other IP block 

that can be instantiated in a design. A component can be either static or configurable. Static 
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means that the design environment cannot change it, and configurable means that the component 

has configurable elements, parameters for example, that can be configured by the design 

environment, and these elements may also configure the RTL or TLM model [12]. 

Figure 10 shows a rough depiction of the hierarchy used to describe registers in IP-XACT 

component file. Each of the slave interfaces of a component can be assigned a memory map. 

These memoryMaps are grouped together under a memoryMaps element. They contain 

addressBlock elements that each describe a single, contiguous block of memory inside the 

memory map [12]. Address blocks can contain either individual register elements or registerFile 

elements that are used to group together several register elements [8]. 

 

 
Figure 10. Hierarchical view of register related elements in IP-XACT component file. 

 

A register element describes the software interface to a register. It contains elements for defining 

its name, size, and its location in the address block address space (addressOffset). It can also 

contain other elements, namely a description, dim, access, and fields. The description element 

can be used to add a user readable description of the register. The dim can be used to describe 

the dimension of the register. The access element describes the access policy of the register [8]. 

A field element describes one or more bits of a register. It contains elements for describing 

its name, its starting bit (bitOffset), and the number of bits it contains (bitWidth). Additionally, 

it can contain other elements, including a description, a resets element containing multiple reset 

elements, an access element, and an enumeratedValues element. Each reset element has a value 

describing the reset value of the bits in the field and a mask describing which bits in the field 

haver a defined reset value. The access elements describe the access policy of the field, similar 

to the access element of a register. The enumeratedValues element is a container element for 

enumeratedValue elements which describe a value of the field [8]. The different elements 

contained in register and field elements can be seen in figure 10. Figure 11 shows an example 

of a register description made using IP-XACT. 
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Figure 11. Example IP-XACT register description. 

 

 

4.4. Registers in SoC verification 

Traditional verification methods require the verification engineers to manually write many test 

sets to verify all registers in Design Under Test (DUT). With the increasing scale and complexity 

of the chips, the number of needed registers will also increase. If each register is tested by 

manually writing a test set for it, a large amount of the chip’s research and development time 

will be used up [14]. 

One method of verifying the memories and registers more effectively is to model them using 

register models, which are a part of the UVM. The register models allow for easier stimulus 

generation and functional checking. The models consist of a set of register definitions, a list of 

register instances that form register blocks and their address mappings into DUT’s address 

space. The register models can be implemented manually by the verification engineer, or 
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preferably by generating them from a textual register description such as an IP-XACT 

description [13]. 

 

 

4.4.1. UVM 

The UVM is a complete methodology and class library that codifies the best practices for 

efficient and exhaustive verification. It is focused on the verification of small designs and large-

gate-count, IP-based SoC designs [16].  

One of the key aspects of UVM is to implement reusable verification components, called 

UVM Verification Components (UVC). A UVM-compliant UVC is an encapsulated, ready-to-

use and configurable verification environment designed for an interface protocol, a design sub-

module, or even for software verification. Each UVC follows a consistent architecture, and 

contain elements for sending stimulus, as well as checking and collecting coverage information 

for a specific protocol or design [16]. 

The UVM Testbench typically instantiates the DUT and the UVM Test class and configures 

the connections between them. The test class is instantiated dynamically, allowing the testbench 

to be compiled once and run with several different tests [20]. An example component hierarchy 

of a UVM Testbench can be seen in figure 12. 

 

 
Figure 12. An example UVM testbench. 

 

The UVM Test component has typically three main functions: instantiation of the environment, 

configuration of the environment, and stimulus generation by invoking UVM Sequences 

through the environment to the DUT. There is usually one base UVM Test component that 

contains the UVM Environment instantiation and other common items, which is extended by 

other tests. The other tests can then, for example configure the environment differently or run 

different sequences [20]. 

The UVM Environment component groups together other verification components that are 

interrelated. Some components that are instantiated inside the UVM Environment include UVM 

Agents, UVM Scoreboards, UVM Register models, or other environments.  
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The main function of the UVM Scoreboard component is to check the behavior of the DUT. 

It usually receives transactions containing input and output data of the DUT via the UVM Agent 

analysis ports and compares the transactions to predicted results from a reference model 

(predictor) [20].  

The UVM Agent component groups together other verification components that are used to 

handle specific DUT interfaces. A typical UVM Agent contains a UVM sequencer to manage 

stimulus flow, a UVM driver to apply the stimulus to the DUT interface, and a UVM monitor 

to monitor the DUT interface [20]. The typical structure of a UVM Agent component can be 

seen in figure 13. UVM Driver and Monitor components are connected to the DUT interface 

using a Virtual Interface (VIF).  

