

\l/

UNIVERSITY
OF OULU

FACULTY OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING
DEGREE PROGRAMME IN ELECTRONICS AND COMMUNICATIONS ENGINEERING

MASTERS THESIS

A Novel Anomaly Detection Mechanism for Open Radio
Access Networks with Peer-to-Peer Federated Learning

Author Samarathunga mapa Attanayakage Dinaj Rukshan Attanayaka
Supervisor Dr. Pawani Porambage

Second examiner Prof. Mika Ylianttila

Technical supervisor Prof. Madhushanka Liyanage

November 2022

Attanayaka, Dinaj (2022) A Novel Anomaly Detection Mechanism for Open Radio Access
Networks with Peer-to-Peer Federated Learning Faculty of Information Technology and
Electrical Engineering, Degree Programme in Electronics and Communications Engineering,
78 pages.

ABSTRACT

Open radio access network (O-RAN) has been recognized as a revolutionary architecture
to support the different classes of wireless services needed in fifth-generation (5G) and
beyond 5G networks, which have various reliability, bandwidth, and latency requirements.
It provides significant advantages based on the disaggregation and cloudification of the
components, the standardized open interfaces, and the introduction of intelligence. How-
ever, these new features including the openness and the distributed nature of the O-RAN
architecture have created new forms of threat surfaces than the conventional RAN architec-
ture and require complex anomaly detection mechanisms. With the introduction of RAN
intelligent controllers (RICs) in the O-RAN architecture, it is possible to utilize advanced
artificial intelligence (AI) and machine learning (ML) algorithms based on closed control
loops to perform automated security management in a data-driven manner, including de-
tecting anomalies. In this thesis, the use of Federated Learning (FL) for anomaly detection
in the O-RAN architecture is investigated, which can further preserve data privacy in a
sensitive data processing system such as RAN. A Peer-to-Peer (P2P) FL-based anomaly
detection mechanism is proposed for the O-RAN architecture and provides comprehen-
sive analysis of four variants of P2P FL techniques. Three of the models are based on
secure multiparty average computing, and the other is a homomorphic averaging-based
model that provide protection against semi-honest local trainers. Moreover, the proposed
models are simulated using the UNSW-NB15 dataset in a Python environment and the
performance is tested using the same dataset. The simulation results indicated that all the
proposed models have improved accuracy and F1-score values.

Keywords: 5G, beyond 5G, Network automation, Security, Privacy, Anomaly detection,
O-RAN, RAN Intelligent controllers, Federated learning, Peer-to-Peer Federate Learning

CONTENTS

ABSTRACT
CONTENTS
PREFACE
LIST OF SYMBOLS AND APPREVIATIONS
1 INTRODUCTION e e 8
1.1 Background and Motivation 9
1.2 ResearchProblem 9
1.3 Selectedscope e e 10
1.4 Methodology e 10
1.5 Contribution e 11
1.6 Organizationof the Thesis 11
2 LITERATUREREVIEW 13
2.1 O-RANarchitecture 13
2.1.1 RAN Intelligent Controllers 16
2.2 Security Threats in O-RAN architecture 17
2.3 Federated Learning 19
23.1 Peerto-Peer FL 23
2.4 FL-based anomaly detection 24
3 PROPOSED SOLUTION et 26
3.1 Model 1: Normal P2P FL method 27
3.2 Model 2: Clustered P2P FL method 28
3.3 Model 3: Hierarchical P2P FL method 28
3.4 Model 4: Homomorphic P2PFL method 29
4 SIMULATIONS e 30
4.1 The UNSW-NB1S5dataset. 31
4.2 Simulation proCess i e e e e e e e e e 32
5 RESULTS e 34
5.1 Performance of SAC-based P2P FL models 34
5.1.1 Varyingthebatchsize 34
5.1.2 Varying the training anomaly percentage 34
5.1.3 Varying the number of trainingrounds 37
5.2 Performance of Homomophic P2PFL model 44
5.2.1 Varying the number of trainingrounds 44
6 DISCUSSION e 47
6.1 Comparison with the state-of-the-art 47
6.2 ThesisObjectives e e 47
6.3 FutureResearch 48
7 CONCLUSION e e e e e 50
8 BIBLIOGRAPHY e 52
9 APPENDICES e 57

PREFACE

This thesis, titled as ’A Novel Anomaly Detection Mechanism for Open Radio Access Net-
works with Peer-to-Peer Federated Learning’ is an original study performed by myself and
submitted to the Masters Degree in Wireless Communication Engineering at the University of
Oulu. The research described here was carried out at the University of Oulu’s Centre for Wireless
Communication Engineering, primarily under the supervision of Dr. Pawani Porambage.

I would like to express my gratitude to my main supervisor, Dr. Pawani Porambage, for the
support and guidance given throughout this research. Moreover, I am grateful to Prof. Mika
Ylianttila for providing funding as well as resources to proceed with this research and Prof.
Madushanka Liyanage for the continuous guidance. Finally, I would like to thank all of the
lecturers at the University of Oulu, as well as my parents and colleagues, for their encouragement
and support throughout my whole academic period, including the research.

Oulu, November, 2022

Dinaj Attanayaka

LIST OF SYMBOLS AND APPREVIATIONS

O-RAN Open Radio Access Network

5G Fifth Generation

RAN Radio Access Network

Al Artificial Intelligence

ML Machine Learning

FL Federated Learning

p2p Peer-to-Peer

RIC RAN Intelligent Controller

1G First Generation

2G Second Generation

RNC Radio Network Controller

3G Third Generation

1P Internet Protocol

4G Forth Generation

eMBB enhanced Mobile Broadband

mMTC massive Machine Type Communication
URLLC Ultra Reliability and Low Latency Communication
QoS Quality of Service

SDN Software Defined Networking

NFV Network Function Virtualization

B5G Beyond 5G

CAPEX Capital Expenditure

OPEX Operational Expenditure

C-RAN Cloud RAN

vRAN Virtualized RAN

IoT Internet of Things

DoS Denial of Service

SAC Secure Average Computation

FHE Fully Homomorphic Encryption

MLP Multilayer Perceptron

1D Independent and Identically Distributed
ZSM Zero-touch Network and Service Management
Non-RT RIC Non real-time RAN Intelligent Controller
Near-RT RIC Near real-time RAN Intelligent Controller
BBU Baseband units

COTS Commercial Off the Shelf

RRU Remote Radio Unit

3GPP 3rd Generation Partnership Project
gNB Next Generation NodeB

CU Central Unit

DU Distributed Unit

RU Radio Unit

RRC Radio Resource Control

SDAP Service Data Adaptation Protocol
PDCP Packet Data Convergence Protocol
RLC Radio Link Control

MAC Medium Access Control

PHY Physical

FCAPS
SMO
0O-eNBs
UE
LLS
CP
UuP
VNF
CNF
VM
CN
SW
ANN
CNN
RNN
SGD
DP
DRL
DQN
RAT
SMC
HE
SL
RF
DDoS
DBN
SAE
KPI
KQI
DAD
E2E
TP
FP
FN
TN
XAI
POC

Fault, Configuration, Accounting, Performance and Security
Service Management and Orchestration
O-RAN-compliant evolved Node Base
User Equipment

Lower Layer Split

Control Plane

User Plane

Virtual Network Functions
Cloud-native Network Functions
Virtual Machine

Container

Software

Artificial Neural Networks
Convolutional Neural Networks
Recurrent Neural Networks
Stochastic Gradient Descent
Deferential Privacy

Deep reinforcement learning
deep Q-network

Radio Access Technology
Secure Multi-Party Computation
Homomorphic Encryption

Split Learning

Radio Frequency

Distributed Denial of Service
Deep Belief Networks

Stacked Autoencoders

Key Performance Indicator

Key Quality Indicator

Deep Anomaly Detection
End-to-end

True Positive

False Positive

False Negative

True Negative

Explainable Al

Proof of concept

1 INTRODUCTION

Radio access network (RAN) is part of the mobile telecommunication system, which is between
the core network and the user devices such as mobile phones, smart wearables, and computers.
Starting with the first generation (1G) in the 1980s, the mobile telecommunication networks have
evolved rapidly, as has the RAN [1]. Digital telecommunication was introduced in the second
generation (2G), and it included a static functional architecture with geographically localized
network functionalities [1]. The base station hosted all the RAN functionalities. However, in
the next generation, which is 3G, these radio functionalities were split, with NodeB providing
transmission and reception functionalities while the Radio Network Controller (RNC) provides
management of the radio resources and user processing [1]. Due to the fast resource allocation,
the overall latency was reduced in 3G, although the control process latency between the two
parts is higher due to the split. Also, Internet Protocol (IP) based communication was utilized.
In forth generation (4G) the data transfer rate and security management was vastly improved
with extending the use of the IP for voice data with improved bandwidth and features. The need
for a new generation of mobile telecommunications has arisen due to the rapidly increasing
applications, requirements, as well as wireless devices.

Hence, the fifth generation (5G) is introduced, which can handle various types of traf-
fic with different service requirements [2]. The primary use cases are enhanced Mobile
Broadband (eMBB), massive Machine Type Communication (mMTC) and Ultra Reliability
and Low Latency Communication (URLLC). To cater to these cases with varying Quality of
Service (QoS) requirements from a single network system, new technological concepts have
been introduced, which include cloud computing, Software Defined Networking (SDN), and
Network Function Virtualization (NFV) [3].

With the advent of 5G and beyond 5G (B5G) wireless systems, RAN has been required
to handle an increasing number of new demands in terms of data rate, latency, dependability,
mobility, architecture, and protocol complexity. [4]. As a result, mobile network operators
should continuously upgrade their RAN infrastructure to adhere to new technologies and vary-
ing customer requirements, which will increase capital expenditure (CAPEX) and operational
expenditure (OPEX) costs. Since the most significant percentage of the total network cost is
accounted for RAN deployments and operations, the motivation to reduce CAPEX and OPEX
has been significantly increased [5]. Over the years, various approaches have been introduced;
two well-known approaches are Cloud RAN (C-RAN) and Virtualized RAN (VRAN). These
approaches reduced the costs and simplified the maintenance, but the dependency on vendor
lock-in was still a drawback. In order to overcome the limitations of C-RAN and vRAN, a
standard open RAN solution has been proposed by the O-RAN alliance [6]. This new O-RAN
architecture offers multi-vendor interoperability and is based on dis-aggregated, virtualized, and
software-based components that are connected together using open, standardized interfaces. [5].

With the advancement of mobile communication in each generation, the security challenges
have also increased and become more diverse. From the absence of privacy in 1G to spamming
and radio link security issues in 2G, the security issues increased in 3G due to the introduction
of IP-based communication to mobile networks, which imported the Internet’s security vulner-
abilities to the mobile networks [3]. Those issues were magnified in 4G due to the new features
introduced. Also, the Internet of Things (IoT') was emerging in 4G, which opened several privacy
and security concerns.

To avoid security concerns in previous generations, there are new security solutions in 5G
with the additional architectures and design to support diverse 5G architecture. However, there
are new security issues arisen in 5G due to new technologies introduced like NFV, SDN as
well as due to the the diverse ecosystem [3].This will also continue with BSG networks, where
connected intelligence is expected. As the entry point to the 5G and B5G networks, RAN is one

of the main targets for attacks. Furthermore, with the increased threat surface due to its inherently
open and modular architecture, the risks are significantly higher in O-RAN [4]. Because of its
openness, it is vulnerable to intrusions, and cyber attacks on the Open-RAN network can result
in denial-of-service (DoS). Although the threat surface is increased in O-RAN, the surfaces
are more clear due to the secure-by-design approach than in previous RAN implementations.
Hence, defining secure methodologies for the critical assets and applying them will improve
the overall security of the deployments and operations of O-RAN as compared with traditional
RAN [4].

1.1 Background and Motivation

In 5G and B5SG RAN, more proactive security measures have to be considered since conventional
offline security measures that analyze a large amount of data would not be sufficient due to the
high data rates as well as low latency demands. These vast amounts of data need to be processed
in order to get insight into the network. When conventional offline methods are used, the
probability of preventing an attack is quite low in 5G and future networks. Furthermore, manual
RAN management, including security, is becoming increasingly difficult as technology advances
since the number of components to be managed has increased exponentially and the system has
become significantly complex. Therefore, intelligent, self-adaptive security mechanisms are
required, and these should not affect the performance of the RAN [3]. As a result, near-real-time
detection and prevention are preferred, and proactive measures are encouraged.

Artificial intelligence (AI) and machine learning (ML) methods have been used in many areas
to implement proactive actions by processing large amounts of data. This approach can also be
used for network management in mobile communication systems. Al and ML can fully automate
network operations, lowering CAPEX and OPEX while improving performance. Although there
are several advantages to ML, new threats have also arisen related to it, including privacy issues.
Federated Learning (FL) which is a novel field of ML, has become a popular choice when there
is sensitive data involved.

As mentioned previously, the O-RAN architecture would be the preferred RAN architecture
in future networks. Until O-RAN, there was no inherent intelligence at the RAN [1]. Due to
the introduced intelligence in O-RAN with the RAN intelligent controller (RIC), it is possible
to incorporate Al and ML techniques to provide closed-loop operations for security analytics,
attack detection, mitigation, or prevention, and security policy updates [4].

1.2 Research Problem

Anomaly detection is an important security measure in any network system. It is significant for
O-RAN in 5G, which is a large-scale heterogeneous system with varying latency and privacy
requirements. There can be several factors causing anomalies in a RAN, such as attacks, internal
errors. Although there are several ML based research studies about anomaly detection on the
RAN, a few focused on O-RAN [7].

When performing AI/ML-based operations, the privacy of the data being processed is a
major concern. FL is a new form of machine learning that preserves privacy and improves
communication efficiency by training models locally and communicating only the parameters
for aggregation [8] which is preferred when performing Al based processes in large-scale
complex environments with sensitive data such as RAN.

FL and its variation, P2P FL, are suitable for detecting anomalies in a complex O-RAN

10

environment [9]. Although there is little research on P2P FL, there are specific applications
of P2P FL for anomaly detection in O-RAN architecture and automated security management.
By using FL at the RAN to identify anomalies, attacks can be prevented before propagating
to the core network. The use of FL also significantly protects data privacy and maximizes
communication efficiency. In addition to that, it is possible to use FL-based anomaly detection
for providing relevant control actions such as UE handover or resource management.

For this study, anomaly detection using P2P FL in O-RAN (which has a higher potential to
be the next commercial RAN architecture) is considered a part of security automation in future
wireless communication networks.

1.3 Selected scope

Anomalies in O-RAN can be caused by many factors, such as malicious UEs, attacks on O-RAN
itself, and O-RAN misconfigurations [10]. In this study, only malicious network traffic, which
includes seven types of attacks, is considered [11].

In this study, P2P FL with secure average computation (SAC) [12] is used to design a
distributed anomaly detection technique that is compatible with the O-RAN architecture. P2P
FL removes the single point of failure, and the parameters are not required to be transmitted
to a centralized cloud [13]. In addition to that, we consider two variations of the P2P FL, one
being a clustered P2P FL model where each cluster maintains a separate FL. model, which is
desired when the data is localized, as in RAN. And the other is a hierarchical version of the
mentioned clustered P2P FL. model, where almost the same model can be derived in each cluster
while maintaining a relatively smaller number of communications in training than the normal
P2P FL method. In addition to that, a P2P FL. method based on multiparty communication
via thresholded fully homomorphic encryption (FHE) is suggested to achieve a higher level of
security both in communication as well as parameter average calculation [14].

A common Multilayer Perceptron (MLP) model was used for all the methods, which consist
of four layers, including two hidden layers. Since the systems achieved sufficient accuracy,
the structure of the model has remained unchanged. Three types of training data distributions,
namely, random, independent and identically distributed (IID), and non-1ID, were considered.
Moreover, a total of 100 local trainers are considered.

A single network dataset called UNSW-NB15 is used for all the model training and testing.
Furthermore, a ideal environment is considered where all the trainers are available and no
communication link failures.

1.4 Methodology

Since this study is based on FL model deployment, first, data pre-processing for the model
training was performed. UNSW-NBI15 data set contain some feature which has non numerical
values such as protocol, service. These were converted to numerical values. Also, some of the
feature columns were removed during pre-processing using the TargetEncoder function in the
categorical_encoders library, which had no effect on whether a particular flow was an anomaly or
not. The “Attack Type” column was also removed since it was enough to detect an anomaly. After
that, all the data was normalized for efficient training. After the pre-processing, the dataset was
partitioned into training and testing datasets. Furthermore, the “Label” column was separated
as a separate dataframe, and all the remaining columns were considered a single dataframe. The
training dataset is partitioned into local datasets to be allocated to each local trainer, and this

11

partition step depends on the selected data distribution method for the simulation.

Then the model training was performed. In P2P FL methods local model training, followed
by Secure average computation (SAC) or averaging based on HE with the parameter weights
sharing was performed. Then local models are trained again using the averaged parameter
weights, which completes a global round. In the centralized FL. method used for comparison,
the local model parameters were sent to a central aggregation server, and the aggregated values
were sent back to the local training models. For the general ML method, each local trainer
trained their models separately.

Trained model testing was the final phase of this research, and a pre-allocated testing dataset
of 10,000 network flows was used for that, and accuracy, precision, recall, F1 score, and
communication cost were recorded for each simulation as a Pandas dataframe.Multiprocessing
was employed for model training and testing to take advantage of FL parallelism. Finally, in a
separate Jupyter notebook, the recorded dataframes were loaded and the results were plotted for
comparison.

1.5 Contribution

This study’s major contribution is a P2P FL-based anomaly detector with secure average com-
putation and its variations: Clustered P2P FL, Hierarchical P2P FL, and also a P2P FL detector
with homomorphic encrypted averaging. O-RAN is relatively new, and there are only a few
applications available. Utilizing ML or FL for security in O-RAN is currently in its early phases
of research. Using FL in anomaly detection is studied for the systems such as the IoT [15], [16],
and Zero-touch Network and Service Management (ZSM) [17] systems but not for the O-RAN.
Therefore, this study provides an initial step for research into using FL for anomaly detection in
O-RAN.

