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Abstract

Computer networks security is becoming an important and challenging topic. In particular, one
currently witnesses increasingly complex attacks which are also bound to become more and more
sophisticated with the advent of artificial intelligence technologies.

Intrusion detection systems are a crucial component in network security. However, the limited
number of publicly available network datasets and their poor traffic variety and attack diversity are a
major stumbling block in the proper development of these systems.

In order to overcome such difficulties and therefore maximise the detection of anomalies in the
network, it is proposed the use of Adversarial Deep Learning techniques to increase the amount and
variety of existing data and, simultaneously, to improve the learning ability of the classification models
used for anomaly detection.

This master’s dissertation main goal is the development of a system that proves capable of improv-
ing the detection of anomalies in the network through the use of Adversarial Deep Learning techniques,
in particular, Generative Adversarial Networks. With this in mind, firstly, a state-of-the-art analysis and
a review of existing solutions were addressed. Subsequently, efforts were made to build a modular so-
lution to learn from imbalanced datasets with applications not only in the field of anomaly detection in
the network, but also in all areas affected by imbalanced data problems. Finally, it was demonstrated

the feasibility of the developed system with its application to a network flow dataset.

Keywords: Network Security, Anomaly Detection, Deep Learning, Generative Adversarial Net-

works



Resumo

A seguranca das redes de computadores tem-se vindo a tornar num tdpico importante e desafiador.
Em particular, atualmente testemunham-se ataques cada vez mais complexos que, com o advento das
tecnologias de inteligéncia artificial, tendem a tornar-se cada vez mais sofisticados.

Sistemas de detecao de intrusao sdo uma peca chave na seguranca de redes de computadores. No
entanto, o numero limitado de dados publicos de fluxo de rede e a sua pobre diversidade e variedade
de ataques revelam-se num grande obstaculo para o correto desenvolvimento destes sistemas.

De forma a ultrapassar tais adversidades e consequentemente melhorar a detecao de anomalias
na rede, é proposto que sejam utilizadas técnicas de Adversarial Deep Learning para aumentar o
numero e variedade de dados existentes e, simultaneamente, melhorar a capacidade de aprendizagem
dos modelos de classificacao utilizados na detecao de anomalias.

O objetivo principal desta dissertacdo de mestrado é o desenvolvimento de um sistema que
se prove capaz de melhorar a detecao de anomalias na rede atraves de técnicas de Adversarial
Deep Learning, em particular, através do uso de Generative Adversarial Networks. Neste sentido,
primeiramente, procedeu-se a analise do estado de arte assim como a investigacao de solucoes exis-
tentes. Posteriormente, atuou-se de forma a desenvolver uma solucao modular com aplicacao nao so
na area de detecao de anomalias na rede, mas também em todas as areas afetadas pelo problema
de dados desbalanceados. Por fim, demonstrou-se a viabilidade do sistema desenvolvido com a sua

aplicacao a um conjunto de dados de fluxo de rede.

Palavras-chave: Seguranca das Redes de Computadores, Detecdo de Anomalias, Deep Learn-

ing, Generative Adversarial Networks
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Introduction

The art of war teaches us to rely not on the likelihood of the enemy’s not coming, but on
our own readiness to receive him; not on the chance of his not attacking, but rather on

the fact that we have made our position unassailable.

The Art of War, SunTzu [35]

This chapter introduces the essential topics of this master’s dissertation. It starts by presenting
the context and motivation that led to the development of this work, followed by the objectives to be

achieved. This chapter finalises with the presentation of the document structure.

1.1 Context and Motivation

We are living in the age of data and communication, where almost everything is connected by
technology. Personal, commercial, military, and government information flow through networking
infrastructures at every second, allowing to communicate and collaborate in an infinite number of
ways [51]. Data connectivity grants prosperity of information and knowledge, but sensitive information,
such as confidential files, requires extra security to avoid it falling into the wrong hands.

Today’s era is the most powerful on a technological level. However, one must keep in mind that
with great power must also come great responsibility. As the internet evolves, and computer networks
become more extensive and prominent, data security becomes one of the most important aspects
to consider in data communication [97]. Accordingly, network security must follow such evolution,
preserving the confidentiality, integrity, and availability of system resources and information.

"Security is a journey, not a destination” [31]. Network architectures are complex and face
ever-changing threatening environments [26]. Ciphers, that until a few years ago would take decades
to decipher, can now be broken in a few minutes using High-Performance Computing (HPC) [53].
Malicious agents are always trying to find and exploit vulnerabilities creating new attacks that are
bound to become more and more sophisticated with the advent of Artificial Intelligence technologies.
It is, therefore, necessary to fight back with the same weapons.

Intrusion Detection Systems (IDS) are essential for improving the overall security of computer

systems. Still, most techniques used in today’s IDS are unable to address the progressive and complex

1



1.2. Objectives

nature of attacks on computer networks [99]. Efficient adaptive methods, such as deep learning, can
improve the response to dynamic and sophisticated attacks. However, detecting network anomalies
using deep learning techniques requires large sets of data. Just as there is no knowledge without
information, there is no deep learning without data.

Unfortunately, network flow datasets are usually not publicly available and not shared with the
research community to comply with privacy concerns. Furthermore, datasets which contain realistic
user behaviour and up-to-date attack scenarios are very scarce [79] and, in most of the cases, suffer
from multi-class imbalanced data issues.

In such a context, this project aims to address the sparse availability of data by building a gener-
ative adversarial deep learning model responsible for producing large sets of network flow data while

improving the detection of anomalies and disguised attacks.

1.2 Objectives

Having in mind the previous context and motivation, the main purpose of this dissertation is to
develop algorithms and tools to allow the detection of network anomalies/attacks using adversarial

deep learning methods. To accomplish this goal, it is necessary to:

Review the state-of-the-art in computer networks attacks and anomaly detection based on traffic

flow, as well as in adversarial deep learning;

¢ Study existing datasets on anomaly detection and software libraries for deep adversarial learning

and their application for anomaly detection;

¢ Develop tools to enable training and validating deep learning models for the identification of

different anomalies from network flow data;

* Develop tools to enable the generation of new data for different network anomalies/attacks and

for all different fields that suffer from data imbalance problems;

¢ Develop a complete adversarial deep learning pipeline able to generate network anomaly detec-

tion classifiers and data to challenge these classifiers;

1.3 Document Structure

This dissertation is organised in six chapters. This first one, an introductory chapter that contex-

tualises and motivates on the subject in study, and five more chapters:



1.3. Document Structure

Chapter 2: Literature Review

This chapter describes theoretical and scientific concepts related to this dissertation, as well
as state-of-the-art technologies. A basic introduction of network security is provided, the funda-
mentals of deep learning are explained, and related works are reviewed.

Chapter 3: The Problem and Its Challenges

In this chapter, it is presented the problem in study and the proposed approach - solution.
Alongside this, the challenges that will be faced during the development of this project are
highlighted.

Chapter 4: Development

This chapter presents the system architecture and explains the details of its development. The
specific methods and tools behind the system implementation are also described.

Chapter 5: Results

In this chapter, the proposed system is tested using an imbalanced network flow dataset (CI-
CIDS2017). The obtained results are presented and discussed.

Chapter 6: Conclusion

This chapter provides the final review and conclusions of the overall work, along with the im-

provements that may be explored in the future.



Literature Review

This chapter describes the theoretical and scientific concepts related to this dissertation, as well
as the state-of-the-art technologies. Section 2.1 exposes the security concepts (2.1.1), the two general
categories of attacks (2.1.2) and two approaches for detecting intrusions (2.1.3). Section 2.2 presents
the history behind deep learning and its fundamental concepts, such as artificial neural networks
(2.2.1), artificial neurons (2.2.2), network architectures (2.2.3), gradient descent (2.2.4), and back-
propagation (2.2.5). In section 2.3, the adversarial deep learning concept is introduced as well as
some generative adversarial networks architectures are presented and explained. To conclude this
chapter, section 2.4 brings forward some work related to the use of generative adversarial networks in

the field of network anomaly detection.

2.1 Network Security

The safeguard of private information is a concern intrinsic to human beings. Confidential docu-
ments already existed long before the first computer, and physical means, such as safes, were used to
store sensitive information. The introduction of personal computers in the 1980s made indispensable
the use of tools for protecting files and other private information stored on computers [86]. However,
it was only with the arrival of distributed systems, and with the use of networks and communications
infrastructures for carrying data between devices, that network security arose to protect data during
transmission [90].

Several incidents marked the history of network security. One of the most recent ones, in February
of 2018, was the Distributed Denial of Service (DDoS) attack to GitHub, an online code management
service used by millions of developers [18]. This attack was the most significant distributed denial of
service attack recorded to date, with incoming traffic rates of 1.35 terabytes per second. The goal of
such attack is to exhaust the target resources, preventing legitimate users from having access [29].

Over the years, the number of security incidents has been increasing. As shown in the figure
2.1, 2018 came in as the second most active year (missing 2017’s high mark by only 3.2%), with
6515 publicly disclosed breaches reported and approximately 5 billion records exposed. The exposed
records came from the business (66.2%), governmental (13.9% ), medical (13.4%) and education

(6.5%) sectors [85].
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Figure 2.1: Data breach chart report - Number of security incidents between 2014 and 2018. Source: [85].

2.1.1 Security Concepts

The field of network security is in constant growth and adjustment due to the evolutionary stage
of technology [51]. Although the network security field is vast, at the heart of any security concern

resides three key objectives:

e Confidentiality

The motivation of confidentiality is the preservation of data privacy. It assures that private or

classified information is not made available or disclosed to unauthorised users.

Data encryption is a standard method of preserving confidentiality. Still, attacks of confidential-
ity continue in an attempt to obtain private information like a user’s credentials and credit card

information [51, 90].

e [ntegrity

Integrity refers to the ability to ensure that data is accurate and reliable. Data must be an
unchanged representation of the original source information, preserving the content and source
of the data [51]. Unauthorised modification or destruction of information are some of the silent
attacks that compromise the integrity of the data. These attacks can occur when some data
is intercepted during transmission, altered or changed, and sent to the intended receiver. The
receiver thinks that the received content is as it is supposed to be, but instead, it is corrupted

[31].
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e Availability

Availability grants access to information to authorised users. This property ensures that the

information is accessible and usable upon demand for every authorised entity [31].

The biggest threat to availability is Denial of Service (DoS) attacks that attempt to prevent legit-

imate users from using a service or delaying time-critical operations.

Availability may be the most critical aspect of network security for commercial organisations.
According to the security company Cloudflare, the average cost of a successful distributed DoS
attack is about $100,000 for every hour the attack lasts. Besides, the dominant impact of a

DoS attack on organisations is the loss of reputation, which results in a loss of customers [19].

In summary, confidentiality is a set of rules that limits access to information, integrity is the as-
surance that the information is trustworthy and accurate, and availability is a guarantee of reliable
access to the information by authorised people. This triad constitutes the most crucial components of

a security model.

2.1.2 Security Attacks

Attacks on computer networks date back to the beginning of more extensive use of network infras-
tructures. An attack is the usage of a technique to exploit a vulnerability and, consequently, break the

security concepts [86]. There are two general categories of attacks:

e Passive

A passive attack attempts to learn or make use of information residing in a network without
involving any data alteration or modification on the network operational conditions [90]. Passive
attacks include traffic analysis, collection of confidential information, such as authentication
credential, and release of message contents. This kind of attack is challenging to detect because

the attacker is merely a silent observer [51, 86].

Although the intent of a passive attack is not to sabotage user’s access to the physical infras-
tructure, this attack can be utilised to gather information which can later be employed in much

more harmful active attacks [86].

e Active

An active attack attempts to modify data or affect system resources operations. Active attacks

result in a change of entities (when one entity pretends to be a different one - masquerade),
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replay or modification of data, and DoS [90]. The most common active attack is the DoS.
According to the report Cyber Attack Trends Analysis [77], 49% of organisations experienced
a distributed DoS attack in 2018.

Active attacks are much more devastating to a network than the passive ones, even considering
that the former are more detectable as they often affect the target in ways that raise awareness

of such an attack [51, 90].

The two categories of attacks differ in several aspects, nonetheless, both are very harmful. The first,
passive attack, can acquire all confidential information of a person, expose it and it could even apply
an active attack to make use of it (e.g. using credit card credentials). The second, active attack, can
destroy critical registers and even stop commercial websites, causing problems for users by preventing
them from having access to a service. On the other hand, the organisation which provides the service

is penalised with monetary losses.

2.1.3 Intrusion Detection

As already mentioned, the number of attacks, whether active or passive, has been increasing
in recent years. Every year new types of attacks are generated which pose increasing difficulties.
However, even if the prevention of attacks is challenging, detection could be easier. Detecting when
an attack is underway or has taken place can be achieved using intrusion detection techniques [31].

Intrusion detection is the process of identifying potential incidents by dynamically monitoring events
that occur on a computer system or network [80, 99]. Intrusion Detection Systems (IDS) emerge from
the concept of intrusion detection. An IDS is a software application or device that monitors a network
of computers by analysing data gathered by a set of sensors. Through the analysis of such data, an
IDS can detect malicious activities where some examples are information theft and network protocol
corruption [31, 99]. There are two approaches for detecting intrusions, namely, misuse detection and

anomaly detection:

e Misuse detection

Misuse detection refers to known attacks that exploit the known vulnerabilities of the system.
IDS are very efficient in detecting attacks already established and consolidated in detection
system databases. However, such efficiency implies to regularly update databases with the

latest attacks. The database of known vulnerabilities and exploit methods can become large and
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difficult to handle, slowing the IDS. Furthermore, misuse detection is ineffective in anticipating

and detecting new attacks since it only detects the ones already known [31, 82].

e Anomaly detection

Anomaly detection refers to the observation of unusual activity and the use of statistical tech-
niques to detect potential intrusions. The IDS does not need to know the security vulnerabilities
of a particular system as a misuse detection system does. Anomaly detection is based on the
assumption that an attacker’s behaviour differs from a legitimate user’s behaviour in ways that
can be quantified. To that, the "normal” user behaviour is established as a baseline that defines
normality. If the statistical analysis of the data monitored exceeds a threshold of the baseline,
an intrusion is detected. However, the exact distinction between an intruder and a regular user
can sometimes overlap. If a legitimate user exhibits an unusual behaviour, he may be consid-
ered as an intruder leading to a false alarm. On the other hand, when the baseline is adjusted
dynamically and automatically, a particular attacker may gradually shift the defined "normal”
user behaviour until his planned attack no longer deviates from the baseline. Consequently, no

alarm is generated upon an attack [31, 90].

Intrusion detection technologies are essential for improving the overall security of computer sys-
tems. Most techniques used in today’s IDS, like firewalls, access control mechanisms, and encryption,
are unable to address the progressive and complex nature of attacks on computer networks, making
impossible the total protection of networks and systems [99].