 

 
Figure 13. A typical UVM Agent structure. 

 

UVM Class Library contains a set of base classes, utilities and macros that enable the 

implementation of well-constructed, reusable SystemVerilog based verification environments 

[19]. One of the advantages of UVM Class Library is that it provides many essential features 

for verification, such as complete implementation of printing, copying, test phases, factory 

methods, and others. Another advantage is the increased readability brought about by the 

hierarchical components that are extended from the base UVM Class Library components. 

Additionally, the UVM Class Library provides many utilities to simplify the development and 

use of verification environments, including utilities that provide a standard resource sharing 

database, user-controllable messaging for various reporting purposes, and a standard 

communication infrastructure between verification components (TLM). Finally, UVM Class 

Library also provides macros for allowing more compact coding styles [20]. 

 

 

4.4.2. UVM Register models 

In the context of verification, a register model, or a Register Abstraction Layer (RAL), is a set 

of classes that model the operation of memory-mapped registers and memories in the DUT to 

facilitate stimulus generation and functional checking. The UVM provides a set of base classes 

that can be extended to implement comprehensive register modeling [17].  
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A register model is an instance of a register block, and they are instantiated in the UVM 

Environment component. Figure 14 illustrates the fundamental structure of a register block. 

Register blocks may contain any number of registers, register groups, memories, and other 

blocks. Each register contains any number of fields, which mirror the values of the 

corresponding fields in the DUT. The elements that form the register model are all DUT specific 

and are implemented by extending the base UVM classes [20]. 

 

 
Figure 14. Typical register model structure. 

 

The lowest register abstraction layer is the uvm_reg_field, and it represents the bits of a register. 

It uses several properties to store a variety of register-field values: m_reset, m_mirrored, 

m_desired, and value. The m_reset property stores the reset value and m_mirrored stores the 

value that the register model thinks is in the corresponding DUT register [18]. For non-volatile 

register fields, the mirrored value provides the current state of the DUT register based on all 

active and passive bus operations. Volatile fields require additional modeling to maintain the 

state of the mirrored value based on other non-bus related application-specific operations [17]. 

The m_desired property stores the desired mirrored value, and the value property stores the 

value to be sampled in a functional coverage, or the value to be constrained when the field is 

randomized [18].  

UVM register models have built in methods for accessing registers and register fields. These 

methods are called register access methods. Access methods can either use front-door access or 

back-door access to DUT registers. The front-door access involves using the bus interface and 

is clocked. Back-door access operates by directly accessing the simulation constructs that 

implement the register model through a hierarchical path within the design hierarchy. 

Additionally, back-door accesses are performed instantly without using any simulation time.  

Register access methods can be divided to several groups. Active operations which update 

both the mirrored and DUT register values include write, poke, set-update, and randomize-

update operations. Active operations which update the mirrored value based on the DUT register 
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values include read, peek and mirror operations. Finally, passive operations which update the 

mirrored value independently from the DUT include operations such as reset and predict. UVM 

also provides a configure method which is used to configure the register fields. The register 

access methods are described in table 1. Their operation generally revolves around moving data 

between the previously mentioned properties and the DUT register fields. 

 

Table 1. A description of register model access methods 

Access method Description 

write/read (front-door) Writes/reads DUT registers using the bus UVC. Updates the 

mirrored value to reflect the expected value in DUT. 

write/read (back-door) Writes/reads DUT registers via the back-door mechanism, 

bypassing the physical interface. The behavior of the registers is 

mimicked as much as possible. The mirrored value is updated to 

reflect the actual sampled or deposited value. 

peek/poke Reads/writes DUT registers directly, bypassing the physical 

interface. The mirrored value is updated to reflect the actual 

sampled or deposited value. 

get/set Reads/writes directly to the desired value without accessing the 

DUT. The desired value can then be uploaded to the DUT using 

the update method. 

randomize Copies the randomized value from the value property to the 

desired value. The desired value can then be uploaded to the 

DUT using the update method. 

update Invokes the write method if the desired value differs from the 

mirrored value. 

mirror Invokes the read method to update the mirrored value based on 

the readback value. Can also compare the readback value with 

the current mirrored value before updating it. 

configure Configures the register field by setting parameters, including the 

reset value and the access policy. 

reset Resets the properties of the register field by writing the pre-

defined reset values to the mirrored value. Does not affect DUT 

field values. 

predict Updates the mirrored value. Updates also the m_desired and 

value properties. 

