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TIIVISTELMÄ 

Constraint-efektin vaikutusten arvio T0 lämpötilaan miniatyyri SE(N)T 

murtovetosauvoilla  

Timo Veijola 

Oulun yliopisto, konetekniikan tutkinto-ohjelma 

Diplomityö 2022, 129 s. + 6 liitettä 

Työn ohjaajat: Sakari Pallaspuro (Oulun yliopisto), Sebastian Lindqvist (VTT) 

 

Tässä diplomityössä selvitetään miniatyyrikokoisten SE(N)T tyypin murtovetosauvojen 

sitkeysarvoja käyttäen ASTM E1921 standardissa kuvattua Master Curve -menetelmää. 

Työn JRQ-nimetystä ASTM A533B materiaaliaihiosta aikaisemmin teetettyjen kokeiden 

tuloksiin vertailemalla tutkitaan koon ja erityisesti constraint-efektin vaikutusta 

murtositkeystuloksiin.  

Kokeellinen osuus koostuu 12 a/W 0.5 ja 11 a/W 0.2 SE(N)T-murtovetosauvoista, joiden 

välillä verrataan constraint-vaikutusta T0 lämpötilaan. Mittausdatasta voiman ja CMOD 

lukemien välille sovitetaan käyrä, jota analysoimalla johdetaan J, KJc ja T0 lämpö Master 

Curve -menetelmällä. Syväsäröisen sauvan T0 lämpötilaksi saatiin -54 oC, mikä on hauras 

kyseiselle materiaalille. Matalasäröisen sauvan T0 lämpötila on sensurointimäärän 

mukaan -113 oC sensuroimattomalle sarjalle ja -98 oC sensuroidulle sarjalle. Tulos on 

sitkeämpi kuin vertailuaineisto samalle materiaalille. Ero T0 lämpötilassa heijastaa 

sitkeyden muutosta, joka oli sauvatyyppien välillä 44 oC. Constraint-ilmiön Q-parametri 

johdettiin Abacus CAE FEM -mallin ja HRR-kentän avulla, minkä tulosten perusteella 

constraint-vaikutuksen ero sauvatyyppien välillä oli 29 oC. Ero mallin ja kokeiden välillä 

on virhemarginaalin sisällä ja sauvatyypin todetaan olevan herkkä constraint-muutokselle 

särönsyvyyden suhteen. Koon vaikutusta sitkeysarvojen tilastolliseen hajoamaan ei 

pystytty määrittämään pienen datamäärän vuoksi. Mittausten luotettavuutta arvioitiin 

osittaisderivointiin pohjautuvan menetelmän ja Sobolin indeksien kautta ja tuloksia 

täydennettiin mikroskopialla ja kovuusmittauksilla.  

Asiasanat: JRQ-referenssiteräs, SE(N)T, T0 lämpötila, Constraint, Master Curve  



 

ABSTRACT 

Evaluation of Constraint Effects on the T0 Temperature of Miniature SE(N)T Specimens  

Timo Veijola 

University of Oulu, Degree Programme of Mechanical Engineering 

Master’s thesis 2022, 129 pp. + 6 Appendixes 

Supervisors: Sakari Pallaspuro (University of Oulu), Sebastian Lindqvist (VTT) 

 

The thesis explores the fracture toughness values derived using miniature SE(N)T 

specimens using the Master Curve method as described in the standard ASTM E1921. By 

comparing the results to previous experiments conducted on the ASTM A533B Class 1 

pressure vessel steel designated JRQ, the effects of size and especially the constrain effect 

on fracture toughness are investigated. 

The experimental section consists of 12 a/W 0.5 and 11 a/W 0.2 crack depth SE(N)T tests. 

The effect of constraint on the T0 temperature is investigated by comparing the toughness 

values between the two crack depths. The CMOD and force are measured, and the area 

under the graph they form is analyzed to derive J-integral, KJc and the T0 temperature 

using the Master Curve method. The a/W 0.5 specimens produced a T0 temperature of -

54 oC which is on the brittle side for the reference material. Depending on the level of 

censorship the 0.2 a/W specimens had an uncensored T0 temperature of -113 oC and a 

censored T0 temperature of -98 oC. Both are tougher than the comparison values used. 

The difference in T0 temperature reflects a change in toughness which was 44 between 

the specimen types. The constraint effect was evaluated with an Abaqus CAE FEM model 

from which Q-parameters were derived using the HRR field as a reference. The modelled 

difference between the specimen types was 29 oC which is within the margin of error of 

the experimental results. The SE(N)T specimens were observed to be sensitive to 

constraint effects with respect to the crack depth. The effect of specimen size could not 

be evaluated due to the limited number of experiments. The reliability of the measurement 

results was estimated using a partial derivatives method and Sobol’s indices. The results 

were supplemented with microscopy and hardness analysis. 

Keywords: JRQ reference steel, SE(N)T, T0 temperature, Constraint, Master Curve 
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SYMBOLS AND ABBREVIATIONS 

A Material factor for determining the T0 shift through the T-stress 

Ae  Elastic area under the CMOD_Force graph 

Ap Plastic area under the CMOD-Force graph 

Area Area under the CMOD-Force graph 

B Width of the specimen/crack front 

B0  A chosen reference width, usually one inch (1T) 

BN Notched width of the specimen 

Cθ Elastic slope reciprocal 

C2 Material coefficient 

CMODmax The largest CMOD opening value 

E Young’s modulus 

F Load/Force 

Fm Load at CMOD maximum 

G  Shear modulus 

HV Hardness (Vickers) 

In Strain hardening related Q-parameter constant 

J J-integral 

Jc Elastic-plastic J-integral at the onset of cleavage fracture 

Je Elastic portion of the J-integral at the onset of cleavage fracture 

Jp Plastic portion of J-integral at the onset of cleavage fracture 

K Stress intensity factor 

K0 The normalizing fracture toughness corresponding to a 63.2% cumulative 

failure probability 

Ke Elastic stress intensity factor 

KI Mode I loading stress intensity factor 

KIc Fracture toughness of a material under mode I loading (ASTM E399) 

KJc Elastic-plastic equivalent stress intensity factor derived from the Jc 

integral at the onset of cleavage fracture 

Km The lower limit fracture toughness 

N  The number of initiators 

N̅  The mean number of initiators 

Nu  Number of uncensored specimens 



 

P Three point bending force 

Pf  The probability of failure 

PN The probability of having N initiators in a sample 

Pr{I} The probability of cleavage initiation 

Pr{V/O} The conditional probability that no previous initiation has taken place 

Q Q-parameter 

Qref Reference Q-parameter value derived from a C(T) specimen 

S Support distance in three-point bending 

T  Temperature 

Tcorr A correction factor used in the estimation of Q-parameter effect on the T0 

temperature 

Ts T stress, a uniform stress in the crack growth direction 

T0 Fracture toughness reference temperature, where median KJc is 100 

MPa√m 

W Thickness of the specimen 

∅s Thread diameter 

 

 

a Crack length or half of the crack length depending on specimen 

a0 Pre-crack measured average length used as initial crack length 

a1 Pre-crack length 

aj Crack length with summation index 

a/W Crack length to specimen thickness ratio 

b Crack width 

b0 Remaining initial ligament length 

bV  Burger’s vector 

ds Thread distance from crack center plane 

f Geometric factor related to the stress intensity factor 

l The specimen length 

n Number of specimens or experiments 

nRO Ramberg-Osgood strain hardening exponent 

pr Particle radius 

p Polynomial coefficient for the fir function 

𝑞̅  Mean of measured values 

qj  Indexed measured observation 



 

qk  Measured observation’ 

r Distance in front of the crack tip 

rp Plastic zone radius at the crack tip 

s(𝑞̅)  Experimental standard deviation 

v  Poisson’s ratio  

vT Stress in the z direction in relation to the Ts stress. 

 

α’ Coefficient for the KTH stress model 

αc Coefficient between 0.14 and 0.33 

αRO Ramberg-Osgood yield offset coefficient 

αΔT The thermal expansion coefficient 

β’ Coefficient for the KTH stress model 

βuc  Sample size uncertainty factor 

βx Biaxiality ratio 

γ Glide 

γ’ KTH model coefficient 

γlld  Coefficient for the plastic area load line correction 

δ Crack opening displacement 

Δσd Dislocation stress 

Δl Change in overall specimen length 

ΔT0 Shift in T0 temperature 

ΔTs Change in T-stress conditions 

ε Strain 

ε1 Maximum remote normal strain 

εp Plastic strain 

εys  Strain at material yield 

ηCMOD Eta factor for CMOD plastic correction 

θ Angular direction in front of the crack tip 

ρr Crack tip curvature 

μ Shear modulus 

σ Stress 

σ1-3 Principal normal stresses 

σA Crack tip stress 

σc Critical interphase cohesion stress 

σe Effective von Mises stress 



 

σflow Flow stress of the material 

σij Stress in the i-j direction 

σyyFEA  Actual stress in the crack opening y direction from a FEM model 

σyyHRR  The HRR reference stress in the crack opening y direction 

σm Mean hydrostatic stress 

σmeas  Measurement standard uncertainty 

σstdev Standard deviation of the T0 margin uncertainty 

σys Yield strength 

𝜎𝑖𝑗̃(𝑛𝑅𝑂, 𝜃) An angular dependence constant for the Q-parameter 

τ Shear 

 

ANOVA Analysis of Variance 

ASTM American Society for Testing and Materials 

BSI British Standards Institution 

BCC Body Centered Cubic lattice  

CMOD Crack Mouth Opening Displacement 

EBSD Electron Backscatter Diffraction 

EDM Electric Discharge Machining 

HAZ Heat Affected Zone 

HRR Hutchinson-Rice-Rosengren model/field 

HV10 Vicker’s hardness measured with a force equivalent of 10 kilograms 

IAEA International Atomic Energy Agency 

KTH Kungliga Tekniska högskolan, KTH Royal Institute of Technology 

OES Optical Emission Spectrometry 

SEB Single Edge (notched) Bend specimen 

SEM Scanning Electron Microscope 

SE(N)T Single Edge (Notched) Tensile specimen 

VTT Teknologian tukimuskeskus VTT Oy, Technical Research Centre of 

Finland 

STUK Säteilyturvakeskus, Nuclear and Radiation Safety Authority of Finland 



 

 

1 BACKGROUND AND MOTIVATION FOR THE THESIS 

RESEARCH 

Finland aims to be carbon neutral by 2035 (Paavola et al., 2021; Paloneva & Takamäki, 

2021).  Electricity consumption is predicted to rise heavily if carbon neutrality is to be 

met, and nuclear power plays a major role in the transition away from fossil fuels 

(Paloneva & Takamäki, 2021). There are four energy producing nuclear power plants 

operating in Finland with a fifth expected to join power production in 2022 (Työ- ja 

Elinkeinoministeriö, 2022).  The extension of service lives for the nuclear power plants 

built from the late 1970’s to early 1980’s is suggested as a means towards achieving 

carbon neutrality. (Paloneva & Takamäki, 2021)  

One factor limiting the lifespans is the accumulation of wear and fatigue in the form of 

cracks and other faults. Failure of a critical component is not an option as the harms of a 

nuclear accident can be extremely severe reaching international scale. As a consequence, 

the International Atomic Energy Agency [IAEA] technical safety principle states: “take 

all reasonably practicable measures to prevent accidents in nuclear installations and to 

mitigate their consequences should they occur” (Petrangeli, 2020 p. 117, 249-260) What 

is reasonable is determined through research and different standards, and in the case of 

Finland, the Finnish nuclear safety legislation appoints the Radiation and Nuclear Safety 

Authority [STUK] to set compliance requirements with the Nuclear Energy Act 

(Ydinenergialaki, 2021). STUK specifies that a brittle fracture analysis is conducted  

“on the most stressed ferritic steel parts of the nuclear power plant’s 

Safety Class 1 pressure equipment. Most important are the core area of 

the reactor pressure vessel, its largest pipe nozzles and the flanged joint 

of its head. Other possible items requiring a brittle fracture analysis 

are the secondary side of a pressurised [sic] water reactor plant’s 

steam generator, the steel containment, and the shafts and flywheels of 

the main circulating pumps.” (Säteilyturvakeskus, 2020.)  



 

 

The chosen method for the brittle analysis is fracture mechanics and comparison of the 

stress intensity factor KI to the material fracture toughness KIc determined through 

suitable standards listed in the STUK Guide YVL E.4 (Säteilyturvakeskus, 2020).  

Much of the fracture data on which the service life calculations are based on, are produced 

using bending type specimens. Large datasets for relevant materials in these 

configurations can be found, for example, in the monograph by Wallin (2011) and his 

publications preceding it. Current test methods are also primarily focused on highly 

constrained specimens as their behavior is less random and the literature around them 

more comprehensive. This however may lead to over conservative maintenance and 

monitoring programs of nuclear power plants. Too stringent test conditions are unlikely 

to reflect real-world applications where the crack geometries are more diverse and almost 

never under perfectly perpendicular stress fields. Setting toughness estimates based on 

these results can lead to premature, costly maintenance or even decommissioning of 

components where there is still lifetime left. (Ruggieri, 2017; Sarzosa et al., 2018) A more 

realistic low-constraint test regime is needed to determine new limits on allowable fault 

sizes, which are more applicable to the actual operational life expectancy of reactors.  

This thesis explores the fracture toughness values of an IAEA nuclear correlation material 

A533B Class 1 pressure vessel steel produced by less conservative Single Edge (Notched) 

Tensile (SE(N)T) specimens and evaluates the effect of constraint on the T0 temperature 

representing the magnitude of the material’s toughness. The effect of constraint is studied 

through the use of a relatively high testing temperature resulting in more plasticity, -85 

oC, and two crack depth- sample thickness ratios (a0/W), 0.5 representing higher and 0.2 

lower constraint conditions.  

The high-energy neutron radiation in nuclear reactors proposes a unique challenge from 

a fracture mechanics perspective. The neutrons collide with steel’s crystal lattice with 

sufficient energy to cause radiation embrittlement. This transits the T0 temperature, and 

the exact shift is required to be determined through empirical experimentation. 

(Säteilyturvakeskus, 2020) The rarity of operationally radiated reactor material increases 

the difficulty of surveillance through experimentation and miniature test cases are needed 



 

 

to conserve the scarce reference material. For safety reasons, it is also beneficial to handle 

smaller amounts of radioactive material.  

The SE(N)T specimens tested as a part of this thesis are not radiated, but the melt that 

produced the steel described in the report by Brumovsky et al. (2001) is used as a 

reference material for radiated samples. The specimens have a miniature 10 mm sided 

square cross section in contrast to the standard one-inch (1T) reference thickness. The 

absolute effect the sample size has on the T0 temperature is not deduced from these tests, 

rather, the applicability of theory on miniaturized specimens is assessed. The data 

produced can nevertheless be used for future research quantifying the effect specimen 

size has on the T0 temperature and the variance of measurement results. In addition, 

previous results from bend specimens for the same material are used as a point of 

reference for the T0 temperature. The measurement and method related uncertainties in 

the results are quantified using a partial derivatives method and a global sensitivity 

analysis. Relevant literature is reviewed concerning the Master Curve method, constraint, 

metallography, fracture mechanics, and previous studies around the same topics. A 

cursory glance at the tests performed is presented below in Table 1. 

 

 

 

 

 

 



 

 

Table 1 Test series and their differences 

Series Temperature 

[oC] 

Number of 

specimens 

a0/W ratio Load rate  

[mm/min] 

Type 

LC-Calibration - 85 3 0.2 0.1-0.2 10 x 10 mm2 

SE(N)T 

BN 8.5 mm 

HC-Calibration - 85 2 0.5 0.1-0.2 10 x 10 mm2 

SE(N)T 

BN 8.5 mm 

HC - 85 10 0.5 2 10 x 10 mm2 

SE(N)T 

BN 8.5 mm 

LC - 85 9 0.2 2 10 x 10 mm2 

SE(N)T 

BN 8.5 mm 

 

  



 

 

2 LITERATURE REVIEW 

To form the foundation of the thesis research, theoretical background explaining the 

fracture phenomena is explored. Selected highlights from literature relevant to the design 

of the thesis experiments and the analysis of their results are presented below. Emphasis 

is placed on the metallurgical aspect of the fracture process, the statistical nature of 

fracture initiation sites, and the Master Curve method. Finally, a definition for constraint 

is formulated through the restriction of material flow and the corresponding stress 

triaxiality which follows. The SE(N)T specimens for the thesis research are then designed 

based on the information and standards reviewed in the following sections. 

2.1 Fracture Mechanics and fracture 

Fracture mechanics lays the foundation for almost all the relevant theories in this thesis. 

It is a relatively new field, with research taking off after the second world war following 

high-profile incidents such as the sinking of Liberty ships, and the crashing of early 

Comet- jet planes (Ikonen & Kantola, 1991; Anderson, 2005; Krishnaswamy, 2008; 

Wallin, 2011) It strives to find the connection between defects and fractures, quantify the 

phenomena behind fracturing events and discover mathematical formula describing the 

laws behind them. Combining fracture mechanics with other engineering disciplines 

allows the determination of conditions that lead to failure of components. (Ikonen & 

Kantola, 1991) In practice, fracture mechanics is used to scale structures to keep any 

stresses below critical loads which would lead to fracture growth for any presumed 

existing fault sizes (Ikonen & Kantola, 1991 p.236). Challenges to the practical approach 

arise from the unknown location and size of faults, difficult determination of actual stress 

states, and the stochastic nature of fracture initiation (Ikonen & Kantola, 1991 p. 235-

237). 

To fracture material, a number of bonds that hold its structure together need to be broken. 

Metal atoms stay together in the lattice through the Coulombic attraction between their 

positively charged cores and shared electron cloud. These bonds get weaker as the 

electron sea density decreases, for example through increased interatomic separation. 



 

 

(Rohrer, 2001) Stress can stretch the distance between the atoms and displacing the atoms 

from their resting state introduces elastic energy. If this elastic energy created is greater 

than the lattice enthalpy, it is energetically advantageous for the material to form new 

surfaces through which elastic energy can be released. This new surface can be 

understood as a newly formed crack face. (Ikonen & Kantola, 1991)  

Griffith’s (1921) original model states, that if the surface energy of the crack is overcome 

by the elastic energy change due to incremental crack growth, the crack will propagate 

(Anderson, 2005). Transferring this mechanism to a macroscopic scale has proven 

difficult and traditional continuum models fail to take account effects of size and variable 

stress conditions as each lath and grain in metal can have different stress and strain fields. 

(Wallin, 2011 p.115-129)  

2.1.1 Plasticity and dislocations 

Steel deforms plastically through the movement of dislocations by slip, and the restriction 

of their movement increases the yield strength. Dislocation lines can be considered as the 

edge of an extra half plane in the atomic lattice. Breaking of atomic bonds among the 

movement of this line can happen one at a time instead of the whole plane shearing, 

lowering the energy requirements. (Hertzberg, 1976 p.43) Plastic deformation also 

absorbs energy through the movement and creation of dislocations allowing for increased 

toughness. Scaling down sample size does not directly increase the toughness through 

dislocation interactions, but it should be noted that at sample scales of < 100 μm the 

dislocation interaction mechanisms would be affected, and toughness would be altered.  

(Uchic et al., 2004; Kaufmann, 2011) 

The Body Centered Cubic, (BCC), lattice has 48 different glide systems due to the three 

types of planes with minimal, almost equal, packing densities. (Kaufmann, 2011) The 

interaction between dislocations can be observed in tensile tests through strain hardening. 

Before a material deforms plastically, it needs to exhaust its elastic strain. (Hertzberg, 

1976) This can be seen in the transition from a linear to a curved stress-strain response in 

a tensile test, Figure 1. When the stress reaches the critical yield level in the weakest part 

of the specimen, it deforms locally. This local deformation will result in a lowered cross-



 

 

sectional area and hence higher stress. Instead of focusing all remaining deformation 

there, the material hardens, and the process of localized deformation transfers to the now 

newly weakest section along the gauge length. 

 

Figure 1 A typical Stress-Strain curve for a tensile test with highlighted elastic, 

plastic, and necking regions. 

 

The hardening rate is strongly related to the creation of dislocations and their activation 

(Kaufmann, 2011), and as such, is not constant for the same material after different 

treatments. A way of modeling the strain hardening is through the Ramberg-Osgood 

relation, (1), 

𝜀

𝜀𝑦𝑠
=

𝜎

𝜎𝑦𝑠
+ 𝛼𝑅𝑜 (

𝜎

𝜎𝑦𝑠
)
𝑛𝑅𝑂

    (1) 

where  ε is strain,  

εys is the strain at material yield, 

σ is stress, 

σys is the material yield strength, 



 

 

αRO is the Ramberg-Osgood yield offset coefficient, and 

nRO is the Ramberg-Osgood strain hardening exponent. 

The first term provides the linear elastic response and the second a non-linear plastic 

approximation.(Kanninen & Popelar, 1985 p.299.) A different formulation of this 

equation is used in section 5.1.3 for the Abaqus material model. 

As this process continues the material further hardens and the cross section decreases 

uniformly on a macroscopic scale as deformation is a constant volume process. At some 

point the strain hardening can no longer resist the increase in stress and the nth local 

deformation is unable to harden enough to stop further plastic deformation. From this 

point onwards the region begins to neck as the elongation concentrates in it forcing the 

region to shrink in cross sectional area. (Hertzberg, 1976.) This can be seen in the lowered 

engineering stress required to increase the strain in Figure 1, and as the stresses are 

focused on a specific locus it becomes susceptible to failure. 

In addition, a triaxial stress state rises in the area adjacent to the necked region due to 

Poisson’s effect. The necked region under higher stresses compared to its surroundings 

tries to draft in adjacent material to accommodate the elongation, which results in radial 

and transverse stresses. These stresses need to be accounted for in the increased axial 

stress to induce further plastic flow facilitating new deformation and constrain the 

material plastically. (Hertzberg, 1976) The relation of stress triaxiality, Poisson’s effect, 

and restricted material flow is explored further in section 3. 