Efficient adaptive methods, such as machine learning techniques, can improve the response to
dynamic and sophisticated attacks. As a result, higher detection and lower false alarm rates can be

accomplished and within an adequate window of computing and communication time [99].

2.2 Deep Learning

By means of Artificial Intelligence (Al), computer science has made progress in building intelligent
machines characterised as displaying human behaviours [8, 33]. Over the years, Al has been evolving
into new fields such as machine learning and deep learning and, by them, the existence of autonomous
driving cars [24], voice and face recognition machines, and digital assistants such as Google Now [33]

have become possible.
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Artificial Machine Deep

Intelligence Learning Learning

Figure 2.2: Artificial intelligence sub fields.

Artificial Intelligence, Machine Learning (ML) and Deep Learning (DL) are terms that have been

used a lot these days, however, there is still some lack of knowledge about their differences:
e Artificial Intelligence

Artificial intelligence was born from the wish to automate intellectual tasks usually only per-
formed by humans. As such, Al is a general field of computer sciences that covers machine
learning and deep learning, and many other approaches that don't involve any learning, as
shown in figure 2.2. Al deals with intelligent agents, who have included into their programming
a large set of explicit rules for manipulating knowledge. The agents are configured to perceive
their environment and act autonomously, seeking to maximise the chance of achieving a certain

goal, always following the established rules — e.g., chatbots [9, 17].

Al solves problems intellectually difficult for humans, but relatively straightforward for comput-
ers. The true challenge in artificial intelligence is to solve tasks that are easy for people to
perform but hard for people to describe formally, that is, tasks that are performed intuitively -

e.g., speech or images recognition [33].

e Machine Learning

Machine Learning began to gain popularity in the 1990s due to faster hardware availability and
larger datasets. It describes computer programs that learn to solve tasks by learning from data
rather than being explicitly programmed. Thus, a machine learning system is presented with
many examples relevant to a task, and by them it finds a statistical structure that becomes rules

for automating the task - e.g., spam filters [4, 17].

The learning process can be supervised (the system generates rules based on a known and
labelled dataset) or unsupervised (the system generates rules on unknown and unidentified
data). Supervised learning is commonly used for classification and prediction and unsupervised

learning to find patterns in datasets [96].
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e Deep Learning

Despite being a fairly old machine learning sub field, deep learning only gained prominence in
early 2010s [17]. Its popularity emerged for two main reasons: it was discovered that some
computational deep learning techniques, like Convolutional Neural Network (CNN), run much
faster on GPUs and that the increasing amount of available training data can be used to improve

the accuracy of computer vision algorithms [9, 96].

Deep Learning is a new approach to learning representations from data. It splits the data into a
hierarchy of concepts, where each concept is defined by its relation to simpler ones. This allows
to build complex concepts from simpler concepts [17, 33]. A deep learning model learns the
features that are important to a task by itself, without any manual selection of pertinent features
as it happens in machine learning models [5, 17]. The central problem in machine learning and

deep learning is to meaningfully transform data — that is, to learn useful representations of input

data [17].
Output
T
Mapping from
Output Features
1 1
. Layers of
Output Mappingifiom Abstract
Features
Features
t t t
Explicit Rules Explicit Features Simple Features
i i i
Input Input Input

Artificial Intelligence
Rule-based System

Machine Learning

Deep Learning

Figure 2.3: Flowcharts of the different three fields (Al, ML, and DL) described before. Gray boxes indicate com-

ponents that are able to learn from data during training [9, 33].

Over time, scientists have been trying to bring computers closer to human complexity. Despite
computers having a higher logical capacity than humans, such as being able to perform complex
mathematical operations or store large amounts of data, humans overcome them on rather intuitive

or cognitive tasks like natural language or perception [9].

10
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The field of artificial intelligence aims to be a bridge between humans and computers, bringing
genuine intelligence to machines and programs [9]. To date, this bridge has been able to give comput-
ers human capabilities such as case-based reasoning, image classification, and speech recognition at
the near-human level. This has been accomplished through the field of artificial intelligence and its sub
fields, in particular machine learning and deep learning that focus on transferring human perception

capabilities to machines [17]. A summary of how these fields operate is shown in figure 2.3.

2.2.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) are computer models inspired on how the human brain pro-
cesses information. Thus, ANNs are adaptive systems with an interconnected structure of multiple
computational units, neurons, acquiring knowledge through experience [39]. These systems resem-

ble the behaviour of a brain in two respects:

1. Knowledge is acquired from an environment through a learning process [39];

2. Acquired knowledge is stored in connections, links or synapses, between nodes [39].

The behaviour of an ANN comes from interactions between neurons. While acquiring information
through experience and observation is the most traditional way to construct ANNs, a neural network
can still modify its own topology, similar to what goes on in the brain when neurons die and new

synaptic connections grow [39].

2.2.2 Artificial Neurons

The artificial neuron or node, the information processing unit, is the elementary component of
ANNs. It implements a mathematical function, that processes multiple input signals and provide only

one output signal [9]. From figure 2.4 three basic elements of an artificial neuron can be identified.

e Aset of input connections, each one characterised by its own weight [39, 61].

* An adder that reduces the input signals and respective weights to a single value, representing
a linear combination. This adder also receives a bias, a constant, that helps the model better fit
the given data, becoming more flexible [39]. For the training phase, the bias is associated with
a trainable weight that can be modified as any other weight. Thus, since the bias is a constant

value B, the bias representation in the training phase is then given by b, = wy,;B [20].

11
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e An activation function, that the neuron applies to the result of the input sum, limiting the

amplitude range of the output signal [39, 61].

Bias
- by
X1 Activation
function
Xz PO
I.nput | Output
signals
xm
Synaptic
weights

Figure 2.4: Model of a neuron k.

To describe an artificial neuron (k) in a mathematical form, the following equations should be

used:

m
U = ) XjWy; + by (1)
i=1

Yk = ¢(vg) (2)

where x1, X5, ..., X,,, are the input signals; w1, wy,, Wy, are the synaptic weights; by is the bias;
@ () is the activation function and vy is the output signal.

Some of the most commonly used activation functions are for solving non-linear problems, trans-
forming the linear result of equation 1 into a non-linear output [20, 44]. The expected output deter-
mines the type of activation function to be deployed in a given network [67]. As there are different
types of deep learning architectures, there are different types of activation functions, each one targeted
to different domains (object classification, segmentation, machine translation, cancer detection, and

other adaptive systems) [67]. Below are presented some of the most popular activation functions.

e Sigmoid Function

A sigmoid function is a limited differentiable real function, which maps to the range of values
to [0,1], defined for all real input values [37, 50]. This function has been successfully used in

binary classification problems and modeling logistic regression tasks, being applied mostly in
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shallow networks [67]. The graph of the sigmoid function is represented in figure 2.5 and its

mathematical form is given as follows:

1
f(x):(ue—x) G)

Figure 2.5: Sigmoid function graph.

e Hyperbolic Tangent Function (Tanh)

The shape of the hyperbolic tangent function is similar to the S-shaped sigmoid function [20].
Tanh is a zero-centred function with its range outputs between -1 and 1, used mostly in recurrent
neural networks. This function is better than sigmoid for multi-layer neural networks since
it shows higher training performance [67]. The graph of the hyperbolic tangent function is

represented in figure 2.6 and its mathematical form is given as follows:

flx) = (i) (4)

eX+e™*

Figure 2.6: Hyperbolic tangent function graph.

o Softmax Function

The softmax function computes a probability distribution from a vector of real numbers, turning
the input numbers into probabilities that sum to one. Since its output is a vector that represents

the probability distributions its range of values is between 0 and 1. This function is used mostly

13
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in output layers of deep learning multi-class models where it returns the vector of probabilities
of each class, being the target class the one with the highest probability [67]. The softmax

function is given as follows:

Xi
f (x;) = W (5)
J
e Rectified Linear Unit Function (RelU)
The rectified linear unit function is currently the most successful and widely-used activation

function [75]. It is a simple measure that returns the input value directly (like a linear function),

or O if the input value is less than 0 [2]. The ReLU mathematical form is given as follows:

f(x) =max(0,x) = ¥, 220 (6)
0, ifx<O

When comparing all four activation functions, ReLU is the one that offers more advantages. The
most prominent one is its computational simplicity. Unlike the sigmoid, Tanh, and softmax functions
that require the use of exponential equations, the rectified linear unit only requires the use of a max ()
function [30]. In addition to its computational simplicity, ReLU also delivers better results in the training
of deep neural networks than the sigmoid or Tanh activation functions.

A general problem with these two last mentioned functions is that they usually saturate, leading to
vanishing gradients in deep neural networks. In sigmoid and Tanh, large input values are set to 1 and
small input values (large negative values) are set to —1 for Tanh and to O for sigmoid [33].

Since ReLU is linear for half of the input domain and nonlinear for the other half, it preserves many

of the properties that make linear models easy to optimise with gradient-based methods, and as such

is commonly used in the hidden layers of deep neural networks [33].

2.2.3 Network Architectures

The manner in which the neurons are interconnected in a network structure is called topology. In a
neuron connection each neuron is organised by layers, classified in three groups: input /ayer where
the information is presented to the network; hidden layer where most of the processing is done
through the weighted connections; output /ayer where the final result is concluded and presented to
the user [39]. There are numerous types of topologies, each with their own potential. In general, they

fall into two categories:

14
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Feedforward neural network

The connections between nodes, in a feedforward neural network, are always in just one direc-
tion, starting from the input layer and ending in the output layer. In its simplest form a network
is composed of only one input layer and one output layer (single-layer feedforward networks).
However, to increase the network’s ability of modelling more complex functions, one or more
hidden layers are added between the input and output layers (multi-layer feedforward networks)

[39]. One example of a multi-layer feedforward neural network can be seen in figure 2.7.

Hidden layers

Input layer Output layer

Figure 2.7: Feedforward neural network example.

e Feedback neural network

A feedback neural network is a multi-layer architecture characterised by multi-directional con-
nections, being often called of cyclic or recurrent network [39]. Recurrence exists in dynamic
systems when an output of an element somehow influences the input to that same element, e.g.
- information can cycle inside the network [60]. Contrary to feedforward networks, feedback
networks can be adapted to past inputs, maintaining a short-term memory that is very helpful

to sequential data prediction [10]. Figure 2.8 shows one example of a feedback neural network.

Hidden layers

Figure 2.8: Feedback neural network example.
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Choosing the right architectures for neural networks is not an easy task. The selected architecture
should have enough layers to approximate the function of interest, but not too many because it will
take an excessive amount of time to train and it could over-fit the model. The topology should be
chosen taking into account the amount of training data (more data usually requires more layers) and
the type of problem. For example, if the problem involves time series, a feedback architecture should

be chosen.

2.2.4 Gradient Descent

The weights or trainable parameters, w and b, represented in the equation 1, are the most im-
portant attributes of a neuron. It is in the weights that the information learned by the network from
exposure to training data is stored. As a starting point, these weights are filled with small random
values. Then, in the training phase, it is measured how far the output is from what it is expected
(according to a loss function), and based on that, the weights are adjusted step-by-step until the initial
trainable parameters are close enough to the optimum [12, 17].

Gradient descent, one of the most popular learning algorithms to optimise neural networks is used
to adjust the weights [81]. Its role is to minimise a differentiable objective function f (x) by updating
the parameters x in the opposite direction of the gradient Vxf (x) [81]. Applied to a neural network,
f (x) would be the loss function, x would be the weights values and the gradient descent result would
be the combination of weight values that yields the smallest possible loss function [17]. The gradient

descent is applied in a training loop as represented in figure 2.9 and described below:

1. Initialise the weights W, define the learning rate and the number of epochs.

2. Take the training samples X and corresponding targets Y.

3. Run the network on X to obtain the predictions Y'.

4., Calculate the loss function of the network, i.e., the mismatch between Y 'and Y
5. Compute the gradient of the loss function with regard to the network’s weights.

6. Move the weights slightly in the opposite direction from the gradient, reducing the loss, e.g. —

W =W - learning rate * gradient.

7. Repeat the steps 3, 4, 5 and 6 until reaching the number of epochs defined.

16



2.2, Deep Learning
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Figure 2.9: Gradient descent training loop.

When the training datasets are very large, the computational complexity of the learning algorithm
becomes a critical factor. In these situations, a trade-off between accuracy and performance is re-

quired [81], leading to three distinct gradient descent variants:

e Batch Gradient Descent (BGD)

The batch gradient descent, also known as vanilla gradient descent, computes the gradient of
the loss function for the entire training dataset. It guarantees the convergence to the global
minimum for convex error surfaces [89] and to a local minimum for non-convex [81]. As this

algorithm uses the whole training dataset, its computation can be very slow.

e Stochastic Gradient Descent (SGD)

The term stochastic refers to the fact of randomly pulling the data to be applied in the gradient
descent [17]. This algorithm only performs one update for each example at a time and, as a
result, is much faster than BGD. On the other and, its convergence to the exact minimum is not

so easy as its updates are performed with a high variance [81].

e Mini-batch Gradient Descent (MbGD)

This algorithm joins the best of the two other approaches (BGD and SGD) doing an update for

every mini-batch of 7 training samples, as represented in the algorithm 1.

17
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Algorithm 1 Mini-batch Gradient Descent
1: for each epoch do

2: random shuffle of the data

3: for batch in batches(data, batch_size = 50) do

4 weights_grad = evaluate_gradient(loss function, batch, weights)
5: weights = weights - learning rate * weights_grad

6: end for

7: end for

In MbGD the computation is much faster than in BGD and the variance of the weight updates
is smaller than in SGD, leading to a more stable convergence [81]. As result, a better trade-off
between accuracy and performance is accomplished, making the mini-batch gradient descent

the most commonly used algorithm to train neural networks [81].

A
Loss Value

Global
minimum

Local
minimum

»

\I/ Parameter Value

Figure 2.10: Local and global minimum of loss function.

A very important factor in gradient descent algorithms is the learning rate value. This defines the
size of the step to be taken in the direction of the steepest descent [94]. If its value is too small, the
probably of staying stuck in a local minimum (figure 2.10) is higher. If its value is too big, the updates

can lead to random moves on the curve.

2.2.5 Back-propagation Algorithm

As previously mentioned, in a feedforward neural network architecture the information flows for-

ward through the network like in directed acyclic graphs [5]. When this architecture has multiple layers,
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the initial information x, received by the input layer, is propagated through the hidden layers until the
output layer where " is produced [33].