FL-based solutions can be easily deployed in O-RAN because of the hierarchical positions
of Near real-time RIC (Near-RT RIC) and Non real-time RIC (Non-RT RIC) and their different
closed loops. Hence the proposed methods, which are based on P2P FL, can be readily deployed
in an O-RAN architecture. A reference architecture for deploying is also proposed for further
study.

In all of the methods, performance was evaluated based on accuracy and the F1 score.
Furthermore, the transmission cost of the training was considered. After 80 rounds of P2P FL.
methods, it was possible to find anomalies in the test dataset with an accuracy of about 90% and
a Fl-score value of 92%. Therefore, it can be concluded that the proposed models are effective
against network attacks in the O-RAN architecture.

1.6 Organization of the Thesis

There are a total of six chapters included in this thesis, with Chapter 1 providing a descriptive
introduction about the research, which includes the motivation, problem, scope of the study,
methodology, and contribution. The Chapter 2 contains a comprehensive literature evaluation
of the O-RAN architecture and security threats in O-RAN. In addition, a thorough review of
FL, P2P FL, and FL-based anomaly detection is given as part of the current state-of-the-art.
Chapter 3 describes the proposed solution, which consists of four models, and also provides how
these models can be positioned within the O-RAN architecture. Chapter 4 contains information
about the dataset used and how the simulations are set up and carried out. Different types of
simulations and their results are given in Chapter 5. Moreover, these results are compared and

12

critically analyzed in this chapter. Chapter 6 consists of a discussion of the thesis, which includes
a comparison with the current state-of-the-art, an evaluation of the thesis objectives, and finally,
potential future work. Finally, a detailed conclusion to the thesis is provided in Chapter 7.

13
2 LITERATURE REVIEW

Network automation is becoming a necessary part of current network architectures due to their
extremely high complexity and network demands. Closed-loop control based on RICs is a
key feature in the O-RAN architecture, which can be utilized for the automation of network
operations and management, including security functions. Security automation can be achieved
by the combination of AI/ML methods and the closed-loop control in the O-RAN architecture.

2.1 O-RAN architecture

The proprietary RAN consisted of monolithic network components, where a limited number of
vendors provided all the components in the RAN and operators had limited access to the internals
of these components. This black-box approach had significantly effected the advancement of
RAN for years with problems like configurable limitations of the RAN, Joint optimization of
the RAN components due to the limited coordination among different network components and
also the vendor lock-in [18].

As mentioned before, several new technologies have been introduced to tackle these limita-
tions. C-RAN, which was introduced about 10 years ago, allows the functional digital processing
functional part of the typical base station to be moved to a regional cloud or an edge cloud lo-
cation. However, there is a significantly high communication overhead in the fronthaul link
between the data center and radio units for maintaining the required low latency. Virtual-
ized RAN (VRAN) is another approach that virtualizes RAN functions by replacing Baseband
units (BBUs) with Commercial Off the Shelf (COTS) hardware. However, the Remote Radion
Unit (RRU) is still on proprietary hardware with proprietary interfaces, and there was additional
overhead due to virtualization. Hence, these two approaches did not solve the major drawback
of the vendor lock-in [4].

IFFTTTT

Virtualized Core Virtualiged Core
Backhaul

Backhaul Backhaul

‘ Open Mi
-
Backhaul == :
76& vBRU
Fromhaul\ Fronthaul
L "'i 1 : 1 i
—p—" T=[=F S L d
BBU RRH BBU RRH RRH RRH RRH RRH RU RU
Legacy RAN C-RAN vRAN 0O-RAN

Figure 2.1: RAN architecture evolution [19].

The O-RAN alliance has taken the capabilities of both the C-RAN and vVRAN and provided
a general-purpose and vendor-independent solution called O-RAN that includes open interfaces
between the components [6]. In the O-RAN architecture, cloud-native RAN functions can

14

be utilized via decoupled hardware and software components with the use of cloudification.
This will allow to utilize many benefits of the cloud computing as opposed to the traditional
RAN. Introduced intelligence and automation is for using advanced AI/ML capabilities to
enable automated network management and orchestration in RAN with data-driven closed
loops. Hence it will be possible to deploy non-conventional functions and techniques which
were not possible before. Moreover, introduced open internal RAN interfaces support multi-
vendor interoperability, allowing operators to optimize their infrastructure. Then the network
operators would be able to jointly optimize their infrastructure with mixing and matching
components from different vendors which will improve overall efficiency and cost reduction.
This standardization of the interfaces is a crucial factor in eliminating the RAN vendor lock-in.
Furthermore, flexibility and openness accelerate the delivery of new features and services [1].

The current 3rd Generation Partnership Project (3GPP) defined Next Generation NodeB (gNB)
in the RAN is separated into two logical components called the Central Unit (CU) and the Dis-
tributed Unit (DU). In the O-RAN, these are further disaggregated according to 3GPP definitions,
which result in three main logical units: CU, DU, and Radio Unit (RU) [20].

SMO
| Non-RT RIC
|) o1
02 "I l
| Near-RTRIC 0-CU
» O-Cloud 0-DU

Open Fl-i

) A
S

Figure 2.2: Logical Architecture of O-RAN with control loops.

e CU: This is the centralized unit, which can support multiple DUs. It includes the Radio
Resource Control (RRC), Service Data Adaptation Protocol (SDAP), and Packet Data
Convergence Protocol (PDCP) layers. This logical unit provides functionalities like
session management, mobility control, transferring user data, etc. The midhaul interface
is used for communication between CUs and DUs.

15

e DU: This logical unit, which is controlled by the CU, provides Radio Link Control (RLC),
Medium Access Control (MAC), and some parts of the Physical (PHY) layer (High-
PHY). Usually this distributed unit is located near the RU and communicates with RU via
a front-haul interface.

e RU: This logical unit provides the digital front end and remaining parts of the PHY
layer (Low-PHY).

The introduced split between DU and RU can be varied according to the use case; however,
the split 7.2x is defined by the O-RAN alliance. This DU and RU separation has several benefits,
such as cheaper RUs due to their fewer functionalities, efficient resource pooling by the DU, and
the ability to manage and control a set of RUs at once [21].

The logical architecture of O-RAN is illustrated in Figure 2.2. O-cloud provides a pool of
computing resources including COTS servers, hardware accelerators which are brokered by an
abstraction layer to host logical network function mentioned by the introduced disaggregation
of O-RAN architecture [22]. The deployment scenarios defined by the O-RAN alliance are
illustrated in Figure 2.3. With this cloudification, the O-RAN architecture can take advantage
of all the advantages of mature cloud computing, including the ability to share hardware among
various tenants, standardise hardware characteristics for the O-RAN deployments, and automate
the deployment and initialization of the RAN features.

E2 Pen
Near-RT E2 - fronthau
RIC i]]
| |
‘ I
- -_ . I
Scenario A [0O-Cloud : Proprietary
. - I
9 Edge Cloud I Cell Site
EZ "
I I
) [O-Cloud I O-Cloud I Proprietary
Scenario B) J
Regional Cloud : Edge Cloud | Cell Site
F1,E2 L)
I
Scenario C [O-Cloud ‘ : O-Cloud] I Proprietary
] S |
Regional Cloud] Edge Cloud : Cell Site
' s
I |
Scenario C.1 & C.2 [0-Cloud . | o<Cloud } B Froprietary
J I \ I
Regional Cloud | Edge Cloud : Cell Site
1
5 i |
Scenario D { 0O-Cloud I Proprietary I
J I '
Regional Cloud | Edge Location : Cell Site
|
N
Scenario E { O-Cloud | I ‘ 0O-Cloud W
I
Regional Cloud : Cell Site
] 4
|
Scanerio F [0-Cloud | 0-Cloud] . [0-Cloud J
A" I
Regional Cloud Edge Cloud I Cell Site

Figure 2.3: O-RAN Cloud Deployment Scenarios [22].

The main focus of the O-RAN architecture is open interfaces, and the O-RAN alliance is
currently developing technical specifications for these interfaces between different components

16

of the O-RAN architecture. The standardization of these open interfaces will eventually eliminate
vendor lock-in in the RAN. The new open interfaces in the O-RAN architecture are given in
Table 2.1.

Table 2.1: Open interfaces in O-RAN

Interface Location Task

E2 Between Near-RT RIC and | Enables the RIC to manage the operational
the E2 nodes processes of the E2 nodes.

0]} Between SMO and the Near- | Management and maintenance according to
RT RIC, RAN nodes the FCAPS model.

Al Between Non-RT RIC and | Allows the management of ML models and
Near-RT RIC the deployment of policy-based guidance

for the near-RT RIC by the non-RT RIC.
Open Fronthaul | Between DU and RUs inside | Enables the control of RU operations from

the same gNB the DU and the distribution of physical layer
functions between the RU and the DU.
02 Between SMO and O-cloud | Enables programmatic management and

provisioning of network operations.

2.1.1 RAN Intelligent Controllers

The O-RAN architecture consists of two logical controllers called RAN intelligent controllers (RICs).
These components, which are based on software-defined networks (SDN), perform particular
radio resource management tasks. Due to the network infrastructure’s data stream, RICs have

a centralized and abstract perspective on the network. In order to choose and implement con-
trol rules and actions on the RAN, these two can process data and make use of Al and ML
methods [20].

The Non-RT RIC is a component of the Service Management and Orchestration (SMO)
framework and operates on control loops longer than 1s. Near-RT RIC utilizes third-party micro-
services called rApps to provide non-conventional services to facilitate the RAN optimizations
and operations, such as providing policy-based guidance and enrichment information to the Near-
RT RIC, intelligent orchestration of xApps and rApps, and ML model management. Moreover,
it can influence SMO operation using policies [18].

The Near-RT RIC is at the centre of the RAN’s control and optimization, operating the control
loops with periodicities ranging from 10 ms to 1 s. It communicates with O-RAN-compliant
evolved Node Bases, CUs, DUs, and E2 nodes (O-eNBs). The key element of Near-RT RIC is
xApps, which are also third-party micro-services that can perform certain control or management
tasks in the RAN [20]. For the functioning of the xApps, Near-RT RIC consists of a database
containing RAN information, an internal messaging infrastructure, a subscription manager, and
a conflict resolution mechanism [18].

RICs can be deployed in any of the cloud locations, namely the core cloud, regional cloud, and
edge cloud. The RIC platform can be used to deploy external RAN control applications created
by outside vendors. Compared to earlier proprietary RAN systems, the O-RAN architecture has
a substantial benefit because these third-party apps can incorporate many types of cutting-edge
RAN control algorithms [23].

17

The performance of the RAN can be affected by RICs in three main areas [5]:

e Network intelligence: The performance of the RAN is evaluated and reported, and the
data that is generated in a standard format can be analyzed to develop new policies and
algorithms, for instance, using AI/ML approaches.

¢ Resource assurance: The objective is to ensure that the required performance is delivered
for the devices/services.

e Resource control: The aim is to ensure that the RAN system operates effectively when
several user groups compete for available resources.

The main factor in O-RAN when using ML for RAN optimization is RICs. Previously, RAN
analysis software conducted offline analysis on a large amount of acquired RAN data. However,
O-RAN RICs can be used to analyze data, find improvements, and design and deploy new
policies and actions based on the insights much more quickly [5].

In the future, there will be real-time control loops that operate below 10 ms and perform node
level radio resource management tasks such as scheduling and beam-forming management.

2.2 Security Threats in O-RAN architecture

Although using the O-RAN architecture has several benefits, those architectural changes sig-
nificantly alter the attack surface of the RAN. These are thoroughly discussed in this O-RAN
Security Threat Modeling and Remediation Analysis document [10]. Additional functions and
interfaces, decoupling and virtualization, and the usage of open-source codes have expanded
the RAN threat surface. Furthermore, the effect of the diversity of User Equipment (UE), the
diversity of third-party applications and the integration of AI/ML must be analyzed in terms of
security threats [4].

Table 2.2: Threat surface groups [10]

Group Factors

Additional functions SMO, Non-Real-Time RIC, Near-Real-Time RIC
Additional open interfaces Al, E2, Ol, O2, Open Fronthaul

Modified architecture Lower Layer Split 7-2x

Trust Chain Decoupling, use of third-party xApp and rApps
Containerization and Virtualization | Disaggregation of software and hardware

Use of Open-Source Code Exposure to public exploits may be increased

In O-RAN architecture, three main types of entry points are defined [10]. There are threats
that are coming from inside the O-RAN architecture and threats that are coming from the outside.
Furthermore, the API between different planes would also cause the propagation of threats.

Furthermore, six major threat agents who would deploy an attack were mentioned in the O-
RAN security analysis documentation [10]. There can be insiders who have authorized access
to the system who are malicious. Cybercriminals use their technical knowledge to commit
crimes by exposing vulnerabilities via networks or devices with the purpose of gaining financial
benefits. Cyber-terrorists are another type of threat agents who have the purpose of spread
violence against particular country or group. Hacktivists are somewhat different; they would

18

attack O-RAN architecture to achieve some political or social gain. There are some attackers
who would not have deep experience, knowledge, or resources, and they are called script kiddies.
The final type of threat agent is a Nation-state, which has financial and technical support from a
country to carry out attacks in the public and private sectors to steal information or compromise
important processes.

There are various potential vulnerabilities, either particular to O-RAN or more generally,
that might be used to jeopardize the confidentiality, integrity, and availability [10] as given in
Table 2.3.

Table 2.3: Potential Vulnerabilities [10]

Uniqueness Vulnerability Effects

O-RAN specific | Illegal access to the O-DU, O-CU-CP, O- | Availability
CU-UP as well as RU to compromise RAN
performance or carry out a network attack.
O-RAN specific | Control plane traffic on the Open Fronthaul | Integrity and Availability
Interface are unprotected.
O-RAN specific | Disable over-the-air ciphers causing eaves- | Confidentiality

dropping
O-RAN specific | Conflict between Near-RT RIC and O-gNB | Availability
O-RAN specific | x/rApps conflicts Availability
O-RAN specific | x/rApps access to network and subscriber | Confidentiality
data
O-RAN specific | Management interface not secure Confidentiality, Integrity

and Availability
O-RAN specific | CP UL or DL messages can be injected to | Availability
launch an attack against UP

General Function decoupling without a hardware | Integrity
root of trust and a software trust chain

General Use of Open-Source code exposes system | Confidentiality, Integrity
to public exploits. and Availability

General Misconfiguration, inadequate access man- | Confidentiality, Integrity
agement or insufficient isolation in the O- | and Availability
Cloud platform

Moreover, there are 42 critical assets and 47 security threats in the O-RAN architecture. The
threats can be grouped into six main types: threats against the O-RAN system, threats against
the O-cloud, threats against the ML system, threats against 5G radio networks, threats to open
source code, and physical threats [10]. Some of the threats included in these categories are
given in Table 2.4.

The UNSW-NB15 dataset [11] includes the following attacks in addition to the threats
mentioned:

e DoS: Attempt to disrupt or suspend the service in order to deny access to legitimate users.
ICMP floods and buffer overflow are examples.

e Analysis: Port scanning and spamming are examples of these types of attacks.

e Backdoors: A method where the security mechanism of a system is bypassed using a

Table 2.4: O-RAN Threats [10]

Threat Categories

Threats

Threats against O-RAN sys-
tem

Against the fronthaul interface and M-S-C-U planes,
Against RICs, Against RUs, Against xApps and rApps,
Against SMO, Common threats including those caused
by poor authentication, setup errors, insecure designs,
and a lack of access control.

Threats against O-CLOUD

VNF/CNF images and secrets can be compromised, Weak
orchestrator configurations, Misuse of VM/CN to attack
others, Spoofing and eavesdropping on network traffic,
Compromise supporting network services

Threats to open source code

Backdoor attacks resulting from the usage of known-
vulnerable SW components and unreliable libraries, In-
tentionally put backdoor by a developer

Physical Threats

Damage the components or steal sensitive data

Threats against 5G radio net-
works

Disruption through Radio Jamming, Sniffing and Spoof-
ing, DoS attacks on cognitive radio networks

Threats against ML system

Data Poisoning Attacks, machine learning models can be
altered, Transfer learning attack

hidden way.

e Exploits: Exploiting well-known security issues in the system, such as software issues.

e Reconnaissance: Attacks such as port scanning and packet sniffing where the information

of a system is collected.

e Generic: A method that attacks block ciphers with an exposed block and key size.

e Shellcode: These are codes added to take advantage of software flaws.

e Fuzzers: These seek to stop a network or software function by feeding it data that is

created randomly.

e Worms: A type of computer software that replicates itself and/or spreads to other parts of

a system.

The confidentiality of the data being processed when using AI/ML is a top priority. Since RAN
data contains sensitive information, FL, which is a privacy-preserving distributed technique, is
preferred. Developed by Google, FL is used to train models utilizing a large number of devices
[14]. Ateach trainer location in the federation, a local model is trained using the training dataset,
which is retained locally. Only the model parameters are sent to the centralized aggregator site
after the local model training. The aggregator uses the received parameters to create a common
global model and feeds it back to the local trainers. Since sensitive data is not explicitly accessed,
each local trainer can benefit from the datasets of other local trainers without affecting privacy

2.3 Federated Learning

and while reducing the communication cost [24].

20

The problem of optimization is also available in FL and in [14], the model proposed for
non-IID, unbalanced, and massively distributed data. And its optimization problem is given as,

minyer(p)f(w) 2.1)
filw) = 1(xi, yi = w) (2.2)

where f;(w) is the loss of the prediction of data (x;, y;) for the weight set w. Considering
FL, this can be mathematically derived as

K
Fw) = 3 L Fi(w) 23)
k=1
where
1
Fe(w) = — > filw) (2.4)
k kepi

K is the total number of clients in the federation, py is the available number of data samples
for the k' client, and n; = |px|. As the results shown in this study, the simple averaging
techniques provide adequate accuracy.