2.1.2 Concentration of stress 

The stresses that force atoms apart and lead to fracture are concentrated by certain 

geometries, especially by sharp crack tips. Griffith’s original model (2-5, example for an 

elliptical crack in an infinite plate under plane stress conditions)  

𝜎𝐴 = 𝜎 (1 + 2√
𝑎

𝜌
)    (2) 



 

 

𝜌 =
𝑏2

𝑎
     (3) 

𝜎𝐴 = 𝜎 (1 + 2 |
𝑎

𝑏
|)    (4) 

𝑎 ≫ 𝑏, 𝜎𝐴 = 2𝜎√
𝑎

𝜌𝑟
    (5) 

where  a is the crack length, 

b is the crack width, 

ρr is the crack tip curvature, and 

σA is the crack tip stress, 

highlights the increase in stress as a defect becomes sharper, but falls short for the plastic 

deformation these large stresses induce in steel (Anderson, 2005). As the crack tip radius 

decreases, the stress trends towards infinity, as curvature is the denominator in formulas 

(2) to (5). No material can withstand the infinite stresses proposed by the model, and any 

loading would cause breakage. In reality, the shared electron cloud of steel allows for 

malleability and the crack tip blunts.  

For the most important loading modes I-III, a general formulation for the stress intensity 

factor K takes the form (6), 

𝐾 =  𝜎0√𝑎0𝜋𝑓     (6) 

where K is the stress intensity factor, 

 σ0 is the reference stress, usually the yield stress, 

 a0 is the crack length or half of the crack length, and 

 f is a geometry and loading type factor 

Substituting K with the critical stress intensity factor reveals the maximum load 

allowable. As the critical stress intensity can be higher when measured through SE(N)T 

specimens, the allowable fault size in the formula can be increased if other parameters 

stay constant. The stress intensity factor is only valid for linear-elastic conditions, but 



 

 

additional corrections can be added to account for plasticity (Wallin, 2011 p. 11) For this 

thesis the J-integral is used for elastic plastic fracture mechanics. It is a route independent 

energy principle based on the work done by the external force in forming new fracture 

surfaces discovered by Rice (1968). It models the elastic and plastic stages of the crack 

expansion as a non-linear elastic process (Anderson, 2005). Wallin (2011 p. 17) states 

that as there exists a unique relationship between the J-integral and KI in the linear elastic 

region, J can be quantified as a toughness measure expressed through K. This relationship 

can be extended to the plastic region if no unloading takes place. In addition, Rice and 

Rosengren (1968) found that in a power hardening material the stress contours around the 

crack tip and the J-integral correlates through what the authors designated as the 

Hutchinson-Rice-Rosengren (HRR) field (Wallin, 2011 p. 18). The HRR field is used 

later in this thesis to derive constraint parameters. 

Another way stresses can concentrate are defects such as segregations and precipitates in 

the material. Under stress, dislocations are introduced They travel and pile up at high 

energy boundaries of precipitates, grains, and triple boundaries, where their stress fields 

superimpose. The number of dislocations that can pile up is dependent on the grain size. 

(Kaufmann, 2011; Wallin, 2011) 

If a tensile yield specimen is considered to be a notchless sample, the behavior it exhibits 

can be generalized to represent the lowest crack-constraint for that specific geometry. 

However, depending on the strain hardening behavior, necking of the tensile specimen 

will introduce a variability to the specimen constraint (Hertzberg, 1976 p.24). The 

difference of continuum models and realistic materials with internal flaws and 

inhomogeneities is highlighted by the difference in necking between a single crystal 

flawless specimen and a normal grainy metallic material. A perfect crystal necks up to a 

very fine point compared to more conventional tensile specimens that neck to a certain 

degree demonstrating ductile behavior, before breaking off, Figure 2. (Anderson, 2005 p. 

220) 



 

 

 

Figure 2 Hardening and necking behavior of perfect and engineering materials in 

tensile testing. 

2.2 Fracture mechanisms 

The thesis research mainly focuses on brittle fracture, but mixing of the fracture types in 

real world applications warrants examination of both ductile and brittle mechanisms. 

Ductile materials fail usually by nucleation and growth of voids that connect into a 

growing crack. Brittle fracture occurs by separation between crystalline planes, usually 

nucleating from a single point of origin from which it propagates. It can be trans granular 

when it passes through grains and intergranular when it cleaves through grain boundaries. 

Cleavage fracture can be preceded by large plastic deformation and ductile crack growth, 



 

 

(Anderson, 2005) and the local crack tip conditions are especially important in 

determining the cleavage fracture resistance and initiation (Wallin, 2011). 

2.2.1 Void nucleation and coalescence 

In a similar way to the metallic matrix fracture formation summarized in 2.1, voids 

nucleate by breaking the bonds between phases after reaching a critical stress level. Non-

metallic particles in the matrix can also crack and initiate a larger fracture process, but 

the common factor for both of these mechanisms is the formation of new free surfaces. 

The practical effect of inhomogeneities were highlighted in section 2.1.2 and Figure 2,  

but on a microscopic scale different mechanisms take place for different sized segregate 

particles and sub micrometer precipitates. According to Anderson (2005) the most 

commonly used continuum model for above micron particles is the Argon, Im and 

Safoglu model (1975) that combines the material critical interphase cohesion stress from 

the principal stresses and hydrostatic stress (7), 

𝜎𝑐 = 𝜎𝑒 + 𝜎𝑚    (7) 

where  σc is the critical interphase cohesion stress, 

 σe is the effective Von Mises stress, and 

 σm is the mean hydrostatic stress. 

The Von Mises and hydrostatic stresses are related to the principal stresses through (8 

and 9) 

𝜎𝑒 =
1

√2
[(𝜎1 − 𝜎2)

2 + (𝜎1 − 𝜎3)
2 + (𝜎3 − 𝜎2)

2]
1

2  (8) 

𝜎𝑚 =
𝜎1+𝜎2+𝜎3

3
    (9) 

where  σ1-3 are the principal normal stresses. 



 

 

The model indicates that as the triaxiality increases, void nucleation is more likely. There 

have been variations of this model developed through comparison to experimental data, 

but the main principle is the same between them.  

The Goods and Brown (1979)  model for sub-micron particles is based on dislocations 

increasing the interphase stresses in conjunction with maximum principal stress (10 and 

11), 

𝜎𝑐 = ∆𝜎𝑑 + 𝜎1    (10) 

∆𝜎𝑑 = 5.4𝛼𝑐𝜇√
𝜀1𝑏𝑉

𝑝𝑟
    (11) 

where  Δσd is the dislocation stress, 

αc is a constant between 0.14 and 0.33, 

ε1 is the maximal remote normal strain, 

μ is the shear modulus, 

bV is the Burger’s vector, and 

pr is the particle radius. 

The continuum model is insensitive of particle size, while the sub-micron model takes it 

into account. Experimental results deviate from both models with one explanation being 

the cracking of particles. Smaller particles (up to a certain point) make nucleation easier, 

but larger particles are more likely to crack. Softer and harder particles behave differently 

and the general shape and orientation of them can be manufacturing dependent. 

Manufacturing processes often transform or break these particles resulting in favorable 

conditions for void nucleation. The effect of void coalescence and nucleation around hard 

particles can be seen from Scanning electron microscope SEM images as dimples on the 

fracture surface. (Anderson, 2005)  

2.2.2 Brittle cleavage fracture 

If the energy principle through bond enthalpy and entropy is considered, certain 

crystallographic planes are more prone to cleavage fracture. The lower the packing 



 

 

density, the fewer bonds need to be broken and the distances between atoms are larger 

lowering the bond strength in general. It was previously stated that the glide of 

dislocations prefers the tightest packed planes. Opposite to that, fracture favors the loosest 

packed planes. The combination of larger elastic energy and lower bond strength of low 

packed planes generally provide the most energetically efficient crack formation. If the 

plastic flow of the material is hampered, cleavage is more likely to occur. This produces 

a relation to the cleavage-ductile fracture mechanisms and available active slip planes. As 

temperature is lowered, BCC and Hexagonal Close Packed (HCP) metals lack the slip 

planes for adequate plastic deformation while Face Centered Cubic (FCC) is still able to 

flow. This makes BCC and HCP more likely to fracture by cleavage and they have a 

transition temperature range where the dominant mechanism changes from ductile to 

brittle fracture. (Anderson, 2005) There are multiple definitions for the ductile-brittle 

transition temperature, and it should not be confused with the reference temperature in 

the ASTM E1921 standard.  

The two aforementioned mechanisms for brittle fracture were trans granular and 

intergranular, with the difference being propagation through (trans) the grain in trans 

granular fracture contrasted to propagation by grain boundaries in intergranular fracture. 

One reason for the occurrence of intergranular fracture is temper embrittlement, where 

impurities such as phosphorus segregate to prior austenite grain boundaries and weaken 

them when the steel spends extended periods at temperatures around 550 ± 50 Celsius 

(Yahya et al., 1998) 

Wallin (2011) divides the cleavage fracture into three steps:  

1. Cracking of a precipitate or inclusion which acts as a local initiation site 

2. Propagation of the local initiation site into the surrounding matrix 

3. Propagation of the now larger crack into neighboring grains 

Which of the states are critical for the fracturing process depends on multiple factors such 

as geometry, available slip systems, and loading conditions. Whether initiation (step 1.) 

or propagation (steps 2. and 3.) is dominating, determines if the Master Curve method, 

which is used in this thesis in the calculation of the T0 temperature, is valid. 



 

 

2.3 The Master Curve method  

If step 1 controls the fracture process, initiation leads to propagation and failure of the 

specimen. In other words, if stress conditions are sufficient to initiate a microcrack, they 

are sufficient to propagate it through the specimen. This weakest link assumption holds 

in the transition region and transforms the fracture process into a statistical event due to 

the local inhomogeneities in the material (Wallin, 2011 p.115-117). Master Curve 

applicability can be assessed from the fracture surfaces. If only one or a few initiation 

sites are present, the initiation phase was likely to control the fracture process, Figure 3. 

 

Figure 3 A single initiation source typical for the transition region on the left and 

multiple fracture initiation sites on the right (Mimicking Wallin, 2011 p. 117). 

 

The Master Curve is a method which assumes that there exists a certain probability of an 

initiation site existing within the material in front of the crack tip stress field and assigns 

a probability distribution function for the occurrence of brittle fracture based on it. The 



 

 

exact number of initiators in a given material volume is unknown, but can be assumed to 

follow Poisson distribution. If a critical stress is reached at a location susceptible to crack 

formation, the crack will propagate through the specimen with low resistance in cleavage 

fracture.(Wallin, 2011 p. 118-125)  

In practice, the curve assigns the median KJc transition temperature and the shape of its 

lower and upper distribution over a variety of temperatures for 1T scaled sample sizes, 

Figure 4. (ASTM International, 2021). 

 

Figure 4 An example of a Master Curve with median, upper, and lower probability 

distribution lines. In addition, a M = 30 measuring capacity limit line is displayed. 

 

A more thorough description with the different cumulative probability summations and 

extensive theoretical background behind the Master Curve probability distribution can be 



 

 

found from literature,(Wallin, 2011 Chapter 4), from which key points relevant to the 

thesis are summarized below. 

The exact derivation of the probability function is complicated, but the concept behind it 

can be simplified using a tree diagram, Figure 5, which lists the different outcomes and 

probability summations that lead to them.  

 

Figure 5 Probabilities of different outcomes for faults under stress mimicking 

(Wallin, 2011 p. 119). 

 

The Poisson distribution of the initiators takes the form (12), 

𝑃𝑁 =
𝑁̅𝑁 exp(−𝑁̅)

𝑁!
     (12) 

where  PN is the probability of having N initiators in a sample, 

 N is the number of initiators, and 

 𝑁̅ is the mean number of initiators. 

This formulation allows simplification using the exponential equation (13), 

Applied Stress

P(No initiation)

P(Cleavage 
initiation)

P(Propagation) Failure

P(Arrest)

P(Void initiation) P(Blunting)



 

 

𝑒𝑥 = ∑
𝑥𝑁

𝑁!
∞
𝑁=0      (13) 

and the probability function of a volume element transforms to (14), 

𝑃𝑓 = 1 − exp {−𝑁̅ ∗ 𝑃𝑟{𝐼} (1 − 𝑃𝑟 {
𝑉

𝑂
})}   (14) 

where Pf is the probability of failure, 

Pr{I} is the probability of cleavage initiation, and 

Pr{V/O} is the conditional probability that no previous initiation has taken 

place. 

Summing all partial volumes gives the cumulative probability for failure.  

For a sharp crack with small scale yielding, stress and strain distributions are assumed to 

be self similar and have angular dependence as stipulated by the HRR field. This allows 

the crack front to be divided into radial elements which can then be summed over the 

cleavage fracture process volume. The self similarity allows normalization through stress 

intensity factor and yield strength which produces a unit-less stress distribution 

descriptor, which can be substituted into the cumulative probability function. Additional 

normalization can be added through the crack front length resulting in the form (15), 

𝑃𝑓 = 1 − exp {−
𝐵

𝐵0
(

𝐾𝐼

𝐾0
)
4

}    (15) 

where  B is the crack front width, 

B0 is a chosen reference width, usually one inch (1T), 

KI is the stress intensity factor for mode I loading, and 

K0 is the normalizing fracture toughness corresponding to a 63.2% 

cumulative failure probability. 

If propagation, conditions for starting at minimum fracture toughness, and a constant 

upper probability corresponding to the convergence value at infinite stress intensity are 

added, the final Master Curve probability is described by (16), 



 

 

𝑃𝑓 = 1 − exp {−
𝐵

𝐵0
(

𝐾𝐼−𝐾𝑚 

𝐾0−𝐾𝑚 
)
4

}   (16) 

where  Km is the lower limit fracture toughness. 

When a certain probability is converted to a specific fracture toughness value some 

additional assumptions are needed. The scatter for the results follows a three-parameter 

Weibull probability distribution function with a slope of 4 for ferritic steels (17), 

{ln (
1

1−𝑃𝑓
)}

1

4
= 

𝐾𝐽𝑐−𝐾𝑚 

𝐾0−𝐾𝑚 
 or 𝑃𝑓 = 1 − 𝑒

−(𝐾𝐽𝑐−𝐾𝑚)
4

(𝐾0−𝐾𝑚)4   (17) 

where  KJc is the elastic-plastic fracture toughness.  

Experimentation by Wallin (2011) has shown that a value for Km is difficult to obtain due 

to its scattered nature. A substitution of 20 MPa√m for macroscopically homogenous 

ferritic steels is used for the standard Master Curve and it should produce accurate results 

for the thesis research. Temperature adjustment based on empirical experimentations has 

produced the following relation to the K0 values (18), 

𝐾0 = 31 + 77 exp{0.019(𝑇0 − 𝑇)}  𝑀𝑃𝑎√𝑚  (18) 

where  T is the test temperature, and 

T0 is the Master Curve fracture toughness reference temperature, where 

median KJc is 100 MPa√m. 

 

Plotting the results of (18) over a range of temperatures produces the median Master 

Curve. Transforming the practical measurement data into toughness and T0 values 

through the Master Curve is presented in section 5 with the method described in the 

standard ASTM E1921. 

  



 

 

3 CONSTRAINT 

A broad theoretical approach is needed as a basis for understanding the constraint effect. 

As a starting point, Hooke’s study of springs leads to the following relations between 

stress and strain (19 and 20), 

𝜎 = 𝐸𝜀 =
𝐹

𝐴
     (19) 

𝜀 =
∆𝑙

𝑙
       (20) 

where E is the Youg’s modulus, 

A is the specimen cross sectional area, 

l is the specimen length, and 

Δl is the change in overall specimen length. 

 

Generalizing these equations into three dimensions reveals that stress in one direction will 

cause strain in the other two as well (Hertzberg, 1976) as can be seen below in formulas 

(21-28) 

𝜎𝑥 =
𝐸

(1+𝑣)(1−2𝑣)
[(1 − 𝑣)𝜀𝑥 + 𝑣(𝜀𝑦 + 𝜀𝑧)]  (21) 

𝜎𝑦 =
𝐸

(1+𝑣)(1−2𝑣)
[(1 − 𝑣)𝜀𝑦 + 𝑣(𝜀𝑥 + 𝜀𝑧)]  (22) 

 𝜎𝑧 =
𝐸

(1+𝑣)(1−2𝑣)
[(1 − 𝑣)𝜀𝑧 + 𝑣(𝜀𝑥 + 𝜀𝑦)]  (23) 

𝜀𝑥 =
1

𝐸
[𝜎𝑥 − 𝑣(𝜎𝑦 + 𝜎𝑧)] (+𝛼∆𝑇)   (24) 

𝜀𝑦 =
1

𝐸
[𝜎𝑦 − 𝑣(𝜎𝑥 + 𝜎𝑧)] (+𝛼∆𝑇)   (25) 



 

 

𝜀𝑧 =
1

𝐸
[𝜎𝑧 − 𝑣(𝜎𝑦 + 𝜎𝑥)] (+𝛼∆𝑇)   (26) 

𝜏𝑥𝑦 = 𝐺𝛾𝑥𝑦, 𝜏𝑦𝑧 = 𝐺𝛾𝑦𝑧 , 𝜏𝑥𝑧 = 𝐺𝛾𝑥𝑧    (27) 

𝐺 =
𝐸

2(1+𝑣)
     (28) 

where  σ indicates the stress in the index direction, 

 ε indicates the strain in index direction, 

 αΔT is the thermal expansion coefficient, 

 τ is the shear in the index directions, 

 γ is the glide in the index directions, 

 v is the Poisson’s ratio, and 

 G is the shear modulus derived from the Young’s modulus E. 

for isotropic materials. 

In order to keep the strain field planar, and the ε33 strain at zero, there needs to be a σ33 

stress caused by the surrounding material resisting plastic flow or necking of the material. 

At free surfaces there is no surrounding material restricting the flow of matter to provide 

an opposing force as required by Newton’s 3rd law (Newton, 2016) and the σ33 stress must 

be zero. This results in strain, as there is nothing constraining the geometry from outside 

the free surfaces. (Ikonen & Kantola, 1991.) From this, it can be further derived that there 

are plane stress conditions at the surfaces, which transform to more triaxial stresses and 

planar strains towards the center of the specimen, (29 and 30).  

 

[

𝜎11 𝜎12 0
𝜎21 𝜎22 0
0 0 𝜎33

] → [
𝜀11 𝜀12 0
𝜀21 𝜀22 0
0 0 0

] plane  strain  (29) 

 

[
𝜎11 𝜎12 0
𝜎21 𝜎22 0
0 0 0

] → [

𝜀11 𝜀12 0
𝜀21 𝜀22 0
0 0 𝜀33

] plane stress  (30) 

 



 

 

The relations between the three-dimensional stresses and strains are described by (21-30), 

but the exact gradient from plane stress to plane strain is difficult to determine. 

Using the above formulations, constraint can be defined in the following way: 

Constraint is the restriction on material flow, which through 

Poisson’s effect would reduce the formation of triaxial 

stresses. 

Constraint relates back to material toughness, as it is related to the ability of the material to 

deform plastically. As constraint increases, the material flow is further hampered, the 

fracture mechanism becomes more brittle, and plastic deformation cannot absorb energy. 

This leads to the lowered toughness typically observed in higher constraint specimens.  

3.1 Factors affecting constraint 

Load, geometry, and sample size can affect constraint depending on their permutations. 

For example, different attachment methods such as pin loaded or clamped introduce a 

varying moment force as a result of loading. Stress is also concentrated in a different 

manner between bending and tensile loading. The effects of load and geometry on stress 

concentration can be estimated through the f factor in (6) with different cases presented 

for example in the appendix of Ikonen and Kantola (1991). Different geometries also 

produce different sensitivities for constraint changes. The Single Edge Bend (SEB) 

specimen produces a large shift in constraint by varying the a/W crack depth ratio 

(Lindqvist & Boåsen, 2019). Different specimen and their constraint associated toughness 

results are presented below in Figure 6. 



 

 

 

Figure 6 Toughness for the same material derived from varying specimen test 

configurations mimicking (Lindqvist & Boåsen, 2019). 

3.2 Quantifying constraint  

The aforementioned stress triaxiality can be understood as a manifestation of constraint 

(Lindqvist & Boåsen, 2019). Materials in the real world have inhomogeneities, boundary 

layers and non-uniform load distributions that affect the crack tip stress fields and the 

singularity dominated region that is the basis for single parameter stress field correlations 

to J and K. While the stress perturbations of these heterogeneities remain small compared 

to the overall geometry scale, J and K still “communicate” the effect of the disturbances, 

such as boundary layers or free surfaces to the crack tip. (Dodds et al., 1993) When the 

elastic portion through K and plastic deformation through J are no longer correlated one-

to-one between the near tip field and the external conditions, the constraint is lost. (Dodds 

et al., 1993) In practice, the loss of constraint leads to less restricted material flow and 

tougher fracture results. As the single parameter assumption stops describing the crack 

tip stress-fields, the results become geometry and load dependent. To compliment the 



 

 

lacking single parameter models, several additions have been developed to introduce 

additional terms describing the other factors effecting the crack tip conditions and there 

are multiple different models that can be used to estimate the constraint effect on the 

fracture toughness estimate. 

3.2.1 Elastic T-Stress 

Williams (1956) showed that the stress fields at the crack tip for isotropic elastic material 

can be described by an infinite power series, (31). Omission of terms other than the first 

leads to the single parameter crack tip stress expression of classical fracture mechanics, 

(6). Anderson (2005) highlights the importance of the second term as it can have 

“profound effect on the plastic zone shape and the stresses deep inside the plastic zone”. 

The first two terms of the Williams series under Mode I loading are as follow, (31) 

𝜎𝑖𝑗 =
𝐾𝐼

√2𝜋𝑟
𝑓(𝜃) + [

𝑇𝑠 0 0
0 0 0
0 0 𝑣𝑇

] + ⋯   (31) 

where  Ts is an uniform stress in front of the crack in a direction parallel to it, 

σij is stress in the i-j direction, 

θ is the angle in front of the crack tip, 

vT is the resulting z direction stress due to Ts, and  

r is the distance in front of the crack tip, 

In the case that Ts = 0 single parameter conditions are satisfied. If Ts has highly negative 

values, it can lower the magnitude of the overall stress field.  

Biaxiality ratio βx is commonly used to describe the T-stress, (32) 

𝛽𝑥 =
𝑇𝑠√𝜋𝑎

𝐾𝐼
     (32) 

where  βx is the biaxiality ratio. 