The Back-propagation (BP) algorithm, proposed by Rumelhart, Hinton and Williams in 1986, in-
tends to compute the gradient of a loss function of multi-layer ANNs applying the chain rule. With the
BP algorithm, the gradient is calculated from the top to the bottom layers and applied in a gradient

descent algorithm to perform the learning [20, 33]. For example:

Y =f(x) = pwl.pw?pw'x + bl) + b?)... + bb) (7)

This is the result of a L-layered neural network function which consists of many tensor operations

chained together. In case of L = 2, the function can be written as

Yy =fx) =f(gx)) (8)
According to the chain rule, a chain of functions can be derived as follow:
ay’ of (x
2 - J;(x )~ frg) g () (©)

Thus, the back-propagation algorithm allows the information to flow backward through the network
in order to compute the contribution that each parameter had in the loss value [17, 33].

None of the algorithms previously presented guarantee full convergence to the global minimum
(figure 2.10). In an attempt to improve this convergence, new methods are emerging. Momentum [81],
Adagrad [62], RMSProp [52] and Adam [101] are some variants of gradient descent known as optimi-
sation methods or optimisers that increase the speed of convergence and decrease the probability of

staying blocked in a local minimum [17].

2.2.6 Properties of Deep Learning

Over the years, deep learning has yielded tremendous success in the field of Al. Near-human-
level autonomous driving, near-human-level speech recognition, and improved machine translation
are some of the most significant deep learning achievements to date. All these technological progress
has been made thanks to the properties offered by deep learning. The three most distinctive properties

are robustness, generalisation and scalability:

e Robustness

Deep learning approaches do not require any manual selection of pertinent features. Instead

of that, optimal features for the task are automatically learned from exposure to training data
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[17] [5]. Accordingly, deep-learning models can be trained on additional data without restarting
from scratch, becoming robust to the natural variations in the data and viable for continuous

online learning [17].

e Generalisation

Deep learning has the human ability of generalisation - reasoning about new concepts and expe-
riences from just a single example [78]. This is converted in the faculty of facing a new concept,
understanding its structure, and then being able to generate valid alternative variations of the
concept [78]. Thereby, the same deep learning approach can be used in different applications
or with different data types [65], being truly helpful when the problem does not have enough
available data [5] or the number of parameters is substantially larger than the amount of training

data [65].

e Scalability

The deep learning computational requirements allow almost all deep learning models to be
trained on GPUs [16] [22], taking full advantage of their parallelism capabilities [17]. Further-
more, the deep-learning models are trained by iterating over mini-batches of data [94] (max-
imising the GPUs parallelism potential), allowing them to be trained on datasets of arbitrary

size [17], resulting in highly scalable deep learning approaches [5].

2.3 Adversarial Deep Learning

Adversarial learning emerges to study attacks on deep learning models and their respective de-
fences. This technique shows how a malicious adversary can manipulate input data to exploit specific
learning algorithm vulnerabilities and compromise the security of the deep learning system. The pur-
pose of this technique is not to model the classification algorithm perfectly, but to identify with great

certainty the malicious instances that were not previously identified as such [58].

2.3.1 Generative Adversarial Networks

Generative Adversarial Networks (GANs) are a recent unsupervised deep learning approach for
estimating generative models, introduced by Goodfellow et al. [34] in 2014. They are a generative
modelling system that, given a set of images, generates realistic synthetic images nearly identical to
the real ones [33] [17]. GANs are based on an adversarial game scenario where two neural networks

compete against each other [5], the generator and the discriminator, as shown in figure 2.11.
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Figure 2.11: Conceptual diagram for Generative Adversarial Networks.

The generator has the function of capturing the training data distribution and generating new data,
while the discriminator has to identify if a sample came from the original training data or the generated

data. More specifically:

e Generator Network: The generator receives as input a random seed vector z (random point
in latent space) and decodes it into a realistic synthetic image, similar to a real training sample

[17] [55].

e Discriminator Network: The discriminator receives as input images from the generator net-
work and actual training samples (although, the discriminator doesn’t know the source of the
images) and, for each image, indicates the probability of being from a real training example or

from a synthetic sample drawn by the generator [33].

In this adversarial game scenario, it is expected that, over the iterations, the generator will become
more and more competent at reproducing the training data distribution, deceiving the discriminator.
Simultaneously, the discriminator will constantly adapt to the gradual improvement of the generator
images, becoming increasingly expert at detecting fake samples [17]. As a result, it is a game where

everyone wins, as the improvement of one network leads to the improvement of the other one.

Training process

One of the biggest challenges in the study of GANs is the training phase [6]. Unlike the other
models that aim to achieve the minimum point of the cost function, in a GAN system, the main goal

is to accomplish a balance between the two networks. The GAN loss function quantifies the similarity
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between the generated data distribution (G(z)) and the real data distribution (x) through the Jensen-
Shannon Divergence (JSD) [54].

As a GAN is a dynamic system, there is no fixed minimum and every step taken by the gradient
descent changes the entire system [17]. The following equations represent the generator and discrim-

inator gradients, respectively.

e Generator gradient:

1 .
— _ — Q)
Vo, ;)log(l D(G(z™))) (10)
e Discriminator gradient:
1 . .
Vo, Y log(D(x™)) + log(1 — D(G(z)))] (11)

i=0
where m represents the number of samples, z the noise samples, x the real samples, D and
G the discriminator and generator networks respectively. During the training phase, the generator
is updated by ascending its stochastic gradient and the discriminator is updated by descending its

stochastic gradient.

2.3.2 Wasserstein GAN

The Wasserstein GAN (WGAN) introduced by Arjovsky et al. [7] in 2017, is a GAN variant that uses
the Earth Mover’s Distance (EMD) [71] (also called Wasserstein-1 distance) to measure the difference
between the true distribution and the model distribution, instead of the Jensen-Shannon divergence
[54] in a standard GAN. The EMD is used to address the JSD gradient vanishing problem. With the
JSD, as the difference between the real and generator distributions increases, the discriminator gets
close to the ideal (it detects the fake samples very well since the generated samples are so distinct
from the real ones) but, on the other hand, the generator becomes unable to improve its approximation
to the real samples distribution. This happens because with an optimal discriminator the generator
gradient will be zero almost everywhere (see equation 10), being unable to learn anything from the
gradient descent.

The EMD has a smoother gradient that does not saturate or blow up for distributions with different
supports, as it happens with the JSD. This means that WGAN learns no matter how the generator is

performing. The EMD still gets signals when the difference between the two distributions is big.

22



2.3. Adversarial Deep Learning

In order to be able to use the earth mover’s distance instead of the JSD, the discriminator network
requires a small adjustment. In this new model, the discriminator outputs a scalar score rather than
a probability. This score indicates how real the input images are instead of the likelihood of being
real. In light of this, in a WGAN, the generator and discriminator gradients, introduced in section 2.3.1

(equations 10 and 11), are replaced by the following ones:

e Generator gradient:

1 & .
g0 < Vo ;)f (G(z?)) (12)
e Discriminator gradient:
1 & . .
— _ @y _ (7)
8w V“’mi:Zo[f(x ) —f(GE))] (13)

where 6 and w are, respectively, the generator and discriminator parameters, and f is a 1-Lipschitz
function [27] [40] that follows the |f (x1) — f (x5)| < |x; — x| constraint. In order to impose this
constraint and prevent against vanishing or exploding gradients, it is required to limit the maximum
weight value in f. For that, a very simple clipping is applied to the discriminator weights. To better

understand, see the equations below.

w «— w+ a - RMSProp(w, $y) (14)

w < clip(w, —c,c) (15)

where « is the learning rate and c the clipping parameter.

Figure 2.12 shows how the two models, GAN with the Jensen-Shannon divergence and a WGAN
with the earth mover’s distance, learn to differentiate two Gaussians. As it can be seen, the WGAN
gradient is smoother everywhere when compared with the GAN gradient. Whereas with GAN, the
model gets quality learning only if the generator is already producing samples similar to the real ones,

with WGAN, the model is able to learn even if the generator is not producing good samples.
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Figure 2.12: GAN and WGAN discriminators when learning to differentiate two Gaussians. The GAN discriminator
(red line), saturates and results in diminishing or exploding gradients. In the WGAN discriminator
(blue line), the gradient is smoother everywhere and learns better even when the generator is not

producing good samples. Source: [7].

2.3.3 Wasserstein GAN - Gradient Penalty

The WGAN - Gradient Penalty, proposed by Gulrajani et al. [36], emerges to fix some of the issues
of the previously presented WGAN model. The recently proposed Wasserstein GAN is making progress
towards reliable GAN training. Yet, sometimes, WGAN may lead to undesired behaviour like the inability
to converge or the generation of weak samples.

The challenge in WGAN is to enforce the 1-Lipschitz constraint. Weight clipping is easy, but it is
not the best procedure to impose that restriction. The model performance gets very sensitive to this
clipping parameter, and it is very difficult to establish the ideal clipping value [36]. If the clipping value
is too large, the gradient can increase exponentially resulting in exploding gradients. If the clipping
value is too small, the error signal going through each layer will be multiplied by small values during
back-propagation, what can result in vanishing gradients when the number of layers is too high or the
batch normalisation is not used [7].

A differentiable function is 1-Lipschitz if and only if the gradients norm is at most 1 everywhere [36].
This means that the points interpolated between real and generated data should have a gradient norm
of 1 to obey the 1-Lipschitz constraint. Thus, instead of using weight clipping, WGAN-GP penalises the
model if the gradient norm shifts away from the target norm value 1. The WGAN-GP discriminator loss

function can be expressed as follows:
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L=Ezp [DE®] = Eyop [DO)]+AEz p [(I VzD(X) [l =1)?] (16)

Original WGAN discriminator loss Gradient penalty

where X ~ ]P’g (]P’g is the model distribution defined by ¥ = G(z),z ~ p(z)) represents a sample
of generated data, x ~ P, a sample of real data, and A the penalty coefficient. X is sampled from X

and x with € selected randomly between 0 and 1.

X=ex+(1—-e)iwith0<e<1 (17)

In the "Improved Training of Wasserstein GANs” paper [36] an experiment was made to see
the differences between the two WGAN models (weight clipping and gradient penalty) during the train-
ing phase. In this study, the Swiss Roll dataset [92] was used and implemented four different models:
a WGAN-GP and three WGANs with three different clipping values. The results can be seen in figure
2.13. These graphics express very well the weight clipping problem. This approach encourages the
optimiser to push the absolute value of the weights towards the clipping value, which can lead to dimin-
ishing or exploding gradients depending on the ¢ value. As can be seen in figure 2.13, as c increases

from 0.001 to 0.1, the WGAN discriminator shifts from diminishing to exploding gradients.

Weight clipping

% —— Weight clipping (¢ = 0.001)
A 107 — Weight clipping (¢ = 0.01)
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Figure 2.13: WGAN gradient penalty performance when compared with the original WGAN.
In the left graphic is shown the gradient norms of WGAN and WGAN-GP discriminators during the
training on the Swiss Roll dataset. The gradient norms either explode or vanish when weight clipping
is used, instead of the gradient penalty. In the right graphics, the weight clipping pushes weights

towards two values (the extremes of the clipping range), unlike gradient penalty. Source: [36].

Unlike the weight clipping, the gradient penalty approach reveals an improvement in the training

stability across a variety of architectures and helps in model convergence. Besides that, by imple-
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menting a character-level GAN model on the Google Billion Word dataset [14], Gulrajani et al. have

shown that WGAN-GP is also capable of modeling discrete distributions over a continuous latent space.

However, the gradient penalty adds computational complexity.

2.4 Related Work

Anomaly detection is a significant problem that has earned the attention of many researchers. Over
the years, several approaches have been studied in order to correctly detect and classify anomalous
data, e.g. data which do not fit the normal data distribution.

More recently, Generative Adversarial Networks have been applied to this field [3, 84, 100]. In the
original GAN formulation, the generator learns to map samples from an arbitrary latent distribution z
to realistic synthetic data X', while the discriminator learns to distinguish between real and generated
data. In state-of-the-art GAN-based anomaly detection algorithms, the original formulation is extended,
incorporating the inverse mapping learning, which maps the data back to the latent representation z’

[21]. Figure 2.14 highlights the architecture of a GAN-based anomaly detection model.

X Ge(x) z Gp(z) x' E(x") z'
D(x,x")

Figure 2.14: GANnomaly model architecture. With E being an encoder network, G¢ a generator encoder and

Gp a generator decoder.

During the GAN nomal y training, the network is modelled on normal samples only. As a result, the
model parameters become unsuitable for the generation of abnormal samples. Consequently, when
an abnormal image is forwarded into the network, G, is unable to reconstruct the anomalies, even
though G has managed to map the input X to the latent vector z. These missed anomalies in the
outputted sample X’ lead to a vector z’ that has also missed the abnormal features representation,
inflicting a dissimilarity between z and z’. When such dissimilarity occurs, the model classifies X as

an anomalous image [3].
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2.4. Related Work

Although GANs have shown successful results in the field of anomaly detection, most of the pro-
posed architectures are solely focused on the detection of anomalies in images.

A particular work related to the content of this dissertation is the " Flow-based Network Traffic
Generation using Generative Adversarial Networks”, proposed in 2018, by Ring et al. [79]. The
problem behind this study is the current lack of available datasets of network flow that contain realistic
user behaviour and updated attack scenarios. As solution for this problem, it was proposed the imple-
mentation of three synthetic flow-based network traffic generators (using GANs) to generate realistic
flow-based network traffic. The biggest challenge faced in this study was the flow-based network data
structure that is represented with continuous and categorical attributes, and GANs can only process
continuous input attributes. In spite of all the challenges, this study concludes that GANs are well

suited for generating flow-based network traffic.
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The Problem and Its Challenges

The exponential computer networks evolution is leading to the daily growth in the number of secu-
rity issues and the complexity of the latest network attacks [63, 87]. Researchers of intrusion detection
systems aim to build new security approaches to keep up with the network’s constant evolution. Ef-
ficient adaptive methods, such as deep learning techniques, can improve the response to dynamic
and sophisticated attacks. However, the limited number of publicly available network datasets and
their poor traffic variety and attack diversity are a major stumbling block in the research community
as there are not enough data for an accurate models evaluation, comparison, and deployment [88].

Imbalanced classification is an emerging problem arising from a multi-class skewed distribution
[1]. In many real-life situations, the amount of data produced in a multi-class event is not in the same
proportion to all the classes [49, 91]. Consequently, most classification datasets do not have a uniform
number of instances for each class, reducing the performance of machine learning models [68]. In
this case of study, the benign network flow is much more frequent than the attack/anomalies network
flow, resulting in a biased data distribution, with one of the classes containing a much smaller number
of instances than the other one. As a consequence, the correct classification of the minority class is a

main problem [1].

3.1 Proposed Approach - Solution

To address this problem, it is considered the use of a data level approach, oversampling. Data level
approaches are pre-processing tasks, which are applied to balance the skewed distributions directly
[1]. In oversampling techniques, the pre-processing tasks focus on generating artificial data for the
minority classes until it is reached a desired level of balance. In this project, it is proposed the use
of Generative Adversarial Network as an oversampling technique. The choice of this model lies in
its ability to learn the properties of the collected data and to generate new samples with the same
underlying characteristics.