The lifecycle of a FL model is explained in [13] where the model engineer identifies the
problem first, followed by clients storing data locally for training. Then a model is prototyped
and sent for training. The received trained models are evaluated and The best-performing model
is distributed across all client devices. The reference lifecycle FL-trained model is shown in
Figure 2.4. The amount of clients chosen for a particular round can be random, but there are
several studies such as [25] based on optimization to get a optimal value.

Model .

Clients Admin 8 deploymen .

4]

Model -

w ’Ntesting ’
-
Federated Server o - Devices
Learning Engineers 8 that use
and the model
- analysts

Figure 2.4: The lifecycle FL-trained model [13].

21

There are several possible options for ML models to select, and Artificial Neural Net-
works (ANN) are one of the more preferred models for complex systems. Being a subclass of
ML, the neural networks imitate the human brain [26]. There are several variations of ANNSs,
including Multilayer perceptron (MLP), convolutional neural networks (CNN), and recurrent
neural networks (RNN). As mentioned before, the MLP model was used for this study. Gen-
erally, MLP is a feed-forward ANN that is fully connected. An MLP model consists of three
major components: an input layer, an output layer, and a hidden layer or layers. In addition to
those, there can be activation and optimization functions.

Input layer W5 Hidden layer Wt Output layer

1 \:"“1 Hy HA4 L \ 04 OA4

Wi

|2 = = m Hz HA1 LI I 01 0A1

Figure 2.5: General MLP architecture [26].

There are several wireless communication applications that can utilize FL, such as spectrum
management, edge computing, autonomous driving, and 5G core network functioning [24].
When there are a lot of components in a system that are essential for a required process, as in
most scenarios in wireless communications systems, FL tends to be the preferred approach to
use for Al-based applications.

The ability to use FL for the O-RAN architecture is described in detail in "AI/ML workflow
description and requirements” technical report [27]. Both Near-RT RIC and Non-RT RIC in the
O-RAN architecture can host the AI/ML training by utilizing xApps and rApps, respectively.
Since RICs are already organized in a hierarchical manner, FL can be directly integrated. The
Near-RT RIC, which resides in the regional or central cloud, can act as the central aggregator.
At the same time, Non-RT RICs, which are located in edge or regional clouds, can serve as
distributed local trainers [27] as shown in Figure 2.6.

Although there are several benefits to FL, it also has considerable drawbacks. Even though
FL improves data privacy, there is a possibility of analyzing global data and exposing the clients
participated [24]. FL is also vulnerable to poisoning attacks by attackers who have access
since there is model re-training with new available data [28]. As an example, the training data
could be altered to get the results preferred by a particular attacker. Moreover, FL. models
could be exposed to membership inference attacks, where a malicious client affects the model’s

22

Non-RTRIC

ML training host
(Aggregation)

Local model Local model
parameter vector parameter vector
uploading uploading

Near-RTRIC 1 Near-RTRIC N

ML training host |ML Inference host ML training host |ML Inference host

Figure 2.6: Federated learning among Non-RT RIC and Near-RT RICs.

training by masquerading as an honest client [29]. There are different kinds of inference attacks,
including parameter inference and input inference.

Furthermore, there are challenges that are relevant to the algorithms; Some may be related
to concerns of convergence and optimization, like the selection of optimal number of local
clients [24]. Also, there are problems specific to wireless communication, including parameter
quantization due to limited network capacity, which will cause quantization errors [24]. In [8]
the applicability of FL in 6G is explained. There are some security challenges that can be
overcome by using FL.

Several remediations for the aforementioned issues have been proposed, including the
communication-efficient FL algorithm [8]. Asynchronous FL systems such as the ones pro-
posed in [30], [31], [32] improve communication efficiency by asynchronous aggregation. Some
other methods to improve communication efficiency are gradient compression using stochastic
gradient descent (SGD) algorithms [33], gradient quantization, and sparsification [34].

To prevent malicious attacks in FLL model systems, robust aggregation and detection algo-
rithms as well as management of reliable reputations are proposed in [35]. Blockchain-based
smart contracts and deferential privacy (DP) techniques can also be used. Furthermore, tech-
niques such as federated parallelization and distillation can be used to increase the effectiveness
of FL [36].

Considering the usability of FL in O-RAN, an FL set-up for O-RAN is proposed in [37]
where the system model is defined as Near-RT RICs in edge clouds hosting local models and
Non-RT RICs in regional clouds hosting the aggregator with update vectors maintained in
a synchronized manner in global rounds. In this research, A combined optimization model
for selecting local trainers and allocating resources for FL is derived. An FL-based deep
reinforcement learning (DRL)-based solution for O-RAN user access control is given in [38]
where each UE acts as a local trainer of the local deep Q-network (DQN), and RIC is responsible
for averaging the DQN parameters received from chosen UEs in order to update the global DQN
model. A federated meta-learning-based traffic steering in O-RAN is proposed in [39] which
utilizes RL for allocating radio access technology (RAT) services between UEs.

A practical solution of deploying ML in O-RAN is given in [40]. A closed-loop control is
deployed using a RIC platform called ”ColO-RAN” and E2 nodes running in a framework called
”SCOPE” with network data generated by an emulator called "Colosseum.” Furthermore, three
testing xApps were built that provide DRL-based control over slicing of RAN resources as well

23

as scheduling.

2.3.1 Peer-to-Peer FL

As mentioned before, the centralized FL. method has some considerable drawbacks, including a
single point of failure due to the centralized aggregator and an imbalance of data distributions in
different local trainers [13]. Also, only the central aggregator has bi-directional communication
with the trainers, and the local trainers have limited knowledge about other trainers connected,
which can be a vulnerability [12]. Hence, privacy-preserving FL. methods have gained significant
interest. Mainly three approaches are considered in privacy-preserving FL, namely Secure Multi-
Party Computation (SMC), Homomorphic Encryption (HE) and Differential Privacy (DP) [41].
The SMC approach aims on calculating a required function without each participant knowing
the other’s exact inputs. A privacy-preserving FL framework based on SMC is proposed
in [42] where users’ gradients are securely aggregated. HE enable performing computations on
encrypted values by third-parties without having to perform encryption. In [43], a privacy-
preserving FL model that is based on HE is given, which takes advantage of the additive property
of HE. DP can also be used to protect privacy of the participant in FL-based methods [44] and
based on that an adaptive privacy-preserving FL framework is proposed in [41].

P2P FL is a novel technique that eliminates the need for a centralized system or service
[12]. There are several proposed techniques for P2P FL model training that can use some
of the aforementioned approaches for privacy-preserving FL. Split learning (SL), mentioned
in [45] splits the model into two parts, the server and the node, for training. The training
process is considerably slower when multiple nodes are involved since SL methods are difficult
to parallelize and must run sequentially by design. BrainTorrent is a P2P FL environment
that is decentralized [46]. At any given training round, just one participant updates their
local model weights by taking into account their prior weights and model weights received
from peer models that are apparently newer, and there is a risk of a malicious or semi-honest
participant being undetectable. The peer-to-peer FLL method [12] based on secure average
computation (SAC) utilizes an n-out-of-n secret partitioning method and average calculation
technique, which mitigates the effects of semi-honest participants. An example of calculating
the average with having three peers is shown in Figure 2.7. However, this model is not optimal
when there is a larger number of trainers since the communication cost is significantly higher,
which reduces the overall performance.

Multiparty computation based on HE is another approach that can be used for parameter
averaging in P2P FL. There different solutions have being proposed to achieve privacy while
multiparty computation. A secure multiparty computation based on FHE in a environment
where a untrusted cloud server with high resources is proposed in [47]. Another general
multiparty communication protocol which uses somewhat homomorphic encryption is provided
in [48] which can provide security against even n — 1 pout of n participants are corrupted.
Another multiparty communication solution based on threshold homomorphic encryption is
given in [49] which can be used against active and static adversaries. There is a significantly
higher computation cost when using HE for multiparty computation due to encryption and
decryption.

Peerl Peer2 Peer3

Model weights | wy = 25 wy = 19 w3 = 37

l.a) Imtialize rni; = 10 rng; =9 rng1 = 30

secret sharing prny; = 0.2 prng; = 0.16 | prns; = 0.41
T2 = 20 TNaoz = 18 T3z = 20
prniz = 0.4 prnaz = 0.32 prnszz = 0.27
rniz = 20 rnaz = 30 rn33 = 24
prniz = 0.4 prngz = 0.52 | prng; = 0.32

1.b) Create wip =H wa =3 w3y = 15

parts wiz = 10 wos =6 w3 = 10
w1z = 10 waz = 10 wgz = 12

1.c) Share wop = 3 w2 = 10 wyg = 10

parts wg] = 15 wsg = 10 wog = 10

2. Subtotals ps1 = 23 ps2 = 26 ps3 = 32

3. Totalhization S5 =81 S =281 S5 =81

and averaging Avg = 27 Avg = 27 Avg = 27

24

Figure 2.7: Secure average computation with three clients [12].
2.4 FL-based anomaly detection

The novel features of SG and B5G cause the current detection technologies to be obsolete if
they are not adapted accordingly [50]. Because the communication link between the UE and the
remote radio head unit has remained mostly unchanged, both conventional RAN and O-RAN
utilize Radio Frequency (RF) channels that are fairly similar. Therefore, O-RAN is vulnerable
to some known RF attacks on conventional RAN. Furthermore, the diversity and pervasiveness
of UE types are expanded in O-RAN, increasing the chance that the attack surface will be a
target of new threats. Also, there is the risk of DoS and Distributed Denial of Service (DDoS)
attacks on cellular services and control planes, as well as DDoS flooding attacks on network
and transport layers [4]. Therefore, detecting anomalies is an important security measure to be
considered in O-RAN. A data-driven FL technique is ideal when considering a complex system
like a RAN in 5G architecture, where there are many ways to cause anomalies.

Considering ML-based anomaly detection in RAN, a two-level deep ML model for 5G
network architecture is proposed in [50]. The first layer is for anomaly symptom detection, with
models implementing Deep Belief Networks (DBN) and Stacked Autoencoders (SAE) at each
RAN. The network anomaly detection is done centrally with the received anomaly symptoms
in the second layer using the Long short-term memory (LSTM) model. In [7], an Al-based
solution for detection of anomalies and analysing the root causes in RAN is proposed, with
a novel anomaly detection algorithm called Soda and two-level root cause analysis based on
key performance indicators (KPIs) and key quality indicators (KQIs). Also, in a trial of O-
RAN architecture, its closed-loop network automation technique with the given framework for
capacity problems has been validated.

There are several FL-based anomaly detection solutions proposed for the IoT. The anomaly
detection method presented in [15] is based on calculating the probability associated with device
communication patterns. Built for a small office environment, this solution includes a security
gateway consisting of anomaly detectors and an IoT security service maintaining a repository
of models. The IoT intrusion system, which is based on unsupervised FL, is presented in [51].
It consists of an autoencoder and an ANN model. This system successfully detected various
anomalies such as DoS attacks, botnets, and port scans, and a maximum accuracy of 97.75%
was achieved. Another federated learning framework for industrial IoT applications is given
in [16] where a Deep Anomaly Detection (DAD) model is trained. This framework includes

25

a cloud aggregation server and local devices for anomaly detection. A gradient compression
mechanism was also suggested, which makes communication faster and more efficient.

A reinforcement learning based FL approach for detecting anomalies in 5G heterogeneous
networks is proposed in [52]. This includes three main entities: the end devices for model
training, the edge hosting the aggregator server for the trained model in the end devices, and
also separate anomaly detection models. The models at the edge are aggregated in the cloud.

In addition, a method named DeepFed is presented in [53] and uses a federated deep learning
architecture with a Paillier public-key cryptography based secure communication protocol to
identify intrusions in industrial cyber-physical systems. DeepFed is composed of three main
parts: a trusted authority to generate public keys and private keys, cloud servers for aggregation,
and industrial agents who host local models to train available data. This system can fight against
several attacks, including DoS, DDoS, and injection attacks.

A hierarchical FL. based anomaly detection mechanism which can be used in the ZSM
framework is proposed in [17] where the UNSW-NB15 dataset is used. In stage 1, the anomaly
detectors (A-type), each consisting of a simple ML model and a database, are in the same
security management domain. In stage 2, the anomaly detectors (B-type) are in different
security management domains. The aggregation server of stage one is placed in the security
management domains, and the end-to-end (E2E) management domain hosts the second stage
aggregator server. Once the network flow has been handled in stage 1, it will be handled again
in stage 2, and any problems that are found will be fixed right away.

There is an anomaly detection use case [54] presented by the O-RAN Software Community.
However, the main objective is to identify the anomalous user equipment (UE) in a certain cell
and, if necessary, initiate a handover to a neighboring cell. In this scenario, being anomalous
means degradation of one of the considered parameters is below a pre-defined threshold, and
three xApps, namely, Anomaly Detection (AD), QoE Predictor (QP) and Traffic Steering (TS)
in Near-RT RIC, are used.

26
3 PROPOSED SOLUTION

The intelligent closed-loop control with RICs enables the direct use of ML in the O-RAN
architecture. As mentioned previously, FL is more suitable in RAN due to its increased privacy.
In this study, SAC based [12] P2P FL method with two variations based of clustering and HE
based P2P FL method is proposed. Training of the designed FL. models and anomaly detection
are the main components of this study.

In all of these methods, the local trainers are Near-RT RICs which reside in edge cloud or
regional cloud. The Near-RT RICs host the training, and P2P communication is via inter-regional
or inter-edge cloud connections. The training model and the detector can be separate XApps, or
they can be parts of the same xApp, which can include other functions. These deployments can
be image-based or file-based [27]. Moreover, when an anomaly is detected, the detector or an
additional xApp hosted by Near-RT RIC can transmit control actions to the relevant CUs and
DUs via the E2 interface. The general proposed architecture is shown in Figure 3.1.

el S

| FAFTEE w]

E2 Node |~

| FEETEF ®|

RAM Control actions for
data/metrics the detected
anomalies
Near-RT RIC 1
Madel

Anomaly
detector

P2P communication

Databse

P2P communication

Near-RT RIC 2 Near-RTRIC 3
Anomaly Anomaly
detector N detector
Model ! - {F‘EF‘ -:Dmmumcatmn)b . Model
Databse Databse
RAN Control actions for Control actions for RAN
data/metrics the detected the detected T
' J anomalies anomalies

]

EZ Nodes

| FEFFFT ®]
e E2 Nodes

Figure 3.1: Proposed anomaly detection mechanism mapped with O-RAN architecture.

27

The network flows data that is stored in the database and can be used for the model’s training.
After model training, it can be utilized by the anomaly detector in the same Near-RT RIC.
Control actions for the detected anomalies are communicated to the E2 nodes.

3.1 Model 1: Normal P2P FL method

In the normal P2P FL method, every trainer communicates with every other to calculate average
model weights using secure average computation [12] as shown in Figure 3.2.

. Calculate sum of the sub
totals and use its average

as the new weights
Near-RT RIC 1

Training host 1

MNear-RTRIC 2) Mear-RTRIC 3
B 2. Transmit sub tofals N
ini - *| | Training host 3
Training host 2 1. Transmit partials of -
weights

3. Calculate sum of the sub 3. Calculate sum of the sub
totals and use its average totals and use its average

as the new weights as the new weights

Figure 3.2: Secure weight average computation in P2P FL.

When a local trainer trains its model, the model parameter is randomly partitioned into
partial weights that are equivalent to the network’s number of local trainers which is shown in
Equation 3.1.

wis) Wik 3.1

keTrainers

Then each trainer keeps one partial weight and transmits the rest of the partial weights to
other local trainers, one per trainer. Thereafter, the local subtotal is calculated by each trainer
with its own and the received partial weights, as shown in Equation 3.2.

jal
tlpartla — Z Wji (32)

j€Trainers

One full round is completed after computing the new weight, which is calculated as the

28

average of all previously calculated weights as shown in Equation 3.3.

tpartial
ZiETrainers i

" total number of trainers

(3.3)

Wavg

3.2 Model 2: Clustered P2P FL method

In practical RAN deployments, data is unbalanced and localization (in edge or regional clouds)
is probable. Hence, parameter averaging between the training models of all the Near-RT RICs in
a massive base station deployment can be considered sub-optimal. Therefore, a clustered model
is proposed where only the clients in the same cluster share the parameters for averaging, which
results in different FL. models for each cluster. Local trainers are clustered using location-based
K-means clustering using scikit-learn library function [55].

_______ Cluster1 - - - - _ _,
Trainer 5 [«—» Trainer 7
o La

Trainer 6

Cluster 2 Cluster 3

Trainer 1 LELisrs

Trainer 2 Trainer 4 Trainer 8 Trainer 10

Trainer 3 Trainer 3

Figure 3.3: Parameter sharing of Clustered P2P FL.

3.3 Model 3: Hierarchical P2P FL method

In the hierarchical P2P FL method, a hierarchical version of the clustered model is considered,
where a master trainer is pre-selected for each cluster by considering a pre-calculated resource
reference value. After a fixed number of global rounds, parameter values are shared and averaged
among cluster masters, with weight values corresponding to the number of clients in the cluster,
as shown in Equation 3.4. Then, the values are shared with the other clients in the cluster by
the master client. The probability of having the same model in each cluster will increase while
maintaining a lower number of communications than the proposed normal P2P FL model.

number of trainers in k
Wag =) —— (3.4)
total number of trainers
keclusters

29

_______ Cluster1
Trainer § |« »| Trainer 7
et ——

v v
| Trainer 6 | yaster

Cluster 2 Cluster 3

Trainer 1 Trainer 9

Trainer 2 Trainer 4 < » Trainer 8 Trainer 10

Trainerz Master Master rainer 3

Figure 3.4: Parameter sharing of Hierarchical P2P FL.
3.4 Model 4: Homomorphic P2P FL. method

In addition to the above methods, which are based on SAC, a parameter averaging method with
secure communication and the threshold HE method [47] was considered. A key generation
protocol can be used to generate a common public key (P) and secret shares of the private
key (Sk), with each trainer receiving the P; and a share of Sx. It means that each trainer
can encrypt, but no one can decrypt without the help of other trainers. Hence, for parameter
averaging in P2P FL, each trainer can encrypt parameter values and share them with each other.
Then do homomorphic addition to get the encrypted total values, followed by partial decryption
using individual secret key share. After that, these partial decryption values are shared with
each other, and the final decryption of the total is performed at each trainer, and the average can
be calculated. This provides secure communication of parameter values and protection against
semi-honest trainers. This procedure is given in Figure 3.5.

