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Abstract: The geographical traceability of extra virgin olive oils (EVOO) is of paramount impor-
tance for oil chain actors and consumers. Oils produced in two adjacent Portuguese regions, Côa
(36 oils) and Douro (31 oils), were evaluated and fulfilled the European legal thresholds for EVOO
categorization. Compared to the Douro region, oils from Côa had higher total phenol contents
(505 versus 279 mg GAE/kg) and greater oxidative stabilities (17.5 versus 10.6 h). The majority
of Côa oils were fruity-green, bitter, and pungent oils. Conversely, Douro oils exhibited a more
intense fruity-ripe and sweet sensation. Accordingly, different volatiles were detected, belonging to
eight chemical families, from which aldehydes were the most abundant. Additionally, all oils were
evaluated using a lab-made electronic nose, with metal oxide semiconductor sensors. The electrical
fingerprints, together with principal component analysis, enabled the unsupervised recognition
of the oils’ geographical origin, and their successful supervised linear discrimination (sensitivity
of 98.5% and specificity of 98.4%; internal validation). The E-nose also quantified the contents of
the two main volatile chemical classes (alcohols and aldehydes) and of the total volatiles content,
for the studied olive oils split by geographical origin, using multivariate linear regression models
(0.981 ≤ R2 ≤ 0.998 and 0.40 ≤ RMSE ≤ 2.79 mg/kg oil; internal validation). The E-nose-MOS
was shown to be a fast, green, non-invasive and cost-effective tool for authenticating the geograph-
ical origin of the studied olive oils and to estimate the contents of the most abundant chemical
classes of volatiles.

Keywords: EVOO quality; sensory analysis; oxidative stability; metal oxide semiconductor sensors;
multivariate qualitative-quantitative analysis; resistance electrical signals; feature extraction parameters

1. Introduction

Olive oil is highly appreciated worldwide due to its unique and distinct flavor, recog-
nized nutritional properties, and beneficial health effects. Due to its price and increasing
demand by consumers, extra virgin olive oil (EVOO) is one of the most prone to mislabel-
ing [1]. Several fraud practices have been detected in the olive oil market, including the
mislabeling of the oil category level or origin (cultivar, region, and production mode), and
the deliberated incorporation of other edible oils. In this sense, recent studies have shown
that consumers, producers, retailers, importers, exporters, as well as the regulatory bodies,
understand the importance of oil traceability, namely, geographical traceability [1–3]. In
the few last years, targeted and non-targeted strategies have been developed, aiming to
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address this important commercial and legal challenge, i.e., the authentication of olive oil ge-
ographical origin. Data generated by different analytical techniques (e.g., chromatography,
spectrophotometry, spectroscopy, and electrochemistry) in combination with unsupervised
or supervised chemometrics tools, have been proposed. For example, Hmida et al. [4]
used fatty acids and triacyglycerids as origin markers of virgin olive oil (VOO) from the
Mediterranean region (e.g., Portugal, France, Tunisia, and Turkey), by applying principal
component analysis (PCA). Furthermore, PCA of the fatty acids and volatiles profiles of
Tunisian olive oils identified the oil’s geographical origin [5]. The composition of volatile
compounds was also successfully used as geographical origin markers of Greek olive oils of
cv. ‘Ntopia’ [6]. Quintanilla-Casas et al. [7] proposed using the sesquiterpene hydrocarbon
fingerprint together with partial least squares-discriminant analysis (PLS-DA) to verify EU
and single-country origin label declaration. Recently, the use of inorganic multi-elemental
and isotopic signatures in olive oils as possible geographical traceability strategies was re-
viewed, highlighting the possible use of trace elements as origin markers [8]. Alternatively,
nuclear magnetic resonance spectroscopy, coupled with different multivariate statistical
tools, has been revealed as a potential tool for identifying the geographical origin of olive
oils [9]. However, these strategies are destructive, requiring several pre-treatments of the
olive oil samples; non-green, relying in the use of several organic solvents; expensive,
using non-affordable apparatus; and, time-consuming. On the other hand, the research
team has recently demonstrated the possibility of using Fourier transform infrared spec-
troscopy (FTIR), coupled with linear discriminant analysis (LDA), as a green, fast, and
non-destructive approach to identify the geographical origin of Portuguese olive oils from
cv. ‘Galega Vulgar’ [10]. FTIR coupled with the machine learning technique was also
previously used by Scatigno and Festa [11] to identify spectroscopy benchmarks in Italian
EVOO, allowing for the recognition of the oils’ geographical origin. These researchers also
verified the successful geo-discrimination of Italian EVOO based on energy dispersive
X-ray fluorescence data acquired using a portable spectrometer that perform in situ, fast,
and non-destructive elemental and molecular analysis, combined with different chemomet-
ric tools (e.g., PC; soft independent modeling of class analogy, SIMCA; or, L-shaped PLS
Regression, L-PLSR) [12]. Fluorescence and FT-Raman spectroscopy coupled with PCA or
PLS–DA were also applied to authenticate the geographical origin of Arbequina EVOOs
from two geographically adjacent Spanish regions [13].