The proposed approach intends to address the sparse availability of data by building a genera-
tive model responsible for producing large sets of network flow data while improving the detection of
anomalies and disguised attacks. The first step will consist in building a generator for the minority

classes. Resorting to a GAN both generator and discriminator will be trained to simulate traffic that
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3.2. Challenges

mimic an attack (minority class). Later, the discriminator will be discarded and only the generator will
be used in the second step. The second step will consist in training a classification model to detect the
traffic anomalies. This model will be trained with the publicly available data and the data produced by

the generator in step one.

3.2 Challenges

The proposed approach will face multiple challenges, being the major ones related with the data

generation.

¢ Generate Discrete Data Sequences

Generative Adversarial Networks have achieved significant popularity in the field of real-valued
data generation. However, using GANs to generate discrete data sequences faces some chal-
lenges. In GANs, the generator begins with random sampling and then a deterministic trans-
formation that slightly changes the generator to make the data more realistic [98]. But, when
dealing with discrete data, this "slight change” in the generator network may not have a corre-

sponding value in the limited dictionary space [98].

¢ GANSs Training

The Nash equilibrium between the two non-cooperative networks proves to be very hard to
achieve [83]. Non-convergence, mode collapse, and diminished gradients are some of the
most frequent problems during the GANs training. Most of the recent work on this subject [41,
59, 72, 83] focuses on improving training stability. However, the GANs training phase remains

an open problem.

¢ Generated Data Evaluation

One of the main problems of the GAN numeric data generation is its evaluation. Even though
several measures have been implemented, there is still no consensus as to which measure best

captures the model strengths and weaknesses [11].
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Development

The current chapter presents the system architecture and explains the details of its development.
The global goal of this system is to improve network anomaly detection by solving the imbalanced
classification problem with the use of a Generative Adversarial Network. The whole system is divided
into five distinct components that can be used independently for specific tasks. This project was
developed using the programming language Python3. The choice of this language lies in the available
libraries and frameworks, the mature and supportive Python community, and the ease of use. The

developed project can be found in the following GitHub repository.

4.1 System Architecture

The proposed system architecture reflects a pipeline that transforms an imbalanced dataset into
a balanced one with the goal of improving the classification model’s performance. Even with the focus
on network anomaly detection, this system has been designed to work with every type of imbalanced

dataset. An explicit and objective picture of the overall system is provided in figure 4.1.

GAN
Generated
data

GAN
Balanced
Dataset

\_/—

Minority
classes
Pre-
Imbalanced Data Data processed Classification
Dataset Visualisation Pre-processing Imbalanced Models
1 2 Dataset 5
A
SMOTE
SMOTE Balanced
Dataset
3 \_/—

Figure 4.1: Simple representation of the overall system.
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4.1. System Architecture

The data visualisation (1) and the data pre-processing (2) are an integral part of any machine
learning project. As such, these are the first two stages of this pipeline. After these stages, the data
should be in an appropriate format for the GAN and classification models, although, still imbalanced.

In order to deal with the imbalanced classification problem, it is proposed the use of a Generative
Adversarial Network to oversample the minority classes. As a baseline for this experiment, it will
be used a traditional data augmentation technique, the Synthetic Minority Oversampling TEchnique
(SMOTE). Thus, in the stage 3, the pre-processed training set will be balanced through SMOTE.

During the stage 4, the GAN models will receive as input the pre-processed minority classes. Each
GAN will be trained with just one class at a time. After the GAN training, the generator will provide
the amount of data required to balance the training set. The baseline for the GAN generated data will
be the Euclidean distance between the SMOTE generated data and the real data. Regarding to the
detection of the attacks/anomalies, the classification models (5) will receive as input three different
types of data: the imbalanced pre-processed dataset, the SMOTE balanced dataset, and the GAN
balanced dataset. The main goal is to compare the classification results of each dataset and see how
beneficial is the use of a Generative Adversarial Network in deep learning network anomalies detection.

Figure 4.2 provides a quick overview of what will be performed at each stage of the process. In

the following subsections, all five stages will be explained in detail.

Data Pre-processing SMOTE GAN Models Classification Models

Box plot; Data transformations; Training set balancing Training set balancing Artificial Neural
Histogram; Feature selection; - SMOTE - Standard GAN; Network;
Scatter plot; Data selection; - WGAN-GP. Decision Tree.
Correlation matrix. Train test split.

Figure 4.2: Brief summary of the system stages.

4.1.1 Data Visualisation

To better understand the behaviour of the data and the range of values that they present, it is
essential to build exploratory graphical models that promote its perception. Thus, for each of the

variables present in the dataset, the following graphics will be created:

e Diagram of extremes and quartiles

This graphic model displays the data distribution based on a five number summary: minimum,

first quartile (Q1), median, third quartile (Q3), and maximum. It is useful to identify the
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4.1. System Architecture

variation associated to the value of each variable and to provide information of interest such as

the median and outliers.

e Histogram

A histogram shows the frequency of the occurrences, enabling the visualisation of the amount of
data organised by bins within certain ranges and how it is distributed. This chart type displays

indicators as mean and mode.

o Scatter diagram

The scatter diagram will be used to perceive the relationship between an independent variable
and a response variable. This graphic model is useful to identify how much one variable is

affected/correlated with another.

e Correlation matrix

In order to understand the relationship between all the variables and ensure a more global
analysis of the data, a correlation matrix graphic will also be used. A correlation matrix is a
symmetric table showing correlation coefficients between variables, coloured according to the
value. The diagonal of the table is always a set of ones. Each variable (X7) in the table is
correlated with each of the other variables (Xj). This graphic allows to detect which pairs of

variables have the highest correlation.

4.1.2 Data Pre-processing

The data pre-processing is one of the most important and time consuming stages. In this stage,
the dataset must be transformed into a more understandable, meaningful, and useful format. All the
predictors must be selected and the data problems must be solved. In this context, different data

transformations will be performed:

e [ncorrect and missing data filtering

Incorrect and missing data are a prevailing problem in most of the real-world datasets. The
reasons why they occur are numerous - from human errors to software bugs. There is no perfect
way to deal with incorrect and missing values. The most common and successful methods used
for this purpose are: delete the rows or columns with these values, replace them with a central

value (mean, median, mode), or assign a unique discrete variable.
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4.1. System Architecture

e [ogarithmic transformation

When the continuous data distribution is skewed, data transformations are implemented to
make the data as "normal” as possible and therefore to improve the statistical power of the
associated statistical analyses. The log transformation is used to transform skewed data to ap-
proximately conform to normality. If the original data generally follows a log-normal distribution,

then the log-transformed data follows a near normal distribution.

e label encoding

Due to the network flow properties, most of the network flow datasets contain categorical val-
ues. However, the majority of machine learning classification models achieve better results
with numerical inputs. As such, the label encoding is used to convert the categorical data into

numerical data. This method transforms each value in a column into a number.

e Normalisation

Data normalisation is performed to improve the models optimisation. If the data are in different
scales, the time needed to find the optimal points for the optimisation function is much longer.
However, if the dataset includes outliers in its data, the data normalisation will reduce the natural

data to a very small range. In this study, it will be used the [0, 1] interval for normalisation.

e Remove duplicated rows

The dataset can often contain duplicate rows. Including them usually bias the fitted model.

Consequently, the duplicated data should be removed from the dataset.

Regarding to the features selection, this step will take into account the observations of the visuali-
sation stage. All the variables less than 70% correlated with each others will be considered predictors.
As for the variables more than 70% correlated, it will be removed one of the variables of each pair, to
avoid the problem of multicollinearity. As result, the maximum number of features will be guaranteed
for data generation.

With respect to the classification models train-test split, as the dataset is imbalanced it is necessary
to ensure that both train and test sets hold all the response variable classes. In this way, for each of
the classes will be performed a 67-33% train-test split.

After these transformations and selection, it is essential to proceed with the extraction of data for
the GAN models. Since these models will only receive and generate one minority class at a time, the

training data must be separated by the classes of the response variable. In this way, the GAN models
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4.1. System Architecture

will be able to receive different sets of data, each one representative of a different class. Once all these

steps have been completed, the data will be in an appropriate format for the next stages.

4.1.3 SMOTE

Synthetic Minority Oversampling Technique is an oversampling technique used to re-balance the
pre-processed training set. Rather than simply replicating the minority class instances, SMOTE's main
concept is to introduce new synthetic examples [25].

These new synthetic data is generated through the interpolation of several instances of minority
class that are within a defined neighbourhood. SMOTE loops through a current instance of a particular
minority. One of the K closest minority class neighbours is selected at each loop iteration and a new
minority instance is synthesised between the minority instance and that neighbour. Neighbours from
the K nearest neighbours are selected randomly, depending on the amount of oversampling needed

[13, 25].

4.1.4 Generative Adversarial Network

The main goal of this stage is to balance the pre-processed training set through the generation
of data for the minority classes. In order to do so, the GAN models will receive the class-separated

training data as input and will independently train the models for each class.

After the research of improving GAN models, it was decided to implement two different GANs:

an Improved Wasserstein GAN (WGAN-GP) [36] and a standard GAN [34]. These GANs will have the

following composition:

e Generator

In both models, the generator network starts with a 70 neurons input layer that receives the
noise vector z. Then, depending on the model, each generator has 1 to 3 hidden layers with
64 neurons and ReLU as activation function. Since the output of the generator has to match
the shape of the training data, the output layer has as many neurons as the number of features
of real data. The activation function used in the output layer is the Sigmoid once the real
data values go from 0 to 1 (normalisation). In figure 4.3 can be seen the generator networks

architecture.
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4.1. System Architecture

z Input layer 7
RelLU Hidden layers RelLU
Sigmoid Output layer Sigmoid

Figure 4.3: Generator networks architecture: (left) WGAN-GP, (right) GAN.

e Discriminator

The discriminator network takes as input a candidate sample x (real or generated) and outputs
a single value that represents how real the input images are (WGAN-GP), or the likelihood of
being real (GAN). In this way, the discriminator input layer has the same number of neurons
as the number of features of the original data and the discriminator output layer has only one
neuron. Regarding to the hidden layers, the discriminator is composed of one or two hidden
layers (depending on the model), each one with 64 neurons. In the WGAN-GP model is used
the Leaky ReLu activation function for the hidden and output layers, while in the GAN model
is used the Leaky ReLu function in the hidden layer and the Sigmoid function in the output

layer. Figure 4.4 shows the discriminator networks architecture.

X Input layer x

N 1

Leaky ReLU || Hiddenlavers | |eaky ReLU

i

Leaky RelLU Output layer Sigmoid

Figure 4.4: Discriminator network architecture: (left) WGAN-GP, (right) GAN.

e Training losses

The biggest difference between the GAN and WGAN-GP models is the training losses definition.
The loss functions reflect the distance between the real and generated data distributions. In
this study, each model has two loss functions: one for the generator training and other for the

discriminator training. Each loss function definition is represented below.
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4.1. System Architecture

- GAN

Generator loss: — Sy —In(D(G(z)))

Discriminator loss: %[Zﬁo —In(D(x;)) + Z?;o —In(1 — D(G(z;)))]
- WGAN-GP

Generator loss: .- Y"1 —D(G(z;))

Discriminator loss:

Ly DGE)) — 2 ¥ D] + AL (VS VeD(E) PR — 1)2],

where X = ex + (1 — €)G(z) with € selected randomly between 0 and 1.

e Optimisation
After the analysis of different GAN studies [15, 32, 36, 74], it was decided to use the optimiser
algorithm Adam [46] to minimise the loss functions. The Adam recommended settings of the
WGAN-GP authors [36] were used for the WGAN-GP, while the Adam default hyperparameters
were used for the standard GAN. Thus, the Adam hyperparameters «, 81, B, used in each

model are the following:
- GAN « = 0.001, B; = 0.9, B, = 0.999;
- WGAN-GP a = 0.0005, B =0, B, = 0.9.
For the correct balance of the training set, it will also be required to indicate the number of samples
that need to be generated, for each of the classes. The original training set will be considered balanced
when all the response variable classes have the same amount of data as the class with the higher

number of samples. A small example of the amount of data that should be required to be generated

is provided in table 4.1.

Table 4.1: Amount of data required to be generated.

Response variable classes N* samples original dataset N® samples to generate

Class 1 100 900
Class 2 50 950
Class 3 1000 0

Once the data is generated, it must be analysed. As explained earlier, generating categorical data

through GANs proves to be difficult. In this way, the categorical generated data must be processed in
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4.1. System Architecture

order to become categorical. With regards to the evaluation of the generated data quality, in this study,
the GAN generated data will be compared with the SMOTE generated data. It will be calculated the
Euclidean distance between the SMOTE generated data and the real data, as well as the Euclidean
distance between the GAN generated data and the real data. If the distances are similar, the GAN

generated data will be approved.

4.1.5 Classification Models

In machine learning, there are several different types of models, all with different types of outcomes.

Where statistical classification is concerned, the model attempts to recognise two or more defined

groups, and have them classified accordingly. In this study, two classification models will be used:

o Artificial Neural Network

The Artificial Neural Network, introduced in 2.2.1, is a deep learning model composed of a
group of neurons layer-organised, which convert an input vector into an output. This model
offers a set of properties (realtime adaptability, robustness with respect to damages and to
missing data, and automatic generalisation [47]) that overcome some of the most traditional
models [56]. However, the ANN main disadvantage is in its “black box” nature. Every ANN
output is obtained through a complex simultaneous execution of a large number of neurons,

which make the model decisions very hard to understand and explain [47].

During the implementation of the Artificial Neural Network, many architectures were tested.

The first one was a simple network composed of only one input and one output layer. Then, the
consequent models were produced by adding some hidden layers and increasing the number

of nodes of each layer.

X
128
32
16
Y

Input layer Hidden layers Output layer

Figure 4.5: Artificial Neural Network architecture.
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The final model was obtained when a balance between the number of hidden layers, nodes,
batch size, and epochs was reached. Therefore, the Artificial Neural Network used in this
project will be composed of one input layer, three hidden layers (with 128, 32, and 16, neurons
per layer, respectively), and one output layer. The model will be trained during 30 epochs with

a batch size of 1000. Figure 4.5 represents the ANN architecture.

e DecisionTree (DT)

Compared with the Artificial Neural Networks, Decision Trees have the advantage of being ex-
pressed as rules, which makes this model very intuitive and easy to understand [23, 48]. In
order to find solutions a Decision Tree makes sequential, hierarchical decisions about the out-
come variable based on the predictor data. Once the model has been set up, it acts as a protocol

in a series of "if this happens then this happens” conditions.

These models will receive four different inputs: the imbalanced, the SMOTE balanced, the GAN
balanced, and the WGAN-GP balanced training sets. In order to compare equally the results obtained
from the Decision Tree and Artificial Neural Network classification models, the same test set will be
used for the different training sets. Note that the test set consists solely on original data, with no data

augmentation.