 



 

 

For SE(N)T specimens (and many other standard specimen geometries) under mode I 

loading, T-stress is represented by (33) 

𝑇𝑠 =
𝛽𝑥𝐹

𝐵√𝜋𝑎𝑊
𝑓    (33) 

where  F is the loading force, and 

W is the specimen thickness. 

Depending on the chosen fracture toughness estimate, such as the master curve method, 

the T0 temperature can be shifted as a result of changing constraint. Using the T-stress 

estimates, this shift is quantified by (34-36) for SEB and SE(N)T specimens. (Wallin, 

2011) 

∆𝑇0 = 𝐴 (
∆𝑇𝑠

𝜎𝑦𝑠
)  𝐴 = 40𝑜𝐶 𝑓𝑜𝑟 𝜎𝑦𝑠 < 600 𝑀𝑃𝑎  (34) 

𝑓𝑜𝑟 𝑆𝐸𝑇 
∆𝑇𝑠

𝜎𝑦𝑠
= −0.73 + 0.65 (

𝑎

𝑊
) + 1.76 (

𝑎

𝑊
)
2

− 1.37 (
𝑎

𝑊
)
3

 (35) 

 

𝑓𝑜𝑟 𝑆𝐸𝐵 
∆𝑇𝑠

𝜎𝑦𝑠
= −1.13 + 5.96 (

𝑎

𝑊
) − 12.68 (

𝑎

𝑊
)
2

+ 18.31 (
𝑎

𝑊
)
3

−

15.7 (
𝑎

𝑊
)
4

+ 5.6 (
𝑎

𝑊
)
5

    (36) 

where ΔT0 is the shift in T0 temperature,  

 A is a factor dependent on material, and 

 ΔTs is the change in T-stress conditions. 

As the constraint is lowered, the T-stress values become negative and have a reducing 

effect on the stress concentration amplitude. The T-stress relies on elastic assumptions 

and loses its capabilities as plasticity increases. The T-stress becomes undefined in fully 

yielded conditions, and its value saturates near the K-limit load. (Anderson, 2005; 

Moattari & Sattari-Far, 2017; Lindqvist & Boåsen, 2019.) 



 

 

3.2.2 Q-parameter 

O’Dowd and Shih (1991, 1992) discovered that for a power hardening material, the 

power-series which describes its small-scale yielding plane-strain fields can be 

formulated to have the HRR field as the first term. The rest of the higher order terms can 

then be considered as a difference field, which is highly independent from the distance 

forward of the crack. (Dodds et al., 1993; Anderson, 2005 p. 140-143.) This difference 

field corresponds to a uniform hydrostatic stress in the sector directly in front of the crack 

tip and quantifies the triaxial stress at the crack tip vicinity (Dodds et al., 1993). The 

magnitude of this difference field becomes the Q-parameter when the HRR stress is taken 

at a distance r normalized through a reference stress σ0, (37)  

𝛿 ∝
𝐽

𝜎𝑦𝑠
,

𝑟𝜎0

𝐽
= 2, 𝜃 = 0     (37) 

where δ is the crack opening displacement, and 

J is the J-integral value. 

The Q-parameter is theoretically independent of the distance, but the used normalization 

ratio of two for (37) should lie just beyond the blunting region of the crack tip (Dodds et 

al., 1993). While the J-integral scales the deformation at the crack tip, the Q-parameter 

quantifies the stress triaxiality within the radius of 1-8 δ from the crack tip. 

The Q-parameter starts to deviate from the T-stress estimations for large scale yielding 

conditions (Moattari & Sattari-Far, 2017). As the T-stress fails for a more plastic fracture, 

the Q-parameter is more robust for real world applications and remains dynamic over the 

whole yielding scale (Dodds et al., 1993). For this thesis, the Q-parameter is defined 

through the difference of the reference stress field and the actual stress at a location 

normalized by σys, taking the form (38-39) 

𝑄 ≡
𝜎𝑦𝑦𝐹𝐸𝐴− 𝜎𝑦𝑦𝐻𝑅𝑅

𝜎0
,

𝑟𝜎0

𝐽
= 2, 𝜃 = 0    (38)

 𝜎𝑦𝑦𝐻𝑅𝑅 = 𝜎𝑦𝑠 (
𝐸𝐽

𝛼𝑅𝑂𝜎𝑦𝑠
2 𝐼𝑛𝑟

)

1

𝑛𝑅𝑂+1
𝜎𝑖𝑗̃(𝑛𝑅𝑂 , 𝜃) = 1626 𝑀𝑃𝑎 (39) 



 

 

where  Q is the Q-parameter, 

σyyFEA is the actual stress in the crack opening y direction from a FEM 

model, 

σyyHRR is the HRR reference stress in the crack opening y direction, 

In is a strain hardening related constant, and 

𝜎𝑖𝑗̃(𝑛, 𝜃)  is an angular dependence constant. 

and the r used in (39) is normalized with the ratio of two as presented in (37). 

The shift in T0 temperature through the Q-parameter can be estimated using formula 

(40), 

𝛥𝑇0 = 𝑇𝑐𝑜𝑟𝑟(𝑄 − 𝑄𝑟𝑒𝑓)    (40) 

where Tcorr is a correcting factor, and 

Qref is the Q-parameter value for the same material from a reference C(T) 

type sample. (Anderson, 2005 p. 133170; Wallin, 2011 p. 820; Moattari 

and Sattari-Far, 2017.) 

  



 

 

4 DESIGN OF THE SE(N)T SPECIMEN 

Previous testing on SE(N)T specimens has mostly focused on J-R crack growth resistance 

curves, where the fracture resistance is evaluated with a procedure that forces the crack 

to open, grow, and through the unloading gradient evaluates the fracture toughness. A 

review on the different standards by Zhu (2017) compiles the differences and similarities 

between the most prominent and highlights how the different standards overlap with each 

other.  

The SE(N)T is a specimen type suited especially for tests analogous of pipeline conditions 

with tensile loading, due to its constraint behavior (Park et al., 2017). The method and 

specimen are described in the British Standard Institution (BSI) standard BS 8571:2014 

(British Standards Institution, 2014),  CANMET (Park et al., 2017) implementation, a 

similar document by Exxon Mobil (Panico et al., 2017),  and Det Norske Veritas 

Recommended Practice DNV-RP-F108 2006. The aforementioned standards alone are 

not enough for the desired combination of shallow notch, sub sized dimensions, and the 

Master Curve method, which the experiments of this thesis require. ASTM E1820-20b 

and E1921-21 are used to substitute their shortcomings while the various standards are 

applied for other best practices. Still, no ultimate guide exists, which would provide 

thoroughly validated methods for the type of SE(N)T testing conducted in this thesis, 

especially on the estimation of measurement and method uncertainty. It should also be 

noted that the BSI standard used for reference has been made obsolete by a new revision, 

which was unavailable.  

4.1 General SE(N)T specimen dimensions 

The different standards demand a free, unconstrained length that is ten times the width of 

the specimen combined with sufficient grip allowance depending on the test apparatus. 

Many aspects of the design for this thesis are limited by the available equipment. For 

example, the load cell uses special mechanical grips that wedge the vises shut as tension 

increases. This is to allow low temperature testing unsuitable for hydraulic actuators. The 

test grips require 55 mm of material for attachment. The orientation of the grips and any 



 

 

extra free sample length affect the rotational moment that arises due to the notched 

geometry. The total length of the specimens is thus rendered at 210 mm, two times 55 

mm for each grip and a 100 mm free surface between them.  

The specimen width to thickness ratio W/B is set at one and the cross section is therefore 

a square. A square geometry was chosen in part as it results in a lower stress gradient over 

the specimen width under load (Anderson, 2005). Furthermore, Charpy V type notched 

impact specimens can be manufactured from the broken halves of a 10 x 10 mm2 SE(N)T 

specimen. Proven formulas and analysis methods for the square geometry with a length 

ten times the width have also been validated in the CANMET SE(N)T test method and 

the standard BS8571 (British Standards Institution, 2014; Park et al., 2017). 

4.2 Crack and knife edge depth 

As the general sample dimensions set the boundaries for the subsequent geometry 

parameters, it also determines the limits for the crack and knife edge dimensions. The 

crack length is chosen as the variable which is changed to reveal the effect of constraint 

phenomena. Since only a single knife edge configuration is considered, only the J-integral 

can be determined from the measurements. A two-clip system could be used to estimate 

the C(T)OD based on the COD values and trigonometry. A common 0.5 a/W ratio is 

chosen to represent high constraint conditions, and 0.2 a/W to represent lower constraint 

as it still has relevant datapoints for comparison. It is also the lower limit ratio for many 

other experiments found in the literature. The ASTM standard E1820 (2020) X-

appendixes give guidelines for shallow notches and knife edges for the CMOD gauges. 

The smallest available 3 mm clip gauge requires 0.72 mm of depth to allow for free 

rotation through the crack-opening motion, Figure 7. To accommodate condensation and 

thawing at the test temperatures, this space is increased to 0.8 mm.  



 

 

 

Figure 7. C(T)OD clip gauge arm (blue) and the knife edge it rotates around (orange) 

requires 0.72 mm of space. 

 

Several options as the basis for the knife edge and pre-crack geometries were explored. 

One of the main downsides of the BSI standard (2014) is the strict minimum requirement 

of 1.3 mm for the fatigue crack extension. For a sample with a width of 10 mm and an 

a/W ratio of 0.2 this would leave 0.7 mm which is not enough even for the rotation of the 

CMOD gauge let alone the pre-crack in addition to it. External knife edges are proposed 

as an alternative, but their attachment becomes an issue. Machine screws or spot welds 



 

 

are recommended in both BS 8571:2014 and ASTM E1820-20b, but they are only suitable 

for larger overall geometries. The Heat affected zone (HAZ) would be too large in such 

a small specimen rendering it unusable. The BSI standard (2014) demands that screws 

must be within a distance determined by equation (41), 

𝑑𝑠 =
𝑊−2∅𝑠

4
     (41) 

where ds is the distance of the threaded hole center, 

∅s is the thread diameter. 

For standard metric threads M3 is too large intersecting the pre-crack and M2 would be 

0.5 mm away from the notch, even M1 threads would be uncomfortably close and 

interfere with the stress fields formed during testing. 

An alternative method for attaching the external knife edges by gluing was investigated. 

Glues used for strain gauges are assumed to pass the required scientific rigor and 

repeatability for accurate results. X60 formulation was considered as an option that can 

attach smooth metallic surfaces without needing a hot curing and has a reported operating 

range down to -200 oC (HBK, 2022). Gluing was abandoned for the thesis set of 

experiments due to time constraints. A test adhesion experiment would be too time 

consuming, and a separate jig would have to be constructed to assure consistent knife 

edge-specimen attachment. Nevertheless, gluing proposes an interesting avenue for future 

test configurations. There should be no strong strain fields near the surfaces where the 

knife edges would be glued to, and if a strong enough shear load formed breaking the 

adhesive bond, it would be an interesting result within itself.  

After consideration, the internal knife edge geometries suggested for shallow cracks from 

ASTM 1820-20b were chosen and modified, as they allow for shorter fatigue pre-crack 

lengths leaving room for the CMOD gauge. Limitations instilled on the geometry ratios 

between different dimensions of initial and fatigue cracks are used to define the notch 

geometry. The width of the pre-crack must be less than 0.063W, which can be achieved 

by using an Electric Discharge Machining (EDM) wire cutter. The notch should also be 

as narrow as possible to minimize the elastic compliance of the specimen, especially for 



 

 

narrow notches (ASTM International, 2020). A wire diameter of 0.2 mm will result in a 

notch with the width of around 0.3 mm. An EDM wire will also form the recommended 

“narrow-notch” geometry (ASTM International, 2020).  

The standard (ASTM International 2020) demands that the ratio between the pre-crack 

and fatigue crack based on the stress intensity factor and the resulting plastic zone radius 

rp, (42). 

𝑟𝑝 =
1

3𝜋
(

𝐾

𝜎𝑦𝑠
)

2

> 1.5𝑎1    (42) 

where  rp is the plastic zone radius, 

a1 is the machined notch depth. 

For this application the value for K is defined by equation (43),  

𝐾 = [
𝑃𝑆

(𝐵𝐵𝑁)
1
2𝑊

3
2

] 𝑓 (
𝑎1

𝑊
)    (43) 

where P is the three-point bending force used for the pre-cracking (44), 

 BN is the notched thickness of the sample = B for the pre-cracking phase, 

  

𝑃 =
0.5𝐵(𝑊−𝑎1)2𝜎𝑦𝑠

𝑆
    (44) 

where  S is the distance between supports 

The geometric shape factor is found using the formula (45). 
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 (45) 

As the rp is affected by the machined notch depth a1, the fatigue crack limit forms a system 

of equations, and the desired geometry cannot be assumed to fulfill the requirements. An 



 

 

easier solution than solving the system of dependent equations is to test a set ratio to see 

the range parameters that allow the set crack sizes. The following values were tested for 

the formulas (42-45), and they produced measures which could be manufactured: 

The SEB specimen stress geometry factor (45) is appropriate for the SE(N)T specimen as 

the fatigue pre cracking is done with a bending load. The distance between the supports 

S is set at 4W. As the a1/W ratio is the adjusted factor for the experiment, it is set at 0.2 

for the low constraint example and 0.5 for the high constraint example. From these a/W 

ratios the total crack length can be determined to be 2 mm for the low- and 5 mm for the 

higher constraint specimen.  

An a/W 0.2 notch loses 0.8 mm to the knife edge cutout leaving 1.2 mm left for the pre 

and fatigue crack. Operators who conduct the pre-cracking stated the process to be 

difficult to control. Having a deeper machined notch will improve the result. A 0.7 mm 

machined notch in addition to the knife edge leaves 0.5 mm fatigue growth for pre-crackig 

and falls within the limits set by the standard.  

The a/W 0.5 specimen has more leeway in notch depth design, and the geometry was set 

at 3.5 mm machined and 1.5 fatigue crack. The notch and knife edge geometries are 

presented below in Figure 8 and the only difference between the two specimen types is 

the notch depth. 



 

 

 

Figure 8. The two , a/W 0.2 (red) and a/W 0.5 (green),machined notch and knife edge 

geometries, dimensions in [mm]. 

4.3 Knife edge geometry 

Another factor considered was the rounding of the knife edge base. Their investigation 

was motivated by the concern that the threading for the external attachment of knife edges 

would interfere with the test stress fields. As the knife edge is close to the shallow pre-

crack of the a/W 0.2 sample, the stress concentration caused by the crack was feared to 

extend to the knife edge area and be affected by it. Rudimentary Finite Element Method 

(FEM) analysis was conducted using Abaqus CAE (Dassault Systemes SIMULIA corp., 

2022), (described in section 5.6) and varying the rounding. To lower the computational 

cost and stay within the limits of the available license, the piece specimen was modelled 

as 2D planar model. The material was set to have a Poisson’s ratio of 0.3, Young’s 

modulus of 210 GPa, yield strength of 580 MPa with an elastic portion of 0.2% and 

density of 7.8 kg/dm3. 

The constraints were set at the clamp surfaces on one end preventing U1-3 movement and 

rotation. The other end was set to load the specimen with a linearly ramping force close 

to the yield point of the material as the model was not configured properly to take into 

account large plastic deformation. The mesh density was locally increased around areas 

of interest and the formation was unmapped and the element type was a linear triagonal 



 

 

element. As a result of the investigation 0.2 mm roundings were chosen for the knife 

edges.  

4.4 Side grooves 

After fatigue pre-cracking, the specimen sides are grooved by the crack, to steer the 

fracture into a straighter growth during testing, Figure 9. The groove specifications are 

adopted from the recommendations of ASTM E1820 and CANMET. The final groove 

geometry is limited by the available machinery, and a Charpy V impact specimen notch 

profile was chosen due to its convenience. The final notch depth is set to 0.75 mm on 

each side amounting to 15% reduction in the specimen width B by the standard 

recommendations. This rather shallow depth also reduces the milling forces and flex of 

the machining bit, resulting in a more reproducible process. The angle of the notch is 45 

degrees with a rounding of 0.25 mm. The rounding is sharper than recommended in the 

standards, but this could not be avoided due to the limitations of the manufacturing 

method.  

 

Figure 9 A SE(N)T specimen with a side groove machined into it. 

 

All of the design aspects (excluding side grooves) of the SE(N)T specimens used for the 

thesis experiments can be seen in Appendix 1, which contains the technical drawings used 

for their manufacturing.   



 

 

5 MATERIALS AND METHODS 

5.1 Test material 

The testing is conducted on an IAEA correlation monitor material designated JRQ 

(Brumovsky et al., 2001). It was melted, cast, and rolled in Japan during the 80’s as an 

ASTM A533 B Class 1 steel plate formed into a 225 x 2500 x 3000 mm3 slab, which was 

heat treated and flame cut into 225 x 1000 x 1000 mm3 pieces ( Wallin et al., 1995; 

Brumovsky et al., 2001).  The plate was normalized at 900 oC, quenched from 880 oC and 

tempered at 665 oC for twelve hours followed by a 40-hour stress relieving at 620 oC 

(Brumovsky et al., 2001). Wallin and colleagues (1995) also noted that there is a “rather 

large toughness gradient in the thickness direction”. Further internal studies at VTT, such 

as the one by Lindqvist and Peltonen (2021), have confirmed this observation and further 

characterized the material properties.  

While the original slab has mostly been used in previous experiments, a remaining 15 - 

41 - 3 cm3 plate was chosen since it did not show any markings from the original surfaces 

indicating a more central origin. Figure 10 illustrates the chosen sample material piece., 

A slice was removed from it and five 50 mm sample buttons were manufactured to 

compare the sample material properties to those reported previously, Figure 11. At least 

six uncensored measurement results are needed to form the master curve at the test 

temperature range,(Wallin, 2011; ASTM International, 2021) and the remaining material 

allowed the manufacturing of 24 specimens with the chosen outer dimensions. 



 

 

 

Figure 10. The chosen sample material piece. 

 

 

Figure 11. 50 mm sample button manufactured from the sample material. The 

rolling direction is visible as left to right and the notch indicates the orientation in 

relation to the parent material, dimples from the HV10 measurement can also be 

seen upon closer inspection. 



 

 

A Zeiss Axiom Observer microscope was used to determine the orientation from a Nital-

etched sample, Figure 11, and compared to previous similar images, but the rolling 

direction is visible to the unaided eye from the etched surface as well.  

5.1.1 Hardness measurements 

The Vicker’s hardness (HV10) varies from roughly 220 HV at the surfaces and decreases 

to 185 HV in the center based on an earlier study (Lindqvist & Peltonen, 2021). To verify 

the previously measured mechanical properties and locate the sample material in relation 

to the original slab, 45 new HV10 tests were conducted across the sample plate geometry. 

The measuring device was calibrated with five calibration measurements into a 

calibration piece of known hardness before the test piece was examined.  

The hardness and microstructural appearance match those of quarter thickness 

measurements from the original slab, and this information combined with documentation 

from previous experiments leaves only two possible locations from which the sample 

material could originate, as illustrated in Figure 12. 

 

Figure 12 Sample material location in relation to the original slab, the two possible 

permutations are presented in red and green. 



 

 

5.1.2 Material composition 

The composition of the material was determined previously from three different depths 

using optical emission spectrometry (OES) in the study by Lindqvist and Peltonen (2021), 

Table 2, and this data is used for the thesis investigation. There is no major gradient in 

the elemental distribution through the measured thickness and it is almost identical 

throughout the slab. These composition measurements are also consistent with the values 

reported by Brumovsky and colleagues (2001). 

Table 2. Chemical composition of the sample material through its thickness 

determined with OES (Lindqvist and Peltonen, 2021) 

Distance from 

plate surface C Si Mn S P Cr Ni Mo Cu Al W V Ti Co Nb B

OES1 20 [mm] 0,17 0,24 1,43 0,006 0,017 0,13 0,84 0,50 0,15 0,017 <0,01 0,005 0,002 0,006 0,003 <0,0005

OES2 55 [mm] 0,18 0,24 1,42 0,007 0,017 0,13 0,85 0,49 0,16 0,017 <0,01 0,005 0,002 0,006 0,003 <0,0005

OES3 95 [mm] 0,18 0,24 1,42 0,006 0,016 0,13 0,83 0,50 0,15 0,018 <0,01 0,006 0,002 0,006 0,003 <0,0005

Chemical compostition [w %]

 

The microstructure was previously characterized as mostly lower bainitic with local 

regions of upper bainite. Lath like structures were found near segregates, which were 

speculated to be martensitic. Some large segregations suspected to be manganese sulfite 

were also reported present. Lindqvist and Peltonen (2021) determined the average grain 

size to be between 20 and 45 µm (depending on the sample location) using Electron 

backscatter diffraction (EBSD). The EBSD analysis also revealed possible texture 

components and previous austenite grain boundaries. A new inspection to verify the 

characteristics was conducted using a Zeiss Sigma Field Emission Scanning Electron 

Microscope (FE-SEM).  

5.1.3 Material strength 

Previous tests have set the yield strength between 480 and 560 MPa at the test 

temperature. The varying estimates for the comparison data strengths are derived from 

hardness measurements and formulas (46-48), 

σ𝑓𝑙𝑜𝑤 ∗
3.5

9.8
= 𝐻𝑉     (46) 



 

 

𝜎𝑓𝑙𝑜𝑤 = 𝜎𝑦𝑠 [1 + (
𝐶2

𝜎𝑦𝑠
)
2

]     (47) 

𝐻𝑉 =
3.5𝜎𝑦𝑠

9.8
∗ [1 + (

𝐶2

𝜎𝑦𝑠
)
2

]    (48) 

where  σflow is the flow stress of the material, 

HV is the hardness and 

C2 is a material coefficient. 

and actual tensile specimens from the sample material. The hardness derived strength 

formula is less relevant for the thesis samples as the hardness gradient is not present to 

the same extent in the sample piece. However, it is used for the comparison values 

produced by previous experiments (Lindqvist and Peltonen, 2021). The tensile tests were 

conducted by the Kungliga Tekniska högskolan (KTH) for a previous publication. Three 

tensile specimens were used for each testing temperatures, except four for 25 oC and two 

for -160 oC, Figure 13. (Boåsen, 2021.)  