In this study, and to the authors’ best knowledge, it was intended to evaluate, for the
first time, the potential application of a lab-made electronic nose (E-nose) with metal oxide
semiconductor (MOS) sensors as a tool for identifying the geographical origin of olive oils
produced in two adjacent Portuguese regions (northeast of Portugal), from Côa and Douro.
E-noses provide an olfactory unique fingerprint of the olive oil’s volatiles, which, together
with multivariate statistical techniques, leads to their successful use in the olive oil industry,
namely as a classification sensor-aroma tool [14–16], to detect EVOO adulteration with
other oils [17,18], or to check the olive oil quality grade category [19].

2. Materials and Methods
2.1. Olive Oil Samples

The olive oils were directly collected from olive mills located in the regions of Côa and
Douro (Figure 1), northeast of Portugal, during 2021. In each olive mill, two olive oil bottles
(500 mL) per lot were collected. The amber glass bottles were transported to the laboratory
and stored in a dark environment at room temperature (18–25 ◦C), and were only filtered
before analysis. In total, 31 independent samples were collected in the Douro Valley and
36 in the Côa Valley. Olive oils were extracted in 21 different olive oil mills, of which 13 were
located in the Douro Valley region and 8 were located in the Côa Valley region. According
to the producers, all samples were extracted from traditional Portuguese olive cultivars;
olives with maturation indices ranging from 2.5 to 5. In the Douro Valley, the predominant
olive varieties are cvs. Galega, Madural, Cordovil, and Cobrançosa. In Côa Valley, the
predominant varieties are cvs. Madural, Negrinha de Freixo, Verdeal Transmontana, and
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Redondal. In general, no monovarietal olive oils are produced in these regions; the majority
of the olive oils are blends of different varieties.
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Figure 1. Côa Valley and Douro Valley sampling regions. Map projected in ETRS89/PT-TM06.

2.2. Quality Physicochemical Parameters, Oxidative Stability, Total Phenols Content, and
Sensory Analysis

Free acidity (FA, % oleic acid), peroxide value (PV, mEq O2/kg oil), and specific ex-
tinction coefficients at 232 nm and 268 nm (K232 and K268) of the olive oils were determined
using the regulated European Union (EU) standard methodologies [20].

The oxidative stability (OS, h), an indication of the oil’s shelf-life, was determined
by monitoring the oil’s oxidation induction time, as described in the literature [21], using
Rancimat 743 equipment (Metrohm CH, Switzerland).

The total phenols content (TPC) was determined using the Folin-Ciocalteu method,
by recording the absorbance at 765 nm of a methanol-water extract of each olive oil in
a UV-VIS/UV-1280 Shimadzu spectrophotometer (Shimadzu Europa GmbH, Duisburg,
Germany). The results were expressed in Gallic acid equivalent (mg GAE kg−1), using a
previously established calibration curve [15,22].

The antioxidant capacity of the olive oil samples was spectrophotometrically assessed
regarding the radical scavenging activity of DPPH (2,2-diphenyl-1-picrylhydrazyl) (DPPH).
The assays were conducted in a spectrophotometer (UV–VIS/UV-1280 Shimadzu), at
20 ◦C and 517 nm, following the methodology described by Cherif et al. [23] with some
modifications. The solution of DPPH used as the control and olive oil extracts were prepared
by mixing 0.5 mL of methanol and 3.5 mL of DPPH (0.06 mM), and the absorbance values
were read after 30 min in the dark. The DPPH radical scavenging was expressed as the
reduction percentage of the DPPH activity.

The olfactory and gustatory-retronasal profiles of the olive oils were established by
a trained sensory panel of the Polytechnic Institute of Bragança (Bragança, Portugal), fol-
lowing the methodology of the EU regulation [20] and the International Olive Council
(IOC) [24], using a modified continuous intensity scale varying from 0 (no perceived sen-
sation) to 10 (maximum perceived intensity), as previously discussed [21]. The sensory
panel included 8 trained members as previously described [25], with the following sensa-
tions graded: fruitiness (ripe or green), fruit sensations, herbal sensations, as well as the
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sweetness, bitterness, and pungency sensations. Moreover, the harmony, complexity, and
persistence were also evaluated.