. Encrypt the weights using a global public key.

. Transmit encrypted weights.

. Homomerphic addition.

. Partial decryption of encryptad sum using secret

e Lad P =

N key share.
Near-RTRIC 1 5. Transmit partial decryption values.

Training host 1 6. Fully decrypt the total using partial delcrg,rption
values and use its average as the new weights.

@ @
® ®

Near-RTRIC 2 @ Near-RTRIC 3
Training host2 € ® * Training host 3

o liire:

Figure 3.5: Weight average computation using HE.

30
4 SIMULATIONS

The Python scripting language is used for the simulation. And the FL model’s creation,
compilation, training, and testing were done using Tensorflow libraries. Initial simulations with
10 local trainers were performed on a personal computer using Jupyter notebooks. However,
when the number of users increased to 100, the simulation time increased significantly. Hence,
the simulation functions are modified to utilize the multiprocessing library in Python to perform
parallel model training and testing of local trainers. Due to the limited processing power the
simulations were migrated to the Puhti supercomputer environment [56] provided by "CSC
— IT Center for Science Ltd”. In that environment, the simulations were run as batch jobs,
which included python scripts as opposed to Jupyter notebooks. In Puhti, the already available
“tensorflow/2.9” environment module was used as the simulation environment, and some of the
packages included are depicted in Figure 4.1.

Package Version

alabaster

anyio

argon2-cffi
argon2-cffi-bindings

astunparse
atomicwrites

attrs

autokeras

autopep8

Babel

backcall
bayesian-optimization
beautifulsoupd
binaryornot

black

bleach

cachetools
category-encoders
certifi

cffi

cftime

chardet
charset-normalizer
click

BRENNEREOD - A
j . J o - m. - -
oo OF-
4 (%) I

LS

colorama
ConfigSpace
cookiecutter
cryptography
cycler
Cython

Figure 4.1: Part of the packages installed in simulation environment.

This dataset is generated as a combination of real normal network activities and artificial attack
behaviors [11]. There are 257673 total network data flows with 49 classified features, including
transaction protocol, source and destination IP addresses and ports, and service. All the features

are given in Figure 4.2.

4.1 The UNSW-NB15 dataset

SNo. Name Type Deseription
.) "1f source (1) and destination (3)IP addresses equal and port numbers (2)(4)
36 issm_ips_ports . . "
Binary equal thenthis variable takes value 1 else 0
39 s ftp login ¥ If the ftp session is accessed by user and password then 1 else (.
49 Lahbel 0 for normal and 1 for attack records
7 dur Record total duration
15 Sload Source bits per second
16 Dload Destination bits per second
27 Sjit Source jitter (mSec)
28 Djit Float Destination jitter (mSec)
31 Sintpkt Source interpacket arrival time (mSec)
32 Dintpkt Destination interpacket arrival time (mSec)
33 teprtt "TCP connection setup round-trip time, the sum of synack and ackdat.”
34 synack "TCP connection setup time the time between the SYN and the SYN_ACK packets.”
35 ackdat "TCP connection setup time the time between the SYN_ACK and the ACK packets.”
2 sport Source port mumber
4 dsport Destination port number
B shytes Source to destination transaction byvtes
9 dbytes Destination to source transaction bytes
10 sttl Source to destination time to live value
11 dttl Destination to source time to live value
12 sloss Source packets retransmitted or dropped
13 dloss Destination packets retransmitted or dropped
17 Spkts Source to destination packet count
18 Dpkts Destination to source packet count
19 swin Source TCP window advertisement value
20 dwin Destination TCP window advertisement value
21 stephb Source TCP base sequence number
22 dtepb Inteser Destination TCP base sequence number
23 SINEANSZ Be Mean of the Yow packet size transmitted by the sre
24 dimeansz Mean of the Yow packet size transmitted by the dst
- Represents the pipelined depth into the connection of
25 trans_depth)
http request /response transaction
Actual uncompressed content size of the data transferred
26 res_bdy_len .
N from the servers http service.
37 ct_state_ttl No. for ea.:r:h :siEaLe gﬁ] at.“.cordmg.; to specific range of values
for source/destination time to live (10} (11).
38 et_flw_http_mthd No. of flows that has methods such as Get and Post in hitp service.
40 ct_ftp_cmd No of flows that has a command in ftp session.
No. of connections that contain the same service (14) and
41 ct_srv_sre
source address (1) in 100 connections according to the last time (26).
No. of connections that contain the same service (14) and destination address
42 ct_srv_dst
(3) in 100 connections according to the last time (26).
No. of connections of the same destination address (3) in 100
43 etdst Itm - . s
connections according to the last time (26).
No. of connections of the same source address (1) in 100
44 etsre- ltm . . .
connections according to the last time (26).
45 ctosredport_li No of connections of the same source address (1) and the
J Lsre-dl 11 destination port (4) in 100 connections according to the last time (26).
46 ctdst_sport_ltx No of connections of the same destination address (3) and the
40 - SL_spor n - . . .
-+ ! source port (2) in 100 connections aceording to the last time (26).
~ No of connections of the same source (1) and the destination (3)
AT etdst_sreltm Lo . . .
address in in 100 connections according to the last time (26).
1 sreip Source IP address
3 dstip Destination IP address
5 proto . Transaction protocol
Nominal - -
6 state Indicates to the state and its dependent protocol
14 service "http [tp smtp ssh dns ftp-data
"The name of each attack eategory. In this data set nine categories eg
48 attack_cat Fuzzers Analysis Backdoors DOS exploits Generic Reconnaissance
Shellcode and Worms”
20 Stime Timestamn record start time
30 Ltime - P Mecord Tast time

Figure 4.2: Part of the packages installed in simulation environment [57].

At the data pre-processing stage, some of the features including source and destination IP
addresses and attack categories were removed. And some of the nominal data features, such as

32

transnational protocol, service, and state, are converted to numerical features using categorical
encoder functions. The testing dataset of 10,000 network flows with a 60% anomaly percentage
was separated prior to the simulation.

4.2 Simulation process

In this study, ML models are trained to detect whether the data is an anomaly or not. Each
method mentioned was created as a function so that it was possible to perform simulations while
changing different parameters. For that, a separate Python script was created that included
data loading, pre-processing, local trainer clustering, and also calling the methods as functions.
Moreover, three types of client data distribution are considered.

e Random: Each trainer has a training dataset with a random number of anomalies that
form a small percentage of the given system anomaly percentage.

e IID: Each trainer has a training dataset with the same number of anomalies (system
anomaly percentage).

e Non-IID: trainers in the same cluster has a training dataset with an equal number of
anomalies.

The ML model used had four layers, including two hidden layers, as depicted in Figure 4.3.
Each trainer uses ten epochs for local training. The simulations are performed with different
values of anomaly percentages in the training data, the local batch size, as well as the number
of rounds.

input_1 ‘ InputLayer dense | Dense dense_l | Dense dense_2 | Dense softmax | Softmax
input: } output: —m input: | output: = input: | output: —m input: | output: |—m input: | output:
[(None, 42)] | [(None, 42)] (None, 42) | (None, 30) (None, 30) [(None, 10) (None, 10) | (None, 2) (None, 2) [(None, 2)

Figure 4.3: MLP model used.

During each simulation, the trained models are tested using the test dataset. And the per-
formance is tested in terms of accuracy, Fl-score Also, transmission costs for training are
considered separately.

The accuracy, which is given by 4.1 is the ratio between the number of correctly classified
samples and the total number of samples given.

TP+TN
A = 4.1
Ay = T p Y FP+ FN+TN 1)

Fl-score provides a balanced metric of the other two metrics, called precision and recall,
where typically one’s increase means the other’s decrease. The precision is the ratio of true
predicted positives to all the predicted positives. Higher precision means the system does not
produce significant amount of false positives. And the recall is the ratio between the true
predicated positives and all the actual positives. Hence, higher recall means the system does not
produce a large number of false negatives. And the F1-score is the weighted average of these
two.

o TP
Precision = ———
TP+ FP
TP
Recall = ——
TP+ FN

Fl-Score 2« (Precision * Recall)

Precision + Recall

33

4.2)

4.3)

4.4)

34
5 RESULTS

5.1 Performance of SAC-based P2P FL models
5.1.1 Varying the batch size

First, the batch size taken for training the local model was changed, and the variation in accuracy
was obtained. As shown in Figure 5.1 the accuracy keeps getting reduced as the batch size
increases. Hence the training time was also plotted to select an optimum batch size to continue
the simulations further. The training time keeps reducing until the batch size is about 500,
at which point it starts to converge. As a result, 100 was chosen as the fixed batch size for
subsequent simulations as a significantly optimal point.

Table 5.1: Fixed parameters for the simulations with varying training batch size

Parameter Value
Number of trainers 100
Number of clusters 5
Number of epochs 10
Number of rounds 40
Batch size 100
Training sample size 200000
Training anomaly percentage | 60%
Testing sample size 10000
Testing anomaly percentage | 60%

5.1.2 Varying the training anomaly percentage
Then the performance of the methods was assessed when the training anomaly percentage was

varied. Here only the IID data distribution is considered, and all the other fixed parameters are
given in Table 5.2.

Table 5.2: Fixed parameters for the simulations with varying training anomaly percentage

Parameter Value
Number of trainers 100
Number of clusters 5
Number of epochs 10
Number of rounds 50
Batch size 100
Training sample size 100000
Testing sample size 10000
Testing anomaly percentage | 60%

0.920 —— Accuracy 800 —— Training Time
0.915 775
0.910

750
0.905

725
0.900

700
0.895
0.890 675
0.885 650

0.880 625

750 1000 1250 1500 1750 2000 750 1000 1250 1500 1750 2000
Batch size Batch size

(a) Centralized FL. model: Accuracy. (b) Centralized FL model: Training time.

0.92 A
—_— A —— Training Time

\ccuracy 760
0.91 A 740 -
7201

0.90 A
700 -

0.89 A
680 -
0881 660 1
0.87 6401

750 1000 1250 1500 1750 2000 750 1000 1250 1500 1750 2000
Batch size Batch size

(c) Normal P2P FL. model: Accuracy. (d) Normal P2P FL model: Training time.

800 —— Training Time
0.920
0.9151 775
0.910 4 750
0.905 - 725
0.900 -

700
0.895

675
0.890 A

650
0.885 1

750 1000 1250 1500 1750 2000 750 1000 1250 1500 1750 2000

Average accuracy

Batch size Batch size
(e) Clustered P2P FL model: Accuracy. (f) Clustered P2P FL model: Training
time.
0.915 800 —— Training Time
0.910 775
> 0.905 1 750
g 0.9001 725
§ 0.895 1 700
E
0.890 1 675
0.885 - 650
750 1000 1250 1500 1750 2000 750 1000 1250 1500 1750 2000
Batch size Batch size
(g) Hierarchical P2P FL. model: Accuracy. (h) Hierarchical P2P FL model: Training
time.

Figure 5.1: Changing the batch size.

35

General model (IID datasets)

0.90

0.88

0.86

0.78 1

0.76

Average Accuracy
o 4 o
® o ®
3 8 =

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Anomaly percentage

(a) General ML model: Accuracy.

Centralized FL model (IID datasets)

—— Accuracy
0.90 A

0.88

/

D

0.86 -
0.84
0.82 1
0.80

0.78 1

0.76 4 m

0.74 4
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
anomaly_percentage

(c) Centralized FL model: Accuracy.

P2P Normal model (IID datasets)

—— Accuracy
0.90 A

0.88 q

/

0.86
0.84 1
0.82 1
0.80

0.78 1

0.76 1 /M{W\F‘J

0.74 4 T T T T T T T T
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
anomaly_percentage

(e) Normal P2P FL model: Accuracy.

P2P Clustered model (IID datasets)

0.90

0.88 q

0.86

0.84

0.78 1

0.76

Average accuracy
o o
» ®
o N

0.74 4

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.
Anomaly percentage

©

(g) Clustered P2P FL model: Accuracy.

36

General model (IID datasets)

0.925

0.900

0.875

0.850

0.825

Average F1 score

=

0.800

0.775

0.750

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Anomaly percentage

(b) General ML model: F1-score.

Centralized FL model (IID datasets)

0.925

0.900

0.875

0.850

F1 score

0.825

0.800

0.775

0.750

0.725

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Anomaly percentage

(d) Centralized FL. model: F1-score.

P2P Normal model (lID datasets)

0.925

0.900

0.875

0.850

0.825

F1 score

0.800

0.775

0.750

.

0.725 T T T T T T
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Anomaly percentage

(f) Normal P2P FL model: F1-score.

P2P Clustered model (IID datasets)

0.925

0.900

0.875

0.850 -

0.825

Average F1 score

B

0.800 -

0.775 1

0.750 -

0.725

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.
Anomaly percentage

(h) Clustered P2P FL model: F1-score.

©

37

P2P Hierarchical model (IID datasets) P2P Hierarchical model (IID datasets)

0,90 0.925
0.88 | 0.900
0.86 1 0.875
0.78 0.775
0.76 0.750

0.74 4 : . T . T r T r 0.725 - : - . . T . T
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Anomaly percentage Anomaly percentage

(i) Hierarchical P2P FL model: Accuracy. (j) Hierarchical P2P FL model: F1-score.

Average accuracy

o
@

IN]
Average F1 score
o o o
®» © o
S N &
S »n o

0.925

0.900

0.875

0.850

Accuracy
F1 score
o
®
]
G

0.800

—— General ML model
Centralized FL model

—— General ML model
0.775 Centralized FL model

—— Normal P2P FL model —— Normal P2P FL model

0.76 —— Clustered P2P FL model 0.750 —— Clustered P2P FL model
—— Hierarchical P2P FL model —— Hierarchical P2P FL model
0.74 . . . , . 5 . : 0.725
02 03 04 05 06 07 08 09 02 03 04 05 06 07 08 09
Anomaly percentage Anomaly percentage
(k) All models: Accuracy. () All model: F1-score.

Figure 5.2: Changing anomaly percentage.

As shown in Figure 5.2, the maximum accuracy and F1 score values are achieved when the
training anomaly percentage is around 60% in all methods. When the anomaly percentage is
considerably lower, training is not accurate because there are not enough anomalies. When the
anomaly percentage is quite high, normal data captured in the training set is not enough. Hence,
there can be over-fitting, which leads to decreased performance.

5.1.3 Varying the number of training rounds

The main parameter considered in this study is the number of training rounds. All three data
distributions are considered for the simulations, and all the other fixed parameters are shown in
Table 5.3.

For the varying training rounds, the Centralized FL model and the Normal P2P FL model
have similar accuracy and F1 score values, which are illustrated in Figure 5.3 and Figure 5.4.
This is the expected behavior since averaging method used is the same in both models and the
Centralized FL. model can be replaced by the Normal P2P FL. model. In all three distributions,
the accuracy of these two FL models is higher than that of general ML model training after
about 45 training rounds.

After 80 rounds, the accuracy of the Normal P2P FL model is 91.5% in a random data
distribution scenario, which is about 1.1% greater than the General ML model. Similarly, the
accuracy is 90.8% in IID and 90.6% in Non-IID, which are about 0.5% and 0.8% more than in
General ML model, respectively. Considering the Fl-score, in a random data distribution the
value is 93% which is about 1% higher than the General ML model. Moreover, the F1-score is

Accuracy

Table 5.3: Fixed parameters for the simulations with varying training rounds

Parameter Value

Number of trainers 100

Number of clusters 5

Number of epochs 10

Batch size 100

Training sample size 150000

Training anomaly percentage | 60%

Testing sample size 10000

Testing anomaly percentage | 60%

Cluster anomaly proportions | [0.6, 0.5, 0.4, 0.7, 0.6]

0.90 1 S AANAIALACNANE 0.900 1
0.875 1
0.85 - 0.850 1
3 0.825
e
=
0.80 1 $ 0.800
0.775 A
0.75 A 0.750 A
—— General ML model
Centralized FL model 0.725
—— Normal P2P FL model
0.70 -

—— General ML model

Centralized FL model

—— Normal P2P FL model

0 10 20 30 40 50 60 70 80 0 10 20 30 40 50

Number of rounds

Number of rounds

(a) Random datasets. (b) IID datasets.
0.90 -
0.85 A
o
o 0.80
g
0.75
0.70 1 —— General ML model
' Centralized FL model
—— Normal P2P FL model
ll) 1‘0 Zb 3‘0 4‘0 5‘0 6‘0 7‘0 8‘0

Number of rounds

(c) Non-IID datasets.

60 70 80

Figure 5.3: Accuracy vs Number of rounds of Normal P2P FL. model.

38

0.92 4

0.90 A

0.88 4

F1 score

0.86

0.84 A

0.82 1 —— General ML model
—— Centralized FL model
—— Normal P2P FL model

0.80 4

0 10 20 30 40 50 60 70 80
Number of rounds

(a) Random datasets.

0,92 W
0.90 A
0.88 A
o
o
a
= 0.86
0.84 A
—— General ML model
0.82 1 —— Centralized FL model
—— Normal P2P FL model

0 10 20 30 40 50 60 70 80
Number of rounds

(b) IID datasets.