There is some unexpected deviation in the elastic region of specimen 804, which should 

be linear. The elongation was measured using a virtual extensometer and a proprietary 

TensileUn software not available for review for the thesis. The room temperature samples 

were measured using two sets of extensometers, but the build-up of frost at lower 

temperatures prevented their use for the – 85 oC samples reported by Boåsen (2021). The 

room temperature data was used to calibrate the virtual extensometer used for the cold 

test, which could explain the strange tensile behavior. Boåsen (2021) also discusses the 

uncertainties related to the measurements but concludes they should be reliable enough 

for the application (FEM material model) used in this thesis. In addition the elastic 

modulus value determined in the KTH report was used for the thesis calculations (213 

GPa). 



 

 

 

Figure 13 Stress-Strain curves for the tensile tests conducted at -85 oC. 

 

The strain hardening behavior can be deduced from the tensile stress-strain graphs and 

KTH derived a hardening model for different temperatures by fitting an equation to the 

true stress-logarithmic strain data using the least squares method (49) 

𝜎𝜎 = 𝜎𝜎𝑦𝑦𝑦𝑦 (1 + 𝛼𝛼′𝜀𝜀𝑝𝑝 + 𝛽𝛽′(1 − exp(−𝛾𝛾′𝜀𝜀𝑝𝑝)))   (49) 

where  α’, β’, and γ’ are temperature related coefficients, and 

εp is the plastic strain. 

with the coefficients according to temperature presented in Table 3.  

 



 

 

Table 3 KTH stress formula temperature coefficients 

T [oC] σys [MPa] α β γ 

25 371,43 1,02 0,83 32,23 

-70 488,55 1,19 0,58 21,73 

-85 489,72 1,01 0,66 17,59 

-100 495,28 1,03 0,68 17,40 

-120 537,79 0,93 0,68 12,97 

-160 695,12 0,90 0,43 11,13 

 

From the Swedish model, the Ramberg-Osgood relation (1) was used to deduce the strain 

hardening exponent nRO for the plastic region of materal behavior.  

The Ramberg-Osgood formulation accepted by Abaqus CAE takes the following form: 

(50), 

𝜀 =
𝜎

𝐸
+ 𝛼𝑅𝑂

𝜎

𝐸
(

𝜎

𝜎𝑦𝑠
)
𝑛𝑅𝑂−1

     (50) 

where (nRO = 9, αRO = 2.5). 

The KTH model was plotted on a log-log scale where the linear fit slope represents the 

strain hardening exponent. The slope is not constant and the linear section which 

produced the best agreement between the simulation models and experimental data was 

chosen, Figure 14. The yield offset is determined using the same method. The results were 

also checked against the engineering stress-strain curves of the tensile experiments, 

Figure 15. 



 

 

 

Figure 14 Log-Log True Stress-Strain graph for the determination of the Ramberg-

Osgood strain hardening exponent. 

 

 

Figure 15 Ramberg-Osgood material model fitted through the plastic region of two 

tensile test experiments on an engineering stress-strain curve. 



 

 

5.2 Sample detachment 

Based on the aforementioned characterizations the sample piece was accepted and the 

detachment planned accordingly. The geometry parameters are inflexible which limited 

the extraction of the samples from the larger piece. The determining factor was the total 

length of 210 mm allowing only one direction for the sample longitude orientation. This 

left only the T-X directions available. As previous data is available from the T-L 

orientation and it is recommended in the JRQ manual (Brumovsky et al., 2001), it was 

chosen over T-S, Figure 16. 

 

Figure 16. The sample material piece orientation and directions with the available 

sample examples, T-S in orange and T-L in blue. 



 

 

EDM wire cutting was used to detach the samples. As there are two types of specimens, 

their removal order is altered to allow for the statistical evaluation compensation of the 

material inhomogeneity, Figure 17 and Figure 18.  

 

Figure 17. The sample removal from the same perspective as Figure 7, a/W 0.2 

(Red), a/W 0.5 (Green). 

 

 

Figure 18. SE(N)T specimens in their removal locations from the larger material 

slab a/W 0.2 (Red), a/W 0.5 (Green). 



 

 

5.2.1 Naming convention 

The goal of the sample identification label is to tell where from the slab the sample was 

originally from, which sample is its pair and what type of sample it is. The samples were 

labeled on both sides of the crack with running numbers combined to a HC High 

constraint prefix for the a/W 0.5 samples and an LC low constraint prefix for the a/W 0.2 

samples. The numbers increase in the rolling direction and from top to bottom.  

All the sample labels and geometries can be seen from Appendix 1. The sample 

manufacturing was subcontracted to a specialized machine shop MEC(T)ALENT Oy. 

5.2.2 Pre-cracking  

To facilitate the use of fracture mechanics calculations, a sufficiently sharp crack is 

required (Anderson, 2017 p. 314). This was achieved through fatigue pre-cracking 

induced by cyclical loading. The pre-cracking was done by three-point bending where the 

distance between supports is 4W or 40 mm. Before the fatigue process was started, the 

sides perpendicular to the crack growth direction were polished to prevent any surface 

imperfections from growing during the pre-cracking. This can be seen in Figure 9. The 

loading ratio between the minimum and maximum forces was set at 0.1. The process was 

stress intensity controlled and as the crack grows the frequency resonance was used to 

estimate the progression. There are requirements set on the crack growth straightness that 

are evaluated from the fracture surfaces in section 5.4.2 as there were no gauges present 

during the fatiguing process. A recent study by Lindqvist and Kuutti (2022) indicates that 

the limitation set by the standards are not necessarily as critical as previously thought, but 

they were adhered to in the thesis experimentation. 

5.2.3 Side grooving 

Side grooves were machined using a Charpy V impact specimen notch profile tool, Figure 

19. A Mitutoyo depth gauge was used to measure the depth of the side grooves, to ensure 

consistent machining process, but the measurement accuracy was lower than the 

machining precision. Ensuring that the gauge probe was perfectly at the bottom of the 

groove was inconsistent, but the manufacturing method appeared very repeatable.  



 

 

 

Figure 19 Side grooving equipment and a clock dial intended for Chrapy V notch 

measurement used to guide the machining. 

5.3 Test equipment 

5.3.1 Load cell 

If the limit load of the specimen is derived from the uncracked cross-sectional area and 

yield strength, around 50 -60 kN is needed to reach the yield stress. It is recommended 

that the load frame capacity exceed this value, even a few folds (CANMET, 2017). The 

250 kN MTS-frame used in this thesis will suffice with this consideration in mind, but 

Weeks (2017) notes, that the best accuracy is received using a load cell close to the 

forces of the experiment.  

5.3.2 Clamping 

The clamps are wedge locking, and their compression increases with tensile load. The 

different methods for SE(N)T testing do not provide strict accuracy requirements for 

clamping as highlighted in a review by Weeks (2017), but the distance between clamps 

should be set as close as possible to 10W. This was achieved by using the displacement 

controls of the load cell and driving the clamps to the exact correct displacement away 

from each other. The clamps are self-correcting and should align under tension, but any 

moments that arise from the alignment are unknown. A digital angle level was used to 

ensure the parallel attachment between the clamps, Figure 20. The crack was oriented to 



 

 

cause opening moment in the stiffer rotational axis of the load cell, so that the machine 

flex would not allow for additional rotation.  

 

 

Figure 20 Example of the sample alignment using a digital level. 



 

 

5.3.3 Temperature measurement and control 

The standard ASTM E1921 recommends that the experimental temperature is set close to 

a temperature where the KJc is 100MPa√m. For comparable SEB specimens, this 

temperature was determined to be close to -80 oC. The test temperature was set at -85 oC 

as it provides a new datapoint from the more ductile region, where the effects of constraint 

are expected to be stronger (Sarzosa et al., 2018), but also contains ample comparison 

data and information of the material’s physical behavior. The standard also dictates, that 

the fluctuations in temperature must stay within ±1 oC of the average during the 

experiment. To achieve this, the experiment was conducted in an environmental chamber 

cooled with liquid nitrogen. The chamber encloses the specimen and the attaching grips.  

Temperature was measured with a type K thermo-couple connected to a data logger and 

software provided by MTS. The thermocouples are in contact with the sample material 

surface and were taped on rather than spot-welded to avoid the resulting HAZ from 

influencing the results. Additional non-logging thermo couples were used for verification 

and monitoring purposes. One probe was attached to the sample and the other to the 

clamp. The large metallic load cell is a massive heatsink and the clamp temperature was 

used to indicate the state of temperature equilibrium inside the chamber. The other two 

sensors were located near the crack. The logged temperature was taken from the side 

facing away from the cooler to avoid nitrogen plumes from blowing towards the 

thermocouple. This orientation was mostly for redundancy as the effect of the cooling 

flow was only present when the environmental chamber settings were changed, and a 

large flow of coolant was introduced, which was not done during ongoing measurements. 

The chamber is insulated, but the hydraulic tension mechanism produces some heat. 

Therefore, the cooling temperature was set slightly below the target temperature to 

achieve equilibrium close to it. During cooling a small tensile force in the magnitude of 

0.15 kN was applied to ensure good grip in the vise clamps. When the temperature of the 

machine and specimen were within five degrees Celsius the sample was assumed to have 

reached the target temperature. The samples were kept at the target temperature for 

around 30 minutes before experimentation to ensure the temperature gradient between the 

specimen surface, where measurements are taken, and the core was even. Another method 



 

 

applied to verify consistent temperature, was to switch from load to displacement control 

at the final stages of cooling. When cooling from room temperature to -85 oC the thermal 

shrinkage would cause a stress of several kN if the machine was left on displacement 

control. With this in mind, if the machine was left on displacement control and the sample 

core was still warmer, a tension would arise as it cooled. As there was no thermal 

shrinkage during the hold period evident by the constant tension forces during 

displacement control, it can be assumed that the core surface matches that of the surface. 

This displacement control method was not repeated on all experiments, but it is assumed 

to validate the cooling procedure since the material and overall dimensions are the same.  

The effect of the light on temperature was considered, but deemed insignificant. It is an 

incandescent bulb which would convert large amounts of its input energy of 220 W into 

heat, but reaching equilibrium would take this into account. The environmental chamber 

around the grips is pictured below in Figure 21. 



 

 

 

Figure 21 A sample placed in the load cell grips with the CMOD gauge and 

temperature probes attached, and their locations revealed by wires. 



 

 

5.3.4 Procedure followed 

The progression of experiments was as follows: 

1. The pre-cracked sample was cleaned with alcohol  

2. The two temperature gauges were taped on next to the crack  

3. Clamps were driven to a correct displacement 

4. The sample was aligned and tightened in the clamps 

5. Cooler was turned on and the load cell on force control with small tension 

6. The machine and samples cooled and were kept at equilibrium for a minimum of 

30 minutes 

7. The gauges were reset 

8. The sample was pulled apart at a rate of 2 mm/min 

9. Sample was removed and submerged in alcohol to avoid condensation 

10. Procedure was repeated for a new specimen 

The first samples were used to find faults in the test procedures and evaluate any need for 

adjustment. It was noted that the samples slipped in the grips when placed there cold, so 

the clamped surfaces were roughed, Figure 22. Based on the first few specimens for each 

series the load rate was increased, but the temperature was kept at the preplanned -85 oC. 

Many of the standard methods recommend an unloading compliance test to verify the 

stiffness of the machine. The loading-unloading forces should be lower than those used 

at the final phase of pre-cracking to prevent crack growth, but as they were applied, no 

tangible results were obtained. This was due to the small magnitude of forces used, and 

the unloading compliance loading cycle was therefore abandoned. For future reference it 

should be noted, that the machine tolerances do not scale with different sample sizes.  



 

 

 

Figure 22 Roughing of the clamped region of the specimen to prevent slip. 

 

5.4 Qualification requirements 

5.4.1 Screening criterion 

The number of uncensored results required is determined through the formula (51), 

∑ 𝑟𝑖𝑛𝑖  ≥ 13
𝑖=1     (51) 

where ri is the number of uncensored valid specimens in a temperature range and ni the 

weighing factor for the temperature range. The weighting factor is given in the standard 

ASTM E1921-21 Table 6. The thesis range requires six uncensored specimens. 

5.4.2 Pre-crack qualification 

The pre-crack straightness is measured through 9 points evenly placed, centered from the 

specimen centerline, and extending to 0.01 B from the notched free surface. The two edge 

measurements are averaged and then a second average is taken from this combined value 

and the 7 innermost measurements. This average value is the initial crack depth a0. The 

pre-crack is invalid if any of the inner seven measurements deviate more than the formula 



 

 

(52) allows or if the pre-estimate of the pre-crack length differs from the average value 

by more than 5%.  

𝑎𝑖  ≠ 𝑎0 ± 0.1√𝑏0𝐵𝑁    (52) 

where  ai is the crack the innermost seven measurement 2-8 value, and 

a0 is the average crack depth. 

An example of the measurement can be seen in Figure 35.  

5.4.3 Quasistatic load-rate qualification 

As the load rate effects the resulting toughness with slower rates resulting in tougher 

results, a limit is set on the allowable speeds. Anything between 0.1 and 2 is allowed with 

1 producing ideal results. As the load rate is expressed as a function of the stress intensity 

over time it can only be found out after testing. First a few samples were pulled at a rate 

of 0.1 mm/min which was too slow. To keep comparison between the different specimens 

consistent, a single higher rate was chosen at 2 mm/min for all the tests which results in 

the a/W 0.2 specimens in having a loading rate of ~ 0.2-0.3 while the a/W 0.5 were closer 

to 1.  

5.5 Fracture toughness calculations 

All the fracture toughness and Master Curve calculations are done using the MATLAB 

script (MATLAB, 2022), truncated in Appendix 2. 

For this thesis, the J-integral was interpolated from the load-displacement curve produced 

by fracture toughness testing, using the area under a curve fit of the CMOD and force 

data. A linear elastic material rebounds and forms a line on a stress-strain graph with a 

slope theoretically matching the Young’s modulus of the material. However, a plastically 

deformed material is irreversibly changed and a strain can have different load conditions 

behind it, which means the conditions behind crack formation cannot be implicitly 

derived from the displacement. (Anderson, 2005.) 



 

 

With this limitation in mind, the graph was divided into plastic and elastic portions using 

the assumption that the elastic portion is (mostly) linear in its load-displacement behavior, 

Figure 23. 

   

Figure 23 Illustration of the plastic and elastic areas under a CMOD-Force graph. 

 

 

 



 

 

The J at the onset of critical failure is defined in the standard ASTM E1921 as presented 

below, (53-55) 

𝐽𝑐 = 𝐽𝑒 + 𝐽𝑝     (53) 

𝐽𝑒 =
(1−𝑣2)𝐾𝑒

2

𝐸
    (54) 

𝐽𝑝 =
𝜂𝐴𝑝

𝐵𝑛𝑏0
     (55) 

 

where  Jc is the J-integral at cleavage fracture initiation, 

Je is the elastic portion of the J.integral, 

Jp is the plastic portion of the J-integral, 

Ke is the elastic stress intensity factor, 

Ap is the plastic area under the CMOD-Force graph, 

b0 is the remaining ligament, 

η is the Eta factor. 

 

The plastic component of the J-integral Jp relies on the eta factor η, which is a 

nondimensional parameter conveying the plastic proportion of the J-integral independent 

of loading and quantify the plastic work done by the strain energy. (Ruggieri, 2012.) 

Using this method requires accurate η estimates and there are many sources for different 

experimental configurations available. The different FEM analysis used to produce eta 

values often come with their own corresponding Jp formulas. In his paper, Ruggieri (2017) 

compared many of these different results for SE(N)T specimens. CANMET has also 

produced its own recommended procedure and values, which are used in this thesis, as it 

is the method previously used to produce the comparison data, (56) 



 

 

𝜂𝐶𝑀𝑂𝐷 = ∑ ∅𝑗 (
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(56)

  

where ηCMOD is the CANMET Eta factor.  

The values for the eta parameters were validated using the reference results for a/W 0.2 

and 0.5 provided in the CANMET recommended practices which were and exact match. 

Ruggieri (2017) also notes that eta values based on CMOD are stable across different 

Ramberg-Osgood strain hardening exponent. 

The elastic stress intensity and geometric factors were also provided by CANMET, (57 

and 58), and are valid for the specimen a/W regions. 
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  (58) 

where f is a geometric factor of the specimen, 

F is the load, and 

B is the initial specimen width. 

The fit function used for the area calculations is produced with an eight-degree polyfit 

through the measurement data, which produces a polynomial function that describes the 

datapoints through the least squares method, (59) 

 



 

 

𝑓𝑖𝑡 = 𝑝1𝑥
8 + 𝑝2𝑥

7 + 𝑝3𝑥
6 + 𝑝4𝑥

5 + 𝑝5𝑥
4 + 𝑝6𝑥

3 + 𝑝7𝑥
2 + 𝑝8𝑥 + 𝑝9  (59) 

where the p’s are the polynomial coefficients. 

The area under the fit function (59) represents the energy required for the cracking and 

was found by integrating the fit function, (60 and 61).  

𝐴𝑟𝑒𝑎 = ∫ 𝑓𝑖𝑡
𝑑𝑦

𝑑𝑥
 

𝐶𝑀𝑂𝐷𝑚𝑎𝑥

0
     (60) 

𝐴𝑝 = 𝐴𝑟𝑒𝑎 − 𝐴𝑒 = ∫ 𝑓𝑖𝑡
𝑑𝑦

𝑑𝑥
 

𝐶𝑀𝑂𝐷𝑚𝑎𝑥

0
−

𝐹𝑚
2 𝐶𝜃

2
  (61) 

where Area is the total are under the CMOD-Force graph, 

 Ae is the elastic area under the CMOD-Force graph, 

 Fm is force at maximum CMOD, 

 Cθ is the slope reciprocal for the elastic gradient, and 

 CMODmax is the largest opening value and upper boundary. 

Several methods were considered to determine the linear portion slope (Cθ) which was 

used to calculate the plastic and elastic proportions under the fit function The best 

agreement was found using the assumption that the strain must initially be elastic before 

plastic deformation. Therefore, the strain-stress slope should be the highest before 

yielding, as the force required for the same strain increment will be lower after plasticity 

is reached. Using this assumption, the highest strain-stress relations must be from the 

elastic part. Removing deviations from the load initiation and extreme values to remove 

outliers the 90th to 98th % quintile average produced gradients that closely matched the 

slopes observed from plotting the datapoints. This range was adjusted and validated 

visually to find the greatest degree of agreement between the calculation and measured 

data and then used for the thesis fracture toughness calculations.  

The J-Integral was converted to a toughness value through formula (62) 

𝐾𝐽𝑐 = √𝐽𝑐 (
𝐸

1−𝑣2)    (62) 



 

 

and normalized to a 1T size with formula (63) 

𝐾𝐽𝑐𝑥 = 20 + [𝐾𝐽𝑐 − 20] (
𝐵

25.4
)
0.25

    (65) 

Where  KJcx is the median KJc toughness. 

Alternatively, (66) 
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which was tested to produce the same value as the substitute parts separately. The 

combined formula is used in the uncertainty and sensitivity analysis in section 5.7. 

5.5.1 Derivation of the T0 temperature  

The standard recommends iteration to find the T0 temperature by balancing the following 

sum formula in respect of T0Q, which is a preliminary value used to substitute the 

unknown T0, but a symbolic solver was used in the thesis calculations, (67)  

∑

(
exp[0.019(𝑇𝑖−𝑇0𝑄)]

(11+77𝑒𝑥𝑝[0.019(𝑇𝑖−𝑇0𝑄)])
5) 

−∑
(𝐾𝐽𝑐𝑖−20)

4
exp[0.019(𝑇𝑖−𝑇0𝑄)]

(11+77𝑒𝑥𝑝[0.019(𝑇𝑖−𝑇0𝑄)])
5

𝑛
𝑖=1

𝑛
𝑖=1 = 0   (67) 

T0Q is accepted as T0 if the number of tests produced within an acceptable range between 

the test and T0 temperature set in 5.4.1. 

5.5.2 Master curve graphs 

The Master Curve K0 was calculated using formula (68), 

𝐾0 = [∑
(𝐾𝐽𝑐𝑥(𝑖)−20)

4

𝑁𝑢

𝑁
𝑖=1 ]

1

4

+ 20    (68) 



 

 

where Nu is the number of uncensored specimens and N is the number of specimens. 

Substituting the resulting K0 into (69) produces the median toughness value, 

𝐾𝐽𝑐(𝑚𝑒𝑑) = 20 + 0.91(𝐾0 − 20)    (69) 

and graphing this over a range of temperatures was used to produce the median Master 

Curve (70) 

𝑇0𝑚𝑒𝑑 = 𝑇 − (
1

0.019
) ln (

𝐾𝐽𝑐(𝑚𝑒𝑑)−30

70
)    (70) 

The probability ranges were set by substituting xx in (71) with the desired range, 

𝐾𝐽𝑐(0.𝑥𝑥) = 20 + [ln (
1

1−0.𝑥𝑥
)]

1

4 {11 + 77exp [0.019(𝑇 − 𝑇0)]} (71) 

and plotting the results over a range of temperatures was used to produce the confidence 

interval graphs. 

5.6 Abaqus CAE 

Compared to the simple, almost linear relation of the T0 shift and T-stress, the Q-

parameter requires a Finite Element Method (FEM) analysis of the actual crack tip 

conditions, and for this thesis, Abaqus CAE 2022 was used (Dassault Systemes SIMULIA 

Corp., 2022). 

The magnitude of the Q-parameter was derived by comparing the models S22 stress to the 

HRR reference stress at the distance normalized with formula (37), and substituting the 

values into formulas (38) and (39). 

Approximations for the coefficients In and 𝜎̃ for formula (39) were calculated with 

formulas found in (Wallin, 2011 p. 18), (72 and 73) 

𝐼𝑛 ≈ 4.35 + 2.7 exp (−
𝑛𝑅𝑂

3.6
)   (72) 



 

 

𝜎̃(𝜃 = 0, 𝑛𝑅𝑂) ≈ 2.66 − 1.457 exp (−
𝑛𝑅𝑂

4.295
)  (73) 

for plane strain conditions.  

The shift in T0 temperature between the specimens was quantified using a refined version 

of formula (40) by. (Moattari & Sattari-Far, 2017) adjusted by Lindqvista and Kuutti 

(2022), (74). 