2.3. Chromatographic Profile of the Volatile Fraction of the Studied Olive Oils

Olive oil volatiles were assessed by headspace solid phase microextraction (HS-SPME)
and gas chromatography (GC-2010 Plus; Shimadzu) with a mass spectrometer (MS) detector
(GC/MS-QP2010 SE; Shimadzu) following the methodology described by Silva et al. [26].
Briefly, in a 50 mL glass vial, 3 g of olive oil were mixed with 5 µL of a 0.125 mg/mL
solution of 4-methyl-2-pentanol (Sigma-Aldrich, St. Louis, MO, USA), which was used
as the internal standard. To enhance the release of volatiles, the vial was heated at 40 ◦C
and agitated at 300 rpm for 5 min, which were then adsorbed for 30 min by a SPME
fiber (divinylbenzene/carbonex/polydimethylsiloxane 50/30 µm; Supelco, Bellefonte, PA,
USA). Afterwards, thermal desorption of the adsorbed volatiles was accomplished at
the injection port of the chromatograph (220 ◦C, 1 min), and the fiber was cleaned and
conditioned before the next assay. Peaks separation was performed in a TRB-5MS column
(30 m × 0.25 mm × 0.25 µm; Teknokroma, Spain), using helium (Praxair, Portugal) as the
mobile phase (30 cm/s, 24.4 mL/min) for the samples manually injected (splitless mode).
During each run, a temperature gradient was applied (40 ◦C for 1 min followed by an
increase of 2 ◦C/min to 220 ◦C during 30 min). The temperature of the ionization source
was set equal to 250 ◦C, with a related energy of 70 eV, and a current of 0.1 kV. All mass
spectra were acquired by electronic ionization in the range of 35–500 m/z. Compounds
were identified considering the mass spectra and the Kovat’s indices (NIST SRD-69 Library
from National Institute of Standards and Technology, Gaithersburg, MD, USA; and, the free
chemical structure/information databases of PubChem and ChemSpider). The area of each
peak was assessed by integration of the total ion chromatogram. The semi-quantitation
of the volatile compounds was based on the relative area of each peak, being transformed
into a mass equivalent using the known mass of the added internal standard. Each sample
was evaluated in triplicate.

2.4. E-Nose Analysis
2.4.1. Lab-Made Device

The characteristics of the lab-made E-nose have been previously described in the
literature [14,15,27]. Before analysis, the oil samples were heated at 28 ◦C; detection at
the sensor’s unit was performed in a controlled heated environment (35 ◦C). For cleaning
purposes, as well as to ensure the fast delivery of the vapor headspace of each sample to
the sensors’ chamber, a diaphragm vacuum air pump (model SC3502PM, from SKOOCOM,
Shenzhen, Guangdong, China) was used. For cleaning purposes (system and sensors),
atmospheric air was pumped at a constant flow until a stabilized baseline was observed
for all the E-nose sensors. Nine commercial MOS gas sensors were included in the device
(S1: TGS 2600 B00; S2: TGS 2602; S3: TGS 2610 C00; S4: TGS 2611 C00; S5: TGS 2610 D00;
S6: TGS 2611 E00; S7: TGS 2612; S8: TGS 826 A00; and S9: TGS 823 C12N). The adsorption
of the volatile compounds released by each olive oil into the surface of the TGS sensors led
to changes of the electrical properties; the electrical resistances (in ohms, Ω) were recorded
by an Agilent data acquisition unit (model 34970A) and monitored using Agilent BenchLink
Data Logger software.

2.4.2. Olive Oil Analysis and Signal Processing

As previously described [14,15], for the analysis, 0.5 mL of oil were placed in a glass
vial (25 mL) that was inserted in the sampling chamber (13 min at 28 ◦C). Simultaneously,
the E-nose device was cleaned using atmospheric air until a stable signal baseline was
recorded for all nine TGS sensors. Then, the gas headspace contained in the vial was
pumped into the detection chamber, where it interacted with the sensors for 2.5 min; the
electrical resistance was recorded every 4 s.



Sensors 2022, 22, 9651 5 of 14

The recorded electrical resistances by each of the nine TGS sensors were processed
using seven feature extraction methods [28]: the last response point (LP), the integral of the
response curve (INT), the maximum response point (MAX), the minimum response point
(MIN), the sum of the response curve (SUM), the mean of the response curve (MEAN), and
the standard deviation of the signal responses (SD).

2.5. Statistical Analysis

Statistical differences of oil composition/characteristics related to the two adjacent
geographical origins under study (Côa versus Douro) were evaluated using the t-Student
test without or with the Welch’s correction, depending on if equal or unequal variances
between groups could be assumed or not, respectively. This latter requirement was as-
sessed by applying the F-test to two sample variances. PCA was applied as an unsuper-
vised pattern recognition tool to infer the possible use of the physicochemical parameters
(67 olive oils × 7 parameters), sensory data (67 olive oils × 10 olfactory sensations or
67 olive oils × 15 gustatory sensations), volatiles profiles (67 olive oil × 8 volatiles chem-
ical classes), and E-nose olfactory fingerprints (for each of the seven feature extraction
technique: 67 olive oils × 9 signal responses) to differentiate between the studied olive
oils according to their geographical origin. LDA coupled with the simulated annealing
(SA) algorithm was applied to identify the most powerful non-redundant discrimination
E-nose sensors, based on the best correct classification performances (i.e., sensitivities and
specificities) obtained for the leave-one-out cross-validation (LOO-CV) procedure. Multiple
linear regression models (MLRM) were also established based on selected responses from
each dataset regarding the seven feature extraction techniques used, in order to estimate
the volatiles content of the most abundant chemical classes, as well as of the total volatiles
content. The quantitative performance was discussed based on the determination coeffi-
cients (R2) and on the root mean square errors (RMSE). Furthermore, the possible use of the
developed models as an alternative analytical procedure to the chromatographic standard
method, usually applied for volatile’s content determination, was further evaluated accord-
ing to the XPT 90-210 French standard [29]. The statistical analysis was performed using
the open-source packages of the R statistical program (RStudio version 2021.09.0; “Ghost
Orchid” Release (077589bc, 20 September 2021)), at a 5% significance level.