 

The UVM provides a set of pre-defined policies for accessing register fields, and they are listed 

in table 2. The field access policy is usually set using the configure method. An important aspect 

of field access policies is that their behavior can be explained in term of register operation in 

isolation from other fields and registers. In addition to the field’s configured access policy, 

whether a field can be read or written depends also on the register’s access policy (RW, RO, 

WO) in the used address map. These access policies are used together with observed read and 

write operations to determine the expected value of a field. Most fields fall within one of the 

pre-defined access policies, but it is also possible to design a field that behaves predictably but 

differently from the pre-defined ones.  
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Table 2. Predefined UVM register field access policies 

Access 

policy 

No write Write 

value 

Write to 

clear 

Write to 

set 

Write to 

toggle 

Write 

once 

No read - 

 

 

WO WOC WOS - WO1 

Read 

value 

RO RW WC 

W1C 

W0C 

WS 

W1S 

W0S 

W1T 

W0T 

W1 

Read to 

clear 

RC WRC - WSRC 

W1SRC 

W0SRC 

- - 

Read to 

set 

RS WRS WCRS 

W1CRS 

W0CRS 

- - - 

 

A register model can be implemented using a generator or it can be written by hand. Writing a 

register model with more than a few registers by hand is typically tedious and prone to errors, 

so it is often preferrable to generate it from a register description file such as an IP-XACT 

description. Generators are also helpful because they allow the use of a common register 

specification by the design, verification, and software teams, and it allows the register 

definitions for different IP cores to be merged together into an overall register description on 

sub-system and top levels [35]. 

The finished register model is instantiated in the verification environment together with other 

verification components, as shown in figure 15. The register model interacts with the rest of the 

verification environment via adapter and predictor components. The adapter converts between 

register model read and write methods and the interface-specific transactions. The predictor 

component updates the register model based on observed transactions published by a monitor 

[17]. 

 

 
Figure 15. Environment with register model. 
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The UVM register model supports active and passive modes of operation and is often 

implemented in environments where both modes are used. In the case of active modes of 

operation, register operations are done using the register model methods, such as read and write. 

The read and write method calls get converted to sequence items via the adapter and are then 

passed on to an interface verification component (path 1 in figure 16). Passive operations refer 

to register operations which do not use the register model access methods directly. One example 

of a passive operation is when an interface component sequence is executed directly by the 

virtual sequencer without calling the register model access methods (path 2 in figure 16). 

Another example is when the content of a register is changed by another stimulus source, such 

as an embedded CPU (path 3 in figure 16). 

 

 
Figure 16. Register model active and passive operation paths. 

 

 
4.4.3. Register verification using UVM register models 

Register verification is a significant part of the verification process. Registers are one of the first 

aspects of the design to be tested because they are used to configure the IP cores and are the 

basis of the hardware-software interface. Hence, the rest of the design’s functionality testing 

depends on the accuracy of the register implementation [32]. The implementation complexity 

of registers is relatively low in comparison to other design elements. The challenge of register 

verification is that each design contains excessive number of memory mapped registers with 

varying access policies and other properties. This makes manual register verification by directed 

or lightly randomized methods tedious and prone to errors [33]. 

The verification of IP core registers should be considered from two angles: register structure 

and functional requirements. The register structure point of view focuses on the correctness of 

the implementation of the register structure. This involves checking the access policies of 

registers and register fields, register address space accessibility, the operation of the access 

methods such as read and write, and the overall register operation. The functional requirements 

point of view focuses on the correctness of the functionality provided by the register. This 
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includes checking whether the values of the register match the expected reset values after reset 

and whether all values of the configuration registers are having the desired effect on the IP core 

operation. It also includes checking that status registers are updated when the corresponding 

event is triggered, and whether they are reflecting it correctly.  

The UVM provides a library of automatic test sequences for testing register structure 

correctness, such as reset values and read-write method operation [35]. Checking the functional 

correctness of registers is more challenging, since it includes checking how the combinations of 

each of the values of each of the different registers affects the overall operation of the IP. UVM 

RAL is a commonly used for verifying the functionality provided by registers more efficiently. 
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5.  PARAMETERIZED REGISTER MODEL 

IMPLEMENTATION 

This chapter covers a case study on the implementation of parameterized register models. 

Section 5.1 gives a general overview on parameterized register models. Section 5.2 explains the 

differences between static and dynamic register models. Section 5.3 introduces the register 

description formats that are used at Nordic Semiconductor and goes through the currently used 

processes for generating register models. Additionally, it proposes changes for enabling the 

generation of dynamic register models, and some other possible changes for increasing the 

flexibility of the generated register model. Section 5.4 documents an experiment in which the 

proposed changes are used to implement a dynamic register model for a highly configurable IP 

core. The section also describes the methods used to verify the dynamic register model. 