∆𝑇0 = 𝑇 − 40(𝑄 − 𝑄𝑟𝑒𝑓)    (74) 

where the Qref parameter is the Q from a a/W 0.5 C(T)-specimen modelled from the same 

material. 

The exact values needed can be picked from the Abaqus history and field outputs in 

tabular form after each case has been computed.  

Two new models, one for each specimen geometry, were constructed for the Q-parameter 

comparison and the Qref reference C(T) model was derived from a pre-existing simulation 

compiled by Juha Kuutti. The geometry was limited to two dimensions to avoid any stress 

gradient related variations which would be present in a model of finite thickness. The 

geometries of the models follow the ones presented in the technical drawings of Appendix 

1. 

, with the exception of being mirrored on the crack plane through a symmetry constraint 

and extended crack depths to match the average measured for each specimen type. The 

modelling was conducted with the theoretical crack depths of 2 and 5 mm as well, but the 

remodeling with measured values greatly improved the agreement with the test results, 

especially for the a/W 0.5 model.  

5.6.1 Material model 

The material was modelled as deformation plastic with a Poisson’s ratio of 0.3, Young’s 

modulus of 213 GPa, strain hardening exponent of 9, and yield offset of 2.5. The strain 



 

 

hardening parameters were derived from the KTH model presented in section 5.1.3. The 

yield strength used was 488 MPa, which is from the KTH material model. This number 

corresponds to the lower yield point for the material and smooths the stress strain curve 

by removing the spike caused by an upper yield point, Figure 15. Abaqus does not have 

units within itself, and the variables were scaled to match the use of mm with all geometry 

lengths. An elastic, and a von Mises material model were also evaluated as comparison 

results. The elastic model deviated significantly, while the von Mises followed the 

deformation plastic results quite closely, only deviating at larger plasticity displacements.  

5.6.2 Features, load, and constraint 

The loading was done through a forced displacement conveyed through a reference point 

to the clamp surfaces, Figure 24. The displacement was ramped from zero to one in a 

linear fashion in the Y direction. Use of the reference point also allows for a single point 

source for the force derivation.  

 

Figure 24 Yellow lines extending from the clamp surfaces to a reference point used 

for the displacement control. 

 

The specimen was “mirrored” through an Y symmetry constraint along the remaining 

ligament. The constraint reflects the geometry on a plane with Y as its normal, restricts 

Y direction displacement, and rotation around the X and Z axes. In addition, a point 

constraint at the corner restricting movement in the X direction was used to prevent the 

part from leaving its starting origin, Figure 25.  



 

 

 

Figure 25 The Y-symmetry constraint and point constraint shown in red. 

 

The J-integral was calculated using a crack-engineering feature which was placed at the 

edge of the Y-symmetry constraint. The crack growth direction was defined with a q-

vector (1,0,0) and assumed to follow the symmetry plane.  

The CMOD values were taken from the tip of the knife edge, and the X and Y components 

summed using Pythagoras theorem. The result was doubled as the model represents only 

half of the displacement, (75), Figure 26 

𝐶𝑀𝑂𝐷 =  2√𝑈1
2 + 𝑈2

2    (75) 

where  U1 is the X and U2 the Y displacement. 



 

 

 

Figure 26 Red point illustrates the CMOD reference point and green X the Crack 

feature. 

5.6.3 Mesh 

Different meshes were experimented with, and a local refinement around the crack tip 

was used to improve the model accuracy. Mesh refinement resulted in earlier crashing of 

the model, and when the results were overlaid to those produced by a rougher mesh, no 

significant difference was found. As the rougher mesh allowed the model to function 

further, it was deemed acceptable. The results from elements in the immediate vicinity of 

the crack tip are suspect, as the mesh deformation was strong there. The elements at the 

crack tip had a size of 0.01 while the largest on the shaft of the specimen had a size of 

0.5. A square aspect ratio was used for the elements at the crack tip, while more elongated 

rectangles were accepted for the shaft section, Figure 27. 

 The element type used was a plain strain CPE4R: A 4-node bilinear- plane strain-

quadrilateral- reduced integration- hourglass controlled element. Different elements were 

experimented with, but no significant differences relevant to the study were observed. As 

the elements distort heavily, the locking prevention of reduced integration was considered 

beneficial. The possible stiffness singularities were prevented by using hour-glassing 

control. Better results could be obtained using adaptive remeshing which would replace 

and eliminate highly distorted elements at the crack tip. However, this was beyond the 



 

 

scope of this thesis, and the J-integral was calculated from a contour outside the heavy 

distortion. The normalized radius for the S22 stress in front of the crack tip resulting from 

the J-values seen in the experimented results was also large enough to bypass the distorted 

regions.  

 

 

Figure 27 Distorted mesh at the crack tip displaying von Mises stress contours. 

 

The maximum step size was set at 0.01 and minimum was 10-8. This was done to achieve 

high enough resolution to use linear interpolation to correlate stress and J-integral values 

between the model’s calculation points.  

5.7 Result uncertainty evaluation 

In his review on the SE(N)T techniques and procedures, Weeks (2017) states that 

uncertainty values for fracture toughness values are rarely reported due to the complex 

calculations and measurements behind them. In this thesis the following attempt is made 

to give the reader estimations on the reliability of the results presented, but further studies 

are needed to produce and evaluate an authoritative method for fracture toughness 

uncertainties produced by SE(N)T specimens. The uncertainty sources for the toughness 

values presented in this thesis can be roughly divided into the experimental measurement 



 

 

uncertainties and the uncertainties related to the assumptions behind the Master Curve 

method. The effect on the T0 bounds is done with a margin adjustment following equation 

(76), 

𝜎𝑠𝑡𝑑𝑣 = √𝛽𝑢𝑐
2

𝑛
+ 𝜎𝑚𝑒𝑎𝑠

2      (76) 

where  σstdev is the standard deviation of the T0 margin uncertainty, 

 βuc is a sample size uncertainty factor related to the method, 

 n is the number of experiments, and 

 σmeas is the measurement uncertainty. 

The standard’s calibration requirements allow for the substitution of 4 for the 

measurement uncertainty.(ASTM International, 2021.) However, in this thesis the 

method used to derive T0 from the measured CMOD and force values is not strict to any 

single standard. As such, the uncertainty ranges guaranteed by the methods described by 

the standards were estimated separately. A widely recognized estimation for 

measurement uncertainty and sensitivity analysis is the method detailed in the report by 

the Joint Committee for Guides in Metrology (JCGM) (2008) and its supplement 1, 

(Working Group 1 of the Joint Committee for Guides in Metrology, 2008b). This 

reference is commonly known as GUM 2008 in related literature, for example Weeks 

(2017) hints at a future publication reviewing such methods, but none could be found at 

the time of writing.  

5.7.1 Measurement uncertainty 

All measured results are estimates of the actual measurand and incomplete without the 

uncertainty accompanying that estimate (JCGM, 2008). Faults in measurement give rise 

to errors. The error can be random or systematic. Both types can be lowered through 

increased experiment counts, and the standard uncertainty through calibration. All the 

measurement devices used in this thesis have been calibrated by accredited parties to 

minimize bias in their reported results.  In addition to the types of errors inherent to the 

measuring process, there is an additional uncertainty associated with the estimated results 

due to random effects and imperfect corrections of the aforementioned errors.  



 

 

Each of the different measurements have their own associated uncertainties and 

distributions. These uncertainties and distributions can be evaluated either empirically 

through the measured datapoints if they are sufficient in quality and quantity or by 

experience on the measurement devices and its capabilities. Previous data can also be 

used as a basis of measurement uncertainty assessments if they are produced by a 

reasonably similar test set-up. (Dally, 2008; JCGM, 2008) The following formulas (77 

and 78) for estimating the different types of uncertainty can be found in (Working Group 

1 of the Joint Committee for Guides in Metrology, 2008a) 

𝑠2(𝑞𝑘) =
1

𝑛−1
∑ (𝑞𝑗 − 𝑞̅)

2𝑛
𝑗=1      (77) 

𝑠2(𝑞̅) =
𝑠2(𝑞𝑘)

𝑛
=

𝜎𝑠𝑡𝑑𝑒𝑣
2

𝑛
     (78) 

where s(𝑞̅) is the experimental standard deviation, 

 qk is the measured observation,  

 qj is the indexed measured observation, and 

 𝑞̅ is the mean of measured values 

were used in the thesis uncertainty estimation. 

In addition, the random type B uncertainty of the measuring devices must be added to the 

experimental uncertainty and was obtained from the calibration documents of the 

measurement devices. For the thesis estimates, the independence of the uncertainties per 

the law of propagation of uncertainty was assumed, and the simplified solution which is 

to add the random uncertainty divided by the square root of the trial count n was used. 

(JCGM, 2008) 

Unlike the different types of uncertainties for the same measurement, uncertainties of 

different measurands cannot simply be added to each other as they have varying overall 

effects on the final output calculated. If an output is derived trough a model and multiple 

measured input parameters, which is the case for the fracture toughness values, the 



 

 

combined standard uncertainty can be estimated through the use of partial derivatives. 

The following formulation was developed for the thesis estimations: 

Let 

𝑦 𝑏𝑒 𝑎𝑛 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑌    

𝑤ℎ𝑒𝑟𝑒 𝑌 𝑖𝑠 𝑎 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑥1, 𝑥2, … , 𝑥𝑛 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝  

𝑌 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛)    

The functional relationship for fracture toughness measurements was condensed into a 

single formula as follows, (79) 

𝐾𝑗𝑐𝑥 =
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  (79) 

, 𝑌 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛)  can be understood as 𝐾𝑗𝑐𝑥 and 

𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) =  𝑓(𝐴, 𝐶0, 𝑃,𝑊, 𝐵, 𝐵𝑁, 𝑎0, 𝑇, 𝑣, ) 

The combined standard uncertainty of y, uc(y), is the positive square root of the combined 

variance (80) 

𝑢𝑐
2(𝑦) =  ∑ (

𝜕𝑓

𝜕𝑥𝑖
)
2

𝑢2(𝑥𝑖)
𝑛
𝑖=1    (80) 

where 𝑢2(𝑥𝑖) is either a type A or B uncertainty for each variable derived from the 

methods described in 4.2 and 4.3 sections of the JCGM (2008) report, formulas (77 and 

78).  

 



 

 

The partial derivatives  

𝜕𝑓

𝜕𝑥𝑖
 

are called sensitivity coefficients, and they reflect the sensitivity of output Y to changes 

in any particular xi in question. As the system is nonlinear to a significant degree, higher 

order terms and interactions were considered. The following formula contains the most 

important terms for normally distributed input variables. The increased complexity (f’) 

required the reduction of the number of variables considered for this type of uncertainty 

and the remaining measurement values used are presented in the combinations, (81-85) 
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1
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𝑛
𝑖=1   (81) 

and 𝑐𝑜𝑢𝑛𝑡 𝑓′ =  𝑛𝐶𝑟(𝑛
𝑘
) + 𝑛 ∗ (𝑛 − 1)    (82) 
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with the combinations of parameters i and j being  

1

2
(

𝜕𝑓

𝜕𝑥𝑖
(

𝜕𝑓

𝜕𝑥𝑗
))

2

: 

𝑎0′ 𝑊′

𝑎0′ 𝐵′

𝑎0′ 𝑇′

𝑎0′ 𝐴𝑝′

𝑊′ 𝐵′
𝑊′ 𝑇′
𝑊′ 𝐴𝑝′

𝐵′ 𝑇′
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𝐴𝑝
′ 𝑎0′′ 𝐴𝑝′𝐵′′ 𝐴𝑝′𝑇′′ 𝐴𝑝′𝑊′′

 . (85). 

The combined formula for standard uncertainty including higher order terms then takes 

the form (86) 
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The assumption of normal distribution is reasonable for the types of measurements being 

conducted, and for example a histogram of the temperature measurements follows a bell 

curve. The force measurements follow a linear distribution, but the individual force values 

are assumed to follow normal distribution. Similar assumptions were extended to the rest 

of the measurands.  

To calculate all the combinations of different order interactions is challenging as the 

number of sums and terms within them increases in high dimensional systems.  

Correlation between the variables further increases the complexity. To avoid the 

increased complexity and the lack of covariance data, some of the variables can be 

dropped or combined into a single parameter with a separate estimate of uncertainty. This 

lowers the accuracy of the uncertainty estimate, but a safety factor can be assessed and 

applied so that the resulting uncertainty will contain the effects of the dropped parameter 

by overestimating the overall uncertainty. For this thesis the uncertainty is magnified by 

an additional ± 10%. To give validity to this method, the uncertainties neglected should 

be small in magnitude and their effect assessed through complimentary analysis. When 

each of the higher order terms is evaluated, only a few have a significant effect on the 

overall uncertainty. The most significant factor seems to be the plastic area uncertainty. 

It is unfortunately also the most subjective uncertainty to evaluate since the magnitude 



 

 

assigned depends on human interpretations of the plastic area slope and data filtering. The 

formulas (60 and 61) with which the plastic area is estimated is problematic for a 

multitude of reasons. 

To give a liberal estimate of the plastic area (Ap) uncertainty, the many individual 

measurements which form the CMOD-Force graph are assumed to have a maximum 

reasonable cumulative uncertainty leading to an over estimation of the area under the 

graph. The area is estimated through integration of the polynomial fit function through 

the datapoints, which results in an averaging of the noise in measurement data. To validate 

the integrated area-estimate a second method of summing the incremental CMOD-Force 

slices between the datapoints is used to produce a “true” area under the datapoints which 

is incremental in nature. The two methods are demonstrated in a simplified manner below, 

Figure 28. 

 

Figure 28 The two different methods for finding the area under the CMOD-Force 

graphs, the smooth orange area represents the integrated area while the dotted 

rectangles are summed to form the incremental area. 



 

 

The difference between these two areas is then added as a systematic error to the area 

uncertainty estimate. The plastic area is what is left when the elastic portion is subtracted 

from the total area, but the elastic area is related to the gradient Cθ which is derived from 

a gradient fit under subjective estimation. Another problem with the gradient estimation 

is the covariance between the measurands it is derived from. A more thorough explanation 

of this covariance can be found in the review of Weeks (2017) Covariance factors increase 

the complexity of the error propagation significantly and the values needed for their 

accurate estimation are unknown. That is why the liberal estimation for the plastic area 

estimation is used as a substitute. 

Even still, if the standard uncertainty function with the simplifying assumptions is 

evaluated using the MATLAB script, Appendix 2, due to the high order and large number 

of equations, the full expression would add ~70 000 characters, 250 pages, if included in 

this thesis as an additional appendix. This also makes the validation of the mathematics 

behind the uncertainty values challenging. As the propagated uncertainty is a summation, 

each part can be evaluated for reasonability e.g., no negative variance sums exist. The 

first and second order uncertainty values are included in Appendix 3, but it should be 

noted that the transition temperature is derived through a symbolic solving function of 

each KJc specific to specimens and hence the uncertainty added to the T0 temperature 

from the measurement uncertainties is not symmetrical or explicitly correct. The method 

uncertainty for the margin correction is also only positive and adds a degree of 

conservatism to the estimated toughness range. 

5.7.2 Global sensitivity analysis 

Since there are many uncertainties related to the uncertainty analysis and the SE(N)T 

procedure in general, a global uncertainty analysis was conducted on the fracture 

toughness formulae. The global sensitivity analysis is an analysis of variance which 

covers a larger range of parameter values compared to the local region of partial 

derivatives. A Monte Carlo simulation goes through combinations of these parameters 

until convergence in the outcome is reached. In a sense, it answers the question: “If a 

parameter, or a combination of parameters are changed, what is the change in the end 



 

 

result of the model?” The analysis reveals which inputs are most important with regards 

to the resulting output, the fracture toughness.(Chastaing et al., 2012; Tosin et al., 2020.) 

The sensitivity analysis used was Sobol’s indices from the Python module SALib 

(Herman & Usher, 2017; Inagawa et al., 2022). The model is not concerned as much with 

uncertainty propagation and estimations on uncertainty distributions, (which are 

discussed in detail in GUM 2008 supplement 101), than with the effect on the output 

variance of the simulated system by each individual parameter (Tosin et al., 2020). 

Sobol’s indices work on the assumptions of Hoeffding decomposition, which states that 

the variance of the output can be decomposed into increasing order summands. The 

partitions can be equated to each input parameter or a combination of them, and their 

sums of the total variance reveal their relevant proportion of the overall variance. 

(Chastaing et al., 2012.) 

The model used in the Sobol indices analysis is the same as the one used for the 

calculations for the propagation of uncertainty, (79), but the input parameters are more 

numerous and configured in a different way. This was done to avoid issues with parameter 

dependence as explored by Chastaing and colleagues (2012). To keep the range of 

parameter combinations within realistic limits, ± 10 % shifts to the minimum and 

maximum values from experimental results were set as the parameter bounds. For 

example, if the crack length and width of the specimen are given large ranges, the Monte 

Carlo simulation could try combinations where the crack is longer than the width. In 

addition, the stochastic nature of the fracture process makes it difficult to set realistic, 

correlating bounds between the tried values. Furthermore, the effect of each parameter 

was evaluated using a single range of experimental parameters and shifting them 1% to 

mimic equally large variance at a more local scale. All the modifications to the formulas 

can be seen in Appendix 4.  

The models install-functionality was evaluated with the SALib reference functions and 

results. The number of Monte Carlo trials was increased as a power of two, until 

convergence was reached, and any negative variance values disappear. Simulation with a 

large number of trials can be computationally expensive, and the desktop used for the 

analysis with 32 Gb of DDR5 RAM and an Intel i7 12700 processor at 4.9 GHz took 



 

 

roughly 12 minutes for each 221 run and 34 minutes for 222 trials. Increasing the 

complexity would demand unreasonable memory resources from consumer hardware.  

5.8 Post experiment inspections 

After the specimens were fractured, one half of each specimen was cut shorter to allow 

microscopy of the fracture surfaces. The samples were washed in ethanol, but no other 

treatments were made. The samples were stored in a desiccator to prevent oxidation. A 

Zeiss AXIO Zoom V16 optical microscope was used to measure the fracture surface 

dimensions and a Zeiss FE-SEM was used for a mode in depth fractographical analysis. 

The manufacturing orientation was also confirmed to match what was instructed for the 

sample detachment during the optical microscopy. A SE2 detector was used, since it 

produced the best image. The aperture size throughout the SEM analysis was 30 µm and 

the acceleration voltage was set at 15 kV. To improve the conduction between the sample 

and microscope, additional foil tape was used in conjunction with conductive clamps, but 

the samples were still charged during imaging, which caused drift and blurriness in the 

images. This issue was later assumed to be caused by insufficient cooling of the electrical 

components of the microscope.  

  



 

 

6  RESULTS & DISCUSSION 

6.1 Results 

6.1.1 HV10 hardness results 

The results of the hardness measurements used in the mechanical property verification 

are presented below in Table 4 and Figure 29.  

Table 4 HV10 hardness measurement results 

HV 10  
Sample button StDev 

L1 L2 L3 L4 L5 9 

Location [mm] 5 20 35 50 65 80 95 105 110 125 140 Average 

5 185 189 207 190 214 195 184 196 192 185 193 194 

10 188 181 197 208 198 184 213 193 207 196 210 198 

15 220 183 185 193 192 192 212 192 197 192 187 195 

20 187 189 189 185 191 188 196 194 196 191 200 191 

Average 195 186 195 194 199 190 201 194 198 191 198 195 

 

 

Figure 29 HV 10 hardness measurements overlaid on the sample piece. 



 

 

6.1.2 Microstructural characterization 

Some inclusions/precipitates were found in the new FE-SEM inspection. An energy 

dispersive spectroscopy analysis indicated that they were MnS, Al2O3, and possibly 

phosphorus impurities illustrated in Figure 30. The size of the impurities found ranged 

from 1 to 25 µm. 

 

Figure 30 A round aluminum oxide inclusion around which an elliptical manganese 

sulfide particle has nucleated with traces of phosphorus or zirconium present. 

 

Nothing deviating from the previous microstructural characterizations was discovered 

under optical microscopy. Darker banded regions were present, which were also reported 

by Brumovsky and colleagues (2001) who identified them as “ghost lines”. 

Under magnification the banded regions seem darker and have a width of ~100 µm, 

Figure 31. Increasing magnification reveals that the darker color is the result of higher 

precipitate density, Figure 32.  



 

 

 

Figure 31 Ghost lines in the sample material, 10x magnification, light Nital- etching. 

 

 

Figure 32 Boundary between the ghost line region (left) showing higher precipitate 

density and base material on the right, 100x magnification, light Nital- etching. 



 

 

Lindqvist and Peltonen (2021) reported that lath like structures were found near 

segregates. In the optical microscopy inspection, laths were found to be more numerous 

at the darker ghost line regions, Figure 33. 

 

Figure 33 Laths are visible in higher concentrations in the ghost line regions, 20x 

magnification, light Nital etching. 

 

An example of the manufacturing effects on possible initiation site as discussed in 2.2.1 

can be seen in Figure 34, which is a line of inclusions. They could have nucleated on the 

previous austenite borders due to the rolling process. 



 

 

 

Figure 34 Inclusions possibly on prior austenite grain boundaries visible under 

optical microscopy. 

 

6.1.3 Fractography 

Both the 0.2 and 0.5 aW samples show brittle cleavage fracture. There is no necking 

present, and the fracture surfaces seem brittle throughout. 

Looking with unaided eye the fracture surfaces appear shiny and the fatigued pre-crack 

can be clearly distinguished. All the pre-cracks seem straight with some having a slight 

curvature deepening the crack towards the center of the specimen. When measured, this 

curvature is well within the limit of the requirements set in ASTM E1820 and E1921, in 

fact, for many cases the straightness would pass ten times stricter limits, Table 5 and 

Figure 35.  