3. Results and Discussion
3.1. Quality Parametes, Oxidative Stability, Antioxidant Capacity, Sensory, and Volatiles Profiles
of Olive Oils from Côa and Douro Adjacent Geographical Regions

The 67 independent olive oils from the two geographically adjacent regions were
evaluated, considering the physicochemical quality parameters used for assessing the
quality grade category (i.e., FA, PV, K232 and K268). The OS, the TPC, and DPPH capacity
were determined for each olive oil. Table 1 shows the mean values of each parameter
concerning the olive oils studied for each region (Côa: 36 oils; and, Douro: 31 oils). As
can be inferred from the statistical analysis, with the exception of the FA, the other eval-
uated parameters were significantly influenced (p-value < 0.05) by the oils’ geographical
origin, even if the regions were adjacent. Olive oils from the Côa region showed higher
PV and extinction coefficient values compared to those from Douro, but they also showed
significantly greater OS, TPC, and DPPH activity (p-value < 0.05). It should be noted that,
independent of geographical origin, all olive oils fulfilled the legal thresholds established
by the European Community Regulation EEC/2568/91 of 11 July, and subsequent amend-
ments for the classification as Extra Virgin Olive Oil (EVOO) category (FA ≤ 0.8 % oleic acid,
PV ≤ 20 mEq O2 kg−1, K232 ≤ 2.5 and, K268 ≤ 0.22, respectively).
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Table 1. Mean value (±standard deviation) of free acidity (FA), peroxide value (PV), extinction
coefficients (K232 and K268), oxidative stability (OS), total phenols content (TPC), and antioxidant
activity (DPPH) of olive oils from Côa (36 independent oils) and Douro regions (31 independent oils).

Physicochemical, Stability and
Antioxidant Data

Olive Oil’s Geographical Origin p-Value *
Côa Valley Douro Velley

FA (goleic acid/100 g) 0.22 ± 0.07a 0.23 ± 0.04a 0.3085 #

PV (mEq O2/kg) 5.63 ± 2.09a 4.82 ± 1.41b 0.0046 #

K232 1.97 ± 0.29a 1.82 ± 0.27b 0.0024 $

K268 0.15 ± 0.03a 0.13 ± 0.02b <0.0001 #

OS (h) 17.5 ± 7.4a 13.9 ± 6.4b 0.0017 $

TPC (mg GAE/kg) 505 ± 188a 274 ± 77b <0.0001 #

DPPH (%) 53.2 ± 17.2a 13.9 ± 6.4b <0.0001 #

* Different lowercase letters correspond to statistically significant differences at a significance level of 5%.
# p-value: t-Student with the Welch’s correction for unequal variances according to the F-test for sample variance
(p-value < 0.05). $ p-value: t-Student test when equal variances could be assumed according to the F-test for
sample variance (p-value > 0.05).

The influence of the geographical origin on the sensory profiles of the olive oils was
also studied. Table 2 reports the mean intensities of the olfactory and gustatory sensations
perceived by the trained panelists, as well as, for each region, the percentage of the oils for
which each specific sensation was detected (intensity > 0). The results pointed out that the
geographical origin greatly affects the intensities of the olfactory-gustatory sensations of
the studied oils (p-value < 0.05). Oils from Côa Valley could be classified as fruity-greenly
oils, and, on the other hand, those from Douro Valley could be classified as fruity-ripely
oils. In total, ten olfactory sensations could be perceived in the evaluated oils, although
only six and four of them could be detected in the majority of the olive oils from the Côa
or Douro Valleys, respectively. Similarly, fifteen gustatory sensations were perceived in
the studied oils, although only eleven and eight of them were detected in more than half
of the olive oils from the Côa or Douro Valleys, respectively. Furthermore, on average,
oils from Côa Valley were more bitter and pungent, and those from Douro were sweeter.
Overall, two main findings emerged: (i) compared to oils from both regions, in the oils
from Côa Valley, the perceived olfactory and gustatory sensations were more intense (with
the exception of sweet); and, (ii) in general, the percentage of oils from Côa Valley with a
perceived specific olfactory or gustatory sensation was higher, pointing out that oils from
Côa Valley were richer in different sensory sensations. It should be noted that several
of the sensory sensations perceived (e.g., apple, banana, cabbage, dry fruits, tomato, dry
herbs, fresh herbs, olive leaves, and tomato leaves) were also previously reported for olive
oils produced in the Côa Valley [25] or Douro Valley [26], although at different perceived
intensities, which could be tentatively attributed to the effect of different climatic conditions
coupled with probable different oil extraction conditions.