 

 

5.1. Register models and parameters 

Two commonly used methods of increasing the efficiency of register verification are the use of 

register models and elements that enable reusability, such as parameters. Register models 

provide an effective method of accessing design register values, and parameterized register 

models increase the flexibility of the verification environment. 

Due to the vast number of registers, the register models are typically generated automatically 

using generator tools. The addition of parameterized registers makes the process of generating 

register models more complicated. Ideally, the automatically generated register model would 

use the parameters defined in the verification environment without any manual tinkering. This 

would make the register model flexible, reducing the need to regenerate the register model each 

time the parameter configuration is changed.  

Currently, however, the register models are generated without parameters, or they are 

configured before model generation. The generated models are then edited manually to make 

them more flexible, or to set certain properties that could not be set during generation. This 

manual configuring process takes away the efficiency benefits gained from automatically 

generating the register model. The issue is even worse when taken into account that this manual 

process must be repeated each time the register model has to be generated again.  

 

 

5.2. Approaches to parameterized register models 

Register models can be divided into two groups depending on which point of the register model 

implementation the values of the parameters are configured. These two groups can be referred 

to as static and dynamic register models.  

 

 

5.2.1. Static register models 

In the case of static register models, the values of the parameters are configured before or during 

the model generation. The resulting register model is then included in the verification 

environment and can be used to verify that specific parameter configuration. The concept of 

static register models is illustrated in figure 17.  
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Figure 17. Static register model. 

 

Comprehensive verification of all parameter combinations would require the verification 

engineer to generate several register models with different parameter configurations. This 

method could be feasible with a small number of parameters, but as the number of parameters 

increases, the number of different configurations increases exponentially. Since generating large 

numbers of register models is not ideal, verification engineers often opt to manually edit the 

generated register models to make them configurable in the verification environment. 

 

 

5.2.2. Dynamic register models 

Parameterized verification environments typically contain VHDL or SystemVerilog package 

constructs for storing the parameter values. Verification components are then configured using 

those values. Hence, the parameter configuration of the entire verification environment can be 

changed at once by changing the values in the package. 

Register models that use the parameter values defined in the verification environment can be 

considered dynamic. This means that the parameter configuration of the register model is linked 

to the verification environment, and the parameterized properties of the register model can be 

configured without having to generate it again. The idea behind dynamic register models is 

shown in figure 18.  

 

 
Figure 18. Dynamic register model. 
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This type of flexibility allows the same generated register model to be reused in various 

environments that contain different parameter configurations. It also improves the efficiency of 

IP level verification, since testing the different parameter configurations will require less effort. 

A key challenge in the implementation of dynamic register models is the application of the 

verification environment parameter values. They should be applied in a way which is not 

affected by the regeneration of the register model. This could be achieved by, for example, 

linking the parameters to the values of the verification environment during generation, or by 

applying the parameter values in the verification environment as the register model is 

instantiated. 

 

 

5.3. Register model generation flow 

The following sections describe the two different register description formats and the currently 

used generation flows used at Nordic Semiconductor. The last two propose an improved flow 

for generating dynamic register models and list some other possible changes to increase the 

flexibility of the generated register model. 

 

 

5.3.1. Register descriptions 

There are two XML based register description formats in use at Nordic Semiconductor. They 

are influenced by the IP-XACT standard but are less complex and provide a narrower scope of 

the device. The first format is developed in house, and the second is a third-party format. 

The first register description format (register description A) is focused completely on the 

description of registers. It is used to define the registers for the company internal product 

specifications, which specify the functionality of the IP blocks, sub-systems, and systems of the 

design.  

In practice, it is the main description format at Nordic Semiconductor. It is used as a base to 

generate various other files and documents. An example of the description format can be seen 

in figure 19. It describes a group of registers, each of them containing a single field with two 

enumerated values. 
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Figure 19. Example of register description A. 

 

The second format (register description B) is tailored towards the description of the 

programmer’s view of a device. The format is mostly intended to provide register information 

for software verification and provides CPU and overall device information in addition to the 

register information. The register sections of the formats contain roughly the same information 

fields with different names. An example of the register information section of the description 

can be seen from figure 20. 
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Figure 20. Example of the register section of register description B. 

 

 

5.3.2. Current flow 

Register models can be generated from either of the description formats, but each method uses 

separate scripts and generation tools. Figure 21 illustrates the register model generation flows 
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used at Nordic. The green blocks in the figure represent internal, and the yellow block third-

party tools. The two methods are represented by the red arrows. 

The first register model generation method involves parsing all of the necessary register 

information from the register description and listing it in data tables. The tables are then given 

to a third-party tool that generates the register model. This is currently the typically used method 

for generating IP level register models. 