4.2 Model Evaluation Metrics

The evaluation stage is one of the most important stages during the construction of the model
as it indicates how accurately the model works. To evaluate the model efficiency, model evaluation
metrics are needed. This section presents and explains all four measures that will be used to evaluate
the classification models built in this project.

Note: All the variables present in the equations of this section came from the confusion matrix.

e Accuracy

Accuracy is the most intuitive metric. It represents the ratio of the correctly labelled data out of
the total number of input samples. Accuracy answers the following question: How much data
was correctly labelled by the model out of all data? The accuracy formula is represented

in the equation 18.

True Positives + True Negatives
Accuracy = — — . . (18)
True Positives + False Positives + True Negatives + False Negatives
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4.2. Model Evaluation Metrics

Regardless of the fact that accuracy is the most intuitive and applied metric, this measure only
does a proper evaluation when there is an equal amount of samples belonging to each class
[43]. For example, if in some training set there are 97% of samples of class X and 3% of samples
of class Y, then, the model used in that training set can easily achieve 97% of training accuracy
by only predicting every training sample as class X. Still, if the same model is tested on a test
set of 70% of class X samples and 30% of class Y samples, the test accuracy would be reduced
to 70%. Accuracy is an outstanding metric, but sometimes it gives the false sense of reaching

high model performance.

Precision

Precision is the percentage of positive instances correctly predicted out of the total predicted
as positive. In the context of this study, precision answers the following question: How many
of those that have been labelled as attack are actually attacks? The precision formula is

represented in the equation 19.

Precisi True Positives (19)
recision =
True Positives + False Positives

Recall

Recall is the ratio of positive instances correctly predicted by the model to all how are positives
in reality. In the context of this study, recall answers the following question: Of all the existing
attack data, how many of thosewere correctly predicted? The recall formula is represented

in the equation 20.

Recall — True Positives (20)
ecatt = True Positives + False Negatives’

F1-score

F1-score is the harmonic mean of precision and recall metrics. This measure should be chosen
over accuracy in imbalanced classification problems [42]. The fl-score formula is represented

in the equation 21.

F1 _ 2 = Precision * Recall 1)
SC0Te = p ecision + Recall
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4.3. Frameworks and Tools

4.3 Frameworks and Tools

Given the popularity of machine learning and, particularly, its deep learning sub-field in recent

years, new frameworks and tools have been developed to support and facilitate the implementation of

new models. The software available for these fields is designed to provide a higher level of abstraction

and performance, along with the simplification of complex programming challenges. Most of the

released frameworks, tools, and libraries are open-source, coming from academies, companies, or

open-source communities [66]. Some of the most relevant tools that will be used in this dissertation

are the following:

Jupyter Notebook

The Jupyter Notebook! is an open-source, browser-based tool that allows the user to create
and share documents that contain live code, equations, visualisations, and narrative text [76].
The combination of the Python code execution with the rich text-editing functionalities allows
the user to describe the research process in a simple and efficient way. A notebook also allows

long experiments to be divided into smaller parts that can be independently executed [17].

TensorFlow

TensorFlow? is an end-to-end open-source machine learning platform, created and maintained
by the Google Brain team [66, 93]. It is based on a computational graph where the nodes rep-
resent mathematical operations and the edges represent multidimensional data arrays (called
tensors) that flow through the different operations [66, 70]. The Tensorf/ow can run on a
wide range of systems, from mobile devices to large-scale distributed systems [66]. Given its
flexible and scalable ecosystem, TensorFlow enables the development and training of state-of-
the-art models without compromising speed or performance [93]. TensorFlow has available
multiple-language APIs, with the Python API currently being the most complete and easiest to

use [93].

Keras

Keras? is a Python-written open-source high level neural network library that provides simple

and intuitive tools to build and train distinct deep learning models [17, 70]. It runs on top of

1 Jupyter Notebook

2 TensorFlow

3 Keras
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4.3. Frameworks and Tools

other DL tools, including TensorFlow, Theano, and CNTK, abstracting their capabilities and
hiding their complexity [66]. Keras was originally developed for researchers with the aim of
allowing fast experimentation [17, 66]. To accomplish this purpose, Keras offers consistent
and simple APIs, minimises the number of user actions required for common use cases, pro-
vides straightforward and actionable error messages, and also has an extensive and detailed
documentation. Due to its properties, Keras has become the deep learning solution of choice

for many university courses, researchers, and companies [45].

Besides these, also Pandas, Numpy, Matplotlib, Seaborn, and Scikit-learn libraries will be
used. The first two libraries (Pandas and Numpy) will be used to manipulate the dataset. The
Matplotlib and Seaborn libraries will be used for the construction of graphic models. Finally, the

Scikit-learn library will be used for the Decision Tree classification model.
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Results

The developed system aims to improve the detection of network anomalies through the use of a
generative adversarial model. To test the system it is necessary to find a suitable network flow dataset.
In this chapter, firstly it will be presented and described the chosen dataset and, finally the obtained

results using the developed system.

5.1 Dataset

Finding a suitable dataset for this project was challenging. Due to privacy concerns, many datasets
cannot be shared and those that become available are heavily anonymized and do not reflect current
trends [88]. In addition, due to the absence of proper documentation and data labelling [63], most
datasets cannot be understood. If the labels are missing or misleading, the dataset can not be used
correctly and the results of the analysis may not be valid or reliable [28].

After evaluating the available network datasets, the Canadian Institute for Cybersecurity Intrusion
Detection System 2017 (CICIDS2017) dataset [87] was considered the most suitable for this project
since it fulfils all the eleven characteristics of a true intrusion detection dataset [69]: Attack Diversity,
Anonymity, Available Protocols, Complete Capture, Complete Interaction, Complete Network Configu-
ration, Complete Traffic, Feature Set, Heterogeneity, Labelling, and Metadata [28].

This generated dataset provides five days of realistic background traffic with network events pro-
duced by the abstract behaviour of 25 users. The testbed architecture covers all common and nec-
essary equipments, (router, firewall, switch, and modem), operating systems (Windows, Ubuntu and
Macintosh), protocols (HTTP, HTTPS, FTP, SSH and email protocols), and attacks (Brute Force, Heart-
bleed, Botnet, DoS, DDoS, Web-based and Infiltration) [87].

Although the CICIDS2017 has been considered one of the best IDS datasets, it still presents several
limitations. The Panigrahi and Borah detailed analysis of the CICIDS2017 [69] revealed problems such
as high data dimensionality, missing values, and high class imbalance. The study shows that the whole
dataset contains 3119345 instances, 84 strongly correlated features, and 288602 missing class label,

and 203 missing information instances.
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5.1. Dataset

5.1.1 CICIDS2017 Description

The CICIDS2017, previously presented, is a generated network traffic dataset composed of 84
features, including the target feature (Label), and 15 different class labels. This dataset was generated
through the CICFlowMeter software [64] that is able to generate bidirectional flows and extract more
than 80 network traffic features. All the features name can be found in table 5.1 (see Appendix 6.2
for a detailed description of the features).

The whole dataset is divided into seven smaller datasets, grouped by attack categories: DDoS,
Port Scan, Botnet, Infiltration, Web Attack, Brute Force, and DoS. Each dataset
exhibits a selected group of class labels. Of the 15 different class labels, 1 corresponds to the normal

flow (Benign), while the other 14 correspond to the following attacks:

¢ DDoS: The attacker floods the victim’s bandwidth or resources with a large network traffic gen-

erated from multiple systems;

e Port Scan: The attacker sends packets to a variety of destination ports of the victim’s machine,

in order to find an active port and exploit a known vulnerability;

e Infiltration: The attacker uses infiltration tactics, such as infected files, to gain full access

to the victim’s system;

¢ Botnet: Abotnetis a set of internet-connected malware-infected devices that allow the attacker
to monitor them. This dataset uses the Python-based Botnet Ares, which can provide remote

shell, file upload/download, screenshots capture, and keylogging [87];

e Web Attack-Brute Force: The attacker uses the trial-and-error technique to obtain privi-
lege information, such as the administrator’s password and the Personal Identification Number

(PIN);

e Web Attack-XSS: Cross-site Scripting (XSS) is a client-side code injection attack. The attacker

can use the injected scripts to change the website’s content;

e Web Attack-SQL Injection: The attacker injects a string of malicious SQL commands in

data-driven applications to access or modify unauthorised information;
e FTP-Patator: The attacker uses the Patator tool to brute force an FTP login;

e SSH-Patator: The attacker uses the Patator tool to brute force an SSH login;
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Table 5.1: CICIDS2017 features.

5.1. Dataset

No. Feature No. Feature No. Feature

1 Flow ID 29 Fwd IAT Std 57 ECE Flag Count

2 Source IP 30 Fwd IAT Max 58 Down/Up Ratio

3 Source Port 31 Fwd IAT Min 59 Average Packet Size

4 Destination IP 32 Bwd IAT Total 60 Avg Fwd Segment Size
5 Destination Port 33 Bwd IAT Mean 61 Avg Bwd Segment Size
6 Protocol 34 Bwd IAT Std 62 Fwd Avg Bytes/Bulk

7 Time stamp 35 Bwd IAT Max 63 Fwd Avg Packets/Bulk
8 Flow Duration 36 Bwd IAT Min 64 Fwd Avg Bulk Rate

9 Total Fwd Packets 37 Fwd PSH Flags 65 Bwd Avg Bytes/Bulk
10 Total Backward Packets 38 Bwd PSH Flags 66 Bwd Avg Packets/Bulk
11 Total Length of Fwd Pck 39 Fwd URG Flags 67 Bwd Avg Bulk Rate

12 Total Length of Bwd Pck 40 Bwd URG Flags 68 Subflow Fwd Packets
13 Fwd Packet Length Max 411 Fwd Header Length 69 Subflow Fwd Bytes

14 Fwd Packet Length Min 42 Bwd Header Length 70 Subflow Bwd Packets
15 Fwd Pck Length Mean 43 Fwd Packets/s 71 Subflow Bwd Bytes

16 Fwd Packet Length Std 44 Bwd Packets/s 72 Init_Win_bytes_fwd

17 Bwd Packet Length Max 45 Min Packet Length 73 Act_data_pkt_fwd

18 Bwd Packet Length Min 46 Max Packet Length 74 Min_seg_size_fwd

19 Bwd Packet Length Mean 47 Packet Length Mean 75 Active Mean

20 Bwd Packet Length Std 48 Packet Length Std 76 Active Std

21 Flow Bytes/s 49 Packet Len. Variance 77 Active Max

22 Flow Packets/s 50 FIN Flag Count 78 Active Min

23 Flow IAT Mean 51 SYN Flag Count 79 Idle Mean

24 Flow IAT Std 52 RST Flag Count 80 Idle Packet

25 Flow IAT Max 53 PSH Flag Count 81 Idle Std

26 Flow IAT Min 54 ACK Flag Count 82 Idle Max

27 Fwd IAT Total 55 URG Flag Count 83 Idle Min

28 Fwd IAT Mean 56 CWE Flag Count 84 Label
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5.2. Data Visualisation

e DoS Slow Loris: The attacker uses the Slowloris tool to perform a denial of service attack.
This attack works by opening simultaneous HTTP connections to a targeted Web server and

keeping those connections open as long as possible;

* DoS Slow HTTP Test: The attacker uses the SlowHTTPTest tool to perform a denial of service
attack; This tool simulates some application layer denial of service attacks by extending HTTP

connections in different ways;

¢ DoS Hulk: The attacker uses the HULK denial of service tool, which generates multiple dynamic

requests designed to difficult the server defences from detecting the attack;

¢ DoS GoldenEye: The attacker uses the GoldenEye HTTP denial of service test tool to perform
a denial of service attack. The GoldenEye generates a high rate of random HTTP traffic to flood

the HTTP Web server;

* Heartbleed: The attacker exploits the OpenSSL! vulnerability to gain access to sensitive in-

formation as usernames and passwords.

5.2 Data Visualisation

Due to the large set of variables that each dataset holds, in this section will only be presented and
explained some of the DDoS dataset graphic models. However, a brief overview of the conclusions

drawn during the data visualisation phase will be provided at the end of the section.
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Figure 5.1: Box plot, histogram and scatter plot models of DDoS dataset. Value 0 of Label means BENIGN; Value
1 of Label means DDoS.

1 OpenSSL Cryptography and SSL/TLS Toolkit


https://www.openssl.org/

5.2. Data Visualisation

In order to properly build the graphic models (box plot, histogram, scatter plot, and correlation
matrix), it was necessary to convert the textual categorical features (e.g. Label) into numerical cate-
gorical features. In addition, rows with a lack of information were excluded. Some of the DDoS dataset
graphics models can be seen in the figure 5.1.

Through the observation of these graphics, it was possible to detect a large disparity in the range
of features values, and a presence of single unique value features ( Bwd PSH Flags, Fwd URG
Flags, Bwd URG Flags, CWE Flag Count, Fwd Avg Bytes/Bulk, Fwd Avg Packets/Bulk, Fwd
Avg Bulk Rate, Bwd Avg Bytes/Bulk, Bwd Arg Packets/Bulk, and Bwd Avg Bulk Rate).
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Figure 5.2: Correlation Matrix of DDoS dataset.

As concerns to the correlation matrix, this graphic was built without the single unique value features

mentioned above, as they do not correlate with any variable. Figure 5.2, shows that many variables
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5.2. Data Visualisation

are positively correlated (dark blue) and some are negatively correlated (light blue). A positive corre-
lation indicates that the two variables move together, and the relationship gets stronger the closer the
correlation gets to one. On the other hand, a negative correlation indicates that the two variables move

in opposite directions, and the relationship also gets stronger the closer to -1 the correlation gets.

5.2.1 Summary

After analysing all the obtained graphics, a deeper understanding of the behaviour of the data was
reached. These graphics revealed that some features exhibit a single unique value. A feature with
only one unique value cannot be useful for machine learning as it has zero variance. For example, a
tree-based model can never make a split on a feature with only one value since there are no groups to
divide the observations into. Regarding to the distribution of the data, it should be remembered that
some datasets have a very small amount of attack data when compared to the non-attack data. The

following figures show the Label distribution in each dataset.
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Figure 5.3: Label distribution on DDoS dataset. Figure 5.4: Label distribution on Port Scan dataset.
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Figure 5.5: Label distribution on Botnet dataset.  Figure 5.6: Label distribution Infiltration dataset.
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Figure 5.7: Label distribution on Web Attack dataset.
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Figure 5.8: Label distribution on Brute Force dataset.
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Figure 5.9: Label distribution on DoS dataset.
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5.3. Data Pre-processing

Of the datasets under study, only the DDoS and Port Scan datasets (figures 5.3 and 5.4) have
a reasonable distribution of benign and attack data. In all the other datasets (figures 5.5 to 5.9),
the amount of attack data, when compared with the amount of benign data, represents a very small
fraction of the dataset. After analysing these graphics, it was decided to exclude the Infiltration
dataset and delete the Heartbleed and Web Attack - SQL Injection classes from the DoS
and Web Attack datasets, respectively. This decision was taken on the basis of the limited amount
of data represented by these three classes.