Table 2. Intensities (in an unstructured scale from not perceived (0) to maximum intensity (10)) of
olfactory, gustatory, and global sensations (mean ± standard deviation; percentage of oils with the
perceived sensation) of olive oils from the Côa (36 oils) and Douro (31 oils) Valleys.

Sensory Attributes

Olive Oil Geographical Origin

p-Value *Côa
Valley

Oils with
Perceived Sensation Douro Valley Oils with

Perceived Sensation

Olfactory sensations

Fruity Greenly 3.4 ± 1.9a 81% 1.1 ± 1.8b 33% <0.0001 $

Ripely 0.9 ± 2.0b 19% 2.9 ± 2.4a 67% <0.0001 $

Fruit sensations

Apple 4.5 ± 0.6a 100% 3.9 ± 1.7b 93% 0.0034 $

Banana 2.0 ± 2.4a 44% 1.9 ± 2.7a 38% 0.7603 $

Cabbage 2.5 ± 2.4a 57% 1.2 ± 2.2b 27% 0.0007 $

Dry fruits 3.4 ± 0.7a 100% 2.9 ± 1.2b 95% 0.0032 $

Tomato 4.5 ± 2.0a 89% 2.5 ± 2.4b 63% <0.0001 $
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Table 2. Cont.

Sensory Attributes

Olive Oil Geographical Origin

p-Value *Côa
Valley

Oils with
Perceived Sensation Douro Valley Oils with

Perceived Sensation

Herbaceous sensations
Dry herbs 0.9 ± 1.9b 19% 1.5 ± 2.0a 42% 0.0440 $

Fresh herbs 3.3 ± 1.9a 79% 1.2 ± 1.8b 33% <0.0001 $

Tomato leaves 1.7 ± 2.2a 42% 1.2 ± 1.9a 30% 0.1540 $

Harmony 8.0 ± 0.5a —- 7.8 ± 0.9b —- 0.0079 $

Gustatory sensations

Fruity Greenly 1.0 ± 2.2b 19% 2.8 ± 2.6a 58% <0.0001 #

Ripely 4.0 ± 2.3a 81% 1.6 ± 2.1b 42% <0.0001 $

Basic taste
Bitter 3.7 ± 1.3a 100% 2.3 ± 1.0b 100% <0.0001 #

Sweet 3.4 ± 3.2b 100% 4.6 ± 2.0a 100% 0.0060 #

Kinesthetic sensation Pungent 4.4 ± 1.2a 100% 3.2 ± 1.0b 100% <0.0001 $

Fruit sensations

Apple 4.6 ± 0.8a 100% 4.2 ± 1.7b 93% 0.0462 #

Banana 2.8 ± 2.7a 56% 2.9 ± 2.8a 60% 0.7369 $

Cabbage 3.5 ± 2.7a 68% 1.1 ± 2.2b 24% 0.0429 #

Dry fruits 4.3 ± 3.6a 99% 3.2 ± 1.1 97% 0.0097 #

Plum 0.7 ± 1.6a 18% 0.3 ± 1.1b 7% 0.0370 #

Tomato 4.5 ± 1.9a 92% 2.5 ± 2.4b 56% <0.0001 #

Herbaceous sensations

Dry herbs 0.8 ± 1.9a 18% 1.4 ± 2.1a 34% 0.1291 $

Fresh herbs 3.1 ± 2.1a 75% 1.4 ± 2.0b 36% <0.0001 $

Olive leaves 1.1 ± 2.0a 24% 0.1 ± 0.7b 3% 0.0001 #

Tomato leaves 2.4 ± 2.3a 56% 1.0 ± 1.7b 25% <0.0001 #

Harmony 7.6 ± 0.5a —- 7.7 ± 0.9a —- 0.9235 $

Global sensations

Complexity 6.6 ± 0.8a —- 6.5 ± 1.0a —- 0.7432 #

Persistence 7.5 ± 0.8a —- 7.2 ± 1.1 —- 0.0108 #

* Different lowercase letters correspond to statistically significant differences at a significance level of 5%.
# p-value: t-Student with the Welch’s correction for unequal variances according to the F-test for sample variance
(p-value < 0.05). $ p-value: t-Student test when equal variances could be assumed according to the F-test for
sample variance (p-value > 0.05).