0.92 W
0.90 A
0.88 A
<
é 0.86 A
—
w
0.84 -
0.82 A
—— General ML model
0.80 A —— Centralized FL model
—— Normal P2P FL model

0 10 20 30 40 50 60 70 80
Number of rounds

(c) Non-IID datasets/
Figure 5.4: Fl-score vs Number of rounds of Normal P2P FL. model.

40

92.4% in IID data distribution, which 0.5% higher than the General model, and in Non-IID data
distribution, the gap is about 0.8% with a F1-score of 92.25% in the Normal P2P FL model.

Accuracy

0.90 A

4

©

a
L

o
©
S

0.75 A

0.70 1,

W

—— Normal P2P FL model
—— Clustered P2P FL model
Hierarchical P2P FL model

Accuracy

0

30 40 50 60 70 80
Number of rounds

10 20

—— Normal P2P FL model
—— Clustered P2P FL model
Hierarchical P2P FL model

30 40 50 60 70 80
Number of rounds

0 10 20

(a) Random datasets. (b) IID datasets.

Accuracy

—— Normal P2P FL model
—— Clustered P2P FL model
Hierarchical P2P FL model

30 40 50 60 70 80
Number of rounds

(c) Non-IID datasets.
Figure 5.5: Averaged accuracy vs Number of rounds of SAC based P2P FL methods.

0 10 20

When the three types of SAC-based P2P models are compared, the average accuracy and F1
curves of the Clustered P2P FL. model are similar to the Normal P2P model. As illustrated in
Figure 5.5, the accuracy of the Clustered P2P FL model after 80 rounds is 91.36% in random
data distribution, which is about 0.14% less than the Normal P2P model. In the IID scenario, the
accuracy of the Clustered model is about 91% which is 0.2% higher than the normal model, and
the value is 90.5% in the non-IID data distribution, which is 0.1% lower than the normal model.
Similar behavior can be observed in F1-score as shown in Figure 5.6 where Clustered P2P FL
model has a F1-score of 92.9% in random distribution, 92.65% in IID and 92.17% in Non-IID
data distributions. These fluctuations are due to the randomness of the training process.

However, the Hierarchical P2P FL. model’s overall performance is slightly worse than that of
the Normal and Clustered P2P FL models. It achieves accuracy values of 90.88%, 90.72%, and
89.9% in random, IID, and non-1ID data distributions, respectively. Furthermore, the F1-scores
of this model for the three mentioned data distributions, namely, random, IID, and Non-IID, are
92.58%), 92.41%, and 91.73% respectively, and these values are slightly lower than those of the
Normal and Clustered P2P FL. models. The sub-optimal averaging between the masters could
be a reason for this.

Nevertheless, the clusters have quite similar accuracy and F1 score values in the Hierarchical

0.92 A
0.90 A
0.88 A
L
o
a
—~ 0.86
(')
0.84 A
0.82 1 —— Normal P2P FL model
—— Clustered P2P FL model
0.80 4 Hierarchical P2P FL model
10 20 30 40 50 60 70 80
Number of rounds
(a) Random datasets.
0.9 1 /
0.8
o §
5 0.7
&
-
w
0.6 1
057 —— Normal P2P FL model
—— Clustered P2P FL model
Hierarchical P2P FL model
0I4 A T T T T T T T T
10 20 30 40 50 60 70 80
Number of rounds
(b) IID datasets.
0.9 1 r’
0.8 /
o 0.7
o
&
—
w
0.6 1
0.5 1
—— Normal P2P FL model
—— Clustered P2P FL model
0.4 1 Hierarchical P2P FL model

Figure 5.6: Averaged F1-score vs Number of rounds of SAC based P2P FL methods.

10

20 30 40 50 60 70 80
Number of rounds

(c) Non-IID datasets.

41

—— cluster_0
091071 — cluster 1
— cluster_2
09054 — cluster_3

cluster_4

- 0.900 -
9
e
=1
I~
2 0.895 1
0.890
0.885 A
10 20 30 40 50 60 70 80
Number of rounds
(a) Accuracy in Clustered P2P FL.
0.910
—— cluster_0
—— cluster_1
0.9051 — cluster_2
—— cluster_3
0.9004 — cluster_4
2 0.895
E
S
<

0.890

0.885

0.880

30 40 50 60 70 80
Number of rounds

(c) Accuracy in Hierarchical P2P FL.

0.9275 A

0.9250 A

0.9225 A

Fl-score

0.9150 A

0.9125 A

0.9100 A

0.9200 -

0.9175 A

42

—— cluster_0
—— cluster_1
—— cluster_2
— cluster_3
—— cluster_4

10 20 30 40 50 60 70 80
Number of rounds

(b) F1-score in Clustered P2P FL.

4 —— cluster_0
—— cluster_1
| — cluster_2
— cluster_3
—— cluster_4

10 20 30 40 50 60 70 80
Number of rounds

(d) F1-score in Hierarchical P2P FL.

Figure 5.7: Comparison of Clustered and Hierarchical P2P Fl models with varying Number of
rounds (IID datasets).

43

le7

250000 2.51
n 0
=4 c
2 o
' 200000 A g 2.0
§ 1500001 E s
o 8
: 5
3 2
£ 100000 1 € 1.0
2 5
L2 f=4
g g
g 50000 1 s
I 205

01 T T T T T T T T T
0 10 20 30 40 50 60 70 80 001, ' ' v v v r " T
Number of rounds 0 10 20 30 40 50 60 70 80
Number of rounds
(a) Centralized FL.
(b) Normal P2P FL.
le6 le6

51 5
(%) wn
c c
2 S
L L
=3 =]
£ £
£ £
831 S 34
G bS]
@ @
e} Q
E 24 € 21
f=4 =
0.) 9]
o o
o o
0 1] v 44
E 1 2 1

0 T T T T T T T T T 0 T T T T T T T T T

0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
Number of rounds Number of rounds
(c) Clustered P2P FL. (d) Hierarchical P2P FL.

Figure 5.8: Comparison of Tx communication costs vs Number of rounds.

FL model scenario than in the Clustered FLL model due to parameter averaging between the
clusters, which can be seen in Figure 5.7.

As illustrated in Figure 5.8, the number of transmissions for training gradually rises in
each FL method when the number of rounds increases. However, the total number of Tx
communications in a particular round is significantly high in the Normal P2P FL. model, which
is (number of clients - 1) times more than the Centralized FL. model. For an example, at 80
rounds, total Tx communications in the Normal P2P FL model are 25692480, whereas only
259520 communications were in the Centralized FL model, which is 99 times smaller. This
is due to the SAC method used for averaging, which provides protection against semi-honest
clients. However, Clustered and Hierarchical P2P FL models have about five times lower total
communication costs than the Normal P2P FLL model due to clustering, where the parameter
averaging is performed inside clusters separately.

44

5.2 Performance of Homomophic P2P FL model
5.2.1 Varying the number of training rounds
The performance of the Homomorphic P2P FL. model was observed with a varying number of

training rounds for the IID data distribution with the fixed parameters given in Table 5.4. The
maximum number of rounds was set at 40 due to simulation time constraints.

Table 5.4: Fixed parameters for the simulations with varying training rounds for Homomorphic
P2P FL model

Parameter Value
Number of trainers 100
Number of clusters 5
Number of epochs 10
Batch size 100
Training sample size 150000
Training anomaly percentage | 60%
Testing sample size 10000
Testing anomaly percentage | 60%

A comparison was done with the Centralized FL. method and Normal P2P FL method, as
shown in Figure 5.9. The Homomorphic P2P FL model performs the same as the Centralized
FL and Normal P2P FL. models. However, some degradation of performance can be observed
due to higher precision errors in the averaging process due to encryption and decryption.

Also, both the Normal P2P FLL model and the Homomorphic P2P FL model have the same
total Tx communications cost as illustrated in Figure 5.10.

Moreover, the computation cost is significantly higher in Homomorphic P2P FL. However,
this performance penalty can be neglected because of the additional security it offers in terms
of secure communication and security against semi-honest clients.

When comparing SAC and HE-based average computation, a semi-honest client receives a
partial weight value of an honest client in the SAC-based P2P FL methods. If the actual weight
value is negative, then the partial weight values must be negative, and vice versa. Therefore,
the semi-honest client can reduce the search range by half, unlike the Homomorphic P2P FL
method.

—— Accuracy
0.900 +

0.875 A

0.850

0.825 -

0.800 -

0.775 A

0.750 A

(a) Accuracy vs Number of rounds of the Homo-

15 20 25 30 35 40
Number of rounds

morphic P2P FL. model.

0.900 A

0.875 A

0.850

o o
© ©
S N
S v
L L

Accuracy

0.775 A

0.750 A

0.7254 |

—— Centralized FL model
—— Normal P2P FL model
—— Homomorphic P2P FL model

T T T T T T T
10 15 20 25 30 35 40
Number of rounds

0.92 A

0.90 A

F1 score

o
)
=)

0.84 -

0.82 A

45

o
o
©

5 10 15 20 25 30 35 40
Number of rounds

(b) F1-score vs Number of rounds of the Homo-
morphic P2P FL model..

0.92 A

0.90 A

o
0
©

Fl-score

0.84 A

0.82 -

o
©
o

I —— Centralized FL model
| —— Normal P2P FL model
—— Homomorphic P2P FL model

5 10 15 20 25 30 35 40
Number of rounds

(c) Comparison of Accuracy vs Number of (d) Comparison of Fl-score vs Number of

rounds.

rounds.

Figure 5.9: Homomorphic P2P FL. model performance with varying Number of rounds.

46

250000 -

200000 -

150000 +

100000 +

50000 1

Average number of communications

0 10 20 30 40 50 60 70 80
Number of rounds

(a) Centralized FL.

le7

2.5

2.0

1.5

1.04

0.5 1

Average number of communications

0.0 1

0 10 20 30 40 50 60 70 80
Number of rounds

(b) Normal P2P FL.

le7

1.21

1.01

0.8 4

0.6

0.4 4

Average number of communications

0.2 4

T T T T

T
5 10 15 20 25 30 35 40
Number of rounds

(c) Homomorphic P2P FL.
Figure 5.10: Comparison of Tx communication cost vs Number of rounds of Homomorphic
P2P FL model.

47
6 DISCUSSION

Anomaly detection in O-RAN architecture based on P2P FL is developed in this thesis. Even
though network automation is a somewhat mature field, the O-RAN architecture is the first
to include built-in intelligence for the network automation in RAN. Since O-RAN is a novel
architecture, the automated security algorithms designed for this architecture are still limited.

6.1 Comparison with the state-of-the-art

FL has been utilized in wireless networks, including IoT. As given in [58], most of the IoT
applications use resources such as an aggregator server outside their network architecture.
However, since Al and ML are embedded parts of the O-RAN architecture with RICs and closed
loops, FL solutions can be directly integrated. Some FL-based designs have been implemented
for the O-RAN architecture, but they are not related to security automation. Use of FL for
resource allocation was presented in [37] and FL. DRL-based access control schemes were
proposed in [38].

FL-based anomaly detection studies have been carried out on wireless systems, including
cyber-physical systems [53], 5G heterogeneous networks [52]. Furthermore, due to the massive
distribution, a relatively higher number of architectures are proposed for IoT that use FL for
the detection of anomalies including [51], [15]. In addition, for future networks, a FL-based
hierarchical anomaly detection mechanism for ZSM architecture is provided in [17]. However,
there is limited research about the use of FL for anomaly detection in the O-RAN architecture.

P2P FL is a novel variation of FL that eliminates the use of a central server. Hence it is
suitable in massive deployments such as commercial RAN. The privacy-preserving methods,
namely, Secure Multi-Party Computation (SMC), Homomorphic Encryption (HE) and Differ-
ential Privacy (DP) [41] which are being utilized in centralized FL, can also be used on P2P FL.
In this study, two parameter averaging methods were used: secure average computation, which
is based on SMC, and homomorphic averaging, which is based on HE.

Since P2P FL is a relatively new method, the research about its usability is still ongoing.
Furthermore, the use of P2P FL in O-RAN is still in preliminary phase. This is, to the best of
our knowledge, the first FL-based anomaly detection research related to O-RAN architecture.

6.2 Thesis Objectives

The main objective was to implement a P2P based anomaly detection mechanism for the O-RAN
architecture. A Normal P2P FL. model, a Clustered P2P model, and a Hierarchical clustered P2P
FL model with SAC were proposed to detect anomalies in the O-RAN architecture. Furthermore,
a more secure approach to P2P FL training called Homomorphic P2P FLL model is proposed,
where FHE with secret key sharing is used for average computation. All of these detectors can
be fully integrated in O-RAN with Near-RT RICs at edge clouds, which host the local training.
Also, detectors could be deployed as xApps in the same Near-RT RICs. In addition, proactive
controlling of detected anomalies can be designed within the detection XApp or a separate X App.

The UNSW-NB15 networking dataset was used for the simulation of the mentioned models,
and the accuracy and F1-score were measured to evaluate the performance. First, it was observed
that the performance would decrease when the batch size of the local training was increased.
However, since the batch size has an effect on the training time, a balanced approach has to be
taken; hence, 100 was selected as the fixed batch size for the simulations. Furthermore, the

48

training anomaly percentage was varied to observe its effects. The accuracy and F1-scores were
significantly lower in smaller anomaly percentages and also quite high anomlay percentages
resulted relatively lower performance. The performance was at its best when the percentage was
around 60%, hence it was selected as the fixed anomaly percentage for the remaining simulations.

It can be observed from the results that the Normal P2P FL model has quite similar accuracy
to the Centralized P2P FL model, which is the expected result of replacing the centralized model
with a distributed P2P model. Also, normal P2P FL performs better after a certain number
of training rounds, depending on the other parameters mentioned in Table 5.3. This achieves
a maximum accuracy of 91.5% after 80 rounds. Considering SAC-based P2P FL models, the
Clustered model’s performance is quite close to the Normal P2P model; however, individual
cluster performance may be slightly varied. The Hierarchical P2P FL model performs a little
worse than the other two P2P models, and this might be improved by optimizing the parameter
averaging method of master trainers. Moreover, the individual cluster models of Hierarchical
P2P FL model have significant similarities to those of the Clustered P2P FL model.

The Homomorphic P2P FL model has accuracy and F1-scores close to the Normal P2P FL
and Centralized FL models, even though there are some fluctuations due to precision errors.
Because all of the proposed models achieved accuracy of around 90% and F1 scores of around
92% , the proposed solutions meet the expectations.

All the P2P FL models have higher communication costs than the Centralized FL. model due
to the additional steps used for parameter averaging in SAC as well as homomorphic encryption.
However, it can be justified by the increased security against semi-honest clients.

6.3 Future Research

In future research, it is expected that the proposed models’ performance can be improved by
changing the structure of the MLP model with a different number of hidden layers and adjusting
the parameters such as the learning rate. Furthermore, the different types of averaging methods
could be tested to select the best option to achieve the highest performance.

Moreover, the simple neural network can be replaced by advanced models such as CNN
or RNN. These can considerably improve the anomaly detection capabilities of the system.
Besides those, federated reinforcement learning can be used for model training, which provides
the possibility of online training, which has a significant advantage in a highly changing system
like O-RAN.

Another research approach that can be considered is the integration of the anomaly detection
models with Explainable Al (XAI) [59] which would be helpful for network operators to identify
the causes of the relevant anomalies. This would improve preventive actions and achieve higher
performance.

A single dataset, UNSW-NB15, is used for all the training and testing of the models. The
proposed solution is for 5G and future networks. The wireless networking datasets that can be
used for ML training are limited and rarely publicly available. Hence, generating a publicly
available dataset that is intended for ML research on 5G and B5G networks would be another
research approach. Besides, the purposed solution can be significantly improved by using a
dataset that specifically includes RAN data.

As mentioned in the literature, there are several risks associated with Al, and using Al for
RAN will result in several threats. Hence, adapting the best practices and remediation for general
and specific threats would be taken into consideration in future research. Furthermore, current
simulations were performed considering ideal network systems and environments. Therefore,
it is expected to simulate different sub-optimal scenarios in training, such as offline trainers,

49

communication link failures, and semi-honest trainers.

There are several research going on about deploying proposed solution for O-RAN in testing
environments and there are some frameworks already available for O-RAN testing like the one
mentioned in [60] and [40]. Therefore, implementing the models purposed in this study in one of
these O-RAN frameworks, which will eventually lead to deployment in a proof of concept (POC)
would be the final expectation.

50
7 CONCLUSION

In 5G and future networks, the networks are becoming more complex with diverse requirements.
The traditional monolithic RAN architectures are too inefficient to cater to these ever-growing
requirements and services. There have been several solutions proposed, such as C-RAN and
VvRAN, to improve the RAN’s performance as well as reduce its costs. However, these methods
have not solved the major issue of vendor lock-in. The O-RAN alliance proposed a brand-new
architecture called O-RAN, which defined standardized open interfaces.

Another major design introduced by the O-RAN architecture was RICs, which allows the
deployment of AI/ML processes at the RAN. There are two RICs namely Non-RT RIC and Near-
RT RIC in this architecture. Furthermore, it provides cloudification, which allows different
kinds of deployments of the architecture based on the network operators requirements. In
addition to those, network operators can onboard additional third-party applications to perform
non-conventional tasks via micro-services called xApps and rApps, which are hosted by Near-
RT RIC and Non-RT RIC, respectively. Security threats to the O-RAN architecture include
those resulting from increased threat surfaces such as open interfaces, cloudification, additional
functions, and Al and ML. Potential attacks can be O-RAN specific or more general, such as
DoS.

Network automation has become a necessary requirement in 5G and B5G. The O-RAN
architecture is defined in such a way that the automation is inherited. RICs with near-real-time,
non-real-time, and real-time (future research) closed loops and customized xApps and rApps
can be utilized to achieve different levels of network automation. Security of the RAN can be
significantly improved by automation, and proactive protection against attack can be achieved
by the use of Al and closed loops.