The second method involves converting the register information first into the second register 

description format. The register description is then generated into a register model using a 

python script. The conversion tool is developed by Nordic, and it is also used to generate design 

specifications. 

 

 
Figure 21. Register model generation flow. 

 

These two generation flows currently only support static register models. The scripts and tools 

accept only specific types of data, and there are no methods to link the parameters to values 

defined in the verification environment. Hence, the parameter values are configured before 

register model generation, and the resulting register models have little flexibility. The 

inflexibility of the register model makes the verification of the possible parameter 

configurations significantly more difficult. 

Additionally, the current flows cannot generate register models with all the required features. 

One example is the implementation of complex register groups. As can be seen from figures 19 

and 20, in the register descriptions, groups of registers can be provided dimensions using data 

fields such as “collection” and “dim”. These fields make the definition of register groups with 

several instances significantly less tedious, but on the other hand all the instances will always 

be identical. However, in some cases, the individual registers they contain should have 

individual parameter values for properties such as reset and access. Therefore, verification 

engineers are currently required to manually add the missing features to the generated register 

model. 
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5.3.3. Improved flow 

Instead of static register models, the generation of dynamic register models would be 

preferrable. To achieve this, one way would be to somehow link the register parameters, such 

as reset values, access policies, and the number of register instances, to the values stored in the 

verification environment. This requires making changes to the register descriptions, tools, and 

scripts of the generation flow. Comparing the two generation methods described earlier, the 

second would be more suitable because the used tools and scripts are developed inside Nordic 

and are easier to make changes to. Additionally, the conversion tool used in the second method 

is also already used to generate design specifications. 

Register description files are provided to the conversion tool by including them in a separate 

input file. This input file is used to define some basic properties of the IPs, such as their base 

address, and it can include the register descriptions of several different IPs. All included register 

descriptions are combined in the generated register model. 

Register description format A has a feature to set IDs to various values, such as reset values 

and register group sizes. When the description is included in the input file, those values can be 

substituted with other values. Figure 22 illustrates the value ID feature used on a collection 

element in the register description. Figure 23 shows an example of how the description is 

included in the tool input file, and how the value with the ID of “noverrides” is changed from 

[39:0] to [1:0]. The biggest advantage of this feature is that it makes the configuration of the 

register description a lot simpler. 

 

 
Figure 22. Register description A value IDs. 

 

 
Figure 23. Value substitution. 

 

Currently, these value IDs are only used to substitute the values for the number of registers. 

They should also be added to all other parameterized register properties, namely reset and access 

values. However, because of the way access policies are defined in the register description, the 

value IDs cannot be used to substitute their values. A solution would be to change the description 

format so that the access policies are defined the same way as other parameterized properties. 

Figure 24 shows a side-by-side comparison of the original register field element and the new 

element with added value IDs and a changed access definition. 
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Figure 24. Added value IDs and changed access definition. 

 

A dynamic register model should be configurable after it is generated and included in a 

testbench. Therefore, the dynamic parameters should point to values stored in an external 

package file. To link register model parameters to the values of the testbench, the parameters 

could be substituted with paths pointing to the corresponding values, as shown in figure 25. The 

figure presents a practical example of how parameter values are fetched from a package. The 

conversion tool currently accepts only specific types of data, for example, only numerical reset 

values are accepted. The tool would need to be edited so that it can handle, in addition to specific 

values, paths to values located in the verification environment.  

Register groups provide an additional challenge in terms of linking values to the parameters. 

Because of how groups of registers are defined together in the collection element, the current 

value ID substitution cannot be used to set different values to specific registers of the group. To 

bypass this issue, the path used in the substitution should include an element that is replaced by 

the current register index, as illustrated in figure 25. This same feature is already used for 

description and abstract elements defined inside collection elements. An example of it can be 

seen from figure 19. 

 

 
Figure 25. Value substitution using paths to verification environment values. 

 

Figure 26 shows the register section of the converted description. To generate the register model 

with the added paths, the generator script will also need to be edited to handle them with the 

replaceable elements.  
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Figure 26. The converted register section. 

 

Figure 27 shows an example how the register fields are configured in the finished register model. 

The arguments corresponding to the parameterized properties (.access and .reset) are now 

configured using the external parameter values. 

 

 
Figure 27. Register field configuration in the generated register model. 

 

As the generated register model and the tests contained in the verification environment use the 

same parameter values, they are more tightly linked together. This way the properties of the 

register model can be configured together with verification environment properties, making the 

verification process more efficient. 

 

 



  43  

5.3.4. Other possible changes 

The changes proposed in the earlier section would enable the generation of dynamic register 

models. In addition to those changes, there are other changes to register description formats and 

generation tools that should be taken into consideration to increase the efficiency of the register 

models. 