Finally, the profiles of the volatile compounds, of the studied olive oils, were chromato-
graphically established by HS-SPME-GC-MS. Globally, sixty-three volatiles were detected
belonging to eight chemical families (i.e., fourteen alcohols, ten aldehydes, six alkanes,
seven alkenes, four esters, one ether, six ketones, and fifteen terpenes). Previous studies on
olive oils also produced in the Douro region detected eleven volatiles [30] and sixty-two
volatiles [26], of the same chemical classes. However, it should be highlighted that in the
present study, twenty-nine of the sixty-three identified volatiles were only detected in a low
number of olive oils (i.e., in less of ten oils of the sixty-seven independent oils evaluated).
Thus, due to this variability, which concerns the present study, it was decided to use the
information gathered for each chemical class rather than the data for the individual volatile
compounds. Table 3 lists the mean contents (in mg of each compound as internal standard
equivalents per kg of olive oil) for each of the eight chemical classes of volatiles identified
in the olive oils from each of the two regions under study. As can be seen from the results,
the geographical origin significantly influenced the contents of the oils’ volatiles classes,
as well as the total contents of volatiles (p-value < 0.05). Indeed, compared to oils from
the Côa Valley, those from Douro were significantly richer in alcohols, aldehydes, alkanes,
alkenes, esters, ethers, and ketones; although similar contents were found for terpenes.
Moreover, for oils from both regions, aldehydes were the most abundant chemical class,
representing 64–66% of the total content of volatiles, followed by alcohols (8–13%), alkanes
(7–8%), and terpenes (4–10%) (Figure 2). It should be noted that although the two most
abundant chemical classes were the same as those previously reported for olive oils from
the Douro Valley (cvs. Carrasquinha, Cobrançosa, Cordovil, Galega, Madural, Negrinha,
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and/or Verdeal), the relative abundances found were quite different [26,30]. The different
crop years (i.e., different climatic conditions), the different maturation indices of olives
at harvest, the different olive cultivars, and respective extracted monovarietal olive oil
or blends, as well as the oils’ extraction conditions, may justify the observed differences.
Indeed, according to Garcia et al. [30], the volatiles content of olive oils from the Douro Val-
ley were significantly influenced by the olive cultivar, as well as by the olives’ maturation
indices at harvest. Other studies reported quite broad ranges for the relative abundances of
these two VOCs’ chemical classes, namely for cv. Chaaibi olive oils produced in different
Tunisian regions (0–77% and 6–86% for alcohols and aldehydes, respectively) [5] or for
Italian monovarietal olive oils or blends from different cultivars (cvs. Moraiolo, Frantoio,
Leccino, Borgiona, Dolce Agogia, San Felice, Raio, and/or Limona) (~5–30% and ~30–70%
for alcohols and aldehydes, respectively) [31].

Table 3. Mean content (±standard deviation; mg of compound as internal standard equivalents
per kg of olive oil) of the chemical classes of volatile compounds detected by gas chromatography
(HS-SPME-GC-MS) in olive oils from the two adjacent regions (Côa: 36 oils; and, Douro: 31 oils).

Chemical Family of
Volatile Compounds §

Olive Oil’s Geographical Origin (mg/kg)
p-Value *

Côa Valley Douro Valley

Alcohols 1.2 ± 3.4b 5.1 ± 4.9a 0.0003 #

Aldehydes 9.8 ± 9.9b 27.7 ± 18.0a <0.0001 #

Alkanes 1.1 ± 0.7b 2.9 ± 1.7a <0.0001 #

Alkenes 0.4 ± 0.4b 2.2 ± 0.9a <0.0001 #

Esters 0.2 ± 0.2b 0.6 ± 0.7a 0.0002 #

Ethers 0.2 ± 0.3b 1.1 ± 0.6a <0.0001 #

Ketones 0.2 ± 0.2b 0.7 ± 0.7a 0.0004 #

Terpenes 1.4 ± 0.8a 1.4 ± 0.9a 0.9730 $

Total 14.5 ± 11.6b 41.6 ± 19.8a <0.0001 #

§ Peaks identification compounds were identified by comparing the mass spectra fragmentation pattern with
the mass spectra database from NIST Standard Reference Database 69, PubChem Compound Summary, and
ChemSpider database. Fit and retrofit values were greater than 80%. * Different lowercase letters correspond to
statistically significant differences at a significance level of 5%. # p-value: t-Student with the Welch’s correction
for unequal variances according to the F-test for sample variance (p-value < 0.05). $ p-value: t-Student test when
equal variances could be assumed according to the F-test for sample variance (p-value > 0.05).
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The influence of geographical origin on each set of olive oil parameters was further
checked by PCA. Figure 3 shows the 3D plots regarding the unsupervised differentiation of
the 67 olive oils according to their geographical origin (Côa Valley versus Douro Valley).
As can be seen, although significant differences were found for each set of data (Tables 1–3),
quality parameters, together with stability data and antioxidant related data, in which
three first PCs explained 82.5% of the data variability (Figure 3A), and the chromatographic
profiles regarding the eight chemical families considered (Figure 3B), in which three first
PCs explained 83.9% of the data variability, allowed the best differentiations of oils from
Côa Valley (green spheres) from those of Douro Valley (blue cubes). A lower level of
differentiation was achieved when using the perceived intensities of olfactory (Figure 3C)
or gustatory (Figure 3D) sensations, although the oils showed unequivocally significant
sensory differences (Table 2).
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Figure 3. Unsupervised pattern recognition of olive oils by geographical origin (Côa Valley: •, and,
Douro Valley: �) based on the principal component analysis (3D plot of the three first PCs) based on:
(A) physicochemical quality data (FA, PV, K232 and K268), oxidative stability (OS), and antioxidant
reducing capacity (TPC and DPPH); (B) contents of the volatiles belonging to eight chemical families
(alcohols, aldehydes, alkanes, alkenes, esters, ethers, ketones, and terpenes); (C) intensities of the
perceived olfactory sensations (fruity greenly or ripely, apple, banana, cabbage, dry fruits, tomato,
dry herbs, fresh herbs, and tomato leaves); and (D) intensities of the perceived gustatory sensations
(fruity greenly or ripely, bitter, sweet, pungent, apple, banana, cabbage, dry fruits, plum, tomato, dry
herbs, fresh herbs, olive leaves, and tomato leaves).