In addition to the poor data distribution, it was also detected that several features had negative
values, which were not expected. The number of negative values in each feature for each of the

datasets are represented in table 5.2.

Table 5.2: Number of negative values in each feature per dataset.

Datasets

Features DDoS | PortScan | Botnet | Infiltration | Web Attacks | Brute Force DoS
Flow Duration 2 36 9 4 11 17 21
Flow Bytes/s 2 36 8 4 10 0 16
Flow Packets/s 2 36 9 4 11 17 21
Flow IAT Mean 2 36 9 4 11 17 21
Flow IAT Max 2 36 9 4 11 17 21
Flow IAT Min 108 176 225 353 236 504 749
Fwd IAT Min 6 0 0 0 0 0 11
Fwd Header Length 0 0 0 0 0 11 1
Bwd Header Length 0 0 0 0 0 5 0
Fwd Header Length.1 0 0 0 0 0 11 1
Init_win_bytes_forward 32925 60210 95834 102433 79108 200128 203253
Init_win_bytes_backward | 88296 76936 118403 164338 99177 256488 334494
min_seg_size_forward 0 0 0 0 0 11 1

As seen in the table above, the two variables with the highest number of negative values in all
datasets are the variables /nit_win_bytes_forward and Init_win_bytes_backward. Since they
have such a high number of negative entries, during the pre-processing stage, these two features

should be excluded from all datasets.

5.3 Data Pre-processing

After visualising the data in its raw form, there was the perception that the data should be changed

to be able to create an optimal model. As such, firstly it was performed the data selection. In this
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operation the most suitable predictors for each dataset were selected. Then, to achieve a better model

performance, multiple data transformations were applied.

5.3.1 Data Selection

e Predictors

Due to the different attack scenarios that each dataset holds, the predictors chosen for one
dataset could not fit well for the others. As such, a group of features was independently selected

for each dataset. Table 5.3 present the different groups of predictors.

Table 5.3: Predictors per dataset.

Datasets
Predictors DDoS | PortScan | Botnet | Web Attacks | Brute Force | DoS

Source Port X X X X X X
Protocol X X X X X X
Total Fwd Packets X

Total Length of Fwd Packets X X X X X X
Fwd Packet Length Max X X
Fwd Packet Length Min X X X X X
Flow Bytes/s X X X X X X
Flow Packets/s X X X X X X
Flow IAT Mean X X X
Fwd IAT Max X X X X X
Fwd IAT Min X X X X X X
Bwd IAT Total X X X X X X
Fwd PSH Flags X X X X X X
Bwd Packets/s X X X X X X
Fwd Header Length X X X X

PSH Flag Count X X X
FIN Flag Count X X X X X X
RST Flag Count X X X X X X
ACK Flag Count X X X X X X
URG Flag Count X X X X X X
Down /up Ratio X X X X X X
Avg Bwd Segment Size X X X X X
act_ata_kt_wd X X X
min_eg_ize_orward X X X X X X
Active Mean X X X X X X
Active Std X X X X X X
Idle Std X X X X X X




5.3. Data Pre-processing

e ResponseVariable

In all the datasets, the response variable is the feature Label. However, the values that this
feature can assume depends on the dataset. As it can be seen on table 5.4, only the class

Benign appears in all the datasets, whereas the others, appear in distinct ones.

Table 5.4: Label classes per dataset.

Datasets

Label Classes DDoS | PortScan | Botnet | Web Attacks | Brute Force | DoS
BENIGN X X X X X X
DDoS X

PortScan X

Botnet X
Web Attack Brute Force X
Web Attack XSS X

FTP-Patator X

SSH-Patator X

DoS Slowloris

DoS Slowhttptest
DoS Hulk
DoS GoldenEye

X | X | X | X

5.3.2 Data Transformation

e [ncorrect and missing datafiltering

To filter the incorrect and missing data, several strategies could be used. As already introduced
in section 5.2.1, the first filtering used was the removal of two columns corresponding to the vari-
ables /nit_win_bytes_forward and Init_win_bytes_backward, since they presented large
amounts of negative values. To all the other incorrect and missing data, the strategy was slightly

different. Instead of removing the columns, rows were removed.

e logarithmic transformation

In this study, the log transformation was applied to all the features whose value distribution
resembles a logarithmic distribution. As can be seen in figure 5.10, the application of log
transformation in the feature Total Length of Fwd Packets reduced the x axis values from

[0,120000] to [0, 12], leading to a more normal distribution of the data.
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Figure 5.10: Logarithmic transformation in feature Total Length of Fwd Packets.

e Normalisation

In this study, the interval used for normalisation, in all predictors, was [0, 1]. The figure 5.11

was produced after the application of the normalisation process to the data represented in 5.10b.

In this case the x axis values were reduced from [0, 12] to [0, 1].
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Figure 5.11: Histogram of feature Total Length of Fwd Packets after normalisation.

Label encoding

The label encoding was used in the data visualisation phase to map each type of IP (Source I P
and Destination | P) into a specific class, assigning it a corresponding integer. Label encoding

was also used in the response variable Label.

Duplicated rows

After applied the previous transformations, it was detected the existence of duplicated rows. As

such, all the duplicated rows were removed.
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5.4. Generative Adversarial Network 53

5.4 Generative Adversarial Network

In this experiment, two distinct GAN models were tested: the standard GAN and the WGAN-GP.

Both models revealed challenges during the training phase. The most common problem was the failure

to converge. Such type of loss occurs whenever the discriminator and the generator are unable to find

a point of balance between the two networks. Usually, this happens when the generator outputs poor

quality samples that are easily detected by the discriminator. In cases where this problem prevailed,

the noise vector z was increased in an effort to improve the GANs convergence. Figures 5.12 and 5.13

highlight this training issue, while figures 5.14 and 5.15 illustrate a stable training.
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Figure 5.14: Stable GAN.

5.4.1 Generated Data Pre-processing
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Figure 5.15: Stable WGAN-GP.

After analysing the generated data in its raw form, there was a perception that the values assigned

to the binary features were, in most cases, floats close to zero or one. As such, with the goal of improv-

ing the quality of the generated data, all the binary features values were replaced by 0 (if generated
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value < 0.5), or 1 (if generated value > 0.5). Besides these, also the values of the categorical variable

Protocol were replaced.

5.4.2 Generated Data Evaluation

In order to evaluate the distribution of the generated data, the Euclidean distance between the real
and generated data was calculated for each feature independently. The baseline for this evaluation
method was the Euclidean distance between the SMOTE generated data and the real data. Table 5.5

presents the Euclidean distance results of the Botnet generated data.

Table 5.5: Euclidean distances between the original pre-processed Botnet class data and the SMOTE (Baseline),

GAN, and WGAN-GP generated data, in each attribute.

Features Baseline GAN WGAN-GP
Source Port 0,000710 0.001963 0.002072
Protocol 0,0 0.004466 0.000259
Total Length of Fwd Packets 0.001289 0.005037 0.002436
Fwd Packet Length Min 0,000004 0.001190 0,000022
Flow Bytes/s 0,000710 0.001925 0.001888
Flow Packets/s 0,000588 0.006132 0.001348
Fwd IAT Max 0.000679 0.009847 0.002079
Fwd IAT Min 0.001232 0.006516 0.002881
Bwd IAT Total 0.000724 0.003940 0.002247
Fwd PSH Flags 0,0 0,0 0,0
Fwd Header Length 0,000342 0.007198 0.001112
Bwd Packets/s 0,000602 0.005333 0.001384
FIN Flag Count 0,0 0,0 0,0
RST Flag Count 0,0 0,0 0,0
ACK Flag Count 0,001101 0.008474 0.003957
URG Flag Count 0.001101 0.007636 0.004409
Down/Up Ratio 0,000575 0.001748 0.001100
Avg Bwd Segment Size 0,000037 0.001270 0.000261
act_data_pkt_fwd 0,000012 0.003585 0,000033
min_seg_size_forward 0,000472 0.003030 0.001606
Active Mean 0,000656 0.000620 0.000620
Active Std 0,000620 0.000585 0.000585
Idle Std 0,000584 0.000570 0.000570
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Network traffic is prone to variation. The number of packets in each flow, the flow duration, the
length of the packets, and almost all of the network traffic features are subject of drift, from flow to flow.
The exact replication of the real data distribution is therefore not desirable. Consequently, Euclidean
distances with value zero are only expected for binary or categorical features.

Through the observation of table 5.5, it was possible to see that the WGAN-GP generated data
presents a lower Euclidean distance than the GAN generated data. Still, both models present values
slightly higher than the baseline. This slight increase in the Euclidean distances is due to the fact that
the generative models do not generate the exact values present in the real data, but rather a large

variety of values close to the real ones. This can be easily perceptive in figure 5.16.
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(a) SMOTE generated data. (b) GAN generated data. (c) WGAN-GP generated data.

Figure 5.16: Real data distribution (Original) versus generated data distribution (Generated) in feature Bwd AT
Total.

These histograms display the distribution of the generated and real data in the feature Bwd AT
Total, for each model. Besides only being presented the graphics for this feature, the same behaviour
occurs in all the other features. The attack data generated by SMOTE (figure 5.16a) follow a distribution
very similar to the original data. On the other hand, the GAN generated data (figure 5.16b) trace a very
different distribution. Lastly, the data generated by the WGAN-GP (figure 5.16c¢) lists some of the key
points of the original distribution, but with some deviations. These graphs support the results obtained
in the evaluation of the Euclidean distance. The greater Euclidean distance, the greater the difference
between the two data distributions. Revealing that the WGAN-GP model has generated a more realistic

data than the standard GAN model.

5.5 Classification Models Results

In this section, the results obtained from the Artificial Neural Network and Decision Tree classifi-
cation models to the datasets under analysis will be presented. The tables presented below show the

evaluation metrics to all the Labe/ classes. The class BEN/GN represents the non-attack data while
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all the others represent the respective network attack. The support column indicates the number of

instances that each class has in the test set.

5.5.1 Original Training Set

The following tables (5.6 to 5.11) present the classification results when the classification models

were trained with the pre-processed imbalanced training set.
* DDoS Dataset

Table 5.6: Result of the imbalanced DDoS dataset classification.

Artificial Neural Network Decision Tree
Label Classes | Precision | Recall | Fl-score | Support Label Classes | Precision | Recall | Fl-score | Support
BENIGN 0.99870 | 0.99801 | 0.99835 | 30682 BENIGN 0.99938 | 0.99935 | 0.99936 | 30682
DDoS 0.99857 | 0.99906 | 0.99882 | 42668 DDoS 0.99953 | 0.99955 | 0.99954 | 42668
Accuracy: 0.99862 Accuracy: 0.99947

¢ Port Scan Dataset

Table 5.7: Result of the imbalanced Port Scan dataset classification.

Artificial Neural Network

Decision Tree

Label Classes | Precision | Recall | Fl-score | Support Label Classes | Precision | Recall | Fl-score | Support
BENIGN 0.99852 | 0.99989 | 0.99921 | 37788 BENIGN 0.99984 | 0.99992 | 0.99988 | 37788
Port Scan 0.99986 | 0.99801 | 0.99893 | 28160 Port Scan 0.99989 | 0.99979 | 0.99984 | 28160

Accuracy: 0.99909

¢ Botnet Dataset

Accuracy: 0.99986

Table 5.8: Result of the imbalanced Botnet dataset classification.

Artificial Neural Network

Decision Tree

Label Classes | Precision | Recall | Fl-score | Support Label Classes | Precision | Recall | Fl-score | Support

BENIGN 0.99873 | 0.99950 | 0.99912 | 55998 BENIGN 0.99977 | 0.99984 | 0.99980 | 55998

Bot 0.93171 | 0.84327 | 0.88528 453 Bot 0.97996 | 0.97130 | 0.97561 453
Accuracy: 0.99961

Accuracy: 0.99825
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e Web Attack Dataset

Table 5.9: Result of the imbalanced Web Attack dataset classification.

Artificial Neural Network Decision Tree
Label Classes | Precision | Recall | Fl-score | Support Label Classes | Precision | Recall | Fl-score | Support
BENIGN 0.99854 | 0.99958 | 0.99906 | 47937 BENIGN 0.99954 | 0.99971 | 0.99962 | 47937
W.A. Brute Force | 0.66467 | 0.88446 | 0.75897 502 W.A. Brute Force | 0.86089 | 0.85060 | 0.85571 502
W.A. XSS 1.00000 | 0.00461 | 0.00917 217 W.A. XSS 0.67907 | 0.67281 | 0.67593 217
Accuracy: 0.99396 Accuracy: 0.99671

¢ Brute Force Dataset

Table 5.10: Result of the imbalanced Brute Force dataset classification.

Artificial Neural Network Decision Tree
Label Classes | Precision | Recall | Fl-score | Support Label Classes | Precision | Recall | Fl-score | Support
BENIGN 0.99926 | 0.99916 | 0.99921 | 123231 BENIGN 0.99986 | 0.99989 | 0.99987 | 123231
FTP-Patator 0.97955 | 0.99659 | 0.98800 2643 FTP-Patator 0.99886 | 0.99886 | 0.99886 2643
SSH-Patator 0.97255 | 0.95573 | 0.96407 1965 SSH-Patator 0.99439 | 0.99288 | 0.99363 1965
Accuracy: 0.99844 Accuracy: 0.99976

¢ DoS Dataset

Table 5.11: Result of the imbalanced DoS dataset classification.

Artificial Neural Network Decision Tree

Label Classes | Precision | Recall | Fl-score | Support Label Classes | Precision | Recall | Fl-score | Support

BENIGN 0.99550 | 0.99328 | 0.99439 | 128235 BENIGN 0.99601 | 0.99589 | 0.99595 | 128235

DoS GoldenEye 0.96571 | 0.97725 | 0.97145 3429 DoS GoldenEye 0.99182 | 0.98979 | 0.99080 3429

DoS Hulk 0.99015 | 0.99426 | 0.99220 | 72295 DoS Hulk 0.99347 | 0.99353 | 0.99350 | 72295

DoS Slowhttptest | 0.90751 | 0.94217 | 0.92452 1833 DoS Slowhttptest | 0.98644 | 0.99236 | 0.98939 1833

DoS SlowLoris 0.94549 | 0.88404 | 0.91373 1923 DoS SlowLoris 0.98809 | 0.99220 | 0.99014 1923
Accuracy: 0.99189 Accuracy: 0.99490

After analysing all the binary and multi-class classification results, two appreciations can be taken:
the first one is the impact of data distribution on machine learning models; the second one is the
crucial use of different model evaluation metrics.