Neither of the used register description formats currently allow the generation of register 

models that support backdoor accesses. They lack the data structures for defining the HDL paths 

of the registers. This leads to situations where the verification engineers have to manually edit 

the generated register models to add in the missing paths if they are required.  

The IP-XACT format uses specific elements, called accessHandles, to store the HDL paths 

of all memory mapped components. Each of the elements stores a portion of the path, and each 

component combines the elements of the parent objects to form the complete path [12]. A 

similar solution could be used to define HDL paths in the register description formats used at 

Nordic Semiconductor. 

Another issue is regarding the way multidimensional register groups are implemented in the 

generated register model. In the register description formats, there are two methods for defining 

register groups. They can either be defined individually or as arrays. A register group (cluster) 

that has been defined as an array can be seen from figure 26. Currently the generation script 

implements each register in the generated register model individually, regardless of the method 

that is used to define them in the register description. This means that the number of registers is 

always defined during register model generation, meaning it is always static. 

Since register groups can already be defined separately or as arrays in the descriptions, a 

similar option should be added to the generation script. If they can be generated as arrays, they 

could then be made dynamic the same way as reset and access parameters, by substituting the 

group dimension value with a path to a value stored in the verification environment. 

Even after the additions considered earlier, the generation flow is still quite unrefined. From 

the perspective of IP level register model generation, the step of converting the register 

information from one description format to another is unnecessary. Since all required 

information is already provided to the conversion tool, it could be extended to generate the 

register model. The tool consists of a frontend component and various backend components for 

different functions, such as generating specifications and register description B files. The 

extension would entail the addition of a backend component for generating register models. 

Figure 28 illustrates the register model generation flow after the conversion tool additions. 
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Figure 28. Generating a register model directly using the conversion tool. 

 

 

 

5.4. Dynamic register model experiment 

This part provides an overview on the practical implementation process for dynamic register 

models. The improvements proposed in the previous part are validated, and the methods and 

results are documented. A dynamic register model of an example IP block is generated using 

the improved flow to see that the proposed changes are reasonable. Next, the register model is 

tested using a UVM register test sequence. Finally, the functionality of the register model is 

tested by simulation. The results are compared to those from a manually implemented register 

model. 

 

 

5.4.1. The Chosen IP block 

The IP block chosen for this experiment was decided on because of its complexity in terms of 

parameterization. Figure 29 illustrates the way registers are implemented in the IP block. It 

contains a few individual registers and several register groups, each containing a set of registers. 
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Figure 29. The registers contained in the chosen IP block. 

 

Most of the registers contain fields with parameterized reset and access values. Additionally, 

the total numbers of register groups, registers, and fields are parameterized. The IP register 

description utilizes data fields called “collections” that specify the number of instances of the 

structure it is included in. These structures include register groups, registers, and fields. As 

shown in figure 29, the chosen IP block contains two register groups, which number of instances 

can be configured using these collection elements. Furthermore, some registers and fields inside 

the groups also have configurable number of instances, making the parameterization of the IP 

multidimensional. 

The IP verification environment contains a package that stores the parameter values, a 

previously made register model and test cases. The values contained in the package are 

referenced in the verification environment, allowing the properties of the environment to be 

configured more efficiently. The register model is mostly hand coded, and it is also configured 

using the parameter values stored in the package. Since it cannot be generated, it is currently 

also kept in sync with the register description manually.  

 

 

5.4.2. Generating the dynamic register model 

To implement the flow for generating dynamic register models proposed in part 5.3, changes 

needed to be made to the tools, scripts and register descriptions. The generator tool was extended 

to support the flow illustrated earlier in figure 28. The register description was edited to allow 

dynamic access values. Additionally, the testbench and test needed to be edited so that the 
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register names matched the ones in the generated register model. Finally, all additional 

parameters needed to be defined in the parameter package. 

The implementation of backdoor accesses and dynamic collection sizes was left out for now 

to limit the scope of this experiment. Generation of functional backdoor accesses is valuable for 

dynamic register models but is not as essential as the other features. Dynamic collections, on 

the other hand, are problematic to implement when each field of each register can have 

individual parameter values. If implemented correctly, they would greatly increase the 

efficiency of the generated register model and decrease the size of the generated file. For the 

time being, however, they were left static. 

The generator tool consists of roughly two sections: a section that parses the register 

description and extracts all the necessary information, and a template engine that combines the 

information with a template file to generate the register model. The parsing section needed to 

be able to handle the new access definitions and other features such as replacing access and reset 

values with paths to parameter values. To limit the workload, some features of the generator 

tool were not implemented for this project. For example, the way registers A, B, C, and D shown 

in figure 29 are defined in the register description differs from other registers, so they are not 

currently handled. Additionally, as the parsing section was coded using the C# language, the 

actual implementation of the changes was left to a colleague, who was more familiar with the 

language. 