3.2. Identification of Olive Oil Geographical Origin and Assessment of the Alcohls, Aldehydes, and
Total Volatiles Content of Oils from Côa and Douro Adjacent Regions

As previously discussed, the olive oil contents of the eight chemical classes of volatiles,
and, to a less extent, the oils’ olfactory profiles, allowed for the unsupervised recognition
of the oils’ geographical origin. However, gathering these data is expensive and time-



Sensors 2022, 22, 9651 10 of 14

consuming. Thus, an analytical approach based on the use of a self-built E-nose prototype,
comprising MOS sensors, was evaluated as a non-invasive, green, cost-effective, and
alternative classification tool. In fact, the variability of the volatiles emitted by each
independent olive oil, in number and amount according to the region of origin (Table 3),
may lead to different resistance responses by the MOS sensors of the E-nose, enhancing the
application of this device for olive oil geographical origin recognition. The data gathered
after applying the seven feature extraction techniques (LP, INT, MAX, MIN, SUM, MEAN,
and SD) to the recorded curve of the electrical resistances with time, by each of the nine MOS
sensors, were evaluated to establish unsupervised pattern recognition models. The seven
data subsets, based on the feature extraction data, allowed a satisfactory unsupervised
differentiation of the olive oils by geographical origin; the better split was achieved by the
MEAN feature extraction approach (Figure 4). The first three PCs, which explained 97% of
the data variability, allowed successful geographical origin identification.
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To further evaluate the olive oil origin recognition potential of the E-nose, a LDA-SA
analysis was performed. The analysis established a multivariate supervised classification
model, with a single discriminant function, based on the mean resistance signals acquired
by four MOS sensors (S3_MEAN, S4_MEAN, S6_MEAN, and S7_MEAN). The model suc-
cessfully predicted the geographical origin of 66 of the 67 oils studied, which corresponded
to an overall sensitivity of 98.5% and an overall specificity of 98.4% (one olive oil from Côa
Valley was misclassified as belonging to the Douro Valley).

Lastly, since the resistance signals recorded by each MOS sensors would result from
the interaction between the sensors’ membranes and the volatiles emitted by the different
olive oils, the possibility of applying the E-nose to estimate the oils’ contents of alcohols and
aldehydes (the two most abundant classes according to Table 3) was also studied, as well
as the total content of volatiles (alcohols + aldehydes + alkanes + alkenes + ethers + esters
+ ketones + terpenes), released by the oils from each geographical region. Table 4 reports,
for each region considered, the details regarding the MLRM established for estimating each
parameter, including the number of feature extracted variables included in each model, the
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determination coefficients, and the root mean square errors. The results clearly showed that
the MLRMs developed based on the information gathered by the E-nose-MOS device could
be a promising strategy to accurately estimate the contents of the two main volatile chemical
classes (alcohols and aldehydes) found in the studied olive oils, as well as of the total contents
of the detected volatiles (0.981 ≤ R2 ≤ 0.998 and 0.40 ≤ RMSE ≤ 2.79 mg/kg oil).

Table 4. Quantification of the contents of aldehydes and alcohols emitted by olive oils originated
from Côa Valley (36 oils) or Douro Valley (31 oils), and of the respective total volatiles content
(alcohols + aldehydes + alkanes + alkenes + esters + ethers + ketones + terpenes): predictive perfor-
mance of the MLRMs developed based on sub-sets of feature extracted variables from the electrical
resistance signal curves acquired by the nine-MOS sensors comprised on the lab-made E-nose, which
were selected using the SA algorithm.

Geographical
Origin

Volatiles
Chemical Class

Concentration Range
(mg/kg oil) a

Nº of
Feature Extracted

Variables b

E-Nose-MOS-SA Models (LOO-CV c)

Determination
Coefficient (R2)

Root Mean
Square Errors

(RMSE, mg/kg Oil)