 

 

 Table 5 Crack depth measurements to verify crack straightness [mm] 

  Location   

Sample 1 2 3 4 5 6 7 8 9 a0 

HC1 5,040 5,193 5,194 5,249 5,254 5,216 5,210 5,249 5,177 5,209 

HC2 5,233 5,383 5,474 5,483 5,496 5,425 5,507 5,451 5,326 5,437 

HC3 5,352 5,448 5,516 5,546 5,542 5,434 5,524 5,427 5,342 5,473 

HC4 5,237 5,337 5,420 5,448 5,554 5,456 5,561 5,485 5,299 5,441 

HC5 5,325 5,401 5,404 5,446 5,406 5,360 5,353 5,296 5,146 5,363 

HC6 5,325 5,438 5,424 5,455 5,419 5,444 5,452 5,411 5,304 5,420 

HC8 5,259 5,403 5,404 5,443 5,482 5,456 5,451 5,440 5,276 5,418 

HC9 5,308 5,374 5,468 5,385 5,352 5,413 5,468 5,309 5,222 5,379 

HC10 5,111 5,127 5,111 5,226 5,331 5,326 5,177 5,171 5,089 5,196 

HC11 5,264 5,414 5,459 5,471 5,494 5,445 5,424 5,446 5,238 5,426 

HC12 5,314 5,346 5,416 5,459 5,452 5,440 5,587 5,360 5,265 5,419 

LC1 1,887 2,008 1,997 2,058 2,047 2,085 2,030 2,036 2,030 2,027 

LC2 1,964 2,140 2,151 2,140 2,118 2,058 2,014 1,970 1,887 2,065 

LC3 1,942 2,074 2,118 2,140 2,195 2,212 2,261 2,223 2,107 2,156 

LC4 2,046 2,215 2,152 2,057 2,159 2,075 1,985 2,038 2,019 2,089 

LC5 2,002 2,099 2,192 2,228 2,299 2,193 2,330 2,130 2,174 2,195 

LC6 2,002 2,072 2,081 2,156 2,022 1,987 2,001 2,054 2,019 2,048 

LC7 2,179 2,282 2,348 2,418 2,341 2,268 2,295 2,212 2,179 2,293 

LC8 2,046 2,180 2,292 2,333 2,324 2,337 2,307 2,347 2,251 2,284 

LC9 2,146 2,342 2,373 2,464 2,440 2,488 2,453 2,500 2,372 2,415 

LC10 2,019 2,061 2,108 2,173 2,215 2,224 2,222 2,126 2,091 2,148 

LC11 2,079 2,093 2,101 2,099 2,146 2,192 2,157 2,121 2,042 2,121 

 

 



 

 

 

Figure 35 Fracture surface viewed and measured with a Zeiss AXIO Zoom V16. 

 

There is a varying degree of topography with the samples with more plasticity in the 

CMOD-Force graphs correlating to stronger surface contours. One exception to the 

plastic flow of the material is located at the very edge of the pre-crack by the notch 

bottom, as for some samples it exhibits minor necking in a localized region. The same 

phenomenon is visible in the Abaqus models as well, Figure 36. The region is so small 

that it is deemed insignificant. A closer inspection indicates that most of the cracks were 

initiated from the regions highlighted in Figure 37. 

 



 

 

 

Figure 36 Localized necking observed in the LC4 specimen and Abaqus model. 

 

 

Figure 37 Common locations for crack initiation highlighted in orange. 



 

 

Under high magnifications viewed with a SEM, many fracturing features become visible, 

and they can be used to determine the initiation site more precisely. The fracture 

mechanism is mixed/quasi-cleavage based on the presence of tear ridges and other 

indicators of ductility during the cleaving process, such as slip traces and tongues (ASM 

Handbook Committee, 1999; Brooks & Choudhury, 1993), shown in Figure 38-Figure 

41Figure 40. Additionally, many secondary cracks with varying sizes can be found on the 

fracture surfaces. 

 

Figure 38 A large tear ridge flows through the center of the image with dimples 

typical of ductile fracture on otherwise brittle cleavage facets. 



 

 

 

Figure 39 Tear ridges, cleavage steps, and river patterns highlighted on the fracture 

surface. 

 

 

Figure 40 Tongues present on the cleavage surfaces. 



 

 

 

Figure 41 Secondary cracks highlighted with on the fracture surface, more are 

present but not indicated. 

 

The river patterns point to single origin for initiation for most of the samples. The 

secondary cracks also give clues on the propagation direction of the fracture on a more 

macroscopic scale. The initiation site locating procedure is highlighted below in Figure 

42 and Figure 43. 



 

 

 

Figure 42 Nucleation site location process, initiation location highlighted in green. 

 

 

Figure 43 Initiation site and propagation of fracture highlighted in green. 



 

 

6.1.4 Uncertainty calculation results 

When the measurement uncertainties are calculated with the method described in 5.7.1 

the following partial uncertainties and their propagation are obtained, Table 6. 

Table 6 Measurement uncertainty components 

Magnitude of 1 σ uncertainty to KJc 

Sample σ +10 % σ 1st order 2nd order 

HC1 22,91 20,83 14,08 6,75 

HC2 22,99 20,90 17,29 3,62 

HC3 5,55 5,04 3,99 1,05 

HC4 5,98 5,44 4,22 1,22 

HC5 7,36 6,69 5,00 1,69 

HC6 7,17 6,52 4,91 1,61 

HC8 7,41 6,74 4,94 1,79 

HC9 7,33 6,66 5,14 1,53 

HC10 5,92 5,38 4,42 0,96 

HC11 6,96 6,33 4,72 1,61 

HC12 6,41 5,83 4,62 1,20 

LC1 61,46 55,88 34,23 21,65 

LC2 47,88 43,53 26,34 17,18 

LC3 23,39 21,27 13,32 7,94 

LC4 9,17 8,33 5,78 2,56 

LC5 8,43 7,66 5,44 2,23 

LC6 8,02 7,29 5,24 2,05 

LC7 12,10 11,00 6,09 4,91 

LC8 10,50 9,54 5,74 3,80 

LC9 7,97 7,24 5,26 1,99 

LC10 7,70 7,00 5,31 1,70 

LC11 10,92 9,93 5,86 4,07 

 

The variances, σ2, broken down into each individual factor and their 2nd order 

combinations are presented in Appendix 3. 

 

 



 

 

6.1.5 Sobols indices  

The results of the sensitivity analysis are presented below in Table 7 where the total 

proportion of the variance is compared to the 1st order component, which covers most of 

the sensitivity.  

Table 7 Sobol’s indices global sensitivity analysis results 

Sobol's Indices 

Labels 
1% local variance a/W 0,2 ±10% a/W 0,5 ±10% 

Total 1st Total 1st Total 1st 

a0 0,027 0,027 0,048 0,047 0,087 0,079 

W 0,467 0,467 0,111 0,109 0,149 0,141 

Ap 0,223 0,223 0,755 0,753 0,613 0,608 

B 0,002 0,002 0,003 0,002 0,004 0,003 

BN 0,271 0,271 0,062 0,061 0,027 0,026 

F 0,009 0,009 0,024 0,023 0,137 0,126 

T 0,000 0,000 0,000 0,000 0,000 0,000 

 

6.1.6 Experimental results 

In total 23 specimens were tested, 12 HC a/W 0.5 specimens and 11 LC a/W 0.2 

specimens. Three first specimens of the LC series LC1, LC2 and LC3 are omitted from 

the final calculations as they were used to calibrate the testing procedure and had different 

loading rates. Three were omitted from the HC series as well, HC1 and HC2 as they were 

used for calibration (different load rate) and HC7 since it produced a divergent CMOD-

Force graph indicating failed procedure, most likely due to poor clamping. All the 

CMOD-Force graphs are visible in Appendix 5. The calibration specimen results are 

included in the tabular presentation, but highlighted red, Table 8. 

The ASTM standards used for the Master Curve calculations have several censoring 

criteria. There is no observed crack growth, issues with crack straightness or load rates, 

but ultimate tensile load and initial crack estimation could be used as basis for censoring 

certain specimens. Results based on different censoring criteria are presented below.  



 

 

6.1.7 High Constraint HC-Series  

When the values from HC3-HC11 are inserted to the formulas presented in 5.5 and scaled 

to 1T reference size the T0 temperature is -54 oC, if one standard deviation of 

measurement error is added or subtracted from the KJc values the range due to 

measurement uncertainty is from -62 to -45 oC. A conservative method uncertainty 

presented in 5.7, formula (76) shifts the results upwards ~7 oC. The datapoints are 

presented on the Master Curve graph below, Figure 44 and tabularly in Table 8. 

Additional values are presented in Appendix 6. 

Table 8 HC-Series results 

LEGEND HC1 HC2 HC3 HC4 HC5 HC6 HC8 HC9 HC10 HC11 HC12 

T [oC] -85,3 -85,8 -85,7 -86,1 -85,8 -86,0 -86,3 -85,9 -85,1 -86,0 -85,2 

Kjc  [MPa√m] 134,8 70,8 77,1 80,5 94,7 87,5 100,7 85,6 65,0 95,5 73,0 

Kjc 1T  
[MPa√m] 110,9 60,2 65,2 67,9 79,2 73,4 83,9 71,8 55,6 79,8 62,0 

 

 

Figure 44 HC-Series Master Curve, censored HC1 and HC2 values are represented 

by red crosses. 

 



 

 

6.1.8 Low Constraint LC-Series 

Following the same procedures as for the HC-Series produces a 1T reference size scaled 

T0 temperature of -113 oC for the LC-series. If one standard deviation of measurement 

error is added or subtracted from the KJc values, the T0 temperature ranges from -117 to -

110 oC due to measurement uncertainty. The method uncertainty shifts the results 

upwards an additional ~7 oC. The Master Curve and toughness values are presented below 

in Table 9 and Figure 45. 

 

Table 9 LC-Series results 

LEGEND LC1 LC2 LC3 LC4 LC5 LC6 LC7 LC8 LC9 LC10 LC11 

T [oC] -85,36 -85,63 -86,08 -86,68 -86,02 -86,46 -86,54 -85,12 -87,32 -85,60 -85,49 

Kjc  [MPa√m] 204,81 205,44 190,21 142,51 133,90 129,16 232,25 200,01 113,10 98,05 211,64 

Kjc 1T  [MPa√m] 166,28 166,81 154,77 117,00 110,17 106,42 188,06 162,52 93,73 81,80 171,76 

 

 

Figure 45 LC-Series Master Curve for all non-calibration specimens. 

 

If the results are observed there is a cluster of three high toughness samples and five lower 

strength specimens. The high toughness specimens are highlighted with yellow in Table 

9. A suspicious gap in the data distribution exists between these groups and if the analysis 

is done excluding the three highest toughness values, the following master curve with a 



 

 

1T reference size scaled T0 temperature of -98 oC is produced, Figure 46. If one standard 

deviation of measurement error is added or subtracted from the KJc values, the T0 range 

due to measurement uncertainty is from -102 to -93 oC. The method uncertainty shifts the 

results upwards an additional ~9 oC. The five remaining samples are not enough to satisfy 

the minimum data requirements for the master curve, the temperature would be lower if 

a KJc limit value for the 3 tougher specimens was substituted in addition, but no rigorous 

method assessing the limit value for these conditions was found. The resulting curve is 

presented in Figure 46.  

 

Figure 46 Lower toughness cluster Master Curve, censored calibration (LC1-3) 

values are presented with red crosses and other censored values (LC7, LC8, and 

LC11) are orange. 

 

When plotting the probabilities for failure (17) at each KJc value and corresponding T0 

temperature (-54 for HC and -98 for LC) the following distribution is obtained, Figure 47 



 

 

 

Figure 47 Probability for failure for the loads each specimen failed at, censored 

sample values are within parentheses, the location of the specimens matches their 

positions in the initial material piece viewed from the long transverse direction. 

 

6.1.9 Abaqus model results 

The Abaqus CMOD-Force graph overlain with experimental results is presented below 

in Figure 48. HC1 and LC1 graphs are used in the illustrations, but almost all the CMOD-

Force graphs overlap with a similar margin. Additional samples are presented in Figure 

49. 

 

Figure 48 Agreement between the Abaqus model and experimental results. 



 

 

 

Figure 49 Overlap between CMOD-Force graphs of different LC samples and the 

Abaqus model. 

 

The S22 stress field in the X direction (X indicated in Figure 26) in front of the crack tip 

produces different gradients for the stress intensity depending on the geometry and load. 

The HC, LC, and C(T) geometries S22 stress-J graphs at the distance normalized by 

formula (37) are shown below in Figure 50. The development of S22 stress in front of the 

crack tip for the different modelled geometries at a constant J value (experiment result 

average) is presented in Figure 51. A similar comparison for the same geometries at 

constant J and r values are presented in Figure 52 and Figure 53. 



 

 

 

Figure 50 Stress-J graph at normalized radius corresponding to the experiment 

average values. 

 

 

Figure 51 Stress-Radius graph at the J- values corresponding to the experiment 

average values. 



 

 

 

Figure 52 S22 stress development at a constant distance 0.5 mm in front of the crack. 

 

 

Figure 53 S22 stress development in front of the crack tip at a constant J. 



 

 

 

When the distance is normalized through the formulas presented in 3.2.2 the correct 

values can be picked from the Abaqus model outputs for the Q-parameter calculations 

using the method described in 5.6. The Q-Parameters were assessed using the HRR field 

as reference (1626 MPa) and their evolution over J-integral is presented below, Figure 

54. From the graph it can be seen that the Q-parameter tends towards negative infinity as 

J approaches zero. This is assumed to be caused by the crack tip blunting (Anderson, 2005 

p. 114). In fact, the results, although scaled differently, are similar in shape when 

compared to the blunted crack tip FEM-models compiled by Wallin (2011 p. 19-20). 

 

Figure 54 HRR reference Q-parameter as a function of J-integral for the different 

models. 

 

Using formula (74) the Q-parameter can be correlated with a shift in the T0 temperature 

for the chosen J integral value, Figure 55. For the average and median J values for both 

of the geometries, the model predicted T0 difference is presented in Table 10. In addition, 



 

 

a comparison result based on the T-stress calculated through formulas (34) and (35) is 

included in the same table. 

Table 10 T0 Temperature shift from Q-constraint 

Legend 
Jc Q-T0 shift Distance  Q Qref T-stress 

Avg Med Avg Med r [mm] -   T0 shift 

LC 114,6 81,7 -43 -41 0,47 -1,15 -0,07 -21,6 

HC 30,9 31,4 -14 -14 0,13 -0,59 -0,25 -5,5 

Difference 83,7 50,3 -29 -27 - - - -16,1 

 

 

 

Figure 55 Shift in T0 temperature for HC and LC specimens for different J values. 

 



 

 

6.2 Comparison to previous results 

When the new results are compared to previous results, Table 11, the T0 values of -54 oC 

for HC and -98 oC or the 5 lower toughness LC samples go on both sides of the previous 

estimation ranges. The datapoints and Master Curve for the tests combined by Lindqvist 

and Peltonen (2021) are compared to the thesis results in Figure 56 

Table 11 Comparison T0 temperatures for the JRQ material 

Source Specimen T0 [
oC] σ [oC] 

Lindqvist and Peltonen (2021) 
15x30 SE(B) a/W 0.5, -79 5,7 

5x10 SE(B) a/W 0.5, -86 7 

Thesis 
SE(N)T a/w 0.5 -54 8,5 

SE(N)T a/w 0.2 -98 5 

(Brumovsky et al., 2001) 10x10 CVN -71 ±10 
 

Wallin (1995) 

C(T) 4T -35* -  

C(T) 1T -54 -  

 CVN -57 -  

*Contains inhomogeneities 

 



 

 

 

Figure 56 All measurement points compared the previous results for the same 

material from the study by Lindqvist and Peltonen (2021). 

 

The constraint behavior of the Q-parameter as a function of load can be compared to the 

results by Moattari and Sattari-Far (2017) which are based on similar a/W SET specimens 

in 1T size. Moattari and Sattari-Fari’s material is different with a lower yield strength 

range (350 −480 MPa vs JRG 488 −560 MPa), Figure 57. 

 



 

 

 

Figure 57 Q-parameter development over normalized J values for SET specimens. 

6.3 Discussion 

A pre-requisite for the Master Curve functionality is homogeneity on a macroscopic scale, 

as the cumulative probability distribution functions depend on Poisson distributed faults. 

Based on the HV10 measurements there should not be any property gradients. A two-way 

analysis of variance (ANOVA) was conducted, Table 12, to determine if the measurement 

location had a statistically significant effect on the hardness, but the F values were far 

from disproving the hypothesis that there is statistically significant difference in the mean 

hardness values over the geometry for both rolling and short transverse directions. 

Furthermore, their corresponding p-values were 0.48 and 0.55. This indicates that no 

statistically significant hardness gradient exists in the chosen sample piece and that no 



 

 

extreme deviation in hardness was present. As the hardness measurements conform with 

previous experiments, the tensile strength values are assumed to be applicable as well. 

Table 12 ANOVA on the hardness variation over thickness and width 

ANOVA 
Source of Variation F crit to disprove the hypothesis F P-value 

Thickness direction 2,92 0,84 0,48 

Width direction 2,16 0,89 0,55 

 

Only the short transverse direction should affect the material properties, and the samples 

are removed as pairs, so that there is a sample from the two available thicknesses. The 

other material variation should be minimal as the cracks are from the same lengthwise 

spot and the width is taken into account by the variation of sample type removal order.  

While the mechanical properties might not have a gradient, the segregations and other 

inclusions could be unevenly distributed. The higher precipitation density of the ghost 

lines indicates an uneven distribution of alloying elements at the microscopic scale. The 

exact effects on mechanical properties these regions have are unknown, but one can 

assume they exists, and increase the brittleness, based on the results reported by Kantidis 

et al., (1994) and Yahya et al., (1998). Furthermore, the presence of lath structures near 

the ghost lines could be the result of higher hardenability due to increased alloying 

element concentrations. The tempering history combined with the “dirtier” melts of the 

production era raise the question of tempering embrittlement and its effects on fracture 

toughness. The phosphorus content is relatively high and there are elements such as 

chromium and nickel present that tend to form carbides at the grain boundaries. Even so, 

fractographical analysis did not reveal intergranular fracture facets indicating weakened 

boundaries, and SEM analysis did not highlight precipitation to the grain boundaries. The 

molybdenum content should also retard carbon diffusion preventing tempering 

embrittlement (Hwang et al., 2011). Based on this, tempering embrittlement is ruled out. 

 



 

 

To determine if the ghost lines, and their effects, are evenly distributed, their range is 

evaluated through the use of inverse binomial distribution. A photo editing software is 

used to increase the contrast of the sample button image, which highlights the ghost lines, 

Figure 58. The highlighted lines can be selected, and their area is compared to the total 

sample area. From this, and an assumption that the lines are generally evenly distributed, 

a probability can be assigned for the chance of selecting an area with the same distribution 

of base material and ghost line regions. 

 

Figure 58 Base material and Ghost line regions (Red) highlighted for distribution 

ratio determination. 

 

The ratio of ghost line to base material is 0.26 which is rounded to one fourth. The average 

size for the line is set at 100 µm and an inverse binomial distribution graph is formulated 

to illustrate an answer to the question: “How large a sample size is needed for the 



 

 
distribution of base material and ghost lines to converge given a 95% confidence 

interval?”, Figure 59. 

 

Figure 59 Sample size and the expected ratio of base material to line regions with 

95% confidence. 

 

The 10 mm sample size has not reached convergence, which would require a sample size 

of ~10 cm after which any increase would not result in meaningful differences between 

ghost line and base material ratios. The ratio for 10 mm samples is still quite close at 

~0.22 so the uneven effect of ghost lines should not be large due to their uneven 

distribution between specimens.  

When the fracture probability of Figure 47 is observed, there could be a weaker region 

around locations 9 and 10, but there is also local variation, so any toughness gradient in 

the material is inconclusive. When the Master Curve graphs are observed the HC-series 

has a small spread compared to the previous results presented in Figure 56. If the high 



 

 

toughness values are omitted from the LC-series, it too has a tight distribution. The 

tougher values introduce a bimodal spread where there are no values in between the two 

clusters which should be unlikely. Wallin (2011) states that omitting results from the 

statistical distribution will skew the expected results, as extreme values are ignored. 

However, the presence of bimodal distribution due to material inhomogeneities should be 

found in both specimen types, which is not the case. From this it can be deduced that the 

bimodal distribution has more to do with the method, measuring capacity, and fracture 

mechanism rather than material inhomogeneities related to crack initiation sites. 

The largest method related unreliability is speculated to result from the clamping and the 

positioning of the specimen within them. Even though the clamps were exactly 10W away 

from each other, it still allows the possibility for the sample to be placed unsymmetrically, 

so that the crack is closer to one clamp than the other, while the distance between clamps 

is the desired 10W. There is also the problem to misalign the sample in the rotational 

direction allowed by the clamps. The highest placement related uncertainty comes from 

the horizontal misalignment of the specimen. If the specimen ligament centerline is 

skewed to either side of the machine load line, a significant moment will arise, Figure 60. 

The clamped surfaces did not show any slippage due to rotation, nor was there any visible 

twisting observed during the tests. Even so, the load line alignment was done based on 

markings on the clamps which were difficult to locate when the cooled chamber had 

condensed frost covering its surfaces.  



 

 

  

Figure 60 Arising moment forces due to the misalignment in relation to the load line 

(red). 



 

 

 

The pre-crack estimation (a0 est ) is ordinarily done with the unloading compliance method 

elastic rebound gradient, but this was not possible with the equipment used in this thesis. 

The method is affected by the machine flex and the stiffness of the test system can be 

adjusted based on the unloading compliance results. If the Cθ gradient is used as a basis 

of estimation, the crack sizes would require E adjustments beyond the allowable 10% 

limit. Since there is no crack growth, the estimated crack length matches the post 

experiment measurements and if it is substituted, the E which would produce such crack 

estimates can be calculated (E machine). The different values are presented in Appendix 

6, but were not used in the thesis calculations, instead the KTH value of 213 GPa was 

used. 

If the CMOD values are compared to the tensile machine displacement there seems to be 

two regions in the graph they form. One where the slope is steep and the CMOD values 

increase slowly compared to the displacement, but after a curved section the CMOD 

values increase without as much machine displacement, Figure 61 



 

 

 

Figure 61 CMOD machine displacement, corrected for elastic elongation, HC-series 

in blue, LC-series in red. 

 

The deviation could be due to multiple reasons such as slip, plasticity, crack growth, 

rotation, or a combination of them. Since no traces of growth, slip, or plasticity were 

found, the effect of rotation cannot be excluded. As is, the methods used in the thesis do 

not account for the machine rotation effecting the toughness results and no correction 

solutions were found from literature, and if they existed, they would likely be set-up 

specific. 