The template engine takes in the parsed data and a template file, which determines the 

formatting of the generated register model. For the purposes of this experiment, the template 

had to be coded basically from the ground up. A template from a separate tool was used as a 

base, but because it used a different templating language, it had to be edited and expanded to a 

great extent. The final template was written in the Scriban templating language. 

Next, the register description and the generator input file required changes. To enable 

dynamic reset and access values, access definitions were changed to resemble reset definitions, 

and each of the parameter values were assigned an ID. Each of the parameter values were then 

substituted in the input file with a corresponding parameter path.  

The parameter package already contained parameters for the verification environment and 

the old hand coded register model. Most of them could also be used for the register model, but 

some register model specific ones had to be added. The reset parameters could be used for the 

dynamic register model as is, but the access parameters had to be redefined. 

Next, when the other changes were finished and a dynamic register model had been 

generated, several testbench files, such as test cases, needed to be updated because of naming 

differences between the new and old register models.  

 

 

5.4.3. Running structural tests 

To make sure the registers in the dynamic register model have the correct properties, the 

operation of each register needed to be checked. The structure could be checked using a pre-

defined UVM test sequence, and the uvm_reg_bit_bash_seq sequence was the most suited for 

this purpose. The test sequence goes through each register of the model and sequentially writes 

1’s and 0’s in each bit of the register. It then checks that the bit is set or cleared as intended, 

based on the field access policy specified for the field it is contained in. 

The aim was to use the sequence to check each register and their fields to verify that the 

dynamic access values use the intended parameter values from the package file. If the values 
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did not match the corresponding design values, and the read and write accesses did not operate 

as expected, simulation gave errors. In the end, the UVM sequence ran on the dynamic register 

model as expected, and simulation finished with no errors. 

 

 

5.4.4. Running functional tests 

In addition to the operation of the registers, the functionality provided by the registers should 

also be verified. This can be done by writing and simulating test cases and checking that the 

results correspond to the intended operation of the IP. In the scope of this thesis, the functionality 

of the whole IP block was not tested. Instead, the functional verification focused on testing a 

few aspects of the IP block. The design functionality had already been verified using the 

handmade register model, therefore errors during simulation would indicate issues with the 

generated model or the parameter values. If there were no errors, it could be determined that the 

functionality of the generated dynamic register model matched the handmade register model.  

While running the tests, it became clear that the registers of the register description did not 

completely match the design registers or the handmade register model. This caused errors during 

simulation because the structure of the generated dynamic register model follows the description 

closely. For example, some registers contained different numbers of fields. For this experiment 

it was better to make a few changes to the register description, in stead of the RTL of the IP. 

After making sure the register description and design registers matched, and the reset 

parameter values in the package matched the corresponding design parameters, the test 

simulated without errors. 
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6. DISCUSSION 

The central aim of this thesis was to analyze the currently used processes and tools used at 

Nordic Semiconductor to discover improvements that would improve the implementation 

process of parameterized register models. A way to generate dynamic register models was 

found, making it possible to generate significantly more flexible register models for highly 

configurable IP cores. The validity of the new generation process was verified using functional 

and structural register verification. Therefore, the aim of this thesis was reached.  

Parameterized properties of the registers, such as reset and access values, were configurable 

using values stored in a separate package file. The functionality of the register model and 

testbench could also be linked together by configuring the register model using the same 

parameter values. Additionally, if the register model had to be generated again, the 

configurations applied in the verification environment would not be lost. 

The resulting dynamic register model is significantly more flexible than the previously 

generated static models. The increased flexibility leads to more efficient IP verification. A single 

dynamic register model can be used to verify each of the IP configurations, reducing the work 

required to generate new register models and to manually tinker static register models. 

Because changes had to be made to the register description format in 5.3.3, some issues may 

arise if the process is to be implemented more widely at Nordic Semiconductor. The changes 

would either have to be left as register model generation specific, or the changes would also 

have to be taken into account everywhere else the format is used, such as specifications 

generation. The latter option would require a vast amount of work. 

The sizable workload of generating static register models and manually keeping them up to 

date with the parameterized register description is a serious problem. In addition to the solution 

proposed in this thesis, other possible methods for implementing parameterized register models 

have been proposed before. One of those methods is to generate a static register model, and the 

parameters are then added in the verification environment using a UVM configuration object 

[36]. This method works similarly to the method used in this thesis: the parameter values are 

stored separately from the generated register model, and they are fetched and inserted to the 

parameterized properties in the configuration sections of the model. In this case however, it was 

suggested that the values are stored in a configuration data base instead of a parameter package.  