Côa Valley
Alcohols [0.17, 19.1] 20 d 0.986 0.40

Aldehydes [0.41, 64.4] 25 e 0.982 1.34
Total [6.24, 78.8] 25 f 0.990 1.19

Douro Valley
Alcohols [1.11, 22.1] 21 g 0.998 0.23

Aldehydes [10.9, 83.9] 20 h 0.984 2.29
Total [20.2, 104.9] 19 i 0.981 2.79

a Experimental contents (in mg of compound expresses as internal standard equivalents/kg of oil) determined by
HS-SPME-GC-MS, b Number of feature extracted variables included in the MLRMs, c LOO-CV: leave-one-out cross-
validation quality data (internal validation procedure) for the established MLRMs, d Feature extracted variables
included in the MLRM: S2_LP, S8_LP, S1_INT, S3_INT, S7_INT, S5_MAX, S8_MAX, S9_MAX, S1_MIN, S5_MIN,
S2_SUM, S8_SUM, S9_SUM, S2_MEAN, S3_MEAN, S4_MEAN, S5_MEAN, S5_SD, S6_SD, S9_SD, e Feature
extracted variables included in the MLRM: S2_LP, S1_INT, S3_INT, S5_INT, S7_INT, S8_INT, S9_INT, S3_MAX,
S4_MAX, S6_MAX, S9_MAX, S1_MIN, S2_MIN, S4_MIN S1_SUM, S4_SUM, S1_MEAN S2_MEAN, S4_MEAN,
S5_MEAN, S6_MEAN, S8_MEAN, S6_SD, S8_SD, S9_SD, f Feature extracted variables included in the MLRM:
S3_LP, S4_LP, S6_LP, S8_LP, S9_LP, S1_INT, S3_INT, S6_INT, S8_INT, S2_MAX, S3_MAX, S4_MAX, S6_MAX,
S9_MAX, S2_MIN, S8_MIN, S2_SUM, S6_SUM, S7_SUM, S1_MEAN, S2_MEAN, S4_MEAN, S6_MEAN, S5_SD,
S6_SD, g Feature extracted variables included in the MLRM: S1_LP, S4_LP, S5_LP, S6_LP, S7_LP, S4_INT, S5_INT,
S6_INT, S7_INT, S2_MAX, S4_MAX, S5_MAX, S6_MAX, S7_MAX, S9_MAX, S1_MIN, S2_MIN, S4_MIN, S7_MIN,
S8_MIN, S9_MIN, S2_SUM, S3_SUM, S6_SUM, S5_MEAN, S7_MEAN, S6_SD, S7_SD, S8_SD, h Feature extracted
variables included in the MLRM: S2_LP, S8_LP, S9_LP, S2_INT, S6_INT, S7_INT, S7_MAX, S8_MAX, S3_MIN,
S4_MIN, S5_MIN, S7_MIN, S9_MIN, S5_SUM, S9_SUM, S7_MEAN, S6_SD, S7_SD, S8_SD, S9_SD, i Feature
extracted variables included in the MLRM: S5_LP, S7_LP, S3_INT, S6_INT, S7_INT, S8_INT, S4_MAX, S6_MAX,
S8_MAX, S4_MIN, S3_SUM, S4_SUM, S8_SUM, S1_MEAN, S4_MEAN, S6_MEAN, S7_MEAN, S9_MEAN, S8_SD.

As a final point, the application of the developed MLRMs, based on the feature
extracted variables from the E-nose-MOS signal profiles, as a complementary or possible
alternative technique for estimating the contents of the two volatile chemical classes and
of the total content of detected volatiles in the olive oils from the Côa or Douro Valleys,
was further assessed according to the XPT 90-210 French standard [29]. Therefore, for
each geographical region, single linear regressions were established (Figure 5) between the
volatiles content predicted by the MLRMs (Table 4) and the experimental data determined
by HS-SPME-GC-MS. The quality of the fitting was examined by evaluating if the slope and
intercept values were statistically equal to the theoretical values, one and zero, respectively
(i.e., perfect linear fit). The results demonstrate that, at a 5% significance level, the slope
and intercept values for all the developed single linear regression models were statistically
equal to the expected theoretical values (the confidence intervals for the slopes included
the value one, and those for the intercepts included the zero value), confirming that the
E-nose-MOS could be used to accurately monitor the volatiles content of olive oils.
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the selected feature extracted variables from the electrical resistance signal curves acquired by the
nine-MOS sensors comprised on the lab-made E-nose, versus the experimental data determined by
the HS-SPME-GC-MS technique.

4. Conclusions

The Portuguese valleys of Côa and Douro are adjacent geographical regions, located
within an UNESCO heritage site, the “Côa Valley”. In this sense, it is of utmost commercial
relevance to be able to identify the geographical origin of high-value agri-food products
according to each of these two regions. The present study showed that an electronic
nose, comprising metal oxide semiconductors sensors, can be successfully applied as a non-
invasive, fast, green, and accurate technique for recognizing the geographical origin of olive
oils from the Côa or Douro Valleys. Furthermore, the lab-made device quantified the two
most abundant volatiles chemical classes; i.e., the contents of alcohols and aldehydes, as
well as the total volatiles content found in the studied olive oils. The satisfactory qualitative-
quantitative performance of the device could be related to the observed differences found
at the olfactory, as well as at the volatile, composition levels. It could be concluded that
the electronic nose could be accurately used as a complementary/alternative tool to the
standard techniques (e.g., chromatography). Indeed, the self-built sensor-based olfactory
device showed a better differentiation-discrimination power than that achieved with the
sensory profile established by trained panelists, and a similar qualitative-quantitative
performance compared to that achieved by gas chromatography.
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