The sample plasticity was estimated using the plasticity limits retrieved from the work of 

Kanninen and Popelar (1985), Table 13, but their suitability for the thesis evaluation is 

unknown. Only the three high toughness specimens (LC7, LC8, and LC11) exceed the 



 

 

plasticity load limit. What is particularly striking, is the fact that for these three specimens 

the maximum stress exceeds 740 MPa when the tested ultimate tensile stress was around 

730 MPa. What allows for such an increase in strength in a notched specimen is unknown 

but could be the result of true stress being higher than the one reported by KTH. As with 

the rotation, the effect of plasticity was not concisely discovered in the thesis examination. 

Table 13 Load limit results (Kanninen and Popelar, 1985) 

LEGEND  Force [N] Stress [MPa] Plasticity lim P-σ Plasticity lim P-ε 

LC1 47950 714 50292 37054 

LC2 47956 726 49797 36689 

LC3 47001 716 48505 35737 

LC4 47536 728 49430 36419 

LC5 45272 689 47952 35330 

LC6 46830 699 50013 36848 

LC7 49041 781 46627 34353 

LC8 47901 757 46762 34453 

LC9 43886 697 44964 33128 

LC10 44805 687 48622 35823 

LC11 48872 745 49001 36103 

HC1 23329 588 15117 11138 

HC2 14815 390 13440 9902 

HC3 16843 447 13192 9720 

HC4 17513 464 13402 9874 

HC5 19556 503 13945 10274 

HC6 19418 511 13565 9995 

HC8 19942 518 13570 9998 

HC9 18315 477 13814 10178 

HC10 16628 416 15200 11199 

HC11 19178 502 13540 9976 

HC12 17075 448 13578 10004 

 

Possibly the biggest fault of the uncertainty analysis is, that it evaluates the sensitivities 

of the calculation formulas, but reveals nothing of their actual suitability to the test 

procedure. The GUM method was used for the propagation of uncertainty estimation, but 

the formula, which was evaluated omitted some parameters. The calculations it employs 

do not take into account procedural sources for uncertainty, such as the clamping of the 

sample. The effect of clamping could be evaluated with large enough datasets for the 



 

 

same test setup, but comparison between laboratories would be difficult and the number 

of specimens needed to be tested would be impractical.  

The side groove depth was omitted from the final uncertainty calculations to reduce their 

dimensionality, but the sensitivity analysis highlighted their significance on a local scale. 

When the larger ranges from the experimental are evaluated, the Sobol indices reflect the 

uncertainty results obtained with the partial derivatives method and confirms the plastic 

area as the most significant contributor to the overall toughness result in the test range 

and variance. The width and thickness are the second most important, possibly due to the 

normalization of many formulas over the width values. An additional difference between 

the global sensitivity and propagation of uncertainty can be seen in the second order term 

significance. It is almost zero for the Sobol’s indices while having a larger effect on the 

partial derivatives method. The reason for the differences between the two methods are 

most likely caused by the different number of parameters and the proportion of 

uncertainty which is combined when fewer parameters are used. Another significant 

omission is the missing covariance analysis, which was deemed beyond the thesis scope.  

The accuracy of the FEM model is not evaluated to any high degree, rather convergence 

in results while changing parameters was used to ensure the model was as accurate as 

reasonably possible. When the Q-parameter is considered, there is a gradient of over 100 

MPa per 0.1 mm when moving in the X-direction from the crack tip. As a result, a small 

error in the normalized radius can result in relatively significant changes (5% - 10 %, 2-

4 oC) in the end estimate. Since the model is only used as a reference between the two 

specimen types, any estimation errors are assumed to affect the results equally. 

One of the biggest challenges for the thesis results, is the hidden effect of many 

uncontrolled or unquantified parameters. When compared to previous, results the 

difference between them and the current results cannot be parsed into the individual 

factors behind it. For example, the SE(N)T specimen has a different constraint to the 

previous SEB specimens, Figure 56. However, other factors such as the sample 

orientation and different profile also effect their toughness results, but their exact degree 

of the overall difference cannot be deduced. When the constraint is compared between 

the thesis experiments where the procedure and material is more identical, the effect of 



 

 

each controlled parameter can be evaluated more precisely. The difference in the T0 

temperature shift between the FEM models is 29 oC and 44 oC for the experimental 

results. The uncertainty in the experimental results allows for this difference, but 

additional factors besides constraint likely explain parts of the deviation. Rotation is a 

likely candidate to explain the difference as the HC series samples are less stiff due to 

their smaller ligament. When the constraint values are compared to those presented by 

Moattari and Sattari-Far (2017), Figure 57, the constraint for the thesis samples is higher, 

but the a/W 0.2 samples seem to follow a similar load-Q sensitivity (gradient). 

Comparison between two FEM- models has the additional benefit of having no 

uncontrolled effects from the surroundings.  

The thesis experimental results highlight the effect, which constraint has on the fracture 

toughness. The HC-series toughness is lower than a/W 0.5 SEB specimens which are 

expected to be more conservative. The HC-series toughness is closer to the C(T) series 

results which is considered the highest constraint test configuration. No explanation to 

the brittleness was found from the fracture surfaces or material analysis, and the tight 

spread of the results would indicate that the material is homogenous. The LC-series on 

the other hand is tougher than the comparison results. What causes this large contrast in 

toughness is unknown, but the SE(N)T specimens in the thesis test configuration seem 

sensitive to crack length with regards to constraint and that constraint effects are indeed 

present at the specimen scales. It should be noted, that increasing the crack length also 

reduces the stiffness of the tensile setup, and it could be concluded that the toughness 

values are sensitive to the test setup stiffness.  

  



 

 

7 CONCLUSION 

This thesis explored the fracture toughness of an ASTM A533B Class 1 pressure vessel 

steel from the IAEA correlation monitoring material melt designated JRQ and the effect 

changing constraint has on it. Through a literature review, important theory relating to 

fracture toughness determination was evaluated. A miniature SE(N)T type specimen was 

designed for the available test apparatus based on the examined standards. It represents a 

less conservative method compared to bending type specimens more commonly tested as 

it has a lower constraint due to its tensile loading producing less moment forces. 

The specimens had a 10 mm x 10 mm square cross section and a T-L orientation The 

effect of constrain on the specimen was varied in the experimentation by altering the a/W 

ratio, 0.2 for low, and 0.5 for high constraint series. A complementary FEM analysis was 

conducted on Abaqus CAE and it was used to calculate Q-parameters with a HRR 

reference field. A Ramberg-Osgood material model derived from KTH tensile tests was 

used for the Abaqus model with a strain hardening exponent of 9 and yield strength of 

488 MPa.  

The sample material was characterized through optical and electron microscopy and 

previous observations. The mechanical properties were verified using HV 10 

measurements which showed no statistically significant differences based on sample 

location. The sample detachment was also alternated to account for material 

inhomogeneities. The microstructure was bainitic with a grain size between 20 and 45 

µm, an average hardness of 195 HV10 and a yield strength of 488 −560 MPa. Inclusions 

identified as aluminum oxide and manganese sulfide were also found. 

The fracture toughness was evaluated using the Master curve method and the T0 transition 

temperature. In total 11 low and 12 high constraint specimens were tested at -85 oC. Three 

specimens from the low and to from the high constraint series were used for procedure 

calibration. 



 

 

The T0 temperature was found to be-54 oC, σ 8,5 oC for the high constraint series with a 

Q-parameter of -0.59 which correlates to a -14 oC shift in the T0 temperature. A shift of -

5.5 oC is predicted using T-stress as the constraint parameter. The spread of the toughness 

results was small.  

The low constraint series exhibited a bimodal distribution with results in two clusters, 

five in the high and six in the low cluster. If all the samples excluding calibration 

specimens are used to derive the T0 temperature, it is -113 oC, σ 4 oC. If the three tougher 

samples are censored in addition, the T0 temperature becomes -98 oC, σ 5 oC. The Q-

parameter is -1.15 which correlates to a -43 oC shift in the T0 temperature. A shift of -

21.6 oC is predicted using T-stress as the constraint parameter. However, the five 

remaining samples are not enough to derive a reliable Master Curve distribution from.  

The uncertainty of the results was estimated using a partial derivatives method 

complimented by a global sensitivity analysis using Sobol’s indices. The most significant 

factor for fracture toughness was determined to be the plastic area under the CMOD-

Force graph used in J-integral calculations.  

The Abaqus predicted T0 difference between the series was -29 oC while the measured 

was -44 oC. The difference is within the uncertainty margins, but unaccounted for rotation 

in the tensile test machine is presumed to have affected the results.  

Compared to previous toughness results, the low constraint series had a very low T0 

temperature while the high constraint series was quite brittle. Based on these results, the 

SE(N)T geometry seems to be sensitive to constraint changes at the miniature scale 
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Appendix 1 Technical drawings and instructions 
 



 

 

 

 



 

 

 



 

 

 

 



 

 

Appendix 2 MATLAB Code 
 

The full version can be requested from the author 

 

%% Timon Veijola, Master's thesis measurement data analysis code 
 
clear % clears previous variables 
close all % closes all open figures 
start_time = datestr(now,'HH:MM:SS') % Displays the starting time of the run 
tic %timer start 
%% /////// DATA FETCHING /////// 
%% /////// STORES /////// 
%% /////// ANALYSIS LOOPS /////// 
%% /////// MODEL PARAMETERS /////// 
%% /////// DATA FILTERING /////// 
%% /////// DATA PROCESSING FOR PLOTTING /////// 
 
    % Picks table columns for graphs 
    xx = Results.CMOD; % table2array(Results(:,"CMOD")); 
    yy = Results.kN; %table2array(Results(:,"kN")); 
    zz = table2array(Results(:,'s')); 
 
 
    fi = fit(xx,yy,'poly9'); %,'Normalize','on'); % Fits a curve through the 
measurements 
    MCFS = coeffvalues(fi); % extract coefficients from the fit function 

p1 = MCFS(1); p2 = MCFS(2); p3 = MCFS(3); p4 = MCFS(4); p5 = 
MCFS(5); p6 = MCFS(6); 

     p7 = MCFS(7); p8 = MCFS(8); p9 = MCFS(9); p10 = MCFS(10); %p11 = 
MCFS(11); %coefficients from the function 
 
    %scatter(Results2.COD,Results2.kN,'green')fi 
    ff = fit(xx,yy,'poly1'); %fits a linear line through the data for 
comparison 
%% /////// FRACTURE MATHEMATICS /////// 
 
    fm = max(Results.kN); %maximum load [N] 
 
    row = find(yy == fm); % location/index of the maximum load 
 
    dm = table2array(Results(row,"CMOD")); % CMOD corresponding to the 
maximum load 
 
    str = (fm)/((W-a0)*BN); %max stress [MPa] 
 
    %Ee = str/dm; 
 
    %Geometric factors Many formulas are from ASTM E 1920 section 9, values 
for 
    %SET specimens from CANMET 
 
    aw = a0/W;%table2array(SETs(k,"Var6")); % Precrack ratio 
 



 

 

    faw1 = 1.197-2.133*(aw)+23.886*aw^2-69.051*aw^3+100.462*aw^4-41.397*aw^5 
... 
        -36.137*aw^6+51.215*aw^7-6.607*aw^8-
52.322*aw^9+18.574*aw^10+19.465*aw^11; %geometric factor for SET according to 
CANMET 
 
    eps = (pi*a0)/(2*W); %variable for geometric factor 2 
 
    faw2 = ((0.752+2.02*aw+0.3695*(1-sin(eps))^3)/cos(eps))* ... 
        ((tan(eps)/eps)^0.5);% geometric factor according to The Stress 
analysis of cracks handbook (Tada, Irwin, Paris) 1973 
 
    K_el = ((fm*0.001*(pi*a0* ... 
        0.001)^0.5)/(W*(B*BN*10^-6)^0.5))*faw1; %stress intensity factor for 
the elastic portion [MPa*m^0.5] 
%% /////// a ESTIMATE AND E CORRECTION/////// 
%% /////// KJC CALCULATION/////// 
 
    Je = ((1-v^2)*K_el^2)/E; %elastic J integral 
 
    b0 = W-a0; %ligament length 
 
    f = matlabFunction(f); %converts the fit function from symbolic 
 
    Area = integral(f,min(Results.CMOD),CMODmax); % area under the fit 
function 
 
    offset =(diff(Results.CMOD)); % Difference between subsequent values of 
CMOD 
 
    offset(end+1) = 0; %to resize the vector that lost one value 
 
    neg_offset = offset < -0.00006; % Limit to remove Clip opening CMODs 
 
    offset(neg_offset) = 0; % Changes errors to 0 
 
    AreaB = offset.*(Results.kN); % difference * force 
 
    AreaBB = sum(AreaB); %LIDL integration/Lower rectangle integration summs 
all the "rectangles" formed by force * difference 
 
    uAreaB = abs(Area-AreaBB)/Area; % method difference 2  
    %% /////// QUASISTATIC LOAD TEST /////// 
    %% /////// PLASTIC VARIABLES //////// 
    %Coefficients for SET specimen calculations 
 
    eta = 1-1.089*aw+9.519*aw^2-48.572*aw^3+109.225*aw^4-73.116*aw^5-
77.984*aw^6 ... 
        +38.487*aw^7+101.401*aw^8+43.306*aw^9-110.770*aw^10; 
 
    %nlld1 = -0.880+15.19*aw-35.44*aw^2+18.644*aw^3+18.399*aw^4-1.273*aw^5-
12.756*aw^6 ... 
        -12.202*aw^7-4.447*aw^8+5.397*aw^9+14.187*aw^10; 
 
    %nlld2 = 15.19-35.44*2*aw+3*18.644*aw^2+4*18.399*aw^3-1.273*5*aw^4-
12.756*6*aw^5 ... 
        -12.202*7*aw^6-4.447*8*aw^7+5.397*9*aw^8+14.187*10*aw^9; 



 

 

 
    %ylld = nlld1-1-(1-aw)*(nlld2/nlld1); 
 
    Ae = 0.5*C0*(fm)^2; % elastic area 
 
    Ap2 = Area-Ae; % Area of the plastic proportion of the CMOD-Curve 
 
    Ap3 = Area -(0.5*fm*(CMODmax-(-(Results.kN(find(Results.CMOD ==... 
        CMODmax))-kappa*CMODmax)/kappa))); % Alternative calculation method 
 
    Jp = ((eta*Ap2)/(BN*b0))*1000; %*(1-((ylld*a0)/b0))*1000; % J integral 
for the plastic part 
 
    Jc = Je+Jp; % J integral for the critical load 
 
    Kjc = (Jc*(E/(1-v^2)))^0.5; %Kritical stress intensity 
 
    KjcT = 20+(Kjc-20)*(B/25.4).^0.25; %Kjc scaled to 1T size 
 
    %K0 = (1/(length(SelectFile)))*(KjcT-20)^4; % Single temperature 
    %calculation variable 
 
    Tavg = mean(Results.C([1:(length(Results.kN)-3*cen)])); %Average test 
temperature 
 
    AAB = (Area-AreaBB)/Area; %Comparison between the 2 integartion methods, 
if they are far apart something is wonky in the fit, data or both 
 
%% /////// STORED VALUES /////// 
%% Calculation formula 
 
    % KjcT is the Kjc scaled to 1 inch combined into a single formula 
respective to all the measured quantities* Some measured quantities are 
procesed such as the force CMOD graph that produce the Ap value 
 
    Kjc_T = @(a_0,W_,B_,T_,A_p) ( ... 
        ((((1-v^2)*(((fm*0.001*(pi*a_0*0.001)^0.5)/(W_*(B_*(BN)*10^-
6)^0.5))*(1.197-2.133*((a_0/W_))+23.886*(a_0/W_)^2-69.051*(a_0/W_)^3 ... 
        +100.462*(a_0/W_)^4-41.397*(a_0/W_)^5-
36.137*(a_0/W_)^6+51.215*(a_0/W_)^7-6.607*(a_0/W_)^8-
52.322*(a_0/W_)^9+18.574*(a_0/W_)^10 ... 
        +19.465*(a_0/W_)^11))^2)/((204-T_/16)))+ ... %Je 
        ((((1-1.089*(a_0/W_)+9.519*(a_0/W_)^2-
48.572*(a_0/W_)^3+109.225*(a_0/W_)^4-73.116*(a_0/W_)^5-77.984*(a_0/W_)^6 ... 
        +38.487*(a_0/W_)^7+101.401*(a_0/W_)^8+43.306*(a_0/W_)^9-
110.770*(a_0/W_)^10)*(A_p))/((BN)*(W_-a_0)))*1000)));% ... %Jp 
 
     
 
    %val =(Kjc_T(2.089187500000000,9.984000000000000,9.983000000000000,-
144,5.915)); % Validating the formula through comparison to a known result 
~116 
 
    %% First and second order uncertainty calculations 
 
    %Ap = A-0.5*C0*fm^2; 
 



 

 

    xi = {'a_0','W_','B_','T_','A_p'}; % variables 
    ui = [u2,u3,u4,u6,u7_]; % standard uncertainties for each variable 
 
    % stores for loop values 
    h_expr = []; 
    h_expr2 = []; 
    h_expr3 = []; 
    h_expr4 = []; 
    h_expr5 = []; 
    hhh = []; 
    PartialSums = []; 
 
    syms f(a_0,W_,B_,T_,A_p) fd(a_0,W_,B_,T_,A_p) 
 
    %tic % timer start 
 
    for d = (1:5) % cereates partial derivatives of the function with respect 
to all parameters 
 
        d; 
 
        f(a_0,W_,B_,T_,A_p) = Kjc_T; 
 
        fd(a_0,W_,B_,T_,A_p) = (diff(f,xi(d))); % *ui(k); 
 
        h_expr2 = [h_expr2; fd(a_0,W_,B_,T_,A_p)]; 
 
        ucl(a_0,W_,B_,T_,A_p) = (diff(f,xi(d)))^2*ui(d); 
 
        h_expr5 = [h_expr5; ucl(a_0,W_,B_,T_,A_p)]; 
    end 
         
        FirstUc = zeros(1,5); 
         
    for q = 1:5 % Variance values for each first order uncertainty component 
for validation purposes 
     
        ggg = h_expr5(q); 
 
        kk = symfun(ggg,[a_0,W_,B_,T_,A_p]); 
 
        FirstUc(q) = round(vpa((kk(a0,W,B,T(k-Loopstart+1),Ap2))),5); 
    end 
 
    for l = (1:5)  % cereates second order partial derivatives of the 
function with respect to all parameters 
 
        l; 
 
        f(a_0,W_,B_,T_,A_p) = Kjc_T; 
 
        fd(a_0,W_,B_,T_,A_p) = (diff(f,xi(l),2)); % *ui(k); 
 
        h_expr3 = [h_expr3; fd(a_0,W_,B_,T_,A_p)]; 
    end 
 
    a = [1,2,3,4,5]; % vector used for the loop 



 

 

    comb = nchoosek(a,2); % creates all the combinations of 2 parameters, 
used for indexing in the loop 
 
    for h = 1:10 % creates the 2 parameter interactions of the standard 
uncertainty formula 1/2'(f''/xi'xj')^2 
 
        h; 
        section1 = 0.5*(h_expr2(comb(h,1))*h_expr2(comb(h,2)))^2; 
 
        h_expr = [h_expr; section1]; 
 
    end 
 
    b = 
[2,3,4,5,1,3,4,5,1,2,4,5,1,2,3,5,1,2,3,4;1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,
5,5]; % matrix used for loop indexing to calculate all the combinations 
 
    for m = 1:20 %creates a higher order term for the standard uncertainty 
(f'/xi')*(f'/xi*(f''/xj'')) 
        m; 
        section2 = h_expr2(b(2,m))*(h_expr2(b(2,m))*h_expr3(b(1,m))); 
 
        h_expr4 = [h_expr4; section2]; 
 
    end 
 
    c = [1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10]; % used for adding the 
fisrt section to the correct second sections 
 
    for n = 1:20 % adds the partial functions together, multiplies it with 
the correct u(xi) and u(xj) values and summs them 
 
        n; 
 
        sections = (h_expr(c(n))+h_expr4(n))*ui(b(2,n))*ui(b(1,n)); 
 
        hhh = [hhh; sections]; % sum of uncertainties 
    end 
    %% Second order uncertainty components 
 
    PartialUc = zeros(1,20); 
 
    % the particular xi or xj can be deduced from the b matrix, first row is 
    % j from xi[1:5] and second row is xi from xi[1:5] e.g. loop 17 (b(1,17) 
= 1 b(2,17) = 5) would be 
    % Ap-a_0 connection 
 
    for o = 1:20 
 
        jjj = hhh(o); 
 
        K = symfun(jjj,[a_0,W_,B_,T_,A_p]); 
 
        PartialUc(o) = round(vpa((K(a0,W,B,T(k-Loopstart+1),Ap2))),5); 
 
    end 
 



 

 

    % sum(PartialUc); % reference value for the higher order variance 
components 
    %% Total unceretainty summation 
    uc_func2 = sum(hhh([1:20])); % summs all the 30 functions, dont open this 
function or its length will crash matlab 
    uc_func = sum(h_expr5([1:5])); 
    %uc_funcS = simplify(uc_func); turn a 41 000 character function into a 70 
000 character function with this simple trick 
 
    x_x = symfun(uc_func2,[a_0,W_,B_,T_,A_p]); %  higher order terms 
 
    x_y = symfun(uc_func,[a_0,W_,B_,T_,A_p]); % fist order terms 
 
    STD_uncertainty2 = 1*confLevel*((round(vpa((x_x(a0,W,B,T(k-
Loopstart+1),Ap2))),5)))^0.5 ;% inserts validation values into the function 
to give an uncertainty estimate 
    STD_uncertainty = 1*confLevel*((round(vpa((x_y(a0,W,B,T(k-
Loopstart+1),Ap2))),5)))^0.5 ;% linear uncertainty 
 
    Uc2std = STD_uncertainty2+STD_uncertainty;% +-  ST Devs 
    %toc % timer stop 
    std(k,1:1) = Uc2std; 
    Partials(k,1:20) = PartialUc; 
    FirstOrder(k,1:5) = FirstUc; 
    fst(k,1:1) = STD_uncertainty; 
    snd(k,1:1) = STD_uncertainty2; 
 
    Bet = (1+(a0/b0)^2)^0.5-a0/b0; 
     