A relatively recent component of ML called FL offers additional benefits including greater
anonymity. In FL, only the model weights/gradients are transmitted to a central location
after models have been trained at end devices using locally accessible data where an aggregator
residing in the central site calculates an optimal weight value according to a predefined algorithm.
Then these average values are transmitted back to the end devices and used as new weights for
the training. There are vulnerabilities in FL that can cause attacks, but several preventive
mechanisms have already been proposed.

P2P FL is arather new variation of FL where the need for a centralized server is removed. The
local trainers directly communicate with each other for the averaging of the model weights to
achieve the same results as centralized FL. In a complex system like RAN, P2P FL is preferred
because it removes the single point of failure and increases anonymity. There are different
ways to perform P2P averaging, including differential privacy, Multi-party computation, and
homomorphic encryption.

In the proposed solution for anomaly detection, four different types of anomaly detection
P2P FL models are designed. In Normal P2P FL model each local trainer communicates with
every other for the weight averaging. However, in some practical deployments, this would
be sub-optimal, hence a Clustered P2P FL model is proposed where only the trainers in the
cluster communicate with each other. The third model, called the Hierarchical P2P FL model,
is in the middle of the previous two models, where a master is selected from each cluster, and
these masters perform P2P averaging after a certain number of rounds in addition to the within
cluster averaging. This increases the possibility of similar models in each cluster. In all three
models mentioned above, a secure average is calculated based on multi-party communication,
which provides protection against semi-honest clients. Finally, a Homomorphic P2P FL model
that uses homomorphic encryption based averaging is designed. This model provides secure
communication due to encryption in addition to the security against semi-honest clients.

51

The simulations were carried out using the Python scripting language and TensorFlow li-
braries. The UNSW-NB15 dataset was used for model training and testing. The performance of
the SAC-based model was observed by simulating varying batch sizes, anomaly percentages of
the dataset, and the number of training rounds. Different data distributions, namely random, IID,
and non-IID, were considered. The performance of the Homomorphic P2P FL. model was tested
by varying the number of rounds. Moreover, a general ML model and a centralized FL. model
were used for comparison purposes. Accuracy and F1-score were the parameters considered for
the performance comparison.

According to the findings, the Normal P2P FL. model has similar performance to the central-
ized FL model and achieves higher accuracy than the general FL. model after a certain number
of training rounds, which depend on other parameters. The Clustered P2P FL model also
performed similarly to the Normal P2P FL. model, while Hierarchical model’s performance is
slightly worse. Furthermore, the Homomorphic P2P FLL model had quite similar accuracy and
F1-score curves as compared with Normal P2P FLL model. Overall, all the models achieved
accuracies around 90 percent and F1-score values around 92 percent.

Hence, the proposed model can be utilized for detecting anomalies successfully. The closed
loop control in O-RAN with RICs and additional xApps providing control actions for detected
anomalies can be used to ensure O-RAN is protected from unprecedented attacks. In future
networks where O-RAN is part of the architecture, these models would be able to be directly
deployed as a part of large Al-based network automation processes.

[1]

(2]

[3]

[9]

[10]

[11]

[12]

[13]

[14]

52

8 BIBLIOGRAPHY

Arnaz A., Lipman J., Abolhasan M. & Hiltunen M. (2022) Toward integrating intelligence

and programmability in open radio access networks: A comprehensive survey. IEEE
Access 10, pp. 67747-67770.

Salameh A.l. & El Tarhuni M. (2022) From 5g to 6g—challenges, technologies, and
applications. Future Internet 14, pp. 117.

Ahmad 1., Shahabuddin S., Kumar T., Okwuibe J., Gurtov A. & Ylianttila M. (2019)
Security for 5g and beyond. IEEE Communications Surveys & Tutorials 21, pp. 3682—
3722.

Mimran D., Bitton R., Kfir Y., Klevansky E., Brodt O., Lehmann H., Elovici Y. & Shabtai
A. (2022) Security of open radio access networks. Computers & Security 122, pp. 102890.

Brik B., Boutiba K. & Ksentini A. (2022) Deep learning for bSg open radio access network:
Evolution, survey, case studies, and challenges. IEEE Open Journal of the Communications
Society 3, pp. 228-250.

O-RAN ALLIANCE O-ran: Towards an open and smart ran White paper, 2018.

Yuan Y., Yang J., Duan R., Chih-Lin I. & Huang J. (2020) Anomaly detection and root
cause analysis enabled by artificial intelligence. In: 2020 IEEE Globecom Workshops (GC
Wkshps, pp. 1-6.

LiuY., Yuan X., Xiong Z., Kang J., Wang X. & Niyato D. (sep 2020) Federated learning for
6g communications: Challenges, methods, and future directions. China Communications
17, pp. 105-118.

Masur P.H., Reed J.H. & Tripathi N.K. (2022) Artificial intelligence in open-radio access
network. IEEE Aerospace and Electronic Systems Magazine 37, pp. 6—15.

O-RAN ALLIANCE O-ran security threat modeling and remediation analysis O-
RAN.SFG.Threat-Model-v02.01, 2022.

Moustafa N. & Slay J. (2015) Unsw-nb15: a comprehensive data set for network intrusion
detection systems (unsw-nb15 network data set). In: 2015 Military Communications and
Information Systems Conference (MilCIS), pp. 1-6.

Wink T. & Nochta Z. (2021) An approach for peer-to-peer federated learning. In: 2021
51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks
Workshops (DSN-W), pp. 150-157.

Kairouz P., McMahan H.B., Avent B., Bellet A., Bennis M., Bhagoji A.N., Bonawitz
K., Charles Z., Cormode G., Cummings R. et al. (2021) Advances and open problems in
federated learning. Foundations and Trends® in Machine Learning 14, pp. 1-210.

McMahan B., Moore E., Ramage D., Hampson S. & Arcas B.A.y. (20-22 Apr 2017)
Communication-Efficient Learning of Deep Networks from Decentralized Data. In: Singh
A. & Zhu J., editors, Proceedings of the 20th International Conference on Artificial Intel-

ligence and Statistics, PMLR, volume 54 of Proceedings of Machine Learning Research,
pp. 1273-1282.

53

[15] Nguyen T.D., Marchal S., Miettinen M., Fereidooni H., Asokan N. & Sadeghi A.R. (2019)
DIot: A federated self-learning anomaly detection system for iot. In: 2019 IEEE 39th
International Conference on Distributed Computing Systems (ICDCS), pp. 756-767.

[16] Liu Y., Kumar N., Xiong Z., Lim W.Y.B., Kang J. & Niyato D. (2020) Communication-
efficient federated learning for anomaly detection in industrial internet of things. In:
GLOBECOM 2020 - 2020 IEEE Global Communications Conference, pp. 1-6.

[17] Jayasinghe S., Siriwardhana Y., Porambage P., Liyanage M. & Ylianttila M. (2022) Fed-
erated learning based anomaly detection as an enabler for securing network and service
management automation in beyond 5g networks. In: 2022 Joint European Conference on
Networks and Communications & 6G Summit (EuCNC/6G Summit), pp. 345-350.

[18] Polese M., Bonati L., D’Oro S., Basagni S. & Melodia T. (2022) Understanding o-ran:
Architecture, interfaces, algorithms, security, and research challenges. arXiv preprint
arXiv:2202.01032 .

[19] What is openran. https://www. juniper.net/us/en/research-topics/
what-is-open-ran.html.

[20] O-RAN ALLIANCE O-ran architecture description O-RAN.WG1.0-RAN-Architecture-
Description-v06.00, 2022.

[21] WypiLér D., Klinkowski M. & Michalski I. (2022) Open ran—radio access network
evolution, benefits and market trends. Applied Sciences 12.

[22] O-RAN ALLIANCE O-ran use cases and deployment scenarios ORAN. WG6.CAD-
v02.01, 2020.

[23] Garcia-Saavedra A. & Costa-Pérez X. (2021) O-ran: Disrupting the virtualized ran ecosys-
tem. IEEE Communications Standards Magazine 5, pp. 96—103.

[24] Niknam S., Dhillon H.S. & Reed J.H. (2020) Federated learning for wireless communi-
cations: Motivation, opportunities, and challenges. IEEE Communications Magazine 58,
pp- 46-51.

[25] Nishio T. & Yonetani R. (2019) Client selection for federated learning with heteroge-
neous resources in mobile edge. In: ICC 2019-2019 IEEE international conference on
communications (ICC), IEEE, pp. 1-7.

[26] Abiodun O.I., Jantan A., Omolara A.E., Dada K.V., Mohamed N.A. & Arshad H. (2018)
State-of-the-art in artificial neural network applications: A survey. Heliyon 4, pp. e00938.

[27] O-RAN ALLIANCE Ai/ml workflow description and requirements O-RAN.WG2.AIML-
v01.03, 2021.

[28] Bhagoji A.N., Chakraborty S., Mittal P. & Calo S. (2019) Analyzing federated learning
through an adversarial lens. In: International Conference on Machine Learning, PMLR,
pp. 634-643.

[29] Melis L., Song C., De Cristofaro E. & Shmatikov V. (2019) Exploiting unintended feature
leakage in collaborative learning. In: 2019 IEEE Symposium on Security and Privacy (SP),
pp- 691-706.

54

[30] Xie C., Koyejo S. & Gupta I. (2019) Asynchronous federated optimization. arXiv preprint
arXiv:1903.03934 .

[31] Chai Z., Chen Y., Zhao L., Cheng Y. & Rangwala H. (2020) Fedat: A communication-
efficient federated learning method with asynchronous tiers under non-iid data. ArXivorg

[32] Chen Y., Ning Y., Slawski M. & Rangwala H. (2020) Asynchronous online federated
learning for edge devices with non-iid data. In: 2020 IEEE International Conference on
Big Data (Big Data), IEEE, pp. 15-24.

[33] ShiY., Yang K., Jiang T., Zhang J. & Letaief K.B. (2020) Communication-efficient edge ai:
Algorithms and systems. IEEE Communications Surveys & Tutorials 22, pp. 2167-2191.

[34] Lin Y., Han S., Mao H., Wang Y. & Dally W.J. (2017) Deep gradient compres-
sion: Reducing the communication bandwidth for distributed training. arXiv preprint
arXiv:1712.01887 .

[35] Liu Y., Peng J., Kang J., Iliyasu A.M., Niyato D. & Abd El-Latif A.A. (2020) A secure
federated learning framework for 5g networks. IEEE Wireless Communications 27, pp. 24—
31.

[36] Cao T.D., Truong-Huu T., Tran H. & Tran K. (2020) A federated learning framework for
privacy-preserving and parallel training. arXiv preprint arXiv:2001.09782 .

[37] Singh A.K. & Khoa Nguyen K. (2022) Joint selection of local trainers and resource
allocation for federated learning in open ran intelligent controllers. In: 2022 IEEE Wireless
Communications and Networking Conference (WCNC), pp. 1874—1879.

[38] Cao Y., Lien S.Y., Liang Y.C., Chen K.C. & Shen X. (2021) User access control in
open radio access networks: A federated deep reinforcement learning approach. IEEE
Transactions on Wireless Communications .

[39] Erdol H., Wang X., Li P, Thomas J.D., Piechocki R., Oikonomou G., Inacio R., Ahmad
A., Briggs K. & Kapoor S. (2022) Federated meta-learning for traffic steering in o-ran.
arXiv preprint arXiv:2209.05874 .

[40] Polese M., Bonati L., D’Oro S., Basagni S. & Melodia T. (2022) Colo-ran: Developing
machine learning-based xapps for open ran closed-loop control on programmable experi-
mental platforms. IEEE Transactions on Mobile Computing .

[41] Liu X., Li H., Xu G., Lu R. & He M. (2020) Adaptive privacy-preserving federated
learning. Peer-to-Peer Networking and Applications 13, pp. 2356-2366.

[42] Young T., Hazarika D., Poria S. & Cambria E. (2018) Recent trends in deep learning based
natural language processing. ieee Computational intelligenCe magazine 13, pp. 55-75.

[43] Aono Y., Hayashi T., Wang L., Moriai S. et al. (2017) Privacy-preserving deep learning
via additively homomorphic encryption. IEEE Transactions on Information Forensics and
Security 13, pp. 1333-1345.

[44] Geyer R.C., Klein T. & Nabi M. (2017) Differentially private federated learning: A client
level perspective. arXiv preprint arXiv:1712.07557 .

55

[45] Turina V., Zhang Z., Esposito F. & Matta I. (2020) Combining split and federated architec-
tures for efficiency and privacy in deep learning. In: Proceedings of the 16th International
Conference on emerging Networking EXperiments and Technologies, pp. 562-563.

[46] Roy A.G., Siddiqui S., Polsterl S., Navab N. & Wachinger C. (2019) Braintorrent: A peer-
to-peer environment for decentralized federated learning. arXiv preprint arXiv:1905.06731

[47] Lopez-Alt A., Tromer E. & Vaikuntanathan V. (2012) On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: Proceedings of the forty-
Sfourth annual ACM symposium on Theory of computing, pp. 1219-1234.

[48] Damgéard 1., Pastro V., Smart N. & Zakarias S. (2012) Multiparty computation from
somewhat homomorphic encryption. In: Annual Cryptology Conference, Springer, pp.
643-662.

[49] Cramer R., Damgérd I. & Nielsen J.B. (2001) Multiparty computation from threshold
homomorphic encryption. In: International conference on the theory and applications of
cryptographic techniques, Springer, pp. 280-300.

[50] Maimé6 L.F., Gémez A.L.P, Clemente FJ.G., Pérez M.G. & Pérez G.M. (2018) A self-
adaptive deep learning-based system for anomaly detection in 5g networks. Ieee Access 6,
pp- 7700-7712.

[51] Yadav K., Gupta B., Hsu C.H. & Chui K.T. (2021) Unsupervised federated learning based
1ot intrusion detection. In: 2021 IEEE 10th Global Conference on Consumer Electronics
(GCCE), pp. 298-301.

[52] Wei Y., Zhou S., Leng S., Maharjan S. & Zhang Y. (2021) Federated learning empowered
end-edge-cloud cooperation for 5g hetnet security. IEEE Network 35, pp. 88-94.

[53] LiB.,WuY., SongJ.,LuR., LiT. & Zhao L. (2021) Deepfed: Federated deep learning for
intrusion detection in industrial cyber—physical systems. IEEE Transactions on Industrial
Informatics 17, pp. 5615-5624.

[54] Karnwal D., Anomaly detection use case. https://wiki.o-ran-sc.org/display/
RICP/Anomaly+Detection+Use+Case, Accessed: 2022-06-25.

[55] Arthur D. & Vassilvitskii S. (2006) k-means++: The advantages of careful seeding. Tech-
nical report, Stanford.

[56] Technical details about puhti. https://docs.csc.fi/computing/systems-puhti.

[57] Hamid Y., Balasaraswathi V.R., Journaux L. & Sugumaran M. (2018) Benchmark datasets
for network intrusion detection: A review. Int. J. Netw. Secur. 20, pp. 645-654.

[58] Ferrag M.A., Friha O., Maglaras L., Janicke H. & Shu L. (2021) Federated deep learning
for cyber security in the internet of things: Concepts, applications, and experimental
analysis. IEEE Access 9, pp. 138509—-138542.

[59] Huong T.T., Bac T.P.,, Ha K.N., Hoang N.V., Hoang N.X., Hung N.T. & Tran K.P. (2022)
Federated learning-based explainable anomaly detection for industrial control systems.
IEEE Access 10, pp. 53854-53872.

56

[60] Bonati L., Polese M., D’Oro S., Basagni S. & Melodia T. (April 2022) OpenRAN Gym:
An Open Toolbox for Data Collection and Experimentation with Al in O-RAN. In: Proc.
of IEEE WCNC Workshop on Open RAN Architecture for 5G Evolution and 6G, Austin,
TX, USA.