As it can be seen in the section 5.2.1, the DDoS and Port Scan datasets are the only ones with
a balanced distribution of attack and non-attack data. In these two datasets both models (ANN and
DT) had similar results, predicting both classes accurately. On the other hand, in the Botnet, Web

Attack, Brute Force, and DoS datasets (imbalanced datasets) just the non-attack data (Benign)
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was accurately predicted in both models. Although, if the model evaluation only took into consideration
the accuracy metric, these last models would have been considered as extremely good, given the high
accuracy. It is in these cases that the F1-score is so important. When there is a large data disparity,
only the Precision, Recall, and F1-score metrics can correctly evaluate the model results. Besides that,
looking at the entire classification results, it could be concluded that the Decision Tree model works
better than the ANN model when the data follow a skewed distribution.

Since the DDoS and Port Scan datasets have already a balanced distribution, these two datasets

will not be taken into consideration from now on.

5.5.2 SMOTE Balanced Training Set

The following tables (5.12 to 5.15) also result from the original test set classification. However,
at this time, the models were trained with the SMOTE balanced data. It was used the imbalanced-

learn? Python package to balance the training set through the SMOTE.

¢ Botnet Dataset

Table 5.12: Result of the SMOTE balanced Botnet dataset classification.

Artificial Neural Network Decision Tree
Label Classes | Precision | Recall | Fl-score | Support Label Classes | Precision | Recall | Fl-score | Support
BENIGN 0.99998 | 0.99614 | 0.99806 | 55998 BENIGN 0.99995 | 0.99993 | 0.99994 | 55998
Bot 0.67665 | 0.99779 | 0.80642 453 Bot 0.99119 | 0.99338 | 0.99228 453
Accuracy: 0.99616 Accuracy: 0.99988

¢ Web Attack Dataset

Table 5.13: Result of the SMOTE balanced Web Attack dataset classification.

Artificial Neural Network Decision Tree
Label Classes | Precision | Recall | Fl-score | Support Label Classes | Precision | Recall | Fl-score | Support
BENIGN 0.99996 | 0.99497 | 0.99764 | 47937 BENIGN 0.99985 | 0.99962 | 0.99974 | 47937
W.A. Brute Force | 0.59459 | 0.52590 | 0.55814 502 W.A. Brute Force | 0.95766 | 0.94622 | 0.95190 502
W.A. XSS 0.30739 | 0.72811 | 0.43228 217 W.A. XSS 0.84188 | 0.90783 | 0.87361 217
Accuracy: 0.98894 Accuracy: 0.99866

2 imbalanced-learn


https://pypi.org/project/imbalanced-learn/
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¢ Brute Force Dataset

Table 5.14: Result of the SMOTE balanced Brute Force dataset classification.

Artificial Neural Network Decision Tree
Label Classes | Precision | Recall | Fl-score | Support Label Classes | Precision | Recall | Fl-score | Support
BENIGN 0.99996 | 0.99738 | 0.99867 | 123231 BENIGN 0.99995 | 0.99992 | 0.99994 | 123231
FTP-Patator 0.97344 | 0.99849 | 0.98581 2643 FTP-Patator 0.99962 | 0.99962 | 0.99962 2643
SSH-Patator 0.88533 | 0.99796 | 0.93828 1965 SSH-Patator 0.99543 | 0.99746 | 0.99644 1965
Accuracy: 0.99741 Accuracy: 0.99987

* DoS Dataset

Table 5.15: Result of the SMOTE balanced DoS dataset classification.

Artificial Neural Network Decision Tree
Label Classes Precision | Recall | Fl-score | Support Label Classes Precision | Recall | Fl-score | Support
BENIGN 0.99912 | 0.98925 | 0.99416 | 128235 BENIGN 0.99867 | 0.99856 | 0.99861 | 128235
DoS GoldenEye 0.94169 | 0.99854 | 0.96929 3429 DoS GoldenEye 0.99593 | 0.99825 | 0.99709 3429
DoS Hulk 0.98695 | 0.99777 | 0.99233 | 72295 DoS Hulk 0.99776 | 0.99775 | 0.99775 | 72295
DoS Slowhttptest | 0.96038 | 0.99182 | 0.97585 1833 DoS Slowhttptest | 0.99509 | 0.99564 | 0.99536 1833
DoS SlowLoris 0.90141 | 0.99844 | 0.94745 1923 DoS SlowLoris 0.99430 | 0.99740 | 0.99585 1923
Accuracy: 0.99248 Accuracy: 0.99823

With regard to the results presented by the Artificial Neural Network model, it is shown that with
the use of a balanced training set through SMOTE, there is a significant improvement in terms of the
Recall evaluation metric. This indicates that, when trained with this data, the model is able to identify
a greater number of attacks comparing with the imbalanced data. However, this improvement in the
Recall is followed by a decrease in Precision, i.e., despite the fact that there has been a rise in the
number of correctly classified attack instances, true positives, there has also been a rise in the number
of false positives, which, in most cases, results in a decrease in the F1-score.

With respect to the classification results of the Decision Tree model, improvements are highlighted
in both Recall, Precision, and F1-score evaluation metrics. When trained this model with the SMOTE
balanced data, it is revealed an increase in the number of detected attacks as well as in the percentage

of correctly classified instances, which leads to a more accurate classification.

5.5.3 GAN Balanced Training Set

At this point in the study, the classification models were trained with the GAN balanced data. Once

the training phase was completed, the models were tested with the original test data.
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5.5. Classification Models Results

¢ Botnet Dataset

— Standard GAN generated data

In this case, the data used to train the classification models were balanced by the standard

GAN model. Tables 5.16, 5.18, 5.20, and 5.22, represent all cases where this happens.

Table 5.16: Result of the GAN balanced Botnet dataset classification.

Artificial Neural Network Decision Tree
Label Classes | Precision | Recall | Fl-score | Support Label Classes | Precision | Recall | Fl-score | Support
BENIGN 0.99896 | 0.99952 | 0.99924 | 55998 BENIGN 0.99982 | 0.99987 | 0.99985 | 55998
Bot 0.93602 | 0.87196 | 0.87827 453 Bot 0.98444 | 0.97792 | 0.98117 453
Accuracy: 0.99849 Accuracy: 0.99970

— WGAN-GP generated data

In this case, the data used to train the classification models were balanced by the WGAN-

GP model. Tables 5.17, 5.19, 5.21, and 5.23, represent all the cases where this happens.

Table 5.17: Result of the WGAN-GP balanced Botnet dataset classification.

Artificial Neural Network Decision Tree
Label Classes | Precision | Recall | Fl-score | Support Label Classes | Precision | Recall | Fl-score | Support
BENIGN 0.99939 | 0.99845 | 0.99892 | 55998 BENIGN 0.99980 | 0.99987 | 0.99984 | 55998
Bot 0.82806 | 0.92494 | 0.87393 453 Bot 0.98441 | 0.97572 | 0.98004 453
Accuracy: 0.99786 Accuracy: 0.99968

* Web Attack Dataset

— Standard GAN generated data

Table 5.18: Result of the GAN balanced Web Attack dataset classification.

Artificial Neural Network Decision Tree
Label Classes | Precision | Recall | Fl-score | Support Label Classes | Precision | Recall | Fl-score | Support
BENIGN 0.99935 | 0.99952 | 0.99944 | 47937 BENIGN 0.99958 | 0.99973 | 0.99966 | 47937
W.A. Brute Force | 0.69540 | 0.96414 | 0.80801 502 W.A. Brute Force | 0.86815 | 0.85259 | 0.86030 502
W.A. XSS 0.53333 | 0.03687 | 0.06897 217 W.A. XSS 0.68493 | 0.69124 | 0.68807 217
Accuracy: 0.99486 Accuracy: 0.99683
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— WGAN-GP generated data

5.5. Classification Models Results

Table 5.19: Result of the WGAN-GP balanced Web Attack dataset classification.

Artificial Neural Network

Decision Tree

Label Classes | Precision | Recall | Fl-score | Support Label Classes | Precision | Recall | Fl-score | Support
BENIGN 0.99946 | 0.99935 | 0.99941 47937 BENIGN 0.99958 | 0.99973 | 0.99966 47937
W.A. Brute Force | 0.67265 | 0.97012 | 0.79445 502 W.A. Brute Force | 0.86735 | 0.84661 | 0.85685 502
W.A. XSS 0.00000 | 0.00000 | 0.00000 217 W.A. XSS 0.67117 | 0.68664 | 0.67882 217

Accuracy: 0.99459

¢ Brute Force Dataset

— Standard GAN generated data

Accuracy: 0.99675

Table 5.20: Result of the GAN balanced Brute Force dataset classification.

Artificial Neural Network

Decision Tree

Label Classes | Precision | Recall | Fl-score | Support Label Classes | Precision | Recall | Fl-score | Support
BENIGN 0.99974 | 0.99935 | 0.99955 | 123231 BENIGN 0.99988 | 0.99985 | 0.99987 | 123231
FTP-Patator 0.98835 | 0.99546 | 0.99189 2643 FTP-Patator 0.99886 | 0.99886 | 0.99886 2643
SSH-Patator 0.97392 | 0.98830 | 0.98106 1965 SSH-Patator 0.99238 | 0.99389 | 0.99314 1965

Accuracy: 0.99910

— WGAN-GP generated data

Accuracy: 0.99974

Table 5.21: Result of the WGAN-GP balanced Brute Force dataset classification.

Artificial Neural Network

Decision Tree

Label Classes | Precision | Recall | Fl-score | Support Label Classes | Precision | Recall | Fl-score | Support
BENIGN 0.99968 | 0.99972 | 0.99970 | 123231 BENIGN 0.99989 | 0.99987 | 0.99988 | 123231
FTP-Patator 0.99320 | 0.99546 | 0.99433 2643 FTP-Patator 0.99924 | 0.99773 | 0.99849 2643
SSH-Patator 0.98977 | 0.98473 | 0.98724 1965 SSH-Patator 0.99239 | 0.99542 | 0.99390 1965

Accuracy: 0.99940

Accuracy: 0.99976
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5.5. Classification Models Results

¢ DoS Dataset

— Standard GAN generated data

Table 5.22: Result of the GAN balanced DoS dataset classification.

Artificial Neural Network Decision Tree
Label Classes Precision | Recall | Fl-score | Support Label Classes Precision | Recall | Fl-score | Support
BENIGN 0.99887 | 0.98900 | 0.99391 | 128235 BENIGN 0.99611 | 0.99611 | 0.99611 | 128235
DoS GoldenEye 0.97313 | 0.98221 | 0.97765 3429 DoS GoldenEye 0.99416 | 0.99271 | 0.99343 3429
DoS Hulk 0.98230 | 0.99881 | 0.99049 | 72295 DoS Hulk 0.99368 | 0.99364 | 0.99366 | 72295
DoS Slowhttptest | 0.97216 | 0.97163 | 0.97190 1833 DoS Slowhttptest | 0.98644 | 0.99182 | 0.98912 1833
DoS SlowLoris 0.97274 | 0.98336 | 0.97802 1923 DoS SlowLoris 0.99427 | 0.99324 | 0.99376 1923
Accuracy: 0.99209 Accuracy: 0.99513

— WGAN-GP generated data

Table 5.23: Result of the WGAN-GP balanced DoS dataset classification.

Artificial Neural Network Decision Tree
Label Classes | Precision | Recall | Fl-score | Support Label Classes | Precision | Recall | Fl-score | Support
BENIGN 0.99595 | 0.99321 | 0.99458 | 128235 BENIGN 0.99612 | 0.99589 | 0.99600 | 128235
DoS GoldenEye 0.98588 | 0.93642 | 0.96051 3429 DoS GoldenEye 0.98838 | 0.99213 | 0.99025 3429
DoS Hulk 0.98913 | 0.99660 | 0.99285 | 72295 DoS Hulk 0.99358 | 0.99364 | 0.99361 | 72295
DoS Slowhttptest | 0.95170 | 0.97818 | 0.96476 1833 DoS Slowhttptest | 0.98483 | 0.99182 | 0.98831 1833
DoS SlowLoris 0.97785 | 0.94124 | 0.95919 1923 DoS SlowLoris 0.99272 | 0.99220 | 0.99246 1923
Accuracy: 0.99284 Accuracy: 0.99497

Looking at the obtained results, both the data generated by the standard GAN and the data gener-
ated by the WGAN-GP reveal improvements in the detection of attacks compared to the original data.
Nevertheless, the Decision Tree classification model continues to present better classification results
than the Artificial Neural Network model.

Since the quality of the data produced by the standard GAN has been shown to be inferior to
the quality of the data generated by the WGAN-GP, it would be expected that worse results would be
obtained with the use of the first-mentioned data. However, this was not the case. Contrarily to what
was anticipated, in some datasets, the training set balanced by the standard GAN has revealed better

classification results than the training set balanced by WGAN-GP.
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5.6. Comparative Analysis

5.6 Comparative Analysis

In order to compare the previously presented classification results, the following tables (5.24 and
5.25) were built. The values presented in these tables were calculated by the difference between the
results obtained from the balanced training data and the results obtained from the original training
data. Through these tables, it is possible to identify which pre-processed training data reaches the

best results for each classification model.

Table 5.24: Comparison between the outcomes of the ANN classification model. Difference between the 3 dis-
tinct balanced data results and the original imbalanced data results. Red means negative difference

(worse results), green means positive difference (better results).

SMOTE GAN WGAN-GP
Label Classes Precision Recall Precision Recall Precision Recall
Botnet 0,25506 | 0,15452 1 | 0,00431 1t 0,02869 1 | 0,10365| 0,08167 1
Web Attack Brute Force | 0,07008 | 0,35856 | | 0,03073 1 0,07968 1 | 0,00798 1 0,08566 1
Web Attack XSS 0,69261 | 0,72351 | 0,46667 | 0,03226 1 1] 0,00461 |
FTP-Patator 0,00611 | 0,00190 1 | 0,00880 1 0,00113 | | 0,013651 0,00113 |
SSH-Patator 0,08859 | 0,04223 1 | 0,00137 1+ 0,03257 1 | 0,01722 1 0,02900 1
DoS GoldenEye 0,02402 | 0,02129 1 | 0,00742 1 0,00496 1 | 0,02017 t 0,04083 |
DoS Hulk 0,00320 | 0,00351 1 | 0,00785| 0,004551 | 0,00102 | 0,00234 1
DoS Slowhttptest 0,05287 1 0,04965 1 | 0,06465 1t 0,02946 1 | 0,04419 1 0,03601 1
DoS SlowLoris 0,04408 | 0,114401 | 0,027251 0,09932 1 | 0,032361 0,0572 1

Based on the observation of table 5.24, it could be concluded that, for the Artificial Neural Network
model, the training set that presents the best results of Precision and Recall is the one that was gener-
ated through the standard GAN. While the data generated through SMOTE shows a greater increase in
the detection of attacks (Recall), it also shows a significant drop in Precision. If the user's main goal
is to increase the identification of attacks regardless of the consequences that high false-positive rates
may have, SMOTE is the approach that should be used to balance the dataset since it is the one that
presents the most significant improvement in Recall. On the other hand, if the users want to boost
the identification of attacks without compromising the precision of the classified instances, the best
choice is to balance the training set using a standard GAN.