    Ms(1,k) = (b0*ys)/J(k); 
    Ms(2,k) = 1.455*Bet*b0*ys; 
    Ms(3,k) = 1.072*Bet*b0*ys; 
    
    %% /////// PLOTS /////// 
    %% /////// GRAPH SETTINGS /////// 
    %% /////// MASTER CURVE CALCULATIONS /////// 
 
    syms T0f(T0q) Kjc0f(T0q) Kjc0fmin(T0q) Kjc0fmax(T0q)% symbols used by the 
sum functions 
 
    T0ff  = @(T0q) roo*(exp(0.019*(Tavg-T0q)))/(11+77*exp(0.019*(Tavg-T0q))); 
 
    Kjc0ff = @(T0q) (((KjcT-20)^4*exp(0.019*(Tavg-
T0q)))/(11+77*exp(0.019*(Tavg-T0q)))^5); 
 
    Kjc0ffmin = @(T0q) (((KjcT-20-std(k))^4*exp(0.019*(Tavg-
T0q)))/(11+77*exp(0.019*(Tavg-T0q)))^5); 
 
    Kjc0ffmax = @(T0q) (((KjcT-20+std(k))^4*exp(0.019*(Tavg-
T0q)))/(11+77*exp(0.019*(Tavg-T0q)))^5); 
 
    T0f(T0q) = T0ff; 
 
    Kjc0f(T0q) = Kjc0ff; 
 
    Kjc0fmin(T0q) = Kjc0ffmin; 
 



 

 

    Kjc0fmax(T0q) = Kjc0ffmax; 
%{                                                         
    h_exprs = [h_exprs; T0f(T0q)]; 
 
    h_exprs2 = [h_exprs2; Kjc0f(T0q)]; 
 
    h_exprs3 = [h_exprs3; Kjc0fmin(T0q)]; 
 
    h_exprs4 = [h_exprs4; Kjc0fmax(T0q)]; 
%} 
     
 
end 
 
%% Sum functins from ASTM E1921 (20) 
T0f = sum(h_exprs(1:gg)); 
 
Kjc0f = sum(h_exprs2(1:gg)); 
 
Kjc0fmin = sum(h_exprs3(1:gg)); 
 
Kjc0fmax = sum(h_exprs4(1:gg)); 
 
Tq0 = round(vpasolve(T0f == (Kjc0f),T0q,[-200 T_est]),0); % Finds the highest 
x that fits the [range] 
 
Tq0min = round(vpasolve(T0f == (Kjc0fmin),T0q,[-200 T_est]),0); 
 
Tq0max = round(vpasolve(T0f == (Kjc0fmax),T0q,[-200 T_est]),0); 
 
mesUcT = 0; %abs(Tq0min-Tq0max)/2; 
mesUcT2 = abs(Tq0min-Tq0max); 
 
%% /////// MASTER CURVE PLOTTING /////// 
 
figure('name','Master Curve') 
 
%Tq0 = round(Tq0+(BetaU/gg+mesUcT^2)^0.5,0); 
 
Tq = num2str(double(Tq0)); %converts the T0 symbolic value  to tex/16t 
+round((BetaU/gg+mesUcT2^2)^0.5,0) 
Tqmin = num2str(double(Tq0min)); %+round((BetaU/gg+mesUcT2^2)^0.5,0) 
Tqmax = num2str(double(Tq0max));% +round((BetaU/gg+mesUcT2^2)^0.5,0) 
 
CL = num2str(confLevel); 
sigmap = strcat('+',CL,'\sigma: ',''); 
sigmam = strcat('-',CL,'\sigma: ',''); 
sigma = strcat(CL,'\sigma'); 
T0temp = {'T_0 [^oC]:', Tq} ;%,strcat([sigmam,' ', 
Tqmin]),Tq,strcat([sigmap,' ', Tqmax])}; % text for displayin the T0 in the 
plot 
 
Tx= T;  %table2array(SETs(:,"Var1")); % Picks the temperatures from the excel 
file, can also be done with T([1:length(SelectFile)]) 
 
scatter(Tx,MasterKjc,sz*2,col,"filled"); % Master curve datapoints 
%title('HC Master Curve') 



 

 

xlabel('Temperature [^oC]'); 
ylabel('K_J_c [MPa\surdm]')  
grid minor 
 
Con = 0; %40*(-0.73+0.65*aw+1.76*aw^2-1.37*aw^3); 
Txx = linspace(min(Tx)-50,-20,incr); % X axis values for the plot 
Kjcmed = 30 + 70*exp(0.019*(Txx-((Tq0-Con)))); % Kjc med line values 
Kjclow = 20 + (log(1/(1-confd)))^0.25 *(11+77*exp(0.019*(Txx-Tq0))); %Kjc 
lower bound values 
Kjchigh = 20 + (log(1/(confd)))^0.25 *(11+77*exp(0.019*(Txx-Tq0))); %Kjc 
higher bound values 
hold on; 
%errorbar(Tx,MasterKjc,std(Loopstart:Loopend),'LineStyle','none'); 
%Kjc limit calculations for bend cases 
 
yst = 0.0093*Txx.^2-0.2023*Txx+474.67; 
 
EEE=204-(Txx/16); %temperature adjusted Young's modulus 
 
limKjc = (((EEE.*yst)*b0)./(30*(1-v^2))).^0.5; %Kjc limit 
 
hold on 
 
plot(Txx,Kjcmed) % Master Curve 
plot(Txx,Kjclow) % Master curve lower confidence limit 
plot(Txx,Kjchigh) % Master curve higher confidence limit 
%plot(Txx,limKjc) % Kjc limit line 
 
legend('Datapoints','Median Master Curve','Lower Bound','Upper Bound','K_J_c 
Limit line M = 30',Location='northwest') %graph legend 
 
%text(-93,90,T0temp) %Text box location and contents (T0temp)max(limKjc)*0.75 
vpa(Tq0*-1.25) 

  



 

 

Appendix 3 Uncertainty variance components  

 

TABLE- 1 First order uncertainty variance components 

First order σ2 

Sample a0 W B T Ap 

HC1 0,17 0,37 0,01 0,00 197,81 

HC2 0,05 0,05 0,00 0,00 298,68 

HC3 0,06 0,08 0,00 0,00 15,81 

HC4 0,15 0,09 0,00 0,00 17,53 

HC5 0,14 0,14 0,00 0,00 24,72 

HC6 0,05 0,12 0,00 0,00 23,91 

HC8 0,13 0,17 0,00 0,00 24,13 

HC9 0,09 0,10 0,00 0,00 26,22 

HC10 0,06 0,04 0,00 0,00 19,45 

HC11 0,15 0,14 0,00 0,00 21,99 

HC12 0,09 0,07 0,00 0,00 21,19 

LC1 0,22 0,63 0,00 0,00 1170,71 

LC2 0,68 0,66 0,00 0,00 692,64 

LC3 0,58 0,51 0,00 0,00 176,45 

LC4 0,20 0,18 0,00 0,00 33,00 

LC5 0,28 0,15 0,00 0,00 29,10 

LC6 0,08 0,13 0,00 0,00 27,30 

LC7 0,77 1,12 0,00 0,00 35,19 

LC8 0,75 0,64 0,00 0,00 31,53 

LC9 0,28 0,10 0,00 0,00 27,24 

LC10 0,10 0,06 0,00 0,00 28,00 

LC11 0,18 0,79 0,00 0,00 33,34 



 

 

TABLE- 2 Second order uncertainty variance components 

Second order σ2 

  a0-W a0-B a0-T a0-Ap W-a0 W-B W-T W-Ap B-a0 B-W B-T B-Ap T-a0 T-W T-B T-Ap Ap-a0 Ap-W Ap-B Ap-T 

HC1 0,03 0,03 0,00 0,29 0,00 0,00 0,00 41,35 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 1,12 2,59 0,12 0,00 

HC2 0,00 0,00 0,00 0,03 0,00 0,00 0,00 10,23 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 1,33 1,42 0,08 0,00 

HC3 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,90 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,07 0,10 0,01 0,00 

HC4 0,01 0,01 0,00 0,01 0,00 0,00 0,00 1,15 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,17 0,12 0,01 0,00 

HC5 0,01 0,01 0,00 0,02 0,00 0,00 0,00 2,40 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,19 0,22 0,01 0,00 

HC6 0,00 0,00 0,00 0,01 0,00 0,00 0,00 2,27 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,07 0,21 0,01 0,00 

HC8 0,01 0,01 0,00 0,02 0,00 0,00 0,00 2,75 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,16 0,24 0,01 0,00 

HC9 0,00 0,00 0,00 0,01 0,00 0,00 0,00 1,95 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,14 0,20 0,01 0,00 

HC10 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,72 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,09 0,09 0,01 0,00 

HC11 0,01 0,01 0,00 0,02 0,00 0,00 0,00 2,15 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,18 0,20 0,01 0,00 

HC12 0,00 0,00 0,00 0,01 0,00 0,00 0,00 1,15 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,14 0,13 0,01 0,00 

LC1 0,07 0,07 0,00 1,24 0,00 0,00 0,00 454,05 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 3,20 9,64 0,38 0,00 

LC2 0,23 0,22 0,00 2,35 0,00 0,00 0,00 280,61 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 5,68 5,87 0,23 0,00 

LC3 0,15 0,15 0,00 0,53 0,00 0,00 0,00 59,30 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 1,47 1,38 0,06 0,00 

LC4 0,02 0,02 0,00 0,03 0,00 0,00 0,00 6,11 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,15 0,18 0,01 0,00 

LC5 0,02 0,02 0,00 0,04 0,00 0,00 0,01 4,49 0,00 0,00 0,00 0,00 0,00 0,01 0,00 0,00 0,22 0,15 0,01 0,00 

LC6 0,01 0,00 0,00 0,01 0,00 0,00 0,01 3,95 0,00 0,00 0,00 0,00 0,00 0,01 0,00 0,00 0,06 0,13 0,01 0,00 

LC7 0,44 0,43 0,00 0,20 0,01 0,00 0,01 22,26 0,00 0,00 0,00 0,00 0,01 0,01 0,00 0,00 0,28 0,41 0,01 0,00 

LC8 0,25 0,24 0,00 0,16 0,01 0,00 0,01 13,17 0,00 0,00 0,00 0,00 0,01 0,01 0,00 0,00 0,32 0,29 0,01 0,00 

LC9 0,01 0,01 0,00 0,04 0,00 0,00 0,00 3,48 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,26 0,13 0,01 0,00 

LC10 0,00 0,00 0,00 0,01 0,00 0,00 0,00 2,63 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,11 0,10 0,01 0,00 

LC11 0,07 0,07 0,00 0,04 0,00 0,00 0,01 15,99 0,00 0,00 0,00 0,00 0,00 0,01 0,00 0,00 0,07 0,32 0,01 0,00 



 

 

Appendix 4 Python script used for the sensitivity analysis  

# Sensitivity analysis using Sobol's indices based on the work on SALib by (Inigawa. T., Herman. 

J., & Usher. W,. 2017-2022) 

#Import modules and libraries 

from cmath import sqrt 

from re import T 

from SALib.sample import saltelli 

from SALib.analyze import sobol 

from SALib.test_functions import Ishigami 

import numpy as np 

import time as tim 

#timer 

st = tim.time() 

# Define the model inputs 

problem = { 

    'num_vars': 7, #number of variable parameters 

    'names': ['a0','W','Ap','B','BN','P','degC'],# list of parameter names and ranges for each 

parameter in sequential order 

    'bounds': [[1.82, 6.02],    

               [8.981, 10.989], 

               [0.29,5.71], 

               [8.981, 10.989], 

               [7.35,9.328], 

               [13333,53950], 

               [-85,-84.15]] 

} 

# Generate samples 

param_values = saltelli.sample(problem, 2**21) #problem size, powers of 2 recommended, conver-

gence is reached before negative values disappear 

m = np.array(param_values) 

n = np.hsplit(m,7) 

#Define the fracture toughness function 

def kjc_function(a0,W,Ap,B,BN,P,degC): 

    eta = 1-1.089*(a0/W)+9.519*(a0/W)**2-48.572*(a0/W)**3+109.225*(a0/W)**4-73.116*(a0/W)**5-

77.984*(a0/W)**6+38.487*(a0/W)**7+101.401*(a0/W)**8+43.306*(a0/W)**9-110.770*(a0/W)**10 

    f = 1.197-2.133*(a0/W)+23.886*(a0/W)**2-69.051*(a0/W)**3+100.462*(a0/W)**4-41.397*(a0/W)**5-

36.137*(a0/W)**6+51.215*(a0/W)**7-6.607*(a0/W)**8-

52.322*(a0/W)**9+18.574*(a0/W)**10+19.465*(a0/W)**11 

    Kjcx = (((eta*(Ap)/(BN*(W-a0)))*1000 

+((0.91*(((P*(3.14159*a0)**0.5)/(W*((B*BN))**0.5))*f)**2)/((204-(degC/16))*1000)))*((204-

(degC/16))/0.91))**0.5 

    return Kjcx 

Y = np.concatenate(kjc_function(n[0],n[1],n[2],n[3],n[4],n[5],n[6]),None) 

print(Y, np.shape(Y),np.shape(param_values)) 

# Perform analysis 

Si = sobol.analyze(problem, Y, print_to_console=True) 

# Print the first-order sensitivity indices 

print(Si['S1'],Si['ST'])  

et = tim.time()  

print((et-st)/60) #Prints runtime in minutes  



 

 

Appendix 5 CMOD-Force graphs for all the samples 

 
 

 



 

 

 

 

 



 

 

 

 



 

 

 

 

 



 

 

 

 



 

 

 

 



 

 

 

 



 

 

 

 



 

 

 

 



 

 

 

 



 

 

 

 



 

 

  



 

 

Appendix 6 Calculation values 

Table 1. LC-Series Claculation values 

LEGEND LC1 LC2 LC3 LC4 LC5 LC6 LC7 LC8 LC9 LC10 LC11 

a0 est [mm] 2,11 2,15 2,25 2,17 2,26 2,14 2,40 2,24 2,39 2,13 2,21 

a0 meas [mm] 2,03 2,06 2,16 2,09 2,19 2,05 2,29 2,28 2,41 2,15 2,12 

E machine [GPa] 200,83 164,83 179,90 201,84 204,60 186,93 186,08 238,59 236,10 216,24 200,54 

E [GPa] 213,00 213,00 213,00 213,00 213,00 213,00 213,00 213,00 213,00 213,00 213,00 

E adjusted [GPa] 213,00 175,06 191,64 213,00 213,00 199,50 199,50 231,96 231,96 213,00 213,00 

Cθ [N/m 109]  0,73 0,92 0,89 0,76 0,80 0,80 0,95 0,74 0,80 0,74 0,78 

Area [Nm] 12,96 13,03 11,05 6,05 5,37 5,14 15,83 11,57 3,53 2,76 13,56 

Area Inc [Nm] 12,96 13,03 11,05 6,05 5,37 5,14 15,82 11,57 3,53 2,76 13,55 

Ae [Nm] 0,84 1,05 0,99 0,86 0,82 0,87 1,14 0,84 0,77 0,74 0,93 

Ap [Nm] 12,12 11,98 10,06 5,19 4,55 4,27 14,69 10,72 2,76 2,02 12,62 

Jc 179,21 180,32 154,57 86,77 76,59 71,27 230,44 170,91 54,65 41,07 191,35 

Jp 166,11 166,68 140,57 73,00 63,30 58,59 213,10 154,58 39,75 28,34 176,57 

Je 13,10 13,64 14,00 13,77 13,29 12,68 17,34 16,33 14,91 12,73 14,79 

Max Force [F] 47950 47956 47001 47536 45272 46830 49041 47901 43886 44805 48872 

Stress [MPa] 714,04 725,80 716,48 727,72 688,74 698,91 780,74 757,21 697,14 687,32 745,27 

Load Rate [MPaS-1] 0,01 0,02 0,03 0,23 0,24 0,23 0,27 0,28 0,28 0,25 0,17 

T [oC] -85,36 -85,63 -86,08 -86,68 -86,02 -86,46 -86,54 -85,12 -87,32 -85,60 -85,49 

Kjc  [MPa√m] 204,81 205,44 190,21 142,51 133,90 129,16 232,25 200,01 113,10 98,05 211,64 

Kjc 1T  [MPa√m] 166,28 166,81 154,77 117,00 110,17 106,42 188,06 162,52 93,73 81,80 171,76 

Q  2,56 2,63 1,37 -0,36 -0,45 -0,49 6,29 2,12 -0,53 -0,49 3,29 

T-stress -0,54 -0,53 -0,52 -0,53 -0,52 -0,53 -0,50 -0,51 -0,49 -0,52 -0,53 

Q shift 102,52 105,00 54,72 -14,35 -18,09 -19,44 251,54 84,87 -21,07 -19,59 131,41 

T-Stess shift -21,48 -21,30 -20,85 -21,18 -20,66 -21,38 -20,18 -20,23 -19,57 -20,89 -21,03 

a/W [mm] 0,20 0,21 0,22 0,21 0,22 0,21 0,23 0,23 0,24 0,22 0,21 

Plasticity lim P-σ 50 292 49 797 48 505 49 430 47 952 50 013 46 627 46 762 44 964 48 622 49 001 

Plasticity lim P-ε 37 054 36 689 35 737 36 419 35 330 36 848 34 353 34 453 33 128 35 823 36 103 

M 283,90 115,52 219,49 239,85 133,16 322,51 227,07 99,32 178,95 222,28 140,89 

η 0,92 0,92 0,92 0,92 0,91 0,92 0,91 0,91 0,91 0,92 0,92 

Cθ [N/m 109]  0,73 0,92 0,89 0,76 0,80 0,80 0,95 0,74 0,80 0,74 0,78 

KI  [MPa√m] 1,33 1,33 1,35 1,34 1,36 1,33 1,38 1,38 1,41 1,35 1,34 

KI 2  [MPa√m] 1,37 1,38 1,40 1,39 1,41 1,38 1,44 1,44 1,47 1,40 1,40 

 

 



 

 

Table 2. HC-Series Claculation values 

LEGEND HC1 HC2 HC3 HC4 HC5 HC6 HC8 HC9 HC10 HC11 HC12 

a0 est [mm] 5,46 5,54 5,73 5,71 5,61 5,68 5,69 5,65 5,44 5,69 5,68 

a0 meas [mm] 5,21 5,44 5,47 5,44 5,36 5,42 5,42 5,38 5,20 5,43 5,42 

E machine [GPa] 184,34 202,08 161,39 165,01 157,00 181,46 135,19 179,07 179,17 148,63 150,37 

E [GPa] 213,00 213,00 213,00 213,00 213,00 213,00 213,00 213,00 213,00 213,00 213,00 

E adjusted [GPa] 209,78 213,00 184,08 189,72 178,62 207,68 155,17 205,60 203,55 169,86 171,58 

Cθ [N/m 109]  4,53 4,64 5,92 5,71 5,74 5,13 6,85 5,09 4,63 6,26 6,18 

Area [Nm] 4,11 1,05 1,41 1,51 2,17 1,70 2,63 1,64 0,96 2,25 1,33 

Area Inc [Nm] 4,11 1,05 1,41 1,51 2,17 1,69 2,63 1,64 0,96 2,25 1,33 

Ae [Nm] 1,23 0,51 0,84 0,88 1,10 0,97 1,36 0,85 0,64 1,15 0,90 

Ap [Nm] 2,88 0,55 0,57 0,63 1,07 0,73 1,27 0,79 0,32 1,10 0,43 

Jc 77,66 21,39 25,41 27,66 38,34 32,69 43,35 31,21 18,03 39,00 22,77 

Jp 53,53 10,27 10,74 11,99 19,94 13,76 23,64 14,76 5,91 20,60 8,17 

Je 24,13 11,12 14,67 15,67 18,40 18,93 19,71 16,44 12,12 18,40 14,60 

Max Force [F] 23329 14815 16843 17513 19556 19418 19942 18315 16628 19178 17075 

Stress [MPa] 587,71 390,45 447,31 464,42 503,19 510,75 518,03 477,32 416,21 502,40 448,34 

Load Rate [MPaS-1] 0,08 0,13 1,05 0,86 0,73 0,70 0,75 0,62 0,71 0,79 0,55 

T [oC] -85,33 -85,76 -85,74 -86,11 -85,80 -85,97 -86,34 -85,94 -85,05 -86,04 -85,19 

Kjc  [MPa√m] 134,82 70,76 77,13 80,46 94,73 87,48 100,73 85,46 64,96 95,54 73,00 

Kjc 1T  [MPa√m] 110,90 60,18 65,22 67,86 79,16 73,42 83,91 71,84 55,60 79,82 61,96 

Q  -0,44 -0,33 -0,37 -0,39 -0,47 -0,44 -0,50 -0,42 -0,29 -0,48 -0,34 

T-stress -0,11 -0,08 -0,07 -0,07 -0,09 -0,08 -0,08 -0,08 -0,11 -0,08 -0,08 

Q shift -17,77 -13,05 -14,81 -15,69 -18,99 -17,44 -20,01 -16,96 -11,41 -19,14 -13,67 

T-Stress shift -4,26 -3,02 -2,83 -2,99 -3,41 -3,12 -3,12 -3,31 -4,32 -3,09 -3,12 

a/W [mm] 0,52 0,54 0,55 0,54 0,54 0,54 0,54 0,54 0,52 0,54 0,54 

Plasticity lim P-σ 15 117 13 440 13 192 13 402 13 945 13 565 13 570 13 814 15 200 13 540 13 578 

Plasticity lim P-ε 11 138 9 902 9 720 9 874 10 274 9 995 9 998 10 178 11 199 9 976 10 004 

M 34,38 47,51 104,61 118,73 251,26 229,64 100,47 239,42 182,34 92,25 212,98 

η 0,74 0,72 0,71 0,71 0,72 0,72 0,72 0,72 0,74 0,72 0,72 

Cθ [N/m 109]  4,53 4,64 5,92 5,71 5,74 5,13 6,85 5,09 4,63 6,26 6,18 

KI  [MPa√m] 2,29 2,40 2,42 2,40 2,36 2,39 2,39 2,37 2,28 2,39 2,39 

KI 2  [MPa√m] 3,04 3,28 3,32 3,29 3,20 3,26 3,26 3,22 3,02 3,27 3,26 

 