For this thesis, it was better to use a package to store the parameter values, because the 

testbench variables were already stored the same way. This reduced the number of different files 

that had to be handled when changing configurations. 

 The generation process implemented in this thesis closer to a proof of concept rather than a 

finished flow. To limit the scope of this thesis, the generation tool cannot yet handle all data 

structures defined in the register description. This means that some special registers still must 

be added to the generated register model manually. Additionally, the process can currently 

handle only dynamic access and reset parameters. It cannot generate register groups, registers, 

or fields with dynamic dimension parameters, or dynamic address values, so those parameters 

are currently left static. The dynamic dimension parameters are especially difficult to implement 

when, in extreme cases, each field of each register in every register group can have individual 

parameter values. 

The generator currently generates individual classes for each register listed in the register 

description. For most IP cores this is not a problem, but in the case of IP cores with large number 

of registers, such as the IP described in 5.4.1, the generated models can become inconveniently 



  49  

large. For example, the register model generated during the experiment contained over 105000 

lines of code. To increase the efficiency of the model, future work should include implementing 

a feature which would allow similar types of registers to use a common base class. As mentioned 

in the section above, each register may have individual parameter values, which should also be 

considered. 

This thesis focused mainly on IP level register models. On sub-system and top levels, the 

issues with parameterized register models are as severe, if not more. When the flow proposed 

in this thesis has been made more robust, further study could be done to see, if it could also be 

utilized on the higher levels of verification. The input file discussed in 5.3.3 can include register 

descriptions of many different IP cores into a single register model. In theory, it could be used 

to generate register models for groups of IPs, and the parameterized properties could be replaced 

with parameter paths the same way as when generating IP level register models. However, this 

has not been tested in this thesis. 
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7. SUMMARY  

This thesis aims to improve the implementation process of parameterized register models. 

Differences between static and dynamic register models are discussed, and the different 

processes and tools for generating register models at Nordic Semiconductor are analyzed. The 

thesis proposes changes needed for generating dynamic register models and improving the 

flexibility of the model. The proposed changes are tested by generating a dynamic register 

model for a highly configurable IP block. Finally, the validity of the model is checked by 

running a UVM test sequence and functional tests. 

As the complexity of chip design keeps increasing over time, the required workload also 

becomes more and more difficult to handle. New methods have to be adopted so that the 

productivity of developers can keep up with the increasingly challenging production goals. 

Several methods have been developed to increase productivity. One of the key methods is the 

use of reusable design and verification components. For example, reusable IP cores are 

commonly used in systems and sub-systems containing several IP cores. A common aspect of 

reusable IP cores is their configurability. To make an IP usable in various scenarios, it should 

be designed containing configurable parameters. As registers are one of the key elements for 

controlling the functionality of an IP core, they are also often parameterized. 

 However, parameterization makes the verification process significantly more complex. As 

more parameters are added to an IP, the number of parameter configurations that have to be 

verified grows exponentially. The verification of parameterized registers is especially 

challenging, as an IP can contain hundreds of registers. Therefore, efficient methods are 

required to effectively verify the different configurations. 

Register models provided by the UVM are an effective way to verify the registers of an IP 

design by enabling efficient stimulus generation and functional checking. There are two ways 

for implementing them: coding them manually by hand, or by generating them from a register 

description. Since coding them manually can be very tedious and prone to errors, the generation 

approach is often the preferrable option. However, problems arise when trying to generate 

register models for highly parameterized IP cores. 

This thesis analyzed the tools and processes currently used to generate register models at 

Nordic Semiconductor to discover methods implement parameterized register models more 

efficiently. The current generation process cannot handle IP cores with many parameterized 

registers, so the generated model must be manually edited to match the register description. The 

analysis found that the register description and the generation tool can be edited and extended 

so that the generated register model is able to fetch parameter values from a separate package 

file in the verification environment. The changes and other possible improvements to the 

generation flow were presented. 

The discovered improvements and the new generation process were validated by generating 

a dynamic register model for a highly configurable IP core. The register correctness of the 

generated register model was tested using the uvm_reg_bit_bash_seq sequence provided by the 

UVM. Next, it was checked that the IP functioned correctly with the dynamic register model 

using functional tests. After making sure the register description registers matched the design 

registers, and the parameter values in the package file were correct, the test sequence and 

functional tests ran without errors.  

The generated register model could be configured directly from the testbench without editing 

the model manually or having to generate it again. This also meant that the applied 
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configurations would not be lost even if the register model were to be regenerated. The resulting 

register model was significantly more flexible than the previous generated models. 
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