Appendix 1
Appendix 2
Appendix 3
Appendix 4
Appendix 5
Appendix 6
Appendix 7
Appendix 8
Appendix 9
Appendix 10
Appendix 11
Appendix 12
Appendix 13
Appendix 14
Appendix 15

57
9 APPENDICES

Used Libraries in the simulations

Code for K-means clustering of the clients

Code for selection of Masters for Hierarchical P2P FL
Code for Formatting the dataset

Code for test dataset creation

Code for Random dataset creation

Code for IID dataset creation

Code for Non-IID dataset creation

Code for MLP model definition

Code for initial Model training

Code for weight averaging in Normal P2P FLL model
Code for weight averaging in Clustered P2P FL model
Code for weight averaging in Hierarchical P2P FLL model
Code for weight averaging in Homomorphic P2P FL model
Model prediction functions

Appendix 1 Used Libraries in the simulations

import numpy as np
import pandas as pd

import tensorflow as tf
from tensorflow.keras import layers
from tensorflow.keras import backend as K

tf.get logger().setlevel{logging.FATAL)
from category_encoders import TargetEncoder

from sklearn.model selection import train_test split
from sklzarn.preprocessing import StandardScaler
np.set_printoptions(precision=3, suppress=True)

from sklearn.preprocessing import MinMaxScaler

from sklzarn.cluster import KMeans

from IPython.display import display
import matplotlib.pyplot as plt
import seaborn as sns

import csv
import random
import pickle

import nest_asyncio
nest_asyncio.apply()

from typing import List, Tuple
import random
import collections

import time
from datetime import timedelta

import math
import copy

from sklzarn.metrics import accuracy_score
from sklzarn.metrics import precision_score
from sklearn.metrics import recall score
from sklsarn.metrics import f1_score

from multiprocessing import Pool, Manager, freeze_support
from functools import partial
from itertools import repeat

58

Appendix 2 Code for K-means clustering of the clients

Randomize Locations of the clients

location_list = []

for user in range({MUM_CLIENTS):
location_list.append([random.randint(l,588),random.randint{1,5688)]}

gnb_loc = pd.DataFrame(location_list, columns=["x",'y"'])

gnb_loc 1s = gnb loc.to_numpy()

dist_dic = {}

for index in range(MUM_CLIENTS):
client name = "client " + str{index)
tmp 1s = []
for itr in range(HUM _CLIENTS):
tmp_ls.append(np.linalg.norm{gnb_loc_ ls[index,:]-gnb_loc ls[itr,:]))
dist dic[client _name] = tmp_ls

K-means clustering
kmeans = KMeans({n_clusters=NUM_CLUSTERS)
kmeans.fit{gnb_loc[[=", v 11}

cluster_centroids = kmeans.cluster_centers_
cluster_labels = kmeans.labels_

print("\n")

print{f'cluster_centroids : {cluster_centroids}')
print("\n")
print{f'cluster_labels{cluster_labsls}")

59

60

Appendix 3 Code for selection of Masters for Hierarchical P2P FL

resource dic = {}

for index in range(NUM_CLIENTS):
client _name = "client " + str{index)
resource_dic[client name] = random.uniform(@., 188.)

resource lead = {}
resource lead mod = {}
cluster weights avg =
len avg = @

i

for cluster in range(HUM_CLUSTERS):
cluster _name = "cluster_ " + str{cluster)
len_avg += len({client_clusters[cluster])
tmp val = @
for index in range(len{client clusters[cluster])):
client_name = "client_" + str{client_clusters[cluster][index])
model name = "model " + str{client clusters[cluster][index])

if resource_dic[client_name] » tmp_val:
tmp wval = resource dic[client name]
resource lead[cluster_name] = client_name
resource_lead_mod[cluster_name] = model_name

for cluster in range(HUM_CLUSTERS):
cluster_name = "cluster_" + str{cluster)
cluster weights avg[cluster _name] = len{client clusters[cluster])/len_avg

Appendix 4 Code for Formatting the dataset

Drop id as it is not relevant
data.drop{columns=["1d"'], axis=1, inplace=True)

Drop attack _cat as it is not relevant

data.drop(['attack _cat’'], axis=1, inplace=True)

¥=data.iloc[:,:-1]
y=data.iloc[:,-1]

Convert to cetegorical columns
categorical cols = ["proto”,

"sepvice",
"state"]
encoder = TargetEncoder()
encoded = encoder.fit_transform(X[categorical _cols],y)

Update data with new columns
X.drop(categorical cols, axis=1, inplace=True)
¥ = pd.concat([encoded, X], axis=1)

Normalize the data
scaler = MinMaxScaler()
¥_array = scaler.fit_transform{X)

X = pd.DataFrame(X_array, columns=X.columns)

61

62

Appendix 5 Code for test dataset creation

def create_test data_set(number_of test data, Anomaly data_ratio):
¥ _test=[]
y_test =[]
Mumber of Anomaly data rows = round({number of test data*Anomaly data ratio)
Mumber_of MNormal data_rows = number_of test data - Humber_of_Anomaly data_ rows
Anomaly index = random.sample(Total anomalies,MNumber of Anomaly data rows)
Mormal index = Pandcm.sample{TDtal_ncrmal_Flow,Number_oF_Hurmal_data_ersﬂ

index list= list(range(8,Full dataset_len))
index list = list(set(index list)-set{Anomaly index)-set(Mormal index))

for i in Anomaly index:
m=Data_set[i].tolist()
X_test.append(m)
y_test.append(Label[i])

for i in Normal index:
m=Data_set[i].tolist()
X_test.append(m)
y_test.append(Label[i])

return X_test, y test, index list

Appendix 6 Code for Random dataset creation

def create_data_sets_random({num_of_data, Anomaly_data_ratio):
X_train=[]
y_train =[]

Number_of_Anomaly_data_rows = math.fleoor(num_of_data*Anomaly_data_ratio)

Number_of_ Normal_data_rows = num_of_data - Number_of_Anomaly_data_rows
anomaly_index = random.sample({fvailable anomaly_indexes,Number_of_Anomaly data_rows)
Normal_index = random.sample(Available_normal_indexes,Number_of_Normal_data_rows)

for i in Anomaly_index:
m=Data_set[i].tolist()
X_train.append(m)
y_train.append(Label[i])

for i in Normal_index:
m=Data_set[i].tolist()
X_train.append(m)
y_train.append(Label[i])

idx list= list(range(8,len(X_train)))

NUM_CLIENTS list= list(range(@,NUM_CLIENTS))
sample_size=len(X_train)//NUM_CLIENTS
client_train_dataset_random = collections.OrderedDict()

f = pd.DataFrams(
X't X_train,
y': y_train,

for index in range(NUM_CLIENTS):
client_name = "client_" + str(index)
client_data_ind = random.sample(idx_list,sample_size)
idx_list = list(set(idx_list)-set(client_data_ind))

user_df = pd.DataFrame{comb_df.loc[client _data_ind,:])
user_df = user_df.sample(frac = 1)

user_X = user_df['X'].to_numpy()

new_dict =np.asarray([user_X[y] for y in range{len(user_X))]1)

user_y = user_df['y"].to_numpy()

new_dict_label = np.asarray([user_y[y] for y in range(len({user_y))1)

client_train_dataset_random[client_name] =collections.OrderedDict((('y', new_dict_ label),
("%, new_dict)))

return client_train_dataset_random

Appendix 7 Code for IID dataset creation

def create_data_sets_IID(num_of_data, Anomaly data_ratio):
X_train=[]
y_train =[]

Number_of_Anomaly data_rows = math.floor(num_of_data®Anomaly data_ratio)

Number_of MNormal_data_rows = num_of_data - Number_of_Anomaly data_rows
Anomaly_index = random.sample{Available_anomaly_indexes,Number_of_Anomaly_data_rows)
Normal_index = random.sample(Available_normal_indexes,Number_of_Normal_data_rows)

for i in Anomaly_index:
m=Data_set[i].tolist()
X_train.append(m)
y_train.append(Labell[i])

for i in Normal_index:
m=Data_set[i].tolist()
X_train.append(m)
y_train.append(Label[i])

f = pd.DataFrame(
X' X_train,
y': y_train,

normal_idx list = comb_df.index[comb_df['y']

==8].to_list()
malicious_idx_ list = comb_df.index[comb_df['y']=

=1].to_list()

NUM_CLIENTS list= list(range(@,NUM_CLIENTS))
sample_size=len(X_train)//NUM_CLIENTS
client_train_dataset_IID = collections.OrderedDict()

for user in range(NUM_CLIENTS):
#get the subset of data for client from database
#get normal dataset iid
client_name = "client_" + str{user)
normal_data_idx = random.sample(normal_idx_list,
math.floor{sample_size*{1-anomaly_percantage)))
normal_idx_list = list(set(normal_idx_list)-set(normal_data_idx))
normal_df = pd.DataFrame(comb_df.loc[normal_data_idx,:])
#get malicious dataset iid
malicious_data_idx = random.sample({malicious_idx_list,
math.floor{sample_size*anomaly_percentage))
malicious_idx_list = list(set(malicious_idx_list)-set(malicious_data_idx))
malicious_df = pd.DataFrame(comb_df.loc[malicious_data_idx,:])
#combine malicious and normal datasets
user_df = pd.concat({[normal_df, malicious_df])
user_df = user_df.sample(frac = 1)

user_X = user_df['X'].to_numpy()

new_dict =np.asarray([user_X[y] for y in range(len(user_X))1)

user_y = user_df['y"'].to_numpy()

new_dict label = np.asarray([user_y[y] for y in range(lenf{user_y))}])

client_train_dataset_IID[client_name] =collections.OrderedDict(({({'y", new_dict_label},
("x", new_dict)))

return client_train_dataset_IID

65

Appendix 8 Code for Non-IID dataset creation

def create_data_sets_non_IID(num_of_data, cluster_anomaly_list):
sample_size = num_of_data//NUM_CLIENTS

non_IID_anomaly_rows = @
non_IID_normal_rows = @
cluster_anomaly_percentage = {}

for cluster in range(NUM_CLUSTERS):
cluster_name = 'cluster_' + str{cluster)
cluster_anomaly_percentage[cluster_name] = cluster_anomaly list[cluster]
non_IID_anomaly_rows += cluster_anomaly list[cluster]*len(client_clusters[cluster])*sample_size
non_IID_normal_rows += (1 - cluster_anomaly_list[cluster])*len(client_clusters[cluster])*sample_size

print(f'Total Anomaly data needed :{non_IID_anomaly_rows}')
print(f'Total Mormal data needed :{nmon_IID normal_rows}')

if int({non_IID_anomaly_rows)> len{Available_anomaly_indexes):
print("Error : Number of required anomalies is larger than available anomalies™)
return

if int{non_IID_normal_rows)>len{Available_normal_indexes):
print("Error : Number of required normal flow is larger than available noraml flows™)
return

comb_df = pd.DataFrame(
{'X': Data_set.tolist(),
'y': Label.tolist(),

1)

client_train_dataset_non_IID = collections.OrderedDict()

normal_idx_list = Available_normal_indexes.copy()
malicious_idx_list = Available_anomaly_indexes.copy()

for cluster in range(NUM_CLUSTERS):
cluster_name = 'cluster_' + str{cluster)
cluster_anomaly = cluster_anomaly_percentage[cluster_name]

for index in range(len{client_clusters[cluster])):
client_name = "client_" + str(client_clusters[cluster][index])
normal_data_idx = random.sample(normal_idx_list,math.floor(sample_size*(1-cluster_anomaly)))
normal_idx_list = list(set(normal_idx_list)-set(normal_data_idx))
normal_df = pd.DataFrame(comb_df.loc[normal_data_idx,:]1)

#get malicious dataset iid

malicious_data_idx = random.sample(malicious_idx_list,math.floor(sample_size*cluster_anomaly))
malicious_idx_list = list(set(malicious_idx_list)-set(malicious_data_idx})

malicious_df = pd.DataFrame(comb_df.loc[malicious_data_idx,:])

#combine malicious and normal datasets

user_df = pd.concat([normal_df, malicious_df])

user_df = user_df.sample(frac = 1)

user_X = user_df['X'].to_numpy()

new_dict =np.asarray([user_X[y] for y in range(len(user_X)}])

user_y = user_df['y'].to_numpy()

new_dict_label = np.asarray([user_y[y] for y in range(len(user_y))])

client_train_dataset_non_IID[client_name] =collections.OrderedDict({('y", new_dict_label)
, ("x7, new_dict)))

return client_train_dataset_non_IID, cluster_anomaly percentage

66

Appendix 9 Code for MLP model definition

def create_keras_model():

return tf.keras.
tf.keras.layers.
tf.keras.layers.
tf.keras.layers.
tf.keras.layers.
tf.keras.layers.

D

Appendix 10

models.Sequential([
InputLayer(input_shape=(42,)}),
Dense(38,activation="relu"},
Dense(1@,activation="relu"),
Dense(2),

Softmax(),

Code for initial Model training

def init_model train(index, multi_prev_dic, client_train_dataset, MNUM_EPOCHS, BATCH_SIZE):

model name = "model " + str{index)

client_name = '

‘client_

+ str{index)

init_model = create_karas_model()

optim = tf.keras.optimizers.Adam(learning_rate=alpha)
init_model.compile(optimizer=optim,loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),

metrics=["accuracy'])

init_model.fit(client_train_dataset[client_name][x'], client_train_dataset[client_name]['yv'],

temp_ls = []

epochs=NUM_EPOCHS, batch_size=BATCH_SIZE,verbose=2)

for layer in range(len(init_model.layers)-1)
temp_ls.append([init_model.layers[layer].get_weights()[@], init_model.layers[layer].get_weights{)[1]])

multi_prev_dic[model_name] = np.array(temp_ls, dtype=ocbject)

tf.keras.backend.clear_session()

init_start_time = time.time()
print(f'Inital training")
with Manager() as manager:

multi_prev_dic

= manager.dict()

multi_model_dic = manager.dict()

pool = Pool()

pool.starmap(init_model_train, zip(range(NUM_CLIENTS), repeat(multi_prev_dic),

pool.close()
pool.join()
stop_time =

repeat(client_train_dataset), repeat(NUM_EPOCHS), repeat(BATCH_SIZE)))

time.time()

prev_dic = multi_prev_dic.copy()

init_elap time = time.time() - init_start_time

Appendix 11 Code for weight averaging in Normal P2P FL. model

HERRER AR EERE Split the parameters according to random ratios #FREFHHHRRETHIRRREH
sp_time = time.time()

split_dict = {}

for index in range(NUM_CLIENTS):
model_name = "model " + str{index)

split_dict[model_name] = []

for layer in range(len(dim_list))
layer_list = []
for itrl in rangs(2):
if itrl ==
split_arr = np.multiply.outer(prev_dic[model_name][layer][itrl],avg_array[index,:])

else:
split_arr = np.multiply.outer(prev_dic[model_name][layer][itrl],avg_array[index,:])

layer_list.append(split_arr)

split_dict[model_name].append(layer_list)
split_dict[model_name] = np.array(split_dict[model_name], dtype=object)

SHERHHRRE SRR AR AR R tEREEEE Calculating partitol sums ##EEsssiist s RnintesaEsnsy
calc_time = time.time()

calc_dic = {}

for index in range(NUM_CLIENTS):
model_name = "model " + str(index)

calc_dic[model_name] = [[] for layer in range(len(dim_list))]

comm_count = @

for layer in range(len(dim_list)):
for itrl in range(2):
if itrl ==
sum_calc = np.zeros([dim_list[layer][itr1][@],
dim_list[layer][itr1][1]], dtype= float)

for user in range(NUM_CLIENTS):
temp_name = "model_" + str(user)
sum_calc = sum_calc + split_dict[temp_name][layer][itrl][:, :,index]

calc_dic[model_name][laysr].append(sum_calc)
comm_count += dim_list[layer][itri1][@] * dim_list[layer][itr1][1] * (NUM_CLIENTS -1}

else:
sum_calc = np.zeros([dim_list[layer][itrl]], dtype= float)
for user in range(NUM_CLIENTS):
temp_name = "model_" + str(user)
sum_calc = sum_calc + split_dict[temp_name][layer][itrl][:,index]

cale_dic[model_name][layer].append(sum_calc)
comm_count += dim_list[layer][itrl] * (NUM_CLIENTS -1)

communication_cost[model_name] = communication_cost[model_name] + comm_count
calc_dic[model_name] = np.array(calc_dic[model_name], dtype=object)

67

FERRERRR R R R AR Calculating the parameter averages #FRRIHEREERRTRTRETTHT
fin_time = time.time()

final_dic = {}

for index in range(NUM_CLIENTS):

sub_comm_count = @

model _name = "model " + str(index)
final_dic[model_name] = [[] for layer in range(len(dim_list))]

for layer in range(len(dim_list)):
for itrl in range(2):
if itrl ==
sum_calc = np.zeros{[dim_list[layer][itr1][e], dim_list[layer][itr1][1]], dtype= float)

for user in range(MUM_CLIENTS):
temp_name = "model_" + str{user)
sum_calc = sum_calc + calc_dic[temp_name][layer][itri]

avg = sum_calc/NUM_CLIENTS

final_dic[model_name][layer].append(avg)
prev_dic[model_name][layer][itrl] = avg
sub_comm_count += dim_list[layer][itrl][@] * dim_list[layer][itr1][1] * (MUM_CLIENTS -1)

else:
sum_calc = np.zeros{[dim_list[layer][itrl1]], dtype= float)

for user in range(MUM_CLIENTS):
temp_name = "model_" + str{user)
sum_calc = sum_calc + calc_dic[temp_name][layer][itri]

avg = sum_calc/NUM_CLIENTS
final_dic[model_name][layer].append(avg)

prev_dic[model_name][layer][itrl] = avg
sub_comm_count += dim_list[layer][itrl] * (NUM_CLIENTS -1)

communication_cost[model_name] = communication_cost[model name] + sub_comm_count
final_dic[model_name] = np.array(final_dic[model_name], dtype=object)

68

Appendix 12 Code for weight averaging in Clustered P2P FL model

AR R Split the parameters according to random ratios FERHEEEE
sp_time = time.time()
split_dict = {}

for cluster in range(NUM_CLUSTERS):

for index in range(len(client_clusters[cluster])):
model_name = "model_" + str{client_clusters[cluster][index])
client_name = “"client " + str(client_clusters[cluster][index])
split_dict[model_name] [1

for layer in range(len(dim_list)):
layer_list = []
for itrl in range(2):
if itrl ==
split_arr = np.multiply.outer(prev_dic[model_name][layer][itril],
avg_dic[cluster][index,:])

else:
split_arr = np.multiply.outer(prev_dic[model name][layer][itri],
avg_dic[cluster][index,:])

layer_list.append({split_arr)

split_dict[model_name].append(layer_list)
split_dict[model_name] = np.array(split_dict[model_name], dtype=-object)

HEH R R Caloulating partital sums #sERH A
calc_time = time.time()

calc_dic = {}
for cluster in range(NUM_CLUSTERS):

cluster_len = len(client clusters[cluster])

for index in rangs{cluster_len):
model_name = "model " + str{client_clusters[cluster][index])
client_name = "client " + str(client_clusters[cluster][index])

comm_count = @
calc_dic[model_name] = [[] for layer in range(len(dim_list))]

for layer in range(len(dim_list)):
for itrl in range(2):
if itrl ==
sum_calc = np.zeros{[dim_list[layer][itri][@],
dim_list[layer][itr1][1]], dtype= float)

for user in range(cluster_len)
temp_name = "modal " + str(client_clusters[cluster][user])
sum_calc = sum_calc + split_dict[temp_name][layer][itrl][:,:,index]

calc_dic[model_name][layer].append(sum_calc)

comm_count += dim_list[layer][itrl][e] * dim_list[layer][itr1][1] * (cluster_len -1)

else:
sum_calc = np.zeros([dim_list[layer][itrl]], dtype= float)
for user in range(cluster len)
temp_name = "model_" + str(client_clusters[cluster][user])
sum_calc = sum_calc + split_dict[temp_name][layer][itr1][:,index]

calc_dic[model_name][layer].append(sum_calc)
comm_count += dim_list[layer][itrl] * (cluster_len -1)

communication_ceost[model_name] = communication_cost[model_name] + comm_count
calc_dic[model_name] = np.array(calc_dic[model_name], dtype=object)

69

70

FERAFHATFARTHRF AT FREAHRARATHRESREARERAE Coloulating the parameter averages FFREFFREFHFFREFHRTFERTREFENER
fin_time = time.time()

final_dic = {}
for cluster in range(NUM_CLUSTERS):
cluster_size = len(client_clusters[cluster])

for index in range(cluster_size):
model nams = "model " + str{client_clusters[cluster][index])
client_name = "client " + str{client_clusters[cluster][index])

final_dic[model_name] = [[] for layer in range(len(dim_list))]
comm_count = @

for layer in range(len{dim_list)):
for itrl in range(2):
if itrl ==
sum_calc = np.zeros([dim_list[layer][itrl][@], dim_list[layer][itr1][1]],
dtype= float)

for user in range(cluster_size):
temp_name = "model " + str(client_clusters[cluster][user])
sum_calc = sum_calc + calc_dic[temp_name][layer][itrl]

avg = sum_calc/cluster_size

final_dic[model name][layer].append(avg)
prev_dic[model_name][layer][itrl] = avg
comm_count += dim_list[layer][itrl][8] * dim_list[layer][itrl][1] * (cluster_size -1)

else:
sum_calec = np.zeros([dim_list[layer][itrl]], dtype= float)

for user in range(cluster_size):
temp_name = "model " + str(client_clusters[cluster][user])
sum_calc = sum_calc + calc_dic[temp_name][layer][itrl]

avg = sum_calc/cluster_size
final_dic[model name][layer].append(avg)

prev_dic[model_name][layer][itrl] = avg
comm_count += dim_list[layer][itrl] * (cluster_size -1)

communication_cost[model_name] = communication_cost[model_name] + comm_count
final dic[model name] = np.array(final dic[model name], dtype=obiject)

Appendix 13 Code for weight averaging in Hierarchical P2P FL model

R R TR ESpLit the parameters according to random ratios FERFESRREETRITREA
sp_time = time.time()|
split_dict = {}

for cluster in range(NUM_CLUSTERS):

for index in rangs{len(client_clusters[cluster])}):
model_name = "model " + str(client_clusters[cluster][index])
client_name = "client_" + str(client_clusters[cluster][index])

split_dict[model_name] = []

for layer in range(len(dim_list)):
layer_list = []
for itrl in range(2):

if itrl == @:
split_arr = np.multiply.outer{prev_dic[model_name][layer][itri],
avg_dic[cluster][index,:])
else:
split_arr = np.multiply.outer(prev_dic[model_name][layer][itri],
avg_dic[cluster][index,:])

layer_list.append(split_arr)
split_dict[model_name].append(layer_list)
split_dict[model_name] = np.array(split_dict[model_name], dtype=object)
FERfRs R R nEaesRaEe Colculating partital sums FRREHsEFHsiaaredisanarsnsstassssaty
calc_time = time.time()

calc_dic = {}
for cluster in range(NUM_CLUSTERS):

cluster_len = len(client_clusters[cluster])

for index in range(cluster_len):
model_name = "model " + str{client_clusters[cluster][index])
client_name = "client " + str(client_clusters[cluster][index])

comm_count = &
calc_dic[model_name] = [[] for layer in range(len(dim_list))]

for layer in range(len(dim_list}):
for itrl in rangs(2):
if itrl == 8:
sum_calc = np.zeros([dim_list[layer][itr1i][e].
dim_list[layer][itr1][1]], dtype= float)

for user in range{cluster_len)
temp_name = "model " + str(client_clusters[cluster][user])
sum_calc = sum_calc + split_dict[temp_name][layer][itrl][:,:,index]

calc_dic[model_name][layer].append(sum_calc)
comm_count += dim_list[layer][itrl][8] * dim_list[layer][itrl][1] * (cluster_len -1)

else:
sum_calc = np.zeros([dim_list[layer][itrl]], dtype= float)
for user in range(cluster_len)
temp_name = "model_ " + str(client_clusters[cluster][user])
sum_calc = sum_calc + split_dict[temp_name][layer][itrl][:,index]

calc_dic[model_name][layer].append(sum_calc)
comm_count += dim_list[layer][itrl] * (cluster_len -1)

communication_cost[model_name] = communication_cost[model_name] + comm_count
calc_dic[model_name] = np.array(calc_dic[model_name], dtype=object)

71

72

R AR R R R Calculating the parameter averages FHEHAREHRARTRHHS
fin_time = time.time()

final_dic = {}
for cluster in range(MUM_CLUSTERS}):
cluster_size = len(client_clusters[cluster])

for index in range(cluster_size):
model _name = "model " + str{client_clusters[cluster][index])
client_name = "client_" + str({client_clusters[cluster][index])
final_dic[model _name] = [[] for layer in range(len{dim_list))]
comm_count = &

for layer in range(len(dim_list)):
for itrl in range(2):
if itrl ==
sum_calc = np.zeros([dim_list[layer][itrl][e],
dim_list[layer][itrl1][1]], dtype= float)

for user in range(cluster_size):
temp_name = "model " + str(client_clusters[cluster][user])
sum_calc = sum_calc + calc_dic[temp_name][layer][itrl]

avg = sum_calc/cluster_size

final_dic[model_name][layer].append{avg)
prev_dic[model name][layer][itrl] = avg
comm_count += dim_list[layer][itr1l][8] * dim_list[layer][itrl][1] * (cluster_size -1)

else:
sum_calc = np.zeros([dim_list[layer][itrl]], dtype= float)

for user in range(cluster_size):
temp_name = "model_ " + str(client_clusters[cluster][user])
sum_calc = sum_calc + calc_dic[temp_name][layer][itril]

avg = sum_calc/cluster_size
final_dic[model_name][layer].append{avg)

prev_dic[model name][layer][itrl] = avg
comm_count += dim_list[layer][itrl] * (cluster_size -1)

communication_cost[model _name] = communication_cost[model name] + comm_count
final_dic[model_name] = np.array(final_dic[model_name], dtype=cbject)

Sharing of parameters between master clients #FR#FRREHHE

if share_round == SHARE_INTERVAL:
share_time = time.time()
share_avg_dic = {}

for index in range(NUM_CLUSTERS):
cl_name = "cluster_" + str(index)
model_name = resource_lead mod[cl_name]

share_avg_dic[model _name] = [[] for layer in rangs(len(dim_list))]

for cluster in range(NUM_CLUSTERS):
cl_name = "cluster_" + str(cluster)
model_name = resource_lead_mod[cl_name]
comm_count = @

for layer in range(len(dim_list)):
for itrl in range(2):
if itrl ==
sum_avg = np.zeros{[dim_list[layer][itri][e],
dim_list[layer][itr1][1]], dtype= float)

for user in range(NUM_CLUSTERS):
temp_cl_name = "cluster_" + str{user)
temp_name = resource_lead_mod[temp_cl_name]
sum_avg += cluster_weights_avg[temp_cl_name] * prev_dic[temp_name][layer][itrl]

share_avg_dic[model_name][layer].append(sum_avg)
comm_count += dim_list[layer][itri][e] * dim_list[layer][itr1][1] * (NUM_CLUSTERS -1)

else:
sum_avg = np.zeros([dim_list[layer][itrl]], dtype= float)

for user in range(NUM_CLUSTERS):
temp_cl_name = "cluster_" + str(user)
temp_name = resource_lead_mod[temp_cl_name]
sum_avg += cluster_weights_avg[temp_cl_name] * prev_dic[temp_name][layer][itri]

share_avg_dic[model_name][layer].append(sum_avg)
comm_count += dim_list[layer][itrl] * (NUM_CLUSTERS -1)

communication_cost[model_name] = communication_cost[model_name] + comm_count
share_avg_dic[model_name] = np.array(share_avg_dic[model_name], dtype=object)

for cluster in range(NUM_CLUSTERS):
cluster_size = len(client_clusters[cluster])
cl_name = "cluster_" + str(cluster)
master_model = resource_lead_mod[cl_name]

for index in range(cluster_size)
model_name = "model_ " + str(client_clusters[cluster][index])

prev_dic[model_name] = copy.deepcopy(share_avg _dic[master_model])
final_dic[model_name] = copy.deepcopy(share_avg_dic[master_model])

if model_name != master_model:
communication_cost[master_model] = communication_cost[master_model] + total_model_parameters

74

Appendix 14 Code for weight averaging in Homomorphic P2P FL model

def encryption_func(index, multi_encrypted_prev_dic, prev_dic, dim list, public_key):
model name = "model " + str{index)

multi_wal temp_list = []
for layer in range(len(dim_list)):

layer_list = []
for itrl in range(2):

tmp_list = []
if itrl==8:
for itr2 in range{dim_list[layer][itr1][8&]):
w_list = []

for itr3 in range({dim_list[layer][itrl][1]):
enc_val = public_key.encrypt(int(prev_dic[model name][layer][itr1][itr2][itr3]®*1e15)})
w_list.append{enc_val)
tmp_list.append(w_list)
else:
for itr2 in range{dim_list[layer][itr1]):
enc_val = public_key.encrypt{int(prev_dic[model_name][layer][itr1l][itr2]*1e15))
tmp_list.append(enc_val)
layer_list.append(tmp_list)
multi_wval temp_list.append(layer_list)

multi_encrypted_prev_dic[model_name] - multi_wval_temp_list.copy()

encrypt_time = time.time()
with Manager() as manager:
multi_encrypted_prev_dic = manager.dict()

pool = Pool()
pool.starmap(encryption_func, zip(range(MUM_CLIENTS), repeat(multi_encrypted_prev_dic),
repeat(prev_dic), repeat{dim list}), repeat(public key)})

HFAAHER Encrpting the porameters #FFHH#HEEF

pocl.close()
pocl.join()

encrypted_prev_dic = multi_encrypted_prev_dic.copy()

encrypt_slap = time.time() - encrypt_time
time calc dic['Encryption’].append{encrypt elap)

HERRERRE R R R st RRERasas Caloulating Encrypted sums ##E#aHaiiirsassamss

calc_time = time.time()
encrypted_sum_dic = {}

encrypted_aggr_list= []
for layer in range(len{dim_list)}):
tmp = []
for itrl in range(2):
tmp2 = []
if itril==8:
for 1 in range(dim_list[layer][itr1i][e]):
tmp2.append([])
else:
tmp2 = []
tmp.append(tmp2)
encrypted_aggr list.append(tmp)

for layer in range(len{dim_list)):
for itrl in range(2):
if itrl == @:
for itr2 in range(dim_list[layer][itri1][e]):
for itr3 in range(dim_list[layer][itr1][1]):

sum_calc = encrypted_prev_dic['model_&"][layer][itr1][itr2][itr3]

for itr4 in range(l, NUM_CLIENTS):
temp_name = "model " + str(itr4)
sum_calc += encrypted_prev_dic[temp_name][layer][itr1][itr2][itr3]

encrypted_aggr_list[layer][itrl1][itr2].append(sum_calc)

else:
for itr2 in range(dim_list[layer][itrl]):
sum_calc = encrypted_prev_dic['model_&'][layer][itrl][itr2]
for itr3 in range(l, HNUM_CLIENTS):
temp_name = "model_" + str(itr3)
sum_calc += encrypted_prev_dic[temp_name][layer][itr1][itr2]

encrypted_aggr_list[layer][itrl].append(sum_calc)

Copying the values to each model
for user in range(NUM_CLIENTS):
model_name = "model " + str(user)
encrypted_sum_dic[model name] = copy.deepcopy(encrypted_aggr list)

75

communication_cost[model_name] = communication_cost[model_name] + total_model_parameters * (MUM_CLIENTS - 1)

76

def partital decrypt_func{index, multi_partial decrypt_dic, encrypted_sum dic, dim_list, private key dic}:
madel_name = “model " + stre(index)

model_priv_key - private_key dic[model_name]
temp_partial_decrypt_list = []

for layer in range{len{dim_list)):
tmp = []
for itrl in rangs(2):
tmp2 = []
if itril=-g:
for i in ramge(dim_list[layer][itrl][&]):
trp2.append([]}
else:
tep2 = []
tmp. appand{tmp2)
temp_partial decrypt list.append{tmp)

for layer in range{len{dim_list)):
for itrl in range(2):
if 1trl -- @:
for 1tr2 in range(dim_lict[layer][itr1][a]):
for itrd in range{dim_lict[layer][itrl][1]}:
temp_partial decrypt_list[laysr][itri][itr2].append{model priv_key.partialDecrypt{sncrypted_sum dic[modsl name)
[laysr][itrd][itr2][itr3]))
else:
for itr2 in range(dim_list[layer][itri]):
temp_partial_decrypt_list[layer][itrl].append(medel_priv_key.partialDecrypt(encrypted_sum_dic[model_name][layer][itrl]
[itr2]))

multl partial decrypt_dic[model name] - temp_partial decrypt_list.copy()

FESRESHEFREFRATINRSREF LT RRERSESSESHRFHREFE Partital decryption FRERR R RS R SRR SR SR SRS R AR AR SRS
partital_decrypt_time = time.time()
with Manager() as manager:
multi partial decrypt_dic = manager.dict()
pool = Pool()
pool.starmap(partital_decrypt_func, zip(range(NUM_CLIENTS), repeat(multi_partiazl_decrypt_dic),
repeat(encrypted_sum_dic), repeat(dim_list), repeat(private_key_dic)))
pool.close()
pool.join()

partial_decrypt_dic = multi_partial_decrypt_dic.copy()
partital_decrypt_elap = time.time() - partital_decrypt_time

time_calc_dic['Partital decrypt'].append(partital_decrypt_elap)

Full decryption and average colculation #HFFsFRRiArraniansmes

decrypt_avg_time = time.time()

final_dic = {}

decrypted_avg_list= []
for layer in range(len(dim_list)):
tmp = []
for itrl in rangs(2):
tmp2 = []
if itril==0:
for i in range(dim_list[layer][itri1][8]):
tmp2.append([])
else:
tmp2 = []
tmp.append(tmp2)
decrypted_avg_list.append(tmp)

for layer in range(len(dim_list)):
for itrl in range(2):
if itrl == @:
for itr2 in range(dim_list[layer][itri][8]):
for itr3 in range(dim_list[layer][itr1][1]):

temp_share_list = []

for itrd in range(@, NUM_CLIENTS):
temp_name = "model_" + str(itr4)
temp_share_list.append(partial_decrypt_dic[temp_name][layer][itr1][itr2][itr3])

decrypt_val = combineShares(temp_share_list, public_key.w, public_key.delta,

public_key.combineSharesConstant, public_key.nSPlusOne, public_key.n, public_key.ns)
decrypted_avg_list[layer][itr1][itr2].append(decrypt_val/(1el5*NUM_CLIENTS))

else:
for itr2 in range(dim_list[layer][itri]):
temp_share_list = []
for itr3 in range(®, NUM_CLIENTS):
temp_name = "model_ " + str(itr3)
temp_share_list.append{partial_decrypt_dic[temp_name][layer][itr1][itr2])

decrypt_val = combineShares(temp_share_list, public_key.w, public_key.delta,
public_key.combineSharesConstant, public_key.nSPlusOne, public_key.n, public_key.ns)
decrypted_avg_list[layer][itril].append(decrypt_val/(1e15*NUM_CLIENTS))

copy values
for user in range(NUM_CLIENTS):
model_name = "model_" + str{user)
prev_dic[model_name] = copy.deepcopy(decrypted_avg_list)
final_dic[model_name] = copy.deepcopy(decrypted_avg_list)
communication_cost[model_name] = communication_cost[model_name] + total_model_parameters * (NUM_CLIENTS - 1)

Moke final_dic a numpy array
for user in range(MUM_CLIENTS):
model_name = "model " + str(user)
for layer in range(len(dim_list}):
for itrl in rangs(2):
final_dic[model_name][layer][itrl] = np.array(final_dic[model_name][layer][itril])
final_dic[model_name] = np.array(final_dic[model_name], dtype=object)

78

Appendix 15 Model prediction functions

def model_prediction_targetEnc(index, multi_predict_dic, prev_dic, X_test):
model _name = "model " 4+ str(index)
new_model = create_keras_model()
for layer in range(len(new_model.layers})-1):
new_model.layers[layar].set_weights([prev_dic[model_name][layer][&],
prev_dic[model_name][layer][1]])

optim = tf.keras.optimizers.Adam(learning_rate=alpha)

new_model.compile(optimizer=optim,loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=["accuracy'])

predictions = new_model.predict(X_test, wverbose=)

multi_predict_dic[model_name] = predictions

tf.keras.backend.clear_session()

def model prediction_cluster(cluster, client_clusters, multi_precision_dic, multi_recall dic,
multi f1_score_dic, multi_test _acc_dic, prev_dic, X test, y_test):

model_name = "model_ " + str(client_clusters[cluster][@])
client_name = "client " + str(client_clusters[cluster][@])
cluster_name = "cluster " + str(cluster)

new_model = create_keras_model()
for layer in range(len{new_model.layers)-1):
new_model.layers[layer].set_weights([prev_dic[model_name][layer][&],
prev_dic[model_name][layer][1]])

optim = tf.keras.optimizers.aAdam(learning_rate=alpha)
new_model.compile(optimizer=optim,loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=["accuracy'])

predictions = new_model.predict(X_test, wverbose=@)
y_pred_fl = np.argmax(predictions, axis = 1)

test_acc_ls = accuracy_score(y_test, v _pred fl)
recall_ls = recall_score(y_test, y_pred_f1)
fl_score_ls = f1_score(y_test, y_pred_f1)
precision_ls = precision_score(y_test, v _pred_f1)

multi_precision_dic[cluster_name] = precision_ls
multi_recall dic[cluster_name] = recall_ls

multi f1 score_dic[cluster_name] = fl_score_ls
multi_test_acc_dic[cluster_name] = test_acc_ls

tf.keras.backend.clear_session()