Contrary to what was observed in table 5.24, table 5.25 reveals that the training set balanced
by SMOTE is the one that presents the best results of Precision and Recall for the Decision Tree

classification model. Once again the data generated by the GAN model yields better results than the
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5.7. Discussion

data obtained by the WGAN-GP model. Although, for the Decision Tree model, it wasn't able to beat
the results of the SMOTE generated data.

Table 5.25: Comparison between the outcomes of the DT classification model. Difference between the 3 distinct
balanced data results and the original imbalanced data results. Red means negative difference

(worse results), green means positive difference (better results), blue means zero difference (same

results).
SMOTE GAN WGAN-GP
Label Classes Precision Recall Precision Recall Precision Recall

Botnet 0,01123 1 0,02208 1 | 0,00448 1+ 0,00662 1 | 0,00445 1 0,00442 1
Web Attack Brute Force | 0,09677 1 0,09562 t | 0,00726 t 0,00199 1 | 0,00646 1 0,00399 |
Web Attack XSS 0,16281 1 0,23502 1 | 0,00586 1 0,01843 1 | 0,00790 | 0,01383 1
FTP-Patator 0,00076 1 0,00076 1t = = 0,00038 1 0,00113 |
SSH-Patator 0,00104 t 0,00458 1 | 0,00201 ] 0,00101 1 | 0,00200 | 0,00254 1
DoS GoldenEye 0,00411 1t 0,00730 1 | 0,00234 1 0,00292 1 | 0,00344 | 0,00234 1
DoS Hulk 0,00429 1t 0,00422 1t | 0,00021 t 0,00011 1 | 0,00011 1 0,00011 1t
DoS Slowhttptest 0,00865 1t 0,00300 1 = 0,00054 | | 0,00161 | 0,00054 |
DoS SlowLoris 0,00621 1 0,00520 1 | 0,00463 1t 0,00104 1 | 0,00463 1 =

These findings confirm that balancing the training set is advantageous for both classification mod-
els. In general, the training set balanced by the standard GAN is what shows a more consistent
improvement in the results of classification, when considering both models (ANN and DT). These con-
clusions reveal to be outstanding since the data generated by the standard GAN model was the one
with a less similar distribution to the real data. Leading to the assumption that with more diversified

data, the model’s ability to detect new attacks is enhanced.

5.7 Discussion

In addition to the use of Generative Adversarial Networks to improve the detection of network
anomalies, this research also noticed that the Decision Tree model was able to achieve better classifi-
cation results for the CICIDS2017 dataset than the Artificial Neural Network model.

The data properties could be the reason for ANN’s poor results. As CICIDS2017 is a network flow
dataset, many of the variables are categorical. Decision Trees can handle these variables very well,
however, the Artificial Neural Networks expect all input values to be numerical [73]. When trained

with categorical values, the ANN model misunderstands the data to be in some order, 0 < 6 < 17
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5.7. Discussion

(Protocol values: HOPOPT(0), TCP(6), UDP(17)), which is not true. During the implementation
of the pre-processing stage this was not taken into account. Through the use of the label encoding
technique, only the textual categorical variables were transformed into numerical values. Even though,
this technique may not be the best for the ANN models since it uses number sequencing.

For that reason, a warning note is left. To achieve state-of-the-art results on network anomalies
detection using an Artificial Neural Network classification model, it is recommended the use of different

encoding techniques [38, 73] in all the categorical variables (numerical or textual).
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Conclusion

During the course of this work, detailed conclusions on the outcomes achieved at each stage of
the project were presented. As such, only the conclusions that can be drawn from the overall work will
be addressed in this chapter. In addition, it will be described the contributions to the network security

and adversarial deep learning fields, along with work improvements that may be explored in the future.

6.1 Conclusions

The presented work is intended to improve the detection of anomalies in the network through the
use of adversarial deep learning methods. Due to the sparse availability of network flow data and its
multi-class imbalanced problem, the proposed solution focuses on generating new synthetic data from
the current one in order to increase the learning ability of the classifiers.

The final system results in a pipeline that receives an imbalanced dataset as input and, through the
use of Generative Adversarial Networks as an oversampling technique, makes it balanced. Alongside
this, the traditional data augmentation technique, SMOTE, is applied to the imbalanced dataset. The
pipeline is finalised with the ANN and DT classification models that are independently trained with
each data (imbalanced data, GANs balanced data, and SMOTE balanced data).

The application of the proposed system to the CICIDS2017 dataset revealed that the use of Gen-
erative Adversarial Networks to balance the training set has increased the efficiency of classification
models in the detection of anomalies in the network. Moreover, it was observed that the standard
GAN model produced samples of lower quality than the samples produced by the WGAN-GP, and even
so, showed a greater improvement in the results of the classifiers, leading to the assumption that with
more diversified data, the model’s ability to detect emerging and evolving attacks is enhanced.

Despite the great results obtained with the balanced data from the GANs, the SMOTE balanced
data was the one that showed the greatest increase in Recall. The biggest difference between these
two techniques was in the similarity to reality. During the training process, the GAN models presented
numerous limitations that proved to be detrimental to the quality of the data generated. Although the
data produced by the GANs were close to the real, they were not yet at the level of the data generated

by the SMOTE.
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6.2. Prospect for Future Work

With regard to the classification models, the results obtained revealed that the Decision Tree model
was the best performing classifier in the detection of network anomalies. These results are supported
by the properties of the data under study. Many of the attributes present in the network flow data
are categorical (for example, protocol, source port, etc.). The Decision Tree model is better suited to
categorical data than the Artificial Neural Network model, making it one of the best choices for network
anomaly detection classifiers.

Lastly, it can be concluded that GANs have far more to offer than just image generation. This
project has shown that Generative Adversarial Networks are also capable of generating continuous and

categorical data of good quality, disclosing an additional value for processes of data augmentation.

6.2 Prospect for Future Work

Despite the good results obtained with the developed system, it would be useful to improve the
quality of the data generated by GANs. As such, new approaches that promote GANSs training stability
should be studied and tested. The Two Time-scale Update Rule (TTUR) proposed by Heusel et al. [41]
will be one of the approaches to be considered as future work, as it improves the convergence between
the two networks during the training process.

In terms of data pre-processing, new approaches to deal with categorical variables should be
considered, e.g. one hot label encoding. Besides this, it would be interesting to explore ANN hyper-
parameter optimization with Genetic Algorithms [57, 95]. In this optimization technique, the specific
problem is pictured in a chromosome composed of genes. Each gene represents a characteristic of the
problem, e.g. number of neurons, layers, epochs, batch size, activation function. After specifying the
problem, the algorithm will perform several iterations (each iteration consists of: training, selection,
crossover, and mutation) with different chromosomes configuration. Once the Genetic Algorithm has
completed all iterations the results will be presented as a population of solutions.

With these improvements in data pre-processing and hyperparameter optimization, an increase in

the identification of network anomalies via the Artificial Neural Network model is expected.
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Appendix

CICIDS2017 Dataset Features Description

Table 6.1: CICIDS2017 dataset features description.

# Attribute Description Type Example
192.168.10.5-
1 | FlowID Flow identifier categorical | 104.16.207.165-
54865-443-6
2 | Source IP Source IP address categorical | 104.16.207.165
3 | Source Port Source Port categorical | 443
4 | Destination IP Destination IP address categorical | 192.168.10.5
5 | Destination Port Destination Port categorical | 54865
Protocol number
6 | Protocol categorical | 6
HOPOPT(0) TCP(6) UDP(17)
07/07/2017
7 | Time stamp Flow time stamp categorical
03:30:00
Duration of the flow in
8 | Flow Duration int 1293792
Microsecond
Total packets in the forward
9 | Total Fwd Packets int 3
direction
Total packets in the backward
10 | Total Backward Packets int 7
direction
Total size of packet in forward
11 | Total Length of Fwd Packets int 26
direction
Total size of packet in
12 | Total Length of Bwd Packets int 11607
backward direction
Continued on next page
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Table 6.1 — continued from previous page

# Attribute Description Type Example
Maximum size of packet in

13 | Fwd Packet Length Max int 20
forward direction
Minimum size of packet in

14 | Fwd Packet Length Min int 0
forward direction
Mean size of packet in

15 | Fwd Packet Length Mean float 8.67
forward direction
Standard deviation size of

16 | Fwd Packet Length Std float 10.26
packet in forward direction
Maximum size of packet in

17 | Bwd Packet Length Max int 5840
backward direction
Minimum size of packet in

18 | Bwd Packet Length Min int 0
backward direction
Mean size of packet in

19 | Bwd Packet Length Mean float 1658.14
backward direction
Standard deviation size of

20 | Bwd Packet Length Std float 2137.30
packet in backward direction
Number of flow packets per

21 | Flow Bytes/s float 8991.40
second
Number of flow packets per

22 | Flow Packets/s float 7.73
second
Mean time between two

23 | Flow IAT Mean float 143754.67
packets sent in the flow
Standard deviation time

24 | Flow IAT Std between two packets float 430865.81
sent in the flow
Maximum time between two

25 | Flow IAT Max int 1292730
packets sent in the flow
Minimum time between two

26 | Flow IAT Min int 2
packets sent in the flow

Continued on next page
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Table 6.1 — continued from previous page

Attribute

Description

Type Example

27

Fwd IAT Total

Total time between two
packets sent in the forward

direction

int 747

28

Fwd IAT Mean

Mean time between two
packets sent in the forward

direction

float 373.5

29

Fwd IAT Std

Standard deviation time
between two packets sent

in the forward direction

float 523.97

30

Fwd IAT Max

Maximum time between
two packets sent in the

forward direction

int 744

31

Fwd IAT Min

Minimum time between two
packets sent in the forward

direction

int 3

32

Bwd IAT Total

Total time between two
packets sent in the backward

direction

int 1293746

33

Bwd IAT Mean

Mean time between two
packets sent in the backward

direction

float 215624.33

34

Bwd IAT Std

Standard deviation time
between two packets sent

in the backward direction

float 527671.93

35

Bwd IAT Max

Maximum time between
two packets sent in the

backward direction

int 1292730

36

Bwd IAT Min

Minimum time between
two packets sent in the

backward direction

int 2

Continued on next page
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Table 6.1 — continued from previous page

# Attribute Description Type Example
Number of times the PSH
flag was set in packets
37 | Fwd PSH Flags int 0
traveling in the forward
direction (0 for UDP)
Number of times the PSH
flag was set in packets
38 | Bwd PSH Flags int 0
traveling in the backward
direction (0 for UDP)
Number of times the URG
flag was set in packets
39 | Fwd URG Flags int 0
traveling in the forward
direction (0 for UDP)
Number of times the URG
flag was set in packets
40 | Bwd URG Flags int 0
traveling in the backward
direction (0 for UDP)
Total bytes used for headers
41 | Fwd Header Length int 72
in the forward direction
Total bytes used for headers
42 | Bwd Header Length int 152
in the backward direction
Number of forward packets
43 | Fwd Packets/s float 2.32
per second
Number of backward packets
44 | Bwd Packets/s float 5.41
per second
45 | Min Packet Length Minimum length of a packet int 0
46 | Max Packet Length Maximum length of a packet int 5840
47 | Packet Length Mean Mean length of a packet float 1057.55
Standard deviation length
48 | Packet Length Std float 1853.44
of a packet
49 | Packet Length Variance Variance length of a packet float 3435230.67
50 | FIN Flag Count Number of packets with FIN int 0

Continued on next page
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Table 6.1 — continued from previous page

# Attribute Description Type Example

51 | SYN Flag Count Number of packets with SYN int 0

52 | RST Flag Count Number of packets with RST int 0

53 | PSH Flag Count Number of packets with PUSH | int 1

54 | ACK Flag Count Number of packets with ACK int 0

55 | URG Flag Count Number of packets with URG int 0

56 | CWE Flag Count Number of packets with CWE int 0

57 | ECE Flag Count Number of packets with ECE int 0

58 | Down/Up Ratio Download and upload ratio int 2

59 | Average Packet Size Average size of packet float 1163.3
Average size observed in the

60 | Avg Fwd Segment Size float 8.67
forward direction
Average number of bytes bulk

61 | Avg Bwd Segment Size float 1658.14
rate in the forward direction
Average number of bytes bulk

62 | Fwd Avg Bytes/Bulk float 0
rate in the forward direction
Average number of packets

63 | Fwd Avg Packets/Bulk bulk rate in the forward float 0
direction
Average number of bulk

64 | Fwd Avg Bulk Rate float 0
rate in the forward direction
Average number of bytes

65 | Bwd Avg Bytes/Bulk bulk rate in the backward float 0
direction
Average number of packets

66 | Bwd Avg Packets/Bulk bulk rate in the backward float 0
direction
Average number of bulk rate

67 | Bwd Avg Bulk Rate float 0
in the backward direction
The average number of packets

68 | Subflow Fwd Packets in a sub flow in the forward int 3
direction

Continued on next page
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Table 6.1 — continued from previous page

Attribute

Description

Type Example

69

Subflow Fwd Bytes

The average number of bytes
in a sub flow in the forward

direction

int 26

70

Subflow Bwd Packets

The average number of packets
in a sub flow in the backward

direction

int 7

71

Subflow Bwd Bytes

The average number of bytes
in a sub flow in the backward

direction

int 11607

72

Init_Win_bytes_forward

The total number of bytes sent
in initial window in the

forward direction

int 8192

73

Init_Win_bytes_backward

The total number of bytes sent
in initial window in the

backward direction

int 229

74

Act_data_pkt_fwd

Count of packets with at least
1 byte of TCP data payload

in the forward direction

int 2

75

Min_seg_size_forward

Minimum segment size
observed in the forward

direction

int 20

76

Active Mean

Mean time a flow was active

before becoming idle

int 0

77

Active Std

Standard deviation time a
flow was active before

becoming idle

float 0

78

Active Max

Maximum time a flow was

active before becoming idle

int 0

79

Active Min

Minimum time a flow was

active before becoming idle

int 0

Continued on next page
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Table 6.1 — continued from previous page

# Attribute Description Type Example
Mean time a flow was active

80 | Idle Mean int 0
before becoming idle
Standard deviation time a

81 | Idle Std flow was idle before float 0
becoming active
Maximum time a flow was

82 | Idle Max int 0
idle before becoming active
Minimum time a flow was

83 | Idle Min int 0
idle before becoming active

84 | Label Flow label categorical | DDoS
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