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André Leite Ferreira

July 2021



C O P Y R I G H T A N D T E R M S O F U S E F O R T H I R D PA R T Y W O R K

This dissertation reports on academic work that can be used by third parties as long as the
internationally accepted standards and good practices are respected concerning copyright
and related rights.

This work can thereafter be used under the terms established in the license below.

Readers needing authorization conditions not provided for in the indicated licensing should
contact the author through the RepositóriUM of the University of Minho.
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A B S T R A C T

This dissertation aims to evaluate and improve the performance of deep learning (DL)
algorithms to autonomously drive a vehicle, using a Remo Car (an RC vehicle) as testbed.

The RC vehicle was built with a 1:10 scaled remote controlled car and fitted with an
embedded system and a video camera to capture and process real-time image data. Two
different embedded systems were comparatively evaluated: an homogeneous system, a
Raspberry Pi 4, and an heterogeneous system, a NVidia Jetson Nano. The Raspberry Pi 4 with
an advanced 4-core ARM device supports multiprocessing, while the Jetson Nano, also with
a 4-core ARM device, has an integrated accelerator, a 128 CUDA-core NVidia GPU.

The captured video is processed with convolutional neural networks (CNNs), which
interpret image data of the vehicle’s surroundings and predict critical data, such as lane view
and steering angle, to provide mechanisms to drive on its own, following a predefined path.

To improve the driving performance of the RC vehicle, this work analysed the programmed
DL algorithms, namely different computer vision approaches for object detection and image
classification, aiming to explore DL techniques and improve their performance at the inference
phase.

The work also analysed the computational efficiency of the control software, while running
intense and complex deep learning tasks in the embedded devices, and fully explored the
advanced characteristics and instructions provided by the two embedded systems in the
vehicle.

Different machine learning (ML) libraries and frameworks were analysed and evaluated:
TensorFlow, TensorFlow Lite, Arm NN, PyArmNN and TensorRT. They play a key role to
deploy the relevant algorithms and to fully engage the hardware capabilities.

The original algorithm was successfully optimized and both embedded systems could
perfectly handle this workload. To understand the computational limits of both devices, an
additional and heavy DL algorithm was developed that aimed to detect traffic signs.

The homogeneous system, the Raspberry Pi 4, could not deliver feasible low-latency values,
hence the detection of traffic signs was not possible in real-time. However, a great performance
improvement was achieved using the heterogeneous system, Jetson Nano, enabling their
CUDA-cores to process the additional workload.

K E Y W O R D S Computer vision, parallel computing, deep learning, inference, homogeneous
programming, heterogeneous programming, optimization, autonomous driving.
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R E S U M O

Esta dissertação tem como objetivo avaliar e melhorar o desempenho de algoritmos de deep
learning (DL) orientados à condução autónoma de veı́culos, usando um carro controlado
remotamente como ambiente de teste.

O carro foi construı́do usando um modelo de um veı́culo de controlo remoto de escala 1:10,
onde foi colocado um sistema embebido e uma câmera de vı́deo para capturar e processar
imagem em tempo real. Dois sistemas embebidos foram comparativamente avaliados: um
sistema homogéneo, um Raspberry Pi 4, e um sistema heterogéneo, uma NVidia Jetson Nano. O
Raspberry Pi 4 possui um processador ARM com 4 núcleos, suportando multiprocessamento.
A Jetson Nano, também com um processador ARM de 4 núcleos, possui uma unidade adicional
de processamento com 128 núcleos do tipo CUDA-core.

O vı́deo capturado é processado usando redes neuronais convolucionais (CNN), inter-
pretando o meio envolvente do veı́culo e prevendo dados cruciais, como a visibilidade da
linha da estrada e o ângulo de direção, de forma a que o veı́culo consiga conduzir de forma
autónoma num determinado ambiente.

De forma a melhorar o desempenho da condução autónoma do veı́culo, diferentes algorit-
mos de deep learning foram analisados, nomeadamente diferentes abordagens de visão por
computador para detecção e classificação de imagens, com o objetivo de explorar técnicas de
CNN e melhorar o seu desempenho na fase de inferência.

A dissertação também analisou a eficiência computacional do software usado para a
execução de tarefas de aprendizagem profunda intensas e complexas nos dispositivos embe-
bidos, e explorou completamente as caracterı́sticas avançadas e as instruções fornecidas pelos
dois sistemas embebidos no veı́culo.

Diferentes bibliotecas e frameworks de machine learning foram analisadas e avaliadas: Tensor-
Flow, TensorFlow Lite, Arm NN, PyArmNN e TensorRT. Estes desempenham um papel fulcral no
provisionamento dos algoritmos de deep learning para tirar máximo partido das capacidades
do hardware usado.

O algoritmo original foi otimizado com sucesso e ambos os sistemas embebidos con-
seguiram executar os algoritmos com pouco esforço. Assim, para entender os limites com-
putacionais de ambos os dispositivos, um algoritmo adicional mais complexo de deep learning
foi desenvolvido com o objetivo de detectar sinais de trânsito.

O sistema homogéneo, o Raspberry Pi 4, não conseguiu entregar valores viáveis de baixa
latência, portanto, a detecção de sinais de trânsito não foi possı́vel em tempo real, usando este
sistema. No entanto, foi alcançada uma grande melhoria de desempenho usando o sistema
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heterogéneo, Jetson Nano, que usaram os seus núcleos CUDA adicionais para processar a
carga computacional mais intensa.

PA L AV R A S - C H AV E Visão por computador, computação paralela, aprendizagem pro-
funda, inferência, programação homogénea, programação heterogénea, otimização, condução
autónoma
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1

I N T R O D U C T I O N

The automotive industry is changing with the arrival of an emerging mobility value chain
that is being actively studied and developed by companies nowadays - the autonomous
driving. This topic is becoming more present and with many interests, which led many
companies to develop hardware and software technologies towards to a fully autonomous
driving capability.

Artificial Intelligence (AI) is the key to self-driving cars and, therefore, Deep Learning (DL),
a sub-domain of Machine Learning (ML) algorithms based on Artificial Neural Networks
(ANNs), has been proving to be quite efficient on problem solving of tasks such as object
detection, speech recognition, language translation and others. This computing field is
being increasingly explored to provide an autonomous and less complex way to solve these
challenges.

Multiple types of ANNs, such as Deep Neural Networks (DNNs), have been successfully
applied to this subject, since vision-based navigation of a vehicle requires a high-quality and
precise level object detection, which certain types of neural networks can deliver.

This scientific field — computer vision — plays a key role in autonomous driving, since it
seeks to automate tasks that humans can do by giving the capability to the machine to take
decisions by analysing, processing and extracting high-dimensional data from digital images
that represent the real world. Relevant environment data can be captured through embedded
sensors and systems attached to the car, so this information can be processed in a way to
derive intelligent vehicle control output, such as the steering angle and the acceleration to
safely drive the car.

To successfully deploy this know-how in the car, embedded systems are required. All
manufactured cars, nowadays, already contains hundreds of embedded systems that most
people are not aware of. Climate control, infotainment panel or built-in safety systems are
all controlled by these systems. And in the future self-driving cars will be equipped with
a vast and numerous of embedded systems needed for additional computation and tasks
distribution, absolutely crucial to build an autonomously driven car.

Processing these AI workloads on embedded computing platforms adds up new challenges
since these platforms are not built to process big and heavy workloads. However, these intel-
ligent driving vehicles carry core algorithms that are computationally demanding and there
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1.1. Challenges and Goals 2

is the necessity to have a good real-time processing flow. Therefore, computing power has to
satisfy the needs of producing intelligent output data from the car components/embedded
systems so it can derive an autonomous control. Hence, choosing the right hardware is not a
logical and linear option since it must also fit additional constraints like cost, size and power
consumption.

1.1 C H A L L E N G E S A N D G O A L S

This dissertation is aligned with the autonomous driving work being developed at Bosch
Car Multimedia, S.A. And the introduction of this concept into the company’s development
pipeline is an asset, which requires a careful selection of optimized embedded systems and
the right ML tools to efficiently deploy the deep learning algorithms. The challenges for
this work also includes the optimization of DL algorithms running on different fine-tuned
frameworks, which will be tested in a 1:10 scaled remote controlled car.

DL algorithms are computational intensive, not only during the training of the neural
networks but also in the inference phase, due to the number of parameters and the required
number of layers being processed. In monitor/control systems with real-time requirements,
such as object detection in autonomous vehicles, an embedded computing platform with
GPU cores as accelerators may help to provide the required performance.

Bosch supplied the RC vehicle to test, validate and improve the performance of existing
DL implementations. The RC vehicle is remotely configured and uses an embedded hybrid
system with Advanced RISC Machine (ARM) cores to autonomously monitor and control the
RC vehicle, with some predefined constraints. The evaluation of the inference performance of
several DL algorithms running in this RC vehicle considered two types of embedded systems:
homogeneous or heterogeneous with on-chip computing accelerators (GPU cores).

The main goals defined for this dissertation were:

1. To deploy and evaluate DL algorithms on two different Linux embedded systems:

• the Raspberry Pi 4 (with a quad-core Cortex-A72);

• the NVidia Jetson Nano (with a quad-core Cortex-A57 and a 128 CUDA-core
NVidia GPU Maxwell).

2. To improve the inference performance of the algorithms by enabling hardware and
software optimizations, exploring the following ML libraries and frameworks:

• TensorFlow;

• TensorFlow Lite;

• Arm NN;

• PyArmNN;
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• TensorRT.

1.2 D O C U M E N T O U T L I N E

This document is structured in five chapters. The first one, this Introduction, presented the
work context, the challenges and the work goals. Chapter 2, ML inference for autonomous
driving, describes the state of the art of the relevant information to understand the problem
and to allow the search for an innovative and efficient solution. Chapter 3, ML inference
on embedded devices, describes the testbed environment with full details of the embedded
systems in the RC vehicle, with a focus on system tuning for ML inference and on the devel-
oped implementations and its challenges. Chapter 4, Experimental results and discussion
details and discusses the evaluations and tests performed on the developed implementations,
presenting a qualitative and a quantitative analysis of the delivered outcomes. Chapter 5,
Conclusion, gives an overview of the developed work, critically summarising the core work
of this dissertation and giving suggestions for additional features that may enrich the work
of this project.



2

M L I N F E R E N C E F O R A U T O N O M O U S D R I V I N G

2.1 M A C H I N E L E A R N I N G A P P R O A C H T O A U T O N O M O U S D R I V I N G

2.1.1 Autonomous Driving

Developing a full self-driving car means to create a complex and intelligent system capable
to handle complex traffic scenarios in urban and highway environments at any time. This
complexity calls for the artificial intelligence field since its goal is to provide cognitive abilities
to machines, and on this use-case can processes an high amount of data efficiently, train it
and validate the autonomous driving systems.1

Nowadays, one of the biggest challenges for the experts is to improve the efficiency of
the systems intelligence, which must understand all the surrounding environment and all
moving and static objects, as well as predict the next move of the vehicle in order to adapt
itself to a variety of circumstances that may occur ahead on its route.

Autonomous driving requires a wide range of information and knowledge and needs to
understand the environment, determine the exact position and decide how it should behave
towards a given condition on the road. Thus requiring AI and computing power to provide an
advanced system to safely handle complex traffic situations and rely upon several conditions.

2.1.2 Computer Vision Techniques

This scientific field deals with the high-level understating of digital images or videos, con-
cerning with automatic extraction, analysis and understanding of useful information from
images. In such way, this technology seeks to automate tasks performed by the human visual
system Szeliski (2011).

Object detection and classification are two important tasks that play a major role in the
autonomous driving, in a such way that the car needs to record and process the image of the
vehicle route to track the environment and recognize the path that it must follow and the

1 Interview with Moritz Dechant in 2018 on ”Self-driving car technology — Between man and machine”, in
https://www.bosch.com/stories/autonomous-driving-interview-with-moritz-dechant/.
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2.1. Machine Learning Approach to Autonomous Driving 5

obstacles that must avoid. Because computer vision can extract an high-level of understanding
from digital images or videos, it delivers great techniques and algorithms to accomplish these
desired tasks, since it deals with autonomous planning for navigation systems.

This technology has been seen playing a big role in the automotive field, since the 90s, with
the automatic car plate recognition, among other areas. But for this scenario, an efficient and
fine-tuned collection of technologies must be used in the future to fully promote an advanced
intelligent system capable to self-drive vehicles.

Traditional Approaches

Computer vision algorithms work, in general, by extracting features from images and using
them to classify and find patterns on them. Despite the recent use and investigation of these
techniques, computer vision began in the late 1960s, pioneering artificial intelligence.

Multiple vision related tasks were implemented, mostly recurring to the extraction of
multiple features from images, such as edges, corners, colors, letters, numbers, deemed to be
extremely relevant in such tasks. Lee (2016).

Traditional techniques for image matching and feature detection were implemented with
different feature-based approaches such as, SIFT (Scale-Invariant Feature Transform) Karami
et al. (2017), SURF (Speeded-Up Robust Features) Bay et al. (2006), BRIEF (Binary Robust
Independent Elementary Features) Michaeland et al. (2010), Features from Accelerated Seg-
ment Test (FAST) Rosten and Drummond (2006), Hough transforms Goldenshluger and Zeevi
(2004), geometric hashing Tsai (1994), among other wide-range of conventional Computer
Vision (CV) algorithms.

The difficulty of these approaches on feature extraction or image classification is that
features must be explicitly chosen, in a such way that the algorithm may trace them on given
input images. The problem, is that becomes hard to cope with CV algorithms when the
number of classification classes or features to extract from an extremely high number of
images increases. So when comparing to modern algorithms, these old methods can provide
a better performance, however the accuracy and the precision becomes degraded of the
predicted the data.

So this traditional approach is not the most suitable one to support the process of feature
detection of real-time data that requires an high value of accuracy, so the vehicle can safely
drive through the path.

Artificial Intelligence Approach

Until recently, computer vision only worked with limited capacity due to the limitations of
the required computational power for these workloads. Over the last few years, major efforts
and advances in both machine learning algorithms and computer hardware had been pushed
towards. This led to the application of computer vision techniques that already existed years
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ago, but it was not possible to deploy them on the old machines because it was lacking the
resources to handle these heavy AI workloads.

These advances in artificial intelligence and innovations in deep learning and neural
networks has been able to surpass humans in some tasks related to detecting and labeling
objects.

One of the driving factors behind the growth of computer vision is the increasing amount
of accessible data, since this technology needs big data. The increasing amount of information
is leading to the extraction of even more knowledge, which leads to better predictions since
the training datasets are becoming richer in information.

This approach, using modern AI techniques may achieve substantially better accuracy,
due to the presence of an higher amount of information that can be processed on the latest
devices that can handle this amount of mathematical operations existing on these algorithms
O’Mahony et al. (2019).

2.1.3 Deep Learning

Deep Learning is a particular type of machine learning, which uses artificial neural networks
to make intelligent systems. This is, trains computers to perform tasks as human behaviours
do, which includes, speech recognition, image recognition and prediction of data. Instead of
organize the data to be executed through predefined methods and algorithms, deep learning
configures basic parameters upon the data and trains the computer to learn by itself through
patterns recognition on multiple processing layers. This type of AI is widely used in computer
vision, speech recognition or natural language processing tasks because it can classify, cluster
and predict data with a good accuracy. Goodfellow et al. (2016)

Deep learning architecture is characterized by making use of artificial neural networks,
which are trained by analysing an amount of data. This learning process can be supervised,
semi-supervised or unsupervised. The algorithms are often trained with a large amount of
data Géron (2017), hence this intense process must be executed, in most cases, by powerful
server machines/workstations.

This computing area holds on a powerful set of technologies and techniques that achieves
great power and flexibility by learning to represent the world, driving to the biggest in-
novations in the most diverse areas such as computer vision, natural language processing,
healthcare and genomics Zhang et al. (2020).

The usage of deep learning algorithms is usually comprehended into two stages, training
and inference. Training is the process where the neural network processes the input to map
the original input into a such classification or into a quantification of some variable or data
analysis.
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Artificial Neural Networks

ANNs design were inspired from biology, group theory and a lot from research and constitutes
sets of algorithms intended to recognize patterns.

Artificial neural networks are composed by neurons, synapses, weights, biases and func-
tions. A neuron is the basic unit of the neural network that receives data, processes it and
transmits it.

These networks can have millions of neurons connected, which makes this system capable
to analyse and find deep patterns on different kind of information, extracting knowledge
from them.

As presented in Figure 1, the neurons are divided into three groups: (i) input neurons that
are responsible to receive the input data of the algorithm; (ii) hidden neurons that processes
information transmitted from previous layers; (iii) and output neurons that produces the
output data.

Figure 1: Architecture of a artificial neural network

Neurons can only operate on numbers between 0 and 1 or between -1 and 1, so to translate
the input data into numbers readable by the neurons, a normalization process must be
executed. This process is responsible for analysing the input data, map it to numbers and
then convert them to a range that is understandable by the neurons.

Synapses are the connections between the neurons, and the role of them is to learn and
to memorize patterns of the input data. Each synapse will hold a weight, which adds up
changes to the input information. Weights plays an important role to predict data, since they
use numerical parameters to determine the effectiveness of neurons by using them as input
and mapping them to different values to be used by other neurons on next layers.

The networks can be trained recurring to two learning techniques: (i) supervised learning;
and (ii) unsupervised learning.

In supervised learning, a training dataset is given to the model. This training data is repre-
sented by multiple input examples and the corresponding target outputs. When the network
is learning from the input data, the weights are constantly adjusted for error reduction in
order to map input data into different values that can be used by another neurons, passing
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by more weight synapses in order to replicate the desired output. The network iterations
above this process run multiple times until the weights are correctly adjusted to compute the
desired result. In supervised learning, the training process must be executed to generate a
network able to predict data.

Unsupervised learning does not have a training dataset that contains input data that must
be mapped into target outputs. During this process, the ANN network adjusts its weights
by processing input data, producing an output similar to the input. The model is able to
recognise the patterns and the differences of the inputs, without any external data examples.
In this process, clusters, which are a group of multiple weights, are formed, on which each
cluster is able to find a certain pattern on the input data.

Convolutional Neural Networks

Most modern deep learning models are based on artificial neural networks, specifically,
Convolutional Neural Networks (CNNs). And are widely used for image classification, face
recognition, scene labeling and more.

CNN is based on the animal’s visual cortex and is a specialized kind of neural network
for processing data that assumes a special spatial structure on its input, designed to map
image data to an output variable. This convolutional networks are designed to work with
two-dimensional image data.

Traditional ANNs were not built for image processing because its neurons are not placed
like the brain area structure responsible for processing visual stimuli in humans or other
animals. Thus CNNs have proving to be highly efficient on image data related prediction
problems.

The neurons in the CNNs present in the hidden layers are only linked with a subset of
neurons of the preceding layer. This connectivity architecture permits the CNN models to
learn discreet features from input data.

The convolutional name comes from the convolutional layer, which performs an operation
called ”convolution”, that is always present in these types of networks.

A convolution is a linear mathematical operation defined by the multiplication of a set of
weights with the input. Because this technique was designed for two-dimensional input data,
the multiplication is processed using an array of input data and a two-dimensional array of
weights.

A particularity of the CNNs, that are an extension of artificial neural networks, is the
presence of the convolution operation, whose purpose is to extract useful features from the
input. In image processing, a wide range of different filters is available to use for convolutions.
Each one helps to extract different data and features from the input image data Dumoulin
and Visin (2016).
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Convolutions are applied to extract useful features from the input. In image processing,
there is a wide range of different filters one could choose for convolution. Each type of filters
helps to extract different aspects or features from the input data such as an image.

However, most convolutional networks are computationally intensive due to the high
amount of data present in the input which will be mapped to multiple layers, where each one
contains neurons. This high number of neurons will be accessed multiple times across the
training stage, and multiple mathematical operations will be processed targeting to compute
the final weights of the network, which means the network was trained.

Predictive performance comes when exploring and optimizing these nets as they tend to
require fewer parameters than dense architectures, so they carry a smaller density. Also the
mathematical convolutions operations applied provides an easy approach to parallelize its
work across GPU-cores Szegedy et al. (2015).

Computation on CNNs

Basic Linear Algebra Subprograms (BLAS)-3 operations performed on CNNs can be both
math-limited or memory-limited, depending on multiple factors such as: matrices sizes, batch
size, CNN type-model, etc. For example, a fully-connected layer applied to a single vector
(with a tensor of mini-batch size 1) is memory limited.

If there is a bigger batch size, the operations number pushed rises up, but also the chances
to parallelize the problem increases. So when exploring both hardware and software parallel
techniques, eventually it will be possible to get more Floating-point Operations Per Second
(FLOPS) during (training and) inference phase.

So the arithmetic processing intensity, more exactly the floating point arithmetic, will be
delimited by multiple factors, being in most cases limited (FLOPS limitation) by two main
bottlenecks:

• CPU-bound: element-wise operations (activation function: relu, sigmoid, Tanh, etc.),
reduction operations (pooling and normalization layers, SoftMax).

• Memory-bound: most operations are memory-limited, since nowadays datasets are
not small, performing little operations per byte accessed.

2.1.4 Traffic Signs Recognition

Automatic traffic sign detection and recognition is becoming more and more present in our
lives, playing an important role in advanced driver assistance systems and automated driving,
which is already a reality we are living it.

Recognizing road signs automatically is essential for the automotive industry’s efforts since
this advanced process may help the drivers by supporting them to easily and safely drive
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and guide a vehicle Ciregan et al. (2012). Asides it can also warn the driver of their actions on
crowded streets and even on zones that suffers multiple speed limit variations.

Multiple studies have already been carried out running on a machine learning approach to
solve this problem: several types of neural networks were already developed and tested to
solve this use-case Maldonado-Bascón et al. (2007), including efforts to efficiently recognize,
in real-time, text of traffic signs Greenhalgh and Mirmehdi (2015).

However, this automated task is not computationally easy because of the wide variations of
traffic signs appearance due to partial occlusion, different viewpoints or weather conditions,
among others Luo et al. (2018). This carries a high volume of data that must be given to
algorithms, most of them relying on neural networks. The system of neural networks can
easily achieve millions of neurons on its composition, adding up even more complexity when
combining the data with these vast mathematical operations.

Recently, large amounts of datasets containing huge amounts of real images of traffic signs
on different environments have been publicly released. The presence of this large information
enables the possibility to train multiple traffic signs algorithms and efficiently recognize them.

These large public datasets contains substantial amounts of the different types of traffic
signs recorded in several cities and environments. This grow of the release of public traffic
signs data and the amplification of the signs variety on the datasets are crucial for the learning
process of machine learning models.

On this project, it was used a large-scale dataset containing information and tracking of
multiple road journeys on a vehicle, which contains useful information to proceed to the
segmentation and classification of objects that are present when driving a vehicle. On this
project it urged the need to detect European traffic signs in real-time, hence the usage of
Cityscapes dataset to process and train a developed neural network capable to automate this
process: detect traffic signs.

Cityscapes Dataset

Traffic signs recognition requires a large-scale dataset containing a vast amount of information
regarding to multiple environments and weather conditions containing traffic signs and the
segmentation of them. It is important the dataset yields a magnitude of decisions on all
recorded and postprocessed data, and that offers an annotation protocol capable to identify
segmented objects on each image.

Cityscapes can provide these prerequisites, offering a semantic understanding of complex
urban street scenes. This dataset is composed by a large number of high-quality images,
recorded in streets from 50 different cities. On total, this dataset aggregates about 25,000
annotated images with dense semantic segmentation and instance segmentation of vehicles,
people and some objects or obstacles, such as buildings or trees.
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All objects were captured on multiple seasons and daytime, capturing the same object
type on different environment circumstances, such as different illumination and weather
conditions. An extensive metadata is also provided with the corresponding right stereo views,
GPS coordinates, ego-motion data from vehicle odometry and even outside temperature from
vehicle sensor Cordts et al. (2016).

The dataset offers an extensive complexity of groups that can be detected, such as vehicles,
constructions, multiple objects and even flat types. Inside these groups, each segmentation is
also categorized into a classe definition, therefore it can distinguish multiple object types that
belongs to a certain group. Table 1 presents all types of objects the Cityscapes can recognize,
categorized into the Class notation. Each instance of a labeled Class may also belong to a
Group that aggregates multiple instances of the same type.

Group Classes
flat road, sidewalk, parking, rail track
human person, rider
vehicle car, truck, bus, on rails, motorcycle, bicycle, caravan, trailer
construction building, wall, fence, guard rail, bridge, tunnel
object pole, pole group, traffic sign, traffic light
nature vegetation, terrain
sky sky
void ground, dynamic, static

Table 1: Recognizable objects by Cityscapes dataset

Each recorded image may have attached different types of annotations, segmentation or
even have distinct metadata categories Savkin et al. (2020). For this use-case, only object
detection is required, therefore only segmented images are going to be used. These images
will serve as training data so the DL models can be trained, providing them the necessary
input data to train the networks to be able to detect traffic signs.

Cityscapes dataset visually distinguishes multiple object types by annotating them with a
defined color scheme. Figure 2 displays an example where two different images of Cityscapes
were processed to generate the right annotations of the instances present on the road Imam
et al. (2019). The left images are the original ones recorded, the right ones are the equivalent
from the left of each other, where the main objects and instances were segmented, filling them
with different colors.

Each supported Class is painted on a code color following a color protocol defined by
Cityscapes, representing an object type. Each object is segmented on a specific color and
attributed to a certain Class. For example, all segmented traffic signs are painted on yellow,
all detected persons are painted on red, and so on. Figure 3 presents part of the code scheme
defined by Cityscapes to represent different object types.
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Figure 2: Examples of annotations on Cityscapes dataset

Figure 3: Part of the Cityscapes code color to represent an object type

Although the chosen dataset has the possibility to recognize multiple objects, the RC vehicle
needs only to be aware of traffic signs. Therefore only the yellow color — that represents
traffic signs — will be analysed by the algorithms. The major disadvantage on this color
scheme strategy to define traffic signs is the impossibility to categorize each traffic sign. The
algorithm should easily detect a traffic sign but will not have the ability to distinguish a stop
sign from a left sign.

The algorithm that is used to run the traffic signs detection is also based on neural networks,
more precisely a network called FegSegNet that will be described next.

FgSegNet

While the RC vehicle is driving through the predefined path, it was decided that it must
process each frame in order to also predict the existence of traffic signs along the predefined
path the vehicle is running.

To accomplish this desired behaviour, a robust ML model of foreground segmentation
is required. As Bosch Car Multimédia, S.A. targets its efforts to automotive industry, an
additional work was accomplished that aimed to develop a DL model that segments moving
objects from the background under different challenging scenarios.
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The provided developed AI algorithm follows the previous work of Lim and Keles (2019)
on Foreground Segmentation Network (aka FgSegNet), which uses a triple convolutional
neural network for multi-scale feature encoding the foreground segmentation. It extracts
foreground objects from video sequences or real-time images.

FgSegNet is the ideal neural network to successfully find objects of given input images.
The model processes its input and extract objects of interest, generating an output image that
only contains a segmentation of the found object. An example of this process is displayed in
Figure 4.

Figure 4: The traffic sign (left) was detected and segmented (right)

2.1.5 Frameworks and ML Libraries

To deploy the deep learning algorithms, four different machine learning frameworks or
libraries were used: TensorFlow, TensorFlow Lite, TensorRT, Arm NN and PyArmNN.

These tools can enable specific hardware optimizations, like enabling ARM-based multi-
threading and multi-processing abilities, engage GPU-cores or even compute inference on
Half-precision Floating-point (FP16) or Single-precision Floating-point (FP32).

TensorFlow

TensorFlow is an open source library written in Python and C++, for numerical computation,
created by Google. Machine learning algorithms can be easily created and deployed, facilitat-
ing the beginners to start with, as it is flexible and reliable, and provides a full documentation
stack. This library can smooth complex ML tasks, such as the data acquisition process, the
model training, inference, and even on fine-tuning the model.

It uses Python to provide a user-friendly Application Programming Interface (API) to build
machine learning applications, but its real engine is executed in high-performance C++. It
also supports NVidia GPU processing by providing support to Compute Unified Device
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Architecture (CUDA) extension. The drawback is the limited number of supported GPU
devices, it mostly support only NVidia platforms.

Numerical computations are expressed as stateful dataflow graphs, whose vertices are
represented by operations and edges by tensors, which can represent input images. These
graphs can be analysed and optimized before execution, offering multiple possibilities to
improve its performance. It also has been proving to be energy efficient on multiple research
studies.

One of the major current weaknesses of the framework is the amount of time that needs
to construct a new DL architecture. As a result, constructing advanced and complex deep
architectures is not very convenient since it will generate a dynamic structure as all produced
models Zadeh (2018).

TensorFlow Lite

TensorFlow Lite (TF Lite) is a Google open source deep learning framework, only for on-
device inference.

This framework is highly optimized to deploy DL models on mobile and embedded devices,
providing tools to optimize the size and performance of models, such as data quantization
and compression techniques, often with minimal impact on accuracy.

It gives the ability to run inference on limited-resources embedded devices, by converting
TensorFlow pre-trained loaded models into TensorFlow Lite format. TF Lite models cannot
be trained again but it provides model optimization techniques like pruning. Therefore,
TensorFlow Lite it is not an extension of TensorFlow, not supporting all its full operations and
capabilities, since TF Lite is inference oriented only, so models must be externally created and
trained using another library or framework.

Briefly, its architecture is defined by four sequentially steps: model picking, conversion,
deployment and optimization. A pre-trained model must be first uploaded to this inference
framework, to be later compressed to the TF Lite format. Then this model is deployed on the
target embedded device, applying some optimizations, such as quantization, by converting
32-bit floats to 16-bit Bfloats or 8-bit integers, or even run on a separate accelerator device
(e.g., a GPU).

TensorRT

TensorRT is a NVidia framework for high-performance deep learning inference, that enables
CUDA cores of NVidia GPUs.

It includes a DL inference optimizer and runtime, delivering low latency and high-throughput
for deep learning inference applications (NVidia, 2019).

TensorRT is built on CUDA, NVidia’s parallel programming model, and enables inference
optimizations for loaded models trained in a wide-range of ML frameworks. 8-Bit Integers
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Precision (INT8) and FP16 optimizations are available for production deployments of DL
applications such object detection on automotive industry.

After applying optimizations, TensorRT can fine-tune its model by selecting platform-
specific optimized kernel for specific NVidia systems, such as Jetson embedded platforms.

With support for every major framework, TensorRT helps process large amounts of data
with low latency through powerful optimizations, use of reduced precision, and efficient
memory use.

Arm NN

Arm NN is an inference engine for Central Processing Units (CPUs), GPUs and Neural Pro-
cessing Units (NPUs). It fills the gap between the existing Neural Network (NN) frameworks
and the embedded devices architecture, yet bounded to ARM-series products only.

It offers an efficient translation of existing NN frameworks, such as TensorFlow and Keras.
And allows inference to run efficiently across Arm Cortex-A CPUs, Arm Mali GPUs and
Ethos NPUs.

This open-source Linux software tool, written using portable C++14, allows machine
learning workloads to be deployed on power-efficient devices, supporting all models trained
on a vast number of commonly used frameworks.

Arm NN library is built on top of Arm Compute Library that leverages NEON acceleration
instructions on ARM CPUs and OpenCL acceleration on Arm Mali GPUs.

This NN inference-only tool is the newest ARM technology release, accelerating its pro-
duced devices while running deep learning inference workloads.

PyArmNN

PyArmNN is a Python extension for the earlier described inference engine, Arm NN. It
provides a similar interface to Arm NN C++ Api and it is built around the earlier library.

PyArmNN does not implements any computation kernels, all processing is instructed by
Arm NN. So this Python extension it is simply an interface to access the specified inference
engine but using another programming language. It also manages and manipulates the
memory being used differently.
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2.2 E F F I C I E N T D E E P L E A R N I N G I N F E R E N C E

2.2.1 Hardware Support for ML

Target systems

This thesis work aims to improve the performance of a computing system while running
deep learning algorithms to autonomously drive a RC vehicle. When building this system,
after the very first prerequisite — system performance — the system may also fit in a limited
space as it will be placed on a small remote controlled car.

Since the RC vehicle car is a simulation of an actual vehicle of the real world, price also
enters into the full-stack pre-requisites that the system must satisfy in order to be built. Like
so, two systems were proposed by Bosch (the company funding this dissertation work), which
is betting on machine learning techniques, delivering this technology to real world market as
automotive industry.

Raspberry Pi 4 is the cheapest proposed embedded system, while Jetson Nano, with
an integrated GPU accelerator, is the one capable to deliver more computational power.
Subsection 3.1.3 presents these systems in more detail.

2.2.2 Computational Efficiency

Embedded devices are getting more suitable to be deployed with complex workloads whose
hardware could eventually handle but there is the need to fully activate its limited resources
and manage memory consumption. Also the huge diversity of embedded systems does not
aid on the process of deploy a single deep learning algorithm efficiently across the wide range
of existing CPU architectures. Some platforms also provide additional accelerator units, such
as GPUs or NPUs, which could be enabled. Optimizations on hardware-level are described,
which can be managed by inference engines or frameworks.

Efficient Deep Learning

Jiang et al. (2018) present in their paper two-staged optimizations to tune DL models on a
wide range of CPU architectures since frameworks cannot always tune it to a specific CPU or
GPU model.

The first stage is concerned to optimizations on computation graph, which is generated
to process the workload. The goal is to transform a computation graph into a minimized
one to reduce execution time and memory consumption. The techniques applied has major
similarities to compiler optimizations: constant folding, graph simplification, kernel fusion,
pre-computing layout transformation and quantization.



2.2. Efficient Deep Learning Inference 17

The second stage explores specific algorithms to achieve an output such as convolutional
implementations, selecting the ones that take advantages of hardware capabilities, namely
tiling, reordering, loop unrolling, vectorization, parallelization. The best combinations
depends on the hardware specifications.

TVM (2016) was used to develop this work and a compiler stack for DL to achieve the best
performance among frameworks and Hardware (HW) backends.

Parallelizing Multiple CPUs/GPUs to Speedup DL Inference

Wang (2019) introduce in his paper several ways to parallelize inference, focusing on data
parallelism by equally splitting the input data among the available CPU/GPU-cores.

Among the different techniques presented, the most relevant one described on his work was
recurring Python multiprocessing. This technique uses multiple threads to take advantage of
the multiple on-chip cores, achieving parallelism by concurrently running DL inference on
multiple cores.

When applied to this dissertation, each captured frame is sent to a different core, so multiple
frames can be simultaneously processed. The only drawback is that we must be careful with
out-of-order executions, since when capturing video the frames cannot be mounted again
unsorted.

Optimizing CNN Model Inference on CPUs

Liu et al. (2019) proposed on their work a solution proving an efficient inference while
compiling and optimizing CNNs on several CPUs, one of them the ARM Cortex-A72.

The experimental results provided a speedup up to 3.45x on the multiple CNNs models
used, compared to the performance of the state of the art solutions.

Several CPU features are explored such as Single Instruction, Multiple Data (SIMD), Fused
Multiply–Add (FMA) and parallelization to optimize the nets, by managing its implementa-
tion in a high-level.

The data layout is first adequately structured to reduce memory access overheads, lever-
aging the FMA operation utilization. Then, there is dimension reordering to use the 128-bit
vectorization extension instructions in an ARM device (NEON).

2.2.3 Techniques for Efficient Deep Learning Inference

Deep Learning is becoming more and more popular nowadays and with the increased amount
of data, neural networks are getting larger, which increases the workload intensity overkilling
the processing units, specially limited ones, such as in embedded systems.
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As the model size becomes larger, it becomes more difficult to be deployed on embedded
devices, which may lack memory capacity.

Running neural networks on resource-limited platforms requires efficient solutions with
”algorithms and hardware co-design”. Next are presented several solutions from data engi-
neering and data science that optimizes neural networks architecture, improving its perfor-
mance.

Deep Reuse

Deep Reuse is a technique presented by Ning and Shen (2019) to speedup CNN inference by
detecting and exploiting deep reusable computations. This approach can reach near half
inference time, without affecting accuracy (loss <0.0005). It is not hardware dependent, so it
can be deployed on common CNN accelerators.

Among all layers of a CNN, the convolutional layer is the most compute-intensive one,
taking most of the execution time.

The basic idea of this algorithm is to group equal neutron vectors into clusters and use
these clusters to compute the operations, then the output is reorganized by splitting the equal
vectors grouped in the beginning into the output.

Network compression is a common method that minimizes computation, but rather than
compress the net, this technique reduces computation by skipping some operations processing.
If required, this technique can also complement a compression method.

Pruning

Pruning is a compression technique that reduces the number of connections of deep neural
networks without affecting accuracy Han (2017).

A DNN model can be shorten by removing all connections whose weights are lower than
a threshold, converting a dense layer to a sparse one. Synapses (connections) and also
neurons can be pruned resulting on a smaller set of operations being processed which reduces
inference time.

Once this technique is applied, DNNs size is drastically reduced, which reduces the off-chip
Dynamic Random Access Memory (DRAM) access, giving the opportunity to take charge of
CPU memory if all weights could be stored on-chip memory, improving inference speed and
reducing energy required.

”Since much of the information represented by the weights is in fact redundant and many
of the weight values are very close to zero, then we should be able to discard them without
significantly affecting the overall performance of the network.” Montantes (2019).
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Data Quantization

Data quantization can be used as a compressing technique by reducing the number of bits
required to store the weights of the networks. Jetson Nano can take full advantage of this
technique since it supports half-precision floating point operations. This makes possible to
half the net by representing the weights with only 16 bits instead of 32.

The authors Qin et al. (2018), in their work, apply this technique, adding further compres-
sion to a pre-trained floating-point model without re-training it. To evaluate this process a
NVidia Jetson TX2 computing system is used.

However, experimental results proved data quantization not to be quite efficient: the
inference time onn a quantized model is longer than the original not-quantized trained
model.

This technique can speedup computations like matrix multiplications, by avoiding expen-
sive floating point arithmetics and enabling SIMD vectorization by using a compact model.
Yet, the de-quantization process creates an overhead during inference time, which adds up
more spent time on this process, not benefiting the final results.

The defined de-quantization function that converts input values back to a 32-bit representa-
tion on some layers to recover the precision loss is expensive, contributing to 30% to 50% of
inference time.

Huffman Coding

A Huffman code is a codification method for lossless data compression. This technique can
also be applied to quantized values Polino et al. (2018). The key idea is to encode the weights
by computing the frequency of each weight, deriving a table of probabilistic occurred symbols.
Finally each weight is represented by a lower-bit representation. The optimal bit length is
driven by the commonly weight on the model, saving additional space Han et al. (2016).

2.3 R E A L - T I M E E VA L U AT I O N M E T R I C S

The effectiveness of the autonomous vehicles to be able to process all the information in real
time has been an active area of research. When a person is manually driving, multiple factors
may affect the traffic flow and even cause hazards, such as human reaction times, distractions
and other human errors. To eliminate these human errors and delays, technologies are being
developed to replace humans by computer systems.

This vehicle automation may lead to smoother traffic flow and larger traffic flow rates due
to the safety among inter-vehicle automatic systems used and the elimination or reduction of
human delays and reaction times Ioannou and Chien (1993).
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Adaptive Cruise Control (ACC) is a mechanism that aids vehicle on driving with two main
tasks: to drive at the maximum possible speed and to avoid collision with eventual vehicles
ahead. These tasks are also performed by human drivers, yet this mechanism will often take
over the vehicle because it can react in 0.1 seconds, about 10 times faster than a reaction time
of a human being Giuffrè et al. (2017).

Self-driving cars are computational heavy by taking full control of the vehicle, which
demands multiple requirements to be fulfilled such as memory consumption, processing,
latency and throughput. In terms of performance, high computational needs and memory
demands are the critical ones, which are the main metrics that will be evaluated on this
project. This performance requirements leads to additional challenges while developing and
deploying these algorithms on systems with limited computational resources on-board of the
vehicles Kouris et al. (2020).

The reaction times to take control of a vehicle during a disengagement was studied by
different companies, such as Google and Mercedes-Benz. The performed studies revealed
pretty consistent measured reaction times within them, with an average of 0.83 seconds per
reaction. These times can provide such an high understandable of how quickly an individual
can react upon multiple averse circumstances and even obstacles to avoid collisions. Dixit
et al. (2016)

Table 2 shows the reaction times of different age groups. The groups with the shortest and
longest response times were selected, 0.74 and 1.17s respectively, for the warning braking
distance analysis Li et al. (2019).

Age of driver Reaction time

18-33 0.74-1.10
34-47 0.75-1.12
48-57 0.77-1.13
58-70 0.78-1.17

Table 2: Reaction time of driver Li et al. (2019)

As human driver reaction times vary on a range of 0.7 and 3 seconds, depending on
multiple external variables as the person itself, autonomous driving systems must be low-
latency reliable and efficiently take control of the vehicle with the same or better reliability as
humans.

Giving the earlier described reaction times of the drivers, building a system that can react
within 700 milliseconds or less is pretty acceptable since it outperforms the performance of
human reaction’s average.
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2.4 T H E P R O B L E M A N D I T S C H A L L E N G E S

This work focuses on providing a hands-on hardware and software to optimize deep learning
algorithms that can autonomously drive the RC vehicle on a predefined path (Figure 5).

Figure 5: Predefined path

The RC vehicle vehicle was built by modifying an ordinary remote controlled vehicle
by gearing it with additional hardware. Several peripherals were installed, such as one
microcontroller, multiple sensors, a camera to capture image data of surrounding environment
and hardware with computational power to execute the DL algorithms.

Self-driving mode must be activated and available-only in certain conditions, the crucial
one is the presence of a road, obviously. The idea of using a real road is inconvenient given
the dimensions of the car, aside that testing this small vehicle on a road with several cars
passing by is neither practical nor safe. Therefore this testbed will run on a small custom
predefined trajectory that mimics a road lane, as illustrated in Figure 5.

Given the dimensions of the ordinary remote control based car, the choice of the hardware
platform needs to be kept in mind because this system delivers some constraints, such as
dimensions, the weight and of course the costs associated to all the build.

Two embedded systems will be used, comparing two systems that are not equivalent,
which both possesses unique hardware characteristics. The process of selecting the proper
embedded system for this use-case is also very demanding, if considering all the vast and
different types of embedded devices existing in the market.

Also choosing the best hardware equipment is not an immediate and effective task because
there is a lot of research implied to, which resides on the chips architecture and what is
the impact of its components design like the CPU architecture or the maximum supported
bandwidth, and even on the software support and the algorithm technique upon the hardware
available.

Therefore providing the maximum performance possible to each system can become
extremely complicated due to the amount of combinations existing in one single system with
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one common crucial component. For example, despite the same ARM CPU architecture being
used, it also has to be considered all the unique specifications of each chip vendors.

The biggest challenge for this project is to deploy the deep learning algorithms on an
accelerated neural network inference engine and optimize them so the resource utilization
can be tuned by reducing computation and memory consumption in order to the embedded
system handle these computational intensive AI workloads. But this optimized process can
be achieved by targeting the main unit processors present on the two systems, by enabling
multiprocessing on CPU cores and/or targeting the GPU cores.

Taking into account this specific computing platform — embedded systems — the compu-
tational power will be naturally limited to this equipment only, since hooking up a dedicated
workstation or a conventional desktop on the vehicle is naturally not a option.

The RC vehicle must be able to self-drive on this test environment by deploying, optimizing
and running the ML algorithms, specifically deep learning based algorithms on the provided
hardware. This algorithms are essentially object detection workloads that could empower a
complex and massive number of instructions and operations to be handled by the processing
units. The workload comes from the need real-time object detecting from the image data
captured by the autonomous car.

Aside the DL workloads that are responsible for taking control of the scaled-vehicle, addi-
tional algorithms were also developed to push the vehicle autonomous driving capabilities
towards with additional features that are a must when driving on an environment with traffic
signs.

Autonomous vehicles must promptly and efficiently obey the most diverse traffic signs
that eventually will occur during the driving on a certain path. For this project, an extensive
work was also developed that aimed to develop, deploy and evaluate DL algorithms capable
to detect traffic signs. Besides the vehicle upon traffic signs reaction must also react towards
the information processed.

Finally there is a need to improve the performance of these algorithms so the car can process
an higher amount of information per unit of time to be able to speed up and smoothly drive
even on tight bends. Also with an improved performance the algorithm can be scaled up,
and complexity to the CNNs architecture can be added. An improved convolutional neural
network can extend the vehicle decisions logic and intelligence, like, the possibility to read
and interpret traffic signs.

While operating under any convolutional neural networks, two intensive and dependent
workloads are defined: the training and the inference process. For this testbed, training
phase can be performed on a remote workstation, since the real-time self-driving mode can
be achieved with inference only. The training phase can be processed before the setup and
deployment of all earlier described components, so it can be handled on a high-performance
computing platform, relieving the embedded systems of training process workload. The
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scope of this thesis work is also focused on the inference phase and its optimizations, so only
inference challenges are targeted to the chosen platforms.

I N F E R E N C E C H A L L E N G E S

A deep neural network comprises an architecture specified by multiple layers, and for most
use-cases, as the model gets deeper, the inference accuracy increases. This leads up to high
computational demands that embedded systems could not pace, unlike powerful equipment
whereas a desktop or datacenter systems can be used to process these tasks.

Given the urge to deploy the deep learning applications in embedded platforms, there is a
need to make feasible the support of the workloads alike to predict and produce intelligent
decisions. In addition, these devices have to cope with additional constraints like low-latency
execution and power consumption.

Advanced computing libraries for embedded devices are missing or require optimizations
due to the broad range of existing architectures and diversity of programming tool-chains
Irida Labs and Silexica (2018). Hence, most of the optimized libraries aim to improve training
performance, however inference process is lacking of these advanced optimized tools.

This is an issue since the already existing inference engine tools are architecture exclusive
such the ones supporting NVidia GPUs only or a small range of CPUs, specifically ARM
Cortex.

2.4.1 Proposed Approach

To accomplish the goals of this dissertation a defined system architecture is presented (Figure
6), where three main concepts need to be studied and mastered: (i) hardware accelerations;
(ii) accelerated NN inference engines; and (iii) network optimizations, so DNN inference
optimizations can be achieved, increasing the number of frames being processed by the
real-time object detection system.

Next are described the main core components that have to be analysed in order to improve
the system performance of the DL algorithms.

Hardware Accelerations / Embedded Systems

To target embedded optimizations, two embedded systems were selected: Raspberry Pi 4 and
NVidia Jetson Nano.

These both platforms have ARM Cortex-A built-in processors that provides several ad-
vanced computational features regarding to accelerations provided by HW-parallel imple-
mentations present in the CPU.
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Figure 6: System architecture

The NVidia system-on-a-chip also provides a dedicated GPU to improve the chip computa-
tional power, possessing two processing units.

Embedded devices typically require in-depth knowledge of its hardware architecture
and programming interfaces that are quite some, in opposition with desktop application
development. The packages support for these devices are usually very limited, an evident
problem seen on modern embedded platforms that hold on a heterogeneous set of processors
like CPUs, GPUs and others. Irida Labs and Silexica (2018)

Thus the embedded systems must be very well understood to maximize and enable all
the advanced parallel and computing features provided by the hardware. This advanced
instructions should be powering the performance matter so developing algorithms or using
frameworks that are aware-of these HW capabilities are quite important.

Inference engines

It is an urgent need to analyse the inference engines in the market so the accelerated ones can
be discovered, such the ones that are able to exploit the advanced computing instructions and
HW capabilities, such as the parallel instructions use or even the ability to enable GPU cores.

All the algorithms must be benchmarked so the program trace can be evaluated, under-
standing the algorithm limitations and what bottlenecks can be avoided.
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CNN optimizations

The proposed hardware platforms could not have enough computational power given the
use-cases regarding to the self-driving area. However the CNN models and algorithms used
throughout the project can be enhanced and optimized using multiple hardware advanced
optimizations available on inference engines and using techniques to optimize the networks.

By applying some optimizations to the CNN, rather on the model itself or enabling hard-
ware features capable to tune this kinds of neural networks will lead to achieve the desired
goal to improve the performance of the DL algorithms.

Figure 7, displays the concept map of this dissertation workplan, where the main concepts
and technologies being used are relationally linked.

Figure 7: Concept Map

The key concepts are displayed in boxes or circles, which are connected with labeled arrows.
These relationships defined by the links can articulate the concepts in a ”cause”, ”requires”,
”such as” or ”contributes to” effect.



3

M L I N F E R E N C E O N E M B E D D E D D E V I C E S

3.1 T H E T E S T B E D E N V I R O N M E N T

3.1.1 The RC Vehicle

This section presents all the required hardware to build the desired RC vehicle that acts as a
testbed for this project. A brief explanation of how the vehicle autonomously works is given,
as well as the process to manually drive it and to collect the training data, which is mandatory
to enable the ability of the autonomous driving.

The RemoCar is a 1:10 scaled vehicle and it is composed by five main electronic com-
ponents (Figure 8): a camera, a single-board computer (the Raspberry Pi in this image), a
microcontroller (Arduino), a servo and an Electronic Speed Control (ESC).

Figure 8: RemoCar essential components

These components were provided by Bosch together with the vehicle itself, which came all
disassembled. The testbed was then built by assembling the several parts of the vehicle chassis

26
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(Figure 9). The electronic circuit (breadboard) that is between the single-board computer and
the microcontroller was also wired from scratch.

Figure 9: RemoCar chassis parts

The camera allows the vehicle to have a visual perception of the environment, allowing to
recognize the track, with about 4 or 5 frames per second, originally.

These images are transmitted to the single-board computer — which can be either a
Raspberry Pi or a Jetson Nano — where the pre-trained neural network will run on. These
devices constitute the computational power of the RemoCar.

The Arduino UNO is an open-source microcontroller board, which takes control over the
steering and the engine of the vehicle. It uses an electrical signal to transmit the output
received from the single-board computer to the servo and to the ESC.

The servo is a rotatory actuator that produces rotatory motion which allows the wheels to
be steered. The ESC is an electronic circuit that controls and regulates the speed of the vehicle.

The main goal of the RC vehicle is to autonomously drive on a track by following the lines
of the path, as shown in Figure 10.

Figure 10: RemoCar following the track
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The ability to follow the track is given by a neural network. The neural network provided
can recognize a path, perceive if the lane roads are visible, understand the orientation of them
and predict a steering angle that allows to continuously adjust the wheels according to the
path.

Initially, the RC vehicle (Figure 11) cannot autonomously drive on a path because the neural
network does not know what is a path and what is not, does not know what is a steering
angle and how to map a certain line orientation to a steering angle.

Figure 11: Assembled RC vehicle

Manually driving the vehicle

Like any neural network, the ones used in this testbed needs training data. In this use-case,
this data is collected while manually driving the vehicle using a smartphone as the vehicle
remote controller. The single-board computer that runs the neural network also hosts a web
server that can be accessed by WLAN.

After establishing an internet connection on the same network as the single-board computer
is connected to, the car can be manually driven by tilting the smartphone.

While the smartphone is being tilted horizontally, the single-board computer extracts the
gyro data from it and sends the recalculated data via serial communication to the Arduino.

During manual driving, the video-camera is activated, recording all the driving and storing
the frames into storage. For each frame recorded, the gyro data of the smartphone is also
linked to the image and stored in a CSV file.

After reaching a predefined number of pictures recorded on training data, the car stops
automatically, means that it already collected a sufficient amount of frames (training data) to
be used to train the model.

After collecting the training data, each image needs to be manually classified, whether the
track is visible or not, as a prerequisite to train the network. This classification requires an
amount of time since each recorded image needs to be checked manually and needs to be
moved to a specific folder whether the track is visible or not.

Next, the classified training data can be processed and the neural network can be trained.
The Raspberry Pi cannot train the network because the computational power is not sufficient,
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so this operation may be executed on an external computer or on the Jetson Nano. All the
algorithms and the environment to properly train the neural network was provided by Bosch
Car Multimédia, S.A.

The trained model is then exported, generating the required file so the network can later
properly identify the track and predict steering angles. The RC vehicle can now be au-
tonomously driven using this generated trained model.

Before the autonomous driving mode can be enabled, the vehicle must the placed into the
track. When the RC vehicle vehicle is powered-on on this mode, the neural network compares
the current seen image with the pictures from the training data and based on the learned
process it predicts a steering angle if the lane is visible.

If a steering angle is predicted, the single-board computer transmits it to Arduino via serial
communication, which applies a constant speed to the ESC and transmits back the angle to
the servo.

The whole process from comparing the current seen image to sending the information to
the servo and ESC is repeated indefinitely, checking every frame. The model predicts whether
the lane is visible, and if it is true, an appropriate steering angle is predicted. In case the lane
is no visible in sight, the vehicle turns fully to the last known direction. The speed is always
constant.

3.1.2 The Arduino Microcontroller

Arduino is an open-source platform to build electronics projects. It consists of both a physical
programmable circuit board, referred as a microcontroller, and an Integrated Development
Environment (IDE) that runs on the host computer, used to write and upload the developed
code to the physical board.

Unlike the majority of programmable circuit boards, the Arduino does not need a pro-
grammer — a hardware component — to flash the code onto the board. Only a USB cable,
connecting the host computer to the microcontroller, is required to perform this operation.

This platform was designed for anyone interested in creating all kinds of projects with
interactive objects and environments, controlling electronics. Arduino can interact with a
wide-range of electronics like motors, cameras, controllers, GPS units, networks and even
smartphones.

Its flexibility combined with the free Arduino software, the vast community contributing to
a huge variety of Arduino-based projects, the easiness to learn both hardware and software
that presents a syntax similar to C++ and the low-cost hardware boards, contributes with
strong motivations to use this type of board on this testbed.

Cross-platform is also an advantage of this ecosystem, which means it is possible to develop
and flash code from Windows, Macintosh OSX and also Linux operating systems.
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There are multiple Arduino boards, on which its hardware components differ from one
to another. For this use-case, it will be used the basic Arduino UNO because it is one of
the cheapest boards and it is not necessary a powerful one with additional components.
This device is displayed in Figure 12. Some boards may look different among the different
Arduino microcontrollers, however the majority of them carry the components numbered on
the image.

Figure 12: Arduino UNO board

Every microcontroller board needs to be connected to a power source, so this Arduino
board can be powered up using a USB cable (1), using wall power supply by connecting the
DC connector (2) or directly using the power pins (3). The USB connection is also the way to
flash the code developed on the IDE onto the microcontroller memory.

The board also offers a set of pins where wires are connected to build a circuit. There are
multiple kinds of pins that fulfills different purposes. The Vin pin (3) is designed to either
power external devices or to power in the board from an external power source. The GND
(Ground) pins (4) are meant to ground the circuit built. The 5V (5) and 3.3V (6) pins supplies
5 volts of power and 3.3 volts of power, respectively, useful to power up external components.
The area of Analog In pins (7) can read signals from analog sensors, like a temperature sensor,
and convert it into a digital value readable by the board. Digital pins (8) can be used for both
input and output, such to recognize when a button was pressed on or to light up an LED.

A reset button (9) is also available, pushing it will restart the code being executed. The LED
ON (10) lights up whenever the Arduino is powered to a power source. TX (Transmit) and
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RX (Receive) LEDs (12) indicates whenever the Arduino is transmitting or receiving data on
serial communication.

The Integrated Circuit (IC) (13) is the microcontroller device responsible for the code
execution.

This device is connected to the ESC and to the servo where it sends instructions to set
speed and wheels direction to the vehicle. These instructions are received through a third
connection, the single-board computer, which sends the computed steering angle and the
desired acceleration. All these connections were performed on a breadboard, which facilitated
the wiring connection between all components, as presented in Figure 13.

Figure 13: Wiring connection. Breadboard (center), Arduino (left), board-computer (right)

3.1.3 The Raspberry Pi and Jetson Nano Embedded Systems

Two different single-board computers were selected to deliver computational power to this
testbed environment. The main role of this platform is to execute the neural networks, which
allows the autonomous driving itself.

The chosen computers to run this ML workload are a Raspberry Pi 4 and a NVidia Jetson
Nano, both illustrated in Figure 14. The goal is to test and install each computer at a time on
the RC vehicle, deploy the neural networks on the devices, improve the performance on each
computer and evaluate both devices to choose the most efficient one.

These two embedded systems have distinct properties: the Rapsberry Pi has a better
multicore ARM device but the Jetson Nano has a GPU accelerator. The cheaper Raspberry Pi
4 version costs only $35, whereas the Jetson Nano starting prices are around the $99. Each
computer behaves differently and the type of workload being executed also influences its
performance. It is important to evaluate both embedded systems and choose the right one for
this use-case. Choosing the right single-board computer will allow the vehicle to react faster
and process more data in real-time, while driving autonomously.
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Figure 14: Target embedded systems

Raspberry Pi 4

Raspberry Pi 4 is a tiny single-board computer. It is faster and more functional that any of its
predecessors versions, launched at the same price of the previous one (Raspberry Pi 3).

This fourth version of the Raspberry Pi series empowers a 64-bit ARM Cortex-A72 quad
core processor on 1.5 GHz and 4 GiB of Random Access Memory (RAM). This pipelined pro-
cessing unit has 5-wide out-of-order, speculative issue 3-way superscalar execution pipeline.
Each core supports the 128-bit NEON SIMD extension and has a VFPv4 — a Floating-point
Unit (FPU) coprocessor extension, onboard equipped with 64-bit FPU register as standard,
half-precision support as storage format. Table 3 presents a summary of the hardware
characteristics.

CPU Cortex-A72
Cores 4
GPU Broadcom VideoCore VI (32-bit)

L1 cache (KiB) 48 (instructions) + 32 (data)
L2 cache (MiB) 4

Clock frequency 1.5 GHz
SMT None

Out-of-order 5-wide dispatch
RAM (GiB) 4

Table 3: Raspberry Pi 4 hardware specifications

A second processing unit is also available on this embedded system: a GPU. The Broadcom
VideoCore VI graphic card installed is a low-power mobile multimedia processor but it is for
video rendering purposes only because the Raspberry Pi provides two 4K output video ports
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that requires high-speed video processing. Although two processing units are available on
this single-board computer, only the CPU can be exploit to process the DL algorithms.

Jetson Nano

Jetson Nano is a low-power computer-board produced by NVidia, designed to accelerate
machine learning algorithms.

This platform also contains a quad core ARM Cortex CPU. A predecessor of the CPU
used on Raspberry Pi 4 is used, the 64-bit ARM Cortex-A57 chipset with 1.43 GHz of clock
frequency. The processor provides the same advanced instructions as the ARM Cortex-A72
described earlier. Table 4 summarizes the characteristics of this embedded devices.

CPU Cortex-A57
Cores 4
GPU NVidia Maxwell

L1 cache (KiB) 48 (instructions) + 32 (data)
L2 cache (MiB) 2

Clock frequency 1.43 GHz
SMT None

Out-of-order 3-wide dispatch
RAM (GiB) 4

Table 4: Jetson Nano hardware specifications

The main difference between this Cortex-A57 and the Cortex-A72 earlier mentioned is the
clock frequency and the size of L2 cache. Jetson Nano CPU clock frequency is a little lower
than the Raspberry Pi, providing 1.43 GHz against the 1.5 GHz yielded by the Raspberry Pi
CPU.

CPU also delivers less advantages regarding to the advanced instructions such as the width
of out-of-order execution dispatches.

The biggest advantage of this NVidia embedded device is the second processing unit
present on the chip, a GPU, which can the exploited to run explicit programmable algorithms.

Its GPU carries 128 Maxwell generation cores with a clock frequency of 921 MHz, giving a
throughput rate of approximately 472 Giga Floating-point Operations Per Second (GFLOPS).
It also has support to FP16 operations, which can theoretically double its throughput. Details
of this second processing unit is presented on Table 5.

Jetson Nano also delivers multiple power modes that can be easily configured by selecting
one of two predefined power configurations available. Thus the end-user can easily tune
the device to adapt the performance and power needs to the desired needs. Sometimes
this operation can find an ideal configuration that best suits the type of algorithms being
deployed.
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GPU (chip) Tegra X1 (GM20B)
CUDA-cores 128
Architecture Maxwell

Clock frequency 921 MHz
GFLOPS 472

Half-precision support Yes (not tested yet!)

Table 5: Jetson Nano GPU specifications

To get all the power out of the Jetson Nano, it is necessary to select the MaxN (10 watts)
mode. This disables all the restrictions on the hardware capabilities, delivering all the power
the hardware can get.

The second mode – 5W (5 watts) – optimizes power efficiency and restrict the modules to a
predefined configuration by capping the memory, CPU, and GPU clock frequencies, and the
number of online cores at pre-qualified values NVidia (2020).

Table 6 depicts the supported power modes of Jetson Nano, as well as the differences
between.

NVPModel clock configuration
Jetson Nano

Property
MAXN 5W

Power Budget 10 watts 5 watts
Mode ID 0 1
Online CPU 4 2
CPU Max Clock Frequency (MHz) 1479 918
GPU TPC 1 1
GPU Max Clock Frequency (MHz) 921.6 640
Memory Max Clock Frequency (MHz) 1600 1600

Table 6: Supported power modes of Jetson Nano

3.1.4 The ML Inference to Follow a Path

The algorithm that is responsible to follow a path uses a specific neural network that is able
to process images and predict to the steering angle and if the lane of the path is visible.

The neural network provided is a CNN composed by twelve hidden layers (Figure 15).
The input layer is designed to parse an image of a fixed pre-defined resolution. On the final
layers, the network diverges onto two different ramifications and ends with two different
layers: a regression and a classification layer. This means that from each processed image, the
neural network will predict two values: the steering angle and the visibility of the road lane.
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Figure 15: CNN architecture

During the autonomous driving, the camera is enabled and starts to record each frame,
which is sent to the model that was previously trained. The CNN processes the input image
and by iterating it over the multiple hidden layers, it tries to find the line on the track (Figure
16). While analysing the image two values are being generated.

The output of the classification layer represents the probability the model had found the
track line. On the algorithm a predefined threshold is used, and if this predicted value is less
than 95% it is interpreted as if no track was found ahead of the vehicle.

Figure 16: Input image example
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Another value is predicted by the model through the regression layer. This value represents
an angle between -45o and 45o. This is the steering angle that should be applied on the
vehicle’s wheels so it can properly follow the path.

All the inference phase described earlier is only possible if the CNN had been trained
earlier. If not, the neural network will not have the weights of each node adjusted to find a
track on a image and will not be able to predict reliable information.

This neural network will only provide intelligent information if there is knowledge on a
training dataset that can be learned from it. On this use-case, the training data represents the
visual confirmation of the path, the aspect of the lane and the steering angle that needs to be
applied on each point of the path.

To create a training dataset, the vehicle must be manually driven and essential data must be
logged such as image recording of the track and the steering angles the user applied during
the route, as mentioned eariler.

When enabling manual driving mode, the single-board computer that is hosting the web-
server receives the desired orientation of the wheels, and sends this data to the microcontroller,
which consequently instructs the servo to adjust the wheels to the desired angle. In parallel,
this data is being recorded to log-files, by linking each frame recorded to the gyroscope data
collected at this time. After a certain amount of images had been saved, the vehicle stops,
ending the training data collecting phase.

A manual processing of the collected data must be executed then. Thousands of frames
and the respective steering angles were recorded, yet, the manual driving is not perfect and
sometimes the vehicle can get off the track. During those moments the recorded frames do
not present any track, and these types of images must be manually moved to a specific folder
which represents images that does not contains the track. This filtering will separate the
images which contains the lane of the track from those that do not. Now, the neural network
can be properly trained, it will able to recognize the track by analysing the similar patterns
present on the frames of the the visible lane folder. For each processed lane the corresponding
steering angle is also learned so the network can predict this value for similar images.

After the CNN had been trained, the trained model will be exported, which is the model
that must be imported by the inference libraries or frameworks. With this imported model on
a engine, whenever it receives an input image, it outputs two predicted values.

3.2 S E T U P A N D S O F T WA R E I N S TA L L AT I O N O N T H E R C V E H I C L E

3.2.1 Setup the Environment

This testbed requires specific algorithms and frameworks to be executed and deployed on
specific embedded devices. This process led to the initial effort of this project that was carried
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by the setup of the two different environments — the Raspberry Pi 4 and the Jetson Nano —
while installing and configuring all required packages, libraries and specific versions to run
the multiple DL frameworks and libraries tested: TensorFlow, TensorFlow Lite, Arm NN and
TensorRT.

Raspberry Pi 4

A full software setup of the Raspberry Pi was performed from scratch. This included the
installation of the operating system — Raspbian 32-bit OS — onto the platform. Also, a setup
of the 64-bit OS version was performed to evaluate the execution of the algorithms on this
specific version, during a debugging phase. Results showed this OS variant did not impacted
the performance of the algorithms and did not biased the RC vehicle driving performance.
This evaluation was achieved because the Raspberry Pi 4’s CPU has 64-bit support. More
details of this operation is given in Section 3.3.3.

To run the DL algorithms on this platform, Tensorflow, TensorFlow Lite, Arm NN and
PyArmNN were installed on it. All these installations should had been quite trivial but the
fact that all setup was done into embedded systems running on an ARM CPU architecture,
slowed and complicated this process. The installation of the frameworks and specially its
dependencies was time consuming, since several incompatibilities were found on an ARMv8
system architecture, rather that on a AARCH64 system.

Additionally, the machine learning packages and the compatibility among the multiple
versions of its dependencies are constantly being modified and upgraded, which adds up a
new complexity to perform a proper setup on a specific moment, since new releases sometimes
brings incompatibilities among AI libraries and packages.

This leads to a highly volatile environment, where a stressful setup for a given environment
at one time can become quite trivial after a period of time. That was also witnessed on this
project. A quite expensive setup was performed on the initial phase of this project because
the support for the platforms was not the ideal for the required libraries used. An active
monitoring on the versions of the frameworks and their dependencies was performed, which
showed an increase support of the tools used for these embedded devices, later in time,
allowing a light setup.

The initial deadlock on the setup was due to major incompatibilities of some libraries with
the Raspberry Pi operating system and ARM architecture. This led to quite some spent time
on founding out the right compatible versions with ARM architecture and finding the right
combination of package versions that were compatible with each other.

Initially, it was installed TensorFlow version 1.14 on Raspberry Pi 4, the latest version
officially available on the initial phase of this project development. These specific versions
was also found out not to load properly specific neural network layers. The limitation was
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resolved on TensorFlow 2, but once again it was not officially supported by ARM on that
moment. Later, at the end of this dissertation work, a support to ARM was released.

Jetson Nano

A full setup was also performed on the Jetson Nano device. NVidia, the company supporting
this platform, provided an automatized environment, which streamlined the installation of
all required software to run the DL algorithms on its platform and also taking advantage of
GPU-cores.

Multiple evaluations and an extensive comparison against the predicted data on the Rasp-
berry Pi 4, showed critical anomalies on the installed TensorRT library. The TensorRT version
5 initially installed could not properly load multiple layers of the different neural networks
used. The library behaved like the predicted data was being properly generated but in fact
it was misleading information because TensorRT 5 output accuracy decreased comparing
against the Raspberry Pi 4. This critical internal bug was later fixed with the release of
TensorRT 6. More details of this problem is presented on Section 3.4.3.

3.2.2 The ML Inference to Detect Traffic Signs

The original algorithm, which is capable to follow a path, was successfully deployed and its
performance was tuned and improved. The evaluation results showed both the Raspberry Pi 4
and the Jetson Nano could easily process this workload without any limitations or drawbacks.

As both embedded systems could easily process an higher amount of frames per second
while processing the images and predicting the steering angle, it was necessary to develop
an additional and computational heavier DL workload to perform a deeper analysis of both
embedded devices performance and limitations.

Therefore, an additional algorithm, which is able to detect traffic signs was developed. This
algorithm, like the one responsible to drive the vehicle, also uses a neural network to process
an input image and predict information relative to the existence of traffic signs on the road.

For this use-case, a neural network was used, FgSegNet, which was introduced on an
earlier chapter, to detect traffic signs in an input image.

FgSegNet takes an input image, processes the data and proceeds to the segmentation of
certain regions that composes a traffic sign. After the image had been processed by all layers,
the last layer generates an output image, where the regions with traffic signs are segmented.



3.2. Setup and Software Installation on the RC Vehicle 39

Training

Initially, this network is not intelligent and cannot recognize a traffic sign. Without a previous
training, the neural network has no ability to proceed to foreground segmentation, thus not
yielding any segmented object.

All DL algorithms that uses trained models are composed by two phases — training and
inference. Inference phase, on this use-case, is the process of predict any traffic sign present
on an image. Training phase is when the network is trained by analysing patterns on a given
training data.

The training data must contain the attributes and the targets. The algorithm will analyse
the patterns of all attributes and will learn how to map them into the targets, generating an
ML model that maps (predicts) different attributes into desired targets, following the same
patterns of training data.

In this case, the attributes are images of an environment full of traffic signs and the targets
are images with the segmentation of traffic signs, as presented in Figure 17.

Figure 17: Segmentation of traffic signs. Attribute (left), target (right)

The importance of Cityscapes dataset comes in this training phase because it provides a
large amount of tested data, acting as the ground truth for training the DL model. Cityscapes
delivers an extensive training data, which contains the attributes and targets needed to
successfully train the FgSegNet.

Cityscapes does not isolate the traffic signs objects and presents the segmentation of
multiple types of objects, as previously presented in Figure 2.

Thus, a script to process data-images from a dataset was developed, in order to analyse all
the annotations of segmented areas and extract only the ones in yellow (which the Cityscapes
identifies as traffic signs objects). Figure 18 displays the original segmentation of multiple
objects present on the original dataset (on left) and the isolation of traffic signs (on right).

The script processed all the annotations of a large number of segmented images to generate
correspondent images with the annotation of the traffic signs only. This process generated a
large isolated traffic signs dataset containing a considerable amount of image pairs defining
the attributes and its target (Figure 17). FgSegNet was trained with this isolated dataset.
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Figure 18: Isolation of traffic signs segmented areas

Prototype Constraints

With the arrival of the second model — traffic signs recognition — there is a necessity to
resort to multiprocessing techniques to properly execute both models in parallel.

Therefore an architecture was defined (Figure 19) that follows a non-sequential application
execution, which is efficient to compute the predictions of both model instances. The proto-
type design also manages to open two concurrent communication channels to directly send
instructions to the Arduino, which controls all motor functions of the RC vehicle.

Figure 19: Parallel architecture to run both DL workloads

Two deep learning workloads need to be executed: the original CNN model, which is
responsible to predict the steering angle, and the traffic signs recognition model.

To independently run these workloads, two processes are created on runtime. Each process
is responsible for one model allocation and execution.

The process responsible for the CNN inference follows an architecture that is detailed on
Section 3.2.2. Summarizing, this algorithm that runs on a single process, creates a thread that
is responsible to capture real-time images, while the vehicle is driving. Each image is sent
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to the main thread to be evaluated by the CNN model, predicting the desire steering angle
and the road lane visibility. After this phase, the steering angle and a defined constant speed
value is sent to the Arduino, so the vehicle can speed up and steer its wheels.

Alongside this architecture, lies the second process that supervises the traffic signs algo-
rithm. As mentioned before, this algorithm, similarly to the CNN inference, also predicts
information by processing frames in real-time. Unlike the CNN inference process, on traffic
signs inference process, there is no need for a thread that deals with image capture to be
created.

As both processes should be simultaneously executed, in parallel, and the first process is
already capturing images, there is no need for the second process to also perform the same
operation of capturing image data. If image recording was duplicated on the second process,
a lack of performance would occur because the system would be unnecessarily performing
the same operation twice.

To avoid the creation of a similar thread inside the traffic signs process, a communication
channel was established between the two algorithms. For each frame captured, in real-time,
by the correspondent thread, an additional task is now performed before the images be
accessed by the CNN model. The thread starts by establishing a communication channel with
the other process via message passing, and each frame captured is now sent to the address
space of the other process — traffic signs inference algorithm.

On the other hand, traffic signs algorithm receives the images on the output of the com-
munication channel, sent by the previous process. Each frame received is redirected to the
FgSegNet model created, which predicts the masks of potential traffic signs present on the
image, as presented in Figure 20.

Figure 20: Output of traffic signs inference: masks of predicted traffic signs.

Consequently, a postprocessing operation is performed on the output of each prediction,
which may contain a set of traffic signs masks. To easily analyse the predicted image, all
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pixels that does not contain a traffic sign are discarded, keeping only the regions of interest
(ROIs), which define the sets of predicted traffic signs masks.

Regions of interest (ROIs)

The Regions of interest (ROIs) computed are defined only by the masks of the predicted traffic
signs, as showed in Figure 21, discarding all the pixels outside the predicted area.

Figure 21: ROIs of the predicted masks from Figure 20

Nevertheless, there are some constraints to the RC vehicle motion if it only reacts upon the
regions detected. Originally, the predicted masks does not indicate any proximity sense of
each segmented traffic sign, or if the sign is near enough of the car to make it stop, like a stop
sign. Therefore, each detected ROI was post-processed in order to find the total dimension of
each region.

Figure 22 displays the analysis of the previous computed regions, shown in Figure 21. This
refinement can provide to the algorithm a sense of dimension of each predicted traffic sign
mask.

Figure 22: Dimension of the ROIs computed in Figure 21

Another advantage of detecting the dimension of each region is the possibility to discard
any predicted mask that shows poor results. An example of these types of results are presented
in Figure 23. The predicted masks can correctly identify the traffic signs cluster present on the
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given input image. However, there are regions where the masks are too small, and processing
the ROI dimension indicates the traffic signs are too far to be reacted to. Another visible case,
is a small region, which does not contains any traffic sign. These small predicted clusters
will be discarded by the algorithm because it may contain wrong predicted masks or may
represent traffic signs too far from the vehicle. On both cases, the RC vehicle will ignore this
predicted information.

Figure 23: ROIs of predicted images with poor results

Several experimental evaluations were performed to find an optimal cluster pixel dimen-
sion, on which the RC vehicle should only react to. Given the experiments, 600 pixels is the
minimum dimension of each ROI, the vehicle should react. Any cluster dimension smaller
than 600 pixels will be ignored, which means these masks may be relative to far detected
traffic signs or wrong predicted masks.

As described earlier, Cityscapes can recognize a wide-range of European traffic signs,
however, the predicted information does not identify each traffic sign type. Therefore, since
the DL model will not have the ability ti distinguish between the multiple types of traffic
signs, each predicted mask will be interpreted as a stop sign, for this use-case. This is because
intends to explore the performance of DL algorithms and not to enhance the reaction abilities
to traffic signs of the vehicle.

Traffic signs inference algorithm finishes with a communication phase. After traffic signs
had been predicted and ROIs had been processed, an action order — stop or continue — is
directly sent to the microcontroller.

Each traffic signs cluster will be analysed and if there is at least one region greater than 600
pixels, means a traffic sign is near. Upon this information, a direct stop order is sent to the
Arduino, ordering the vehicle to stop during 5 seconds upon the stop sign ahead. If none
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regions are detected or if are smaller than 600 pixels, the vehicle will ignore the information
and will keep up following the lane.

As illustrated previously in Figure 19, the both processes that are running in parallel will
eventually send instructions to the microcontroller. However, this concurrent operation may
lead to the corruption of the messages in case they are sent at the same time. To prevent any
message overlap, the communication channel is protected with an Operating System (OS)
lock object.

The allocated primitive lock is shared among both processes, and will guarantee the
messages are atomically sent. This communication synchronization is established because
serial communication between Raspberry Pi or Jetson and the Arduino cannot protect each
entire message structure on multiple concurrent sent requests. Leading to the information
sent be overlapped consequently by the multiple processes, destroying the original data.

A primitive lock could be in one of two states — locked or unlocked. The first process to
send an instruction to the microcontroller will lock the synchronization object, preventing
any other eventual send request by another process while the previous message is still being
sent. After a message had been sent to the Arduino, the primitive is unlocked, allowing any
potential pendent request to be sent to the messages queue.

3.2.3 Performance Evaluation

Develop efficient algorithms or fine-tune pre-existing ones requires the usage of feasible
evaluation tools or techniques able to properly analyse and test them. Since this project
requires the development of multiple algorithms and an extensive evaluation of the different
developed versions, there is a necessity to develop a tool orientd to this use-case to aid on
this process, automating this task.

The critical metrics of the real-time algorithms that must be analysed are inference times
and memory consumption. These metrics will aid on choosing the efficient DL inference
library or framework for a certain embedded device.

Manually executing and collecting each metrics of the multiple algorithms running on
different frameworks, would be time consuming, requiring an automatic performance evalu-
ation. To easily retrieve the needed metrics, per inference execution, an evaluation script was
developed.

Figure 24 represents the architecture of the developed tool. The main shell-script calls an
OS tool named VMstat, which retrieves the amount of memory the system is using, before
executing the DL workload.

VMstat is a computer system monitoring tool that analyses multiple system metrics, such
as, memory, processes, interrupts, paging and block I/O. The process of collecting the system
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Figure 24: Autonomous benchmark script architecture

metrics can be performed in sample intervals, which allows the observation of the system
activity in near real-time.

A sample interval of 2 seconds is given to VMstat tool, hence memory consumption is
collected every 2 seconds and stored. When the inference algorithm finishes, an exit code is
returned by it and caught up by the evaluation tool. With the inference algorithm finished, the
script averages memory consumption during the execution time and subtracts to the initial
values when the algorithm was not running, producing an average value of the consumed
memory by the DL workload.

The evaluation of execution time of the inference phase cannot be retrieved exclusively by
the shell-script evaluation tool. This is because the tool cannot access algorithm runtime stack
of inference phase only in order to calculate the spent time on a specific part of the algorithm.

To bypass this limitation, inference time is calculated by the algorithm itself. And per
iteration, for processed frame, the time spent on predicting the data is computed and printed
to stdout.

The evaluation tool can now check the time being spent predicting the information on each
frame, by accessing the stdout. Each retrieved inference time is stored and when the exit code
happens, the average inference time and memory consumed by the workload is recorded on
a logfile. This file can be used later for future evaluations of other algorithms or algorithms
running on different frameworks, easing the generation of bar charts of the retrieved metrics.
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3.3 M L I N F E R E N C E O N R A S P B E R R Y P I

An extensive analysis of the developed solutions this platform execution is detailed on this
section, as well as the challenges faced while deploying the algorithms onto this system. It is
also presented what libraries were used and why it were chosen. The multiple implementa-
tions developed, the deployment on multiple libraries and frameworks, and the challenges
are also described in the process.

3.3.1 Platforms Decisions

Libraries

The main processing unit of this platform is a ARM Cortex-A CPU, and the library TensorFlow
was chosen to provide a ground-truth benchmark since this library is the primordial and the
most used on Machine Learning context. This library also has an extraordinary maintenance
team always upgrading the packages and evaluating its performance.

TensorFlow Lite is another library that will be tested. It is a variation of TensorFlow, highly
customized and developed to maximize the performance on embedded devices. To run faster,
TF Lite quantizes the DL models and takes full advantage of the device resources, using the
advanced Arm NEON optimization and operations of the ARM CPU quipped.

Evaluations were also performed on Arm NN, an inference framework developed by ARM.
Arm NN was built to run on ARM CPUs only, and likewise the TensorFlow, this framework
is highly customized to perform tasks efficiently on devices with ARM CPUs.

PyArmNN, a python interface to the Arm NN framework was also used and tested running
these workloads.

3.3.2 System Tuning for ML Inference

Four different implementations of the inference algorithm were developed, each one running
on each inference library or framework. The architecture of each implementation is described
on the next sections.

TensorFlow implementation

The first implementation created to be deployed onto the the Raspberry Pi, was purely coded
in Python using the TensorFlow library.

The main responsibility of the algorithm is to real-time predict every frame captured by the
RC vehicle, to adjust the vehicle’s steering angle while following a predefined trajectory.
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This algorithm is composed by three phases, represented in Figure 25: the preprocessing
phase, where all the setup and preprocessing takes place before sending the data to the
deep learning model; the inference phase, where the predictive model uses the two output
neurons to predict two distinct values — steering angle and a number representing the
road lane visibility; and the communication phase, the component that interacts with the
micro-controller of the vehicle, giving direct instructions to the vehicle — speed and wheels
steering.

Figure 25: The three phases of the inference algorithm

Before the frame can be fed to the trained deep learning network, an important preprocess-
ing must be executed. The first stage is responsible for loading all the necessary modules and
to import the pre-trained model into the system’s memory.

After the model had been internally loaded into Python memory space, the TensorFlow
interprets the data as a graph of instructions, being ready to predict the data from an input
image.

Then the camera, which is connected to the Raspberry Pi is activated and set to record
image data on a 640x480 resolution. A thread is then launched, responsible to infinitely record
frames of the video.

Later, each frame is sent to a web-browser, which the user can access and watch the live-feed
of the vehicle’s driving. Also each frame is resized to a resolution ten times smaller, so it
can be passed to the inference phase, with reduced pixels, improving the performance of the
algorithm by using less memory.

After that, inference phase takes place, real-time predicting each frame with a resolution
of 64x48, that the previous thread is post-processing, as illustrated in Figure 26. This step is
processed in real-time in a loop upon each frame being captured and post-processed by the
thread assigned to. Every frame is sent to the CNN model, which processes its given input
and through the pre-trained weights predicts the data.

Inference phase will generate two meaningful values as mentioned earlier — the steering
angle and a value representing the percentage of the road lane visibility.

The third and last stage establishes a communication with the microcontroller, to send
instructions to the RC vehicle. If the road lane is visible in each frame, the steering angle
predicted is sent to Arduino, which communicates with the servo of the vehicle, spinning
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Figure 26: Inference phase: steering angle prediction

the wheels according the angle predicted on Raspberry Pi. If the road lane is not visible, the
angle predicted is discarded. In this case, an order is sent for the vehicle steer the wheels
aggressively to the left or to the right, upon the previous known direction that the vehicle
was driving.

TensorFlow Lite implementation

The second implementation of the algorithm uses the TensorFlow Lite library, which is highly
customized for embedded devices.

This alternative follows the same 3-step architecture defined on the TensorFlow implemen-
tation: preprocessing phase, inference phase and communication phase. The main changes
against the previous implementation happens on the first phase.

This time, the preprocessing phase applies several optimizations to the graph of instructions
imported to the Python environment. After the model had been loaded, some TensorFlow
Lite routines are set and configured so the model can be optimized targeting the architecture
of the Raspberry Pi hardware, specifically ARM configurations and pruning nodes, reducing
some mathematical operations from the network.

Several optimizations are provided by TensorFlow Lite, but not always can be applied. In
fact, multiple optimizations will bottleneck the algorithm and deteriorate the performance.
Post-training quantization of the model could be set, but the Raspberry Pi ARM processor
cannot handle native half precision operations. Triggering this operation will massively slow
down the code execution because the system will unpack the single floating point values
to 16-bit size, but then the CPU will still have to convert it again to 32 bits to compute the
arithmetic operations and then convert again the output values to 16 bits (Figure 27).

Figure 27: Post-training quantization
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There are several post-training quantization options that can be applied. The Table 7
presents these multiple choices and the benefits provided by quantizing an already-trained
float TensorFlow model.

Technique Benefits Hardware

Dynamic range quantization 4x smaller, 2x-3x speedup CPU
Full integer quantization 4x smaller, 3x+ speedup CPU, Edge TPU, Microcontrollers
Float16 quantization 2x smaller, GPU acceleration CPU, GPU

Table 7: TFLite post-training quantization options

After all optimizations, the succeeding behaviour of the preprocessing phase was identical
to the TensorFlow implementation. A thread is spawn which manages to capture images
frame by frame. The images are sent to the web-browser to live-feed the driving. Images
resolution is decreased to be fed to the deep learning model.

The inference phase did not require much structural changes from the developed scheme
of the previous library implementation. One optimization could be performed here, but the
hardware could not pace the change. If the ARM CPU had support to native half-precision
floating point operations, the frame could be scaled to FP16, scaling the image to half of its
size. By halving the number of bits representing each pixel of the frame, would prepare the
model as well perform half-precision inference.

Since the Raspberry Pi does not support enabling all these advanced optimizations provided
by TensorFlow Lite, enabling the quantization techniques turn the algorithm slower rather
than not using these techniques at all.

Last step of the three-phased inference algorithm does not contain any changes from
previous application.

ArmNN implementation

This algorithm was developed using the open-source inference engine framework Arm
NN. The selection of this library comes due to its support to ARM CPU’s with the NEON
vector extension, accelerating this type of ARM NEON devices. Multi-core support and the
exploitation of ARM CPU advanced parallel features strongly advises to a highly scalable
algorithm, which is a must for these ML workloads.

ARM provides its machine learning framework written in portable C++14. However the
already developed modules on previous implementations, were written in Python, due to the
libraries used. These modules allows to enable the Raspberry Pi camera, and helps to collect
training data and launches the web interface to manually control the RC vehicle or to watch
the first-person live feed of the autonomous driving mode.
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Migrate all these modules to C++ would take some time and a solution was found out to
keep both C++ Arm NN implementation and reuse the Python modules that communicates
with the vehicle and manages all real-time data.

Initially the whole core module was planned to be migrated and re-written to C++. How-
ever, this process showed to be too time consuming, since this module had several components
and would take longer if converted to the another language, rather than merging the services,
specially with a fully web-browser developed in Flask. Using C++ to rewrite the web-browser
would had been stepping backwards rather than forwards.

To overcome this drawback, the alternative found was to create an abstract compiled
C++ library that only replaced one phase of the inference architecture instead of the whole
modules.

The developed library would replace only the second phase of the architecture of the
inference algorithm (Figure 25). This library was built to be external callable. In another
words, was compiled into a Linux object so it can be executed from Python environment,
since it can import Linux objects libraries. Its main function is to build a custom object that
will keep all the Arm NN session needed to predict multiple images and to predict a frame,
like so, this C++ object will be kept alive until the Python session dies. This strategy keeps
from Python not to generate the engine over and over, every time it loops each frame.

Three methods are available to be externally launched: the ArmnnEngine, that creates and
keeps the Arm NN engine session alive; the startEngine, that allocates all data and metadata
to efficiently load the weight model, keeps the session alive all the way through every frame
inference, reserves the image passed by and allocates the results of the image prediction; this
method has one argument, a string that defines the name of the pre-trained weight file to be
loaded; and inference, that predicts the image passed in on its arguments and saves the two
output values on the addresses passed as arguments.

Arm NN provides several parsers to load neural networks defined in multiple formats,
such as TensorFlow and TensorFlow Lite, among others. It was used a TensorFlow Lite
FlatBuffers weight file as the model to be loaded. Like so, this implementation takes usage of
TFLite parser armnnTfLiteParser, which is a library to easily import the weights file into the
Arm NN SDK engine.

The function on the algorithm responsible to start the inference is prepared to predict the
frame with some optimization sets targeting the platform from where it is being executed.
In this case, the code will exploit the ARM CPU advanced operations and activate SIMD
extensions with ARM NEON technology.

The shared class library functionality was explored to be accessible by the Python environ-
ment. Portability of the developed code to all programs, running Linux, was achieved by
compiling it to the shared library. This allowed the library to be linked to Python environment
at run time. In that way, Python can use the library without specifically contain it in its
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memory address space. A shared library is an object module that can be loaded at run time at
an arbitrary memory address, and it can be linked to by a program in memory.

The library is automatically linked into a program when the program starts, and exists as a
standalone file.

A C++ Boost library was initially integrated to build the shared class that is automatically
linked into a program. Boost provides a Python abstract interface — the Boost Python Module
— to establish a communication between Python and the API. This first solution revealed some
run time dump memories correlated to the custom object sharing among another programs
memory.

A new alternative was found to circumvent the memory leak issue. To fully use the C++
library from Python standard library, the ctypes module was used. Ctypes is a foreign
function library for Python that provides C compatible data types. Its local memory can be
accessed, allowing functions to be called or variables to be taken.

The architecture of this developed C++ library that communicates with the Inference
module developed in Python is illustrated in Figure 28.

Figure 28: Communication process between Python and C++

With the library set, the armEngine object can be callable from the Python session. A Python
class must be created to modulate all data from the shared library. This Python class has the
reference to the three methods of the API and the possibility to send and receive the output
data to Python declared pointers. To allocate pointers on Python environment, ctypes was
used, since Python does not offer native support. It is possible now to invoke the methods
defined on the API through this abstract class created on Python side.

API was built to simplify the Arm NN implementation and easily incorporate the Arm NN
engine as well. Developing the Python client side of the inference algorithm turned to be
effortless, since the API perfectly fits on the previously developed 3-phase stage inference
algorithm.
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The first stage of the (Python) algorithm, dictates the declaration of the Arm NN engine
abstract class to interact with the shared library API. Follows the model file loading, using
the defined method — startEngine — which creates and allocates all the session to Arm NN
perform inference on the C++ shared library. The frame responsible to record the frames is
then launched as it explained on previous implementations.

Second phase — the inference — can be perfectly adapted from previous inference phase
implementations. The preprocessed frames captured by the thread are sent to the Arm NN
engine, replacing the TensorFlow predict() method for the defined one on the API — the
predict() method illustrated in Figure 28. The C++ predict() method is then called, which takes
the frame as argument, linking with the shared library that computes the given image and
outputs the two desired values. The predicted data on the ArmNN module is then sent to the
Python Inference module (using the return method, also illustrated in Figure 28).

The third and last phase is defined on an analogue way as previous implementations. The
two previous predicted values are now sent to Raspberry Pi. This process is cyclic repeated,
predicting frame by frame taken by the capture thread.

PyArmNN implementation

This section contains an extra developed version of the algorithm using PyArmNN, which is a
newly developed Python extension that provides an interface to Arm NN SDK C++ API. The
source package is platform independent, but because it runs on top of the Arm NN engine, it
requires full installation and compilation of the Arm NN.

Being the library written in Python, it gives a great possibility of re-implement the previous
full Python developed alternatives. As most developed code is in Python, the advantage
of using PyArmNN resides on a trivial development of the code. The implementation will
be similar to the TensorFlow and TensorFlow Lite versions following perfectly the defined
architecture.

Because this Python library is an interface/API to Arm NN engine, there is no need to
develop and manage a connection to an abstract shared library like the previous Arm NN
implementation, since the library manages that for us.

As the main topic of the this dissertation is inference performance, there is an urge need to
test and evaluate the Python library against the pure Arm NN implementation. Thus it will
be possible to analyse how it deals with memory management and check for possible internal
optimizations on communication with C++ API, since it uses the same Arm NN backend.

Developing this implementation revealed not to be very costly since it only required
some changes from the prior pure Arm NN implementation, following the same 3-phase
architecture.

The preprocessing phase suffered some changes regarding to the custom object that was
holding the whole Arm NN session. As now, exists an already developed Python library that
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connects to Arm NN engine, it was created a similar object but using PyArmNN methods.
Inside the class was created the same methods as the shared library — startEngine and
inference.

startEngine method was reprogrammed to successfully hold the frame passed by in and
to allocate all the tensors needed for the prediction process and to store and predicted data.
Also it loads the weight file named on its argument by using the TFLite parser to import the
TensorFlow Lite Flatbuffer model file.

The defined inference method, as the name suggests, takes the final interaction with engine
by sending the frame to Arm NN SDK. The engine processes the image and the two predicted
values are then returned. The data is saved on the object to be accessed later.

Like the prior implementation, the first phase starts by creating an Arm engine session,
allocating the object previous described. Then the TFLite parser takes in to load the model
file. The capture thread is now ready to be launched and start to capture frames from the
Raspberry Pi’s camera and post-process it.

On the inference phase, the loop is started, where each ten times smaller received frame, by
the thread, is taken by inference method. Prediction takes effect and the steering angle of RC
vehicle and a confirmation whether the road lane is present on that frame is predicted.

Third phase deals with the embedded system communication, sending explicit orders to
the vehicle. Received orders are interpreted, adjusting the car steering angle to follow the
road lane. The iteration of the loop finishes and loops back again starting the second phase
that receives the next frame predicts the image, send the orders upon the predicted data, and
the cycle goes on and on, infinitely driving through the road lane and predicting each frame
captured.

3.3.3 Challenges

To follow a path

Deploying these deep learning algorithms on the Raspberry Pi platform did not reveal to be
an easy task, which turned be more time-consuming than the algorithms development itself.

In this section will be described the deployment process of the multiple implementations
developed and the major issues faced alongside this process.

TensorFlow and TensorFlow Lite were the unique libraries that did not gave any problems
when deploying the developed algorithms. Both Google’s libraries proved to be very efficient
on the deployment stage, even on embedded systems. The extensive documentation and the
great community helped to streamline this process, as well.

The Figure 29 shows the inference times of three different pre-trained networks — Linear
Model, CNN noaug and CNN aug — executed on TensorFlow and TensorFlow Lite.
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Figure 29: TensorFlow and TensorFlow Lite inference times with different file weights

TensorFlow Lite presents an higher efficiency running all the three models than TensorFlow,
resulting in execution times more than 50% faster compared against TensorFlow.

The obtained results for each library showed itself to be very acceptable for the system
being tested. A full detailed explanation is given in the next chapter.

Native Arm NN implementation is from far, the engine that gave more technical problems
on the deployment. After the full development of the algorithm, tests presented some
drawback regarding to the previous results. This library is the most optimized one among
the libraries tested on Raspberry Pi. It supports a wide-range of hardware optimizations and
exploit the ARM CPU at the most. Yet, the results obtained did not show any improvements,
with spikes on inference times, as presented in Figure 30.

These results are far from being acceptable because execution times got a way quite higher
than TensorFlow and TensorFlow Lite results. Arm NN could be a little slower compared
against previous results, but these tests exceeded an upper roofline margin and cannot execute
four times slower than the others libraries. An extensive debug and time was devoted to find
the potential bottleneck of this implementation.

Multiple tests and theories were created to find the potential solution of this drawback.
Implementation was checked and re-coded, the whole Arm NN modules and components
were fully reinstalled and redeployed, the algorithm was carried with multiple load tests
of multiple use-cases and inference executions were traced and profiled using appropriated
performance tools.

After a code verification and multiple load tests performed, the algorithm kept behaving
slowly for all given inputs, not showing any signs of improvement. To amplify the use-case
tests of the algorithm, different configurations were tested.
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Figure 30: Arm NN inference times with different file weights

Initially, the algorithm could only predict frames with resolutions of 64x48 pixels. To
extend its capabilities of predict multiple frames of different sizes, a change was made. The
neural network architecture was not modified but the training data was enhanced. The
original dataset that contained a set of images of the RC vehicle driving was duplicated, and
it was processed a resize of four times larger to the duplicates images, generating a new set
of identical images with a resolution of 256x192 pixels. This process is designed by data
augmentation and for this use-case it aimed to support two different image resolutions: 64x48
and 256x192 pixels.

This process of trying inference predictions with four times larger inputs aimed to confirm
or discard the theory that Arm NN could only enhance its engine on heavier workloads.

So the network was retrained, generating a new pre-trained model file that represents the
neural network capacity to predict larger images.

When evaluating this new network on Arm NN, the results showed, again, no improve-
ments at all. In fact, as illustrated in Figure 31, the algorithm slowed even more compared to
against both TensorFlow evaluations.

This first try to find the bottleneck did not reveal to be efficient, since the model should
have performed around the 16-21 ms per frame, like TensorFlow’s executions. Despite
the new model, CNN noaug HQ, be bigger, which could be more ideal to optimizations
appliance, inference times got even worse. Compared to ideal execution times, this Arm NN
implementation, executed seventeen times slower than the expected.

Consequently, these tests revealed that the problem does not resided on the model structure
and on the presumable efficient data management by Arm NN on heavy ML workloads.
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Figure 31: Arm NN inference times with different file weights

Profiling ML workloads

Given the difficulty to find the nature of the inference times taken by the Arm NN im-
plementation and given the degraded performance, a profiling tool was used, the Flame
Graph.

Flame Graph was chosen to aid on finding the potential bottleneck during the runtime of
the algorithm. The tool can transform profiling logged data of programs into images, visually
representing the profiling data.

The tool can generate Flame Graphs from profile data that contains stack traces, collected
by different tools on multiple operating systems. The Table 8 presents all the operating
systems and profiling tools supported, from which Flame Graph can convert the data into
easy readable graphs.

Operating System Profiling tool

Linux perf, DTrace, eBPF, SystemTap and ktap
Solaris, illumos, FreeBSD DTrace
Mac OS X DTrace and Instruments
Windows DTrace and Xperf.exe

Table 8: Operating systems and profiling tools supported by Flame Graph visualizer tool

With Flame Graph, several metrics of the system can be fetched easily and can be interpreted
through the generated Flame Graphs. The x-axis of the generated graph shows the stack
profile population, alphabetically sorted, and the y-axis shows stack depth, counting from
zero at the bottom. Each rectangle represents a stack frame. The width of the frame represents
the time spent executing a function or method. The top edge shows what is on-CPU, and
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beneath there is its ancestor. The colors are not significant, since it were picked up randomly
to differentiate frames. Gregg (2016)

Flame Graph supports a wide range of metrics, such as (i) memory usage; (ii) the off-CPU
performance issues, namely the time spent by processes and threads when they are not
running on-CPU; and (iii) the CPU usage, to check if a routine task is busy.

Figure 32, shows the Flame Graph of the Arm NN implementation, running the CNN model
that predicts frames with a resolution of 64x48 pixels. This profiling was performed to build a
simple baseline, to easily compare against future versions of this engine implementation.

Figure 32: Arm NN inference times with different file weights

On the above Flame Graph (Figure 32), it is possible to notice that half of the execution time
is actually spent doing math convolutional operations. Roughly one quarter of the time is
spent on memory allocation and the remaining quarter is spent doing some internal functions
inside shared libraries loaded by the Arm NN engine. This indicates that multiprocessing on
the convolutional function is not happening. Google’s libraries are taking roughly 1.5 to 4 ms
to compute the whole algorithm, instead of Arm NN engine that is taking 8 ms only to do the
convolutional work.

The curiosity of this aspect is that due to the ARM CPU architecture, this indicates the
problem might be lack of multiprocessing and due to the non-exploitation of advanced ARM
optimizations. This is because the algorithm is taking around 8 ms to predict a single frame
and the average prediction of TensorFlow’s versions are taking approximately 2 ms, that is,
four times faster. This is also the number of CPU cores present on the Raspberry Pi 4, which
indicates it is only using one single core to execute Arm NN engine, depriving the algorithm
of multiprocessing capabilities.

An identical evaluation was performed on the implementations that predicts the four times
bigger frames. Figure 33 presents the Flame Graph related to the profiling of a 256x192 image
prediction. As expected, the same convolutional operation is also taking too long, spending
55% of the algorithm execution time on this method. The test also suggests the algorithm is
not enabling multiprocessing capabilities, as the percentage of the time spent on the algorithm
is related to ML math operations, like convolutional operations.

The performed tests suggest that the performance issue of the developed Arm NN inference
version does not resides on a technical bug in the implementation, but rather in the inability
of the engine to explore multiprocessing capabilities.



3.3. ML Inference on Raspberry Pi 58

Figure 33: Arm NN inference times with different file weights

To cover and discard another use-case, a full fresh setup of the Arm NN engine was done
again. Before this process, the Raspberry Pi operating system was re-flashed as well. A
new version of Raspian OS was installed, following a 64-bits architecture version. This OS
installation was executed to test the compatibility of the Arm engine running on 32-bits
platforms, since initially the 32-bits Raspian OS version was deployed. This analysis covered
the possibility of Arm NN engine only support 64-bits architecture, exploiting the full CPU
capabilities on this version only.

The installation of this library on Raspberry Pi consisted on manually installing several
modules to successfully load ML workloads on ARM CPU. As illustrated in Figure 34, for
Arm NN run applications using TensorFlow models on Cortex-A CPUs, it was necessary to
reinstall Arm NN SDK and Arm Compute Library (ACL). Some effort was taken to drive this
process since it was necessary to manually install multiple dependencies, which in most cases
had to be done by cross-compiling the libraries for the ARM platform.

Figure 34: Data pipeline of Arm NN engine
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A new training of the model was also executed on the 64-bits OS to discard any possible
miss-configuration while training on 32-bits. The final results got were identical because the
new generated model file (after the new training) was equivalent to the previous used one.

With the full environment set and ready to perform ML workloads, a benchmark was
performed running Arm NN SDK on the 64-bits OS version. Represented in Figure 35, the
implementation performed exactly with the same performance as on the 32-bits OS versions.
This step settle down the theory the Arm NN engine could only speedup on 64-bits platforms
and covered all installation phases to check important flags and configurations to correctly
install the SDK on ARM architecture.

Figure 35: Inference times of multiple libraries including Arm NN 64 bits versions

Despite all these covered tests had not pointed out a possible solution to solve the bottleneck,
a last profiling test was performed to analyse with more detail the model weight behaviour
in the engine. A profile was performed in the inference phase of the algorithm execution,
through the analysis of multiple model files generated by different neural networks.

The original CNN was modified into four multiple versions, generating four different
neural networks. This nets were also trained with the dataset that contains driving logged
data when the RC vehicle was manually driven.

The first neural network (1-oconv, Figure 36) was created by cutting off all layers of the
original network, except the convolutional ones. This network architecture was created
to evaluate the performance of the Arm NN engine while processing networks containing
convolutional layers only.

Next, the original CNN network was readjusted and only the Dropout layers were kept in,
aside from the final layers where the net diverges into two branches. Therefore, this network
is very simple, as a consequence of the Dropouts, which discards a great number of neurons
passing by on a single layer. The branches ares responsible for the output of the two values
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through the two output neurons. This network, named 2-odrop, is illustrated in Figure 37 and
it mainly contains dropout layers.

Figure 36: Modified neural net (1-oconv)

Figure 37: Modified neural net (2-odrop)

To evaluate the performance of the engine while computing a light convolutional neural
networks, two more networks were created. Figure 38, presents a network, whose architecture
was defined by a merge of the two previously mentioned neural networks. Thus for the
creation of this net (3-drop conv1), all original layers were cropped except the Dropout layers
and the first convolutional layer. A kernel size of 1x1 was specified, defining a filter of width
1 and height 1 of the 2D convolution window.

Previous profiling tests depicted convolution layers are computing too slow. So, to per-
form an extended analysis of these ML workloads, convolutional layer parameters were
reconfigured. The kernel size parameter was modified to profile the behaviour of this tuned
operation. This leads to the fourth layer configuration as showed in Figure 39. The last neural
architecture follows the same architecture of 3-drop conv1 network, except the kernel size of
the 2D convolution is 3 on this case.

With all these networks configured and set, each one was trained, producing four different
trained models to be imported to the inference libraries being used.

Each model file exported by the training process was imported on the TensorFlow, Tensor-
Flow Lite and Arm NN, to compare the multiple networks architecture against the several
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Figure 38: Modified neural net (3-drop conv1) Figure 39: Modified neural net (4-drop conv3)

inference libraries. The idea was to find the possible bottleneck on the implementation by
checking what type of model fails to efficiently run on Arm NN engine.

The results of this test, illustrated in Figure 40, still pinpoints a lack of performance on
the Arm NN engine. The average inference execution was about ten times faster on both
TensorFlow’s implementation rather than Arm NN.

Despite the creation of light networks (2-odrop and 3-odrop conv1), the performance on these
was also poor. The model that performs only convolutional operations got even worst times,
increasing its time comparing with the original CNN model.

As expected, the 2x2 kernel of the 2D convolutional window presents a slower inference
execution (on Arm NN engine), when compared with the 1x1 kernel. The 1x1 convolutional
neural network, which is mostly defined by dropout layers, also presents considerable
worst times. However inference execution of this model on TensorFlow still presents pretty
reasonable inference times.

To complement the previous benchmark, the two fastest networks were profiled to analyse
what operations and functions are taking too much CPU time. The Flame Graph of Figure
41 points out that approximately 75% of the spent time, executing the Arm NN inference
implementation, is doing absolutely nothing.
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Figure 40: Inference times of tuned neural networks

Figure 41: Profile of 2-odrop neural network

After loading all the necessary modules and data necessary to perform the image prediction,
the CPU gets stuck on a power save idle routine, arch cpu idle. Having the whole model
processed in about 150 ms, leads to an unnecessary 110 ms spent on holding back the
algorithm to output the predicted values.

The second Flame Graph (Figure 42) is related to the architecture that follows the layout of
the previous network test with one additional convolutional layer at the start (3-drop conv1).
The bar chart indicates the algorithm is again taking too long on unnecessary loads and that
is taking a considerable amount of time to compute the convolutional operation, as well.

Aside from the retrieved metrics by profiling the developed multiple inference implemen-
tations, the evaluation of these new neural networks architecture did not revealed itself to be
very explanatory to find the bottleneck issue.

Consequently, only reprogramming the Arm NN implementation could solve these per-
formance issues, since all planned tests had been covered. And as result, the only strong



3.3. ML Inference on Raspberry Pi 63

Figure 42: Profile of 3-drop conv1 neural network

point and theory that could be taken was the algorithm was not taking any multiprocessing
advantage.

Therefore, Arm NN documentation and its API was deeply checked out and tested, which
allowed to discover that there were three important flags that could and must had been
provided to the inference execution method.

There are three flags — CpuRef, CpuAcc and GpuAcc — which are intended to optimize
developed Arm NN implementations. This options makes the compiler to turn on suitable
hardware optimizations available, so the developed implementation can be highly optimized
and exploit multiprocessing.

CpuRef stands for using a simple implementation using portable C++. This option is not
suitable to be used in deployed applications because it will not use any ARM optimizations.
This option is mostly for test purposes on non-ARM CPU architectures, like Intel CPUs. This
flag will deliver poor performance results compared to the alternatives.

CpuAcc requires an ARM CPU on the system with NEON support, so the computing can be
accelerated using the advanced ARM vectorization and parallel optimization techniques and
enabling multiprocessing. It will only work on Cortex-A processors and a subset of Cortex-R
processors. This is the flag that must be used on this use-case, since the deployment is being
made on a Raspberry Pi 4 with one 4-core Cortex-A CPU chip.

Lastly there is the GpuAcc flag that requires a GPU on the system that supports OpenCL.
This engine backend will only work on Arm Mali GPUs, so this flag should be activated to
increase performance computing by using the GPU-cores of the system.

Unfortunately the developed implementation was not using the desired CpuAcc flag, hence
all previous test results of the Arm NN engine showed off to be quite inefficient.

The Arm NN implementation was improved by using the correct optimization flag, hence
the algorithm could be optimized and processed by the four ARM CPU-cores, using NEON
advanced extension. A new evaluation was performed, and as illustrated in Figure 43, the
bottleneck had been solved. The Arm NN engine backend can now efficiently predict each
image, with a speedup of ten comparing to the previous results (Figure 30).
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Figure 43: Performance of the developed implementations

To detect traffic signs

The FgSegNet model was fully benchmarked and evaluated to run on conventional systems,
such as desktops. However, as on previous CNN models, the new DL workload has to be
deployed on specific embedded systems, a Raspberry Pi 4 and a Jetson Nano.

To fully explore full capabilities of both embedded systems and to improve its efficiency
while running these kind of workloads, the model was tested and evaluated also on different
ML frameworks.

The new algorithm (Figure 19) was deployed onto the Raspberry Pi using TensorFlow,
TensorFlow Lite, Arm NN and PyArmNN.

Deploying personal ML algorithms on embedded systems running on different frameworks
or libraries, is not an immediate task. This process normally comes with multiple issues that
need to be solved to properly adjust the model so it can be successfully deployed into these
devices. This issues comes with versions incompatibilities, nonsupport of layers and even by
hardware constraints.

Importing the DL trained model into Arm NN engine worked properly, so the deployment
was immediate on the ARM engine. The deployment process for this inference engine is
analogue to the CNN presented before, reason why this deployment will not be presented
again.



3.3. ML Inference on Raspberry Pi 65

However TensorFlow and TensorFlow Lite implementations were not immediate to deploy
on the target system — Raspberry Pi 4 — which required additional steps to fix intermediary
occurred issues.

TensorFlow

Memory issues

A Raspberry Pi 4 with 4 GiB of RAM was originally chosen and provided by Bosch for this
project. However, external factors lead to the incapacity to use this model when deploying
the traffic signs algorithm.

Although another Raspberry Pi 4 was possible to be used to perform this process, a 2 GiB
of RAM model version was provided by Bosch Car Multimédia, S.A.. This new embedded
device provides all the specifications detailed on Table 3, with the exception of the RAM,
since it only have a 2 GiB RAM of capacity.

Nevertheless, using a restricted memory device, compared to previous model, played a
major role to evaluate DL algorithms execution performance on constraint environments.

When using this Raspberry Pi 4 version to execute FgSegNet, the system crashed at the
inference phase, when trying to predict an image. Giving the memory limitation of the present
system, the algorithm was profiled and memory consumption was checked on multiple stages
of the algorithm.

Just before the algorithm had started executing, the embedded device only has about 1 GiB
of RAM memory available from a total of 1.8 GiB initially provided. This suggests that the
OS is already consuming about 0.8 GiB of RAM.

During the algorithm execution, the memory usage starts to increase, decreasing the amount
of available free memory. In every instance of the algorithm execution, the memory decreases
down to about 80 MiB (Figure 44). This lower limit is reached when the algorithm tries to
execute the inference phase, causing the algorithm to abort.

To complement the previous analysis, the same algorithm was also deployed on a personal
computer with 8 GiB of RAM. On this new environment, the algorithm manage to run
successfully, which allowed to observe that it consumed about 1 GiB of memory during its
execution. That is also the same amount of free memory on Raspberry Pi, which strongly
indicates it is not enough to properly execute the DL workload.

On the personal computer, a module that manages system resources usage was used to
truncate the maximum memory the program can use. As on Raspberry Pi, a maximum limit
of 1 GiB was set on the desktop. With these virtual constraints, the algorithm also crashed
due to (virtual) memory limitations.

This was enough to conclude that the FgSegNet model provided, needs to use approxi-
mately 1 GiB of RAM to execute on TensorFlow.
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Figure 44: Samples of 1 second of system memory consumption. Purple box: the moment when the
system rans out of memory

Layer issues

Later, a new Raspberry Pi 4 model of 4 GiB of RAM was granted again, which allowed to
keep the deployment on this embedded system.

The algorithm was deployed onto the new 4 GiB device and managed to successfully run.
However, the generated images did not produce the expected results. Each predicted image
was producing a segmentation on the whole picture (Figure 45), instead of segmenting only
the clusters defined by the traffic signs.

Figure 45: Bug on output of traffic signs inference

Given this wrong predicted data, the FgSegNet model architecture was extensively analysed
in order to find a potential solution to fix this wrong predicted data.

When analysing the network, it was discovered that not all layers present in the model
architecture are compatible with TensorFlow, since this library cannot parse Instance Normal-
ization layers, which was included into the FgSegNet network.

To use this Instance Normalization layer, FgSegNet model must externally import it using
another library called TensorFlow-Addons, which defines all intrinsic operations performed
by this layer.
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However, the additional layers existing into TensorFlow-Addons library can only be im-
ported in TensorFlow version 2 or higher. But, at the moment of these tests, the most recent
version of TensorFlow available and supported to embedded systems was 1.15. This ver-
sion limitation motivates an improper loading of the Instance Normalization layer into the
TensorFlow 1.15, causing major errors on the final predicted data.

To bypass this constraint, another layer had to be used to replace the one used on the
original model because Instance Normalization layer used on FgSegNet model required at
least TensorFlow version 2.

Two additional layers were found that could easily replace the unsupported one: (i) the
instance norm, a layer directly provided by TensorFlow 1.15 that could simulate part of the
Instance Normalization behaviour; and (ii) the Batch Normalization, that can eventually
perform identical to the Instance Normalization, leading to similar outcome results. These
two layers were tested and evaluated, but this process required a redesign of the FgSegNet
model, changing its original layer structure.

The redesign of the process generated two different FgSegNet models that diverge from
the original one. Each model was generated by replacing the Instance Normalization with
the instance norm and Batch Normalization layers. This required that both models had to be
retrained with Cityscapes dataset, repeating the training process.

Results of the tuned models revealed it can already segment parts of the image instead of
the whole image. But predicted data of both models shows very poor results on the accuracy
of the detected objects, as shown in Figures 46 and 47.

Figure 46: Inference on FgSegNet with instance norm

The previous models could be successfully deployed on TensorFlow, yet the evaluation
results clearly indicates these models must not be used in the context of this use case since
they cannot properly detect traffic signs.

This problem was later fixed, given the constant upgrade of machine learning libraries
and frameworks, nowadays. In the meantime, TensorFlow released support of its latest
version 2 to embedded systems, which allowed to successfully setup the Raspberry Pi device
with the required version, to successfully deploy the original FgSegNet, which carries the
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Figure 47: Inference on FgSegNet with Batch Normalization

Instance Normalization layer. Figure 48 displays a proper traffic sign detection of the original
FgSegNet model using the Instance Normalization layer.

Figure 48: Inference on the original FgSegNet (with Instance Normalization)

TensorFlow Lite

Initially the deployment of the model that aims to detect traffic signs was suffering the same
issues as described earlier on TensorFlow. However, when using this library with Raspberry
Pi 4, the 2 GiB RAM version, the memory consumption did not affect the algorithm execution.

On this case, the 2 GiB RAM capacity was enough to run the algorithm, since TensorFlow
Lite optimizes the model being executed. One of the major optimizations is the compression
of the model, which reduces the imported model by pruning the weights that do not play a
significant role to predict the desire data.

Smaller models use less RAM when executing, which frees up memory for other parts
of the application being used, which can be translated to a better performance and stability
TensorFlow (2020).

Although the original model could be deployed on a memory constraint device, the
initial inference results become quite similar as the bugged ones presented in Figure 45.
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These inference issues were also being produced by the unsupported layer — Instance
Normalization — on TensorFlow Lite versions lower than 2.

As performed with TensorFlow, the latest version 2 of TensorFlow Lite was officially re-
leased to embedded systems platforms, which fixed the inference issue by properly importing
the required layer. The outcome of the algorithm is quite similar to the TensorFlow version,
presented in Figure 48.

Arm NN

Deploying this DL workload on the Arm NN was trivial since the required pipeline to properly
run inference models on this engine was already been covered earlier when deploying the
CNN model.

With the latest TensorFlow Lite installed, which Arm NN uses to parse DL models, FgSeg-
Net was successfully imported into this particular inference engine, which allowed proper
predictions as showed in Figure 48.

3.4 M L I N F E R E N C E O N H E T E R O G E N E O U S J E T S O N N A N O

On this section, a full explanation of the developed algorithms to run on Jetson Nano platform
are be presented. Full details of the deployment on this embedded system are described and
also how GPU-cores were exploited to run this particular program: an algorithm capable to
predict two output values by processing frames in real-time.

3.4.1 Platform Decisions

Libraries

TensorRT is the inference library chosen to compute this specific type of ML workload. It is
built on CUDA, NVidia’s parallel programming model, and enables inference optimization
for all deep learning frameworks. By running this inference engine, the GPU-cores can
be enabled, which leads to an improved computing performance, when compared to an
execution on CPU-cores only.

During the build phase, the NVidia engine identifies opportunities to optimize the network,
and in the deployment phase TensorRT runs the optimized network in a way that minimizes
latency and maximizes throughput Gray et al. (2017).

The Jetson Nano ARM CPU, a Cortex-A57, is an earlier version of the Cortex-A72 present
in the Raspberry Pi 4. The ARM Cortex-A57 has a lower clock frequency and the size of the
L2 cache is smaller. Thus, running any distribution of the TensorFlow library in the Jetson
Nano ARM CPU would lead to a performance drawback. Jetson Nano ML workloads will
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run slower on CPU, so it is fundamental to achieve an approach that uses GPU-cores to aid
and support the heavy computations.

The specific NVidia inference framework was selected because it supports high-performance
deep learning inference on this particular embedded system, providing a wide-range of GPU
optimizations and accelerations by supporting fully-native FP16 operations.

TensorRT offers a C++ API and a Python API, which are both identical in supporting the
same needs.

The main benefit of using the Python API is the ease of programming algorithms that
perform data preprocessing and postprocessing because it offers a variety of libraries like
NumPy and SciPy, which are very complete libraries to manipulate and calculate complex
data structures.

When the use-case requires an higher level of safety within the application, C++ API
should be used. For this RC vehicle use-case, a TensorRT algorithm was developed resorting
to the Python API to easily reuse key components already developed in Python with the
Raspberry Pi. This results on code reuse and on a reduction of spent time implementing this
heterogeneous approach.

3.4.2 System Tuning for ML Inference

The implementation, running on TensorRT engine, follows the same architectural principles
as previous CPU implementations (Figure 25). Hence, the developed algorithm, which runs
on the Jetson Nano embedded system, also comprises the same defined phases: preprocessing,
inference and communication phases.

There was no need to apply major changes to the communication phase since its backend
does not particular depends on this inference engine.

A CPU processing approach is kept on preprocessing and communication phases to relief
the GPU-cores of additional computational workload.

While CPU-cores are assigned to handle the computation on these two mentioned phases,
GPU-cores are responsible to process, in parallel, the inference phase. Because a heteroge-
neous computing approach is present in this embedded system, inference phase must be fully
reprogrammed to exploit full capabilities of Jetson Nano GPU.

As stated on earlier implementations, the preprocessing phase imports the model weights,
allocates the inference engine and captures real-time frames from the attached camera. Its
final role is to send each captured image to the inference engine (inference phase).

This particular NVidia inference engine only supports specific weight file formats to be
loaded into TensorRT. So the first step to perform before enabling inference on TensorRT is to
convert the pre-trained network into a TensorRT network. The easiest way to achieve this is
to convert the model into one of the following formats: UFF, Caffe, ONNX.
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The original model file, which was generated by training the network, was exported to a
TensorFlow (.pb) format, so it was chosen the UFF parser.

The above parser offers an easy way to create the desired file from the .pb file. After the
conversion into a TensorRT network, a weights file with format UFF will be generated, which
is recognizable by TensorRT engine.

Preprocessing phase starts by loading all TensorRT and NVidia modules that will handle all
the ML workload. With the supported weight file generated, the model can now be imported
into the TensorRT engine.

This particular NVidia engine must be allocated firstly. One of its functions is to run the
fastest implementation available of the kernel. Thus it is necessary to use the same GPU to
build the engine and to run the inference, since the engine is built with specific tuned CUDA
kernels, which targets the available GPU.

TensorRT engine has many other advanced properties that can be set, such as, autotuning
parameters, batch size, defining the maximum memory allowed to be used by the GPU,
and even the floating-point precision that the network should run. This last configuration
allows to exploit the native half-precision support on this particular GPU, granting an FP16
inference mode. Running on reduced precision inference will lead to a significantly reduction
in application latency, which is a critical requirement for most real-time and embedded
applications.

Before the UFF interpreter begins to parse the imported model, the inputs and outputs
of the model must be configured, allowing the creation of the TensorRT network. The UFF
parser plays such an important role because it performs multiple important transformations
and optimizations on the neural network graph.

These optimizations consist on eliminating layers with unused outputs, avoiding unneces-
sary computation. Transformations may also be applied where possible, by fusing certain
layers (Figure 49), such as convolution, bias and ReLU, to form a single one (Figure 50). It
is important to underline these graph optimizations do not modify the output results of the
network, instead, they look to restructure the graph to perform the operations much faster
and more efficiently NVidia (2018).

Back to the preprocessing phase, after the model had been imported, precision mode of
the network can be chosen between single precision (FP32) and half-precision (FP16). Then
TensorRT engine applies all possible optimizations mentioned earlier, generating an highly
efficient internal network ready to perform inference.

With the engine ready, preprocessing phase finishes by allocating the host and device
buffers for storing the input and the outputs of the network, respectively.

Three buffers must be created on both processing units — CPU (host) and GPU (device) —
which each triple of buffers will be responsible to hold enough memory to store the input
image and the two output values. A stream will also be created to establish a connection
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Figure 49: A convolutional neural network without
any optimizations

Figure 50: The convolutional neural network after
several optimizations applied by Ten-
sorRT engine

between the host and the device, which will allow the information to be accessible for both
processing units.

Particular TensorRT approach

The buffers, introduced earlier, must be allocated on each device to allow data transfers
between the CPU memory and the GPU memory, which will process the data. Buffers must
be allocated on CPU, where the data was firstly stored, and on the GPU to hold the data to
be processed. Many platforms require this process because their acceleration devices do not
share the address space with the CPU.

The Jetson Nano hybrid processor chip contains integrated GPU cores, which share the
memory address space with the CPU cores. Figures 51 and 52 compare the architecture of
a system with an external graphics card as accelerator with an architecture containing an
hybrid CPU/GPU device, sharing the system memory space. In the first approach memory
accesses may be faster, since the CPU-cores are not competing with the GPU-cores, but the
time to transfer data between both memories may degrade the overall performance.

Nevertheless, a buffer on both host and target devices, and a stream supporting a connection
between the two processing units must be explicit programmed, despite the Jetson Nano
being used. This happens to turn TensorRT API independent upon the type of platform and
its architecture being executed.

The TensorRT engine created earlier in the preprocessing phase, took information about
the GPU being used, so the optimizations applied on the network were applied taking into
account the type of integrated GPU architecture present on the NVidia Jetson Nano. In fact,
the method that creates the triple-buffers, does not actually allocate the same memory on the
device (gpu). Depending on the type of GPU architecture present, TensorRT creates references
of the input and output buffers simulating a memory allocation.
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Figure 51: Discrete GPU architecture Figure 52: Integrated GPU architecture

Moreover, the stream created, also acts like a fake connection, mapping the values between
the created references. Originally, the stream would be bidirectional to send back the predicted
data to the CPU, as illustrated in Figure 51. In this case, the reverse channel of the stream,
inserts the predicted data by the GPU into the original allocated buffer, on the shared memory.

With all TensorRT optimizations set, the algorithm is ready to effectively start. The thread
(that was deeply explained on Raspberry Pi implementations) enables the Jetson Nano camera
is activated, capturing the frames from the video that is being recorded, and sends the data to
the next phase (inference phase).

Follows the inference phase, where TensorRT activates the GPU-cores of Jetson to predict
the data. In real-time, the image captured and postprocessed by the thread is now accessed
and stored on the network input buffer. The image is mapped to a reference created on the
shared memory system, so the GPU can send it to its cache and start to predict the data from
that image. Then each output value predicted by TensorRT is mapped again to the original
network output buffers.

Any access to the buffers after the copy from the host to device (Figure 51), must be treated
with extremely caution. This memory sending is asynchronous, which means that multiple
data can be sent back from the device in parallel. A waiting routine must be called after the
last function that sends the data from device to host.

Since Jetson Nano has a shared memory system (Figure 52), the data is not actually sent
from GPU to system memory due to the shared memory system container, as explained earlier.
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Thus any flaw occurrence originated by the nonexistence of this synchronizing routine is
lower but not null, so this routine must be kept after the output buffer mapping.

The last phase — communication — of this cyclic operation takes over, sending the two
predicted values from Jetson to the Arduino, which controls the vehicle (a fully explanation
of this phase was also described on previous Raspberry Pi implementations).

3.4.3 Challenges

To follow a path

The deployment and configuration of the developed heterogeneous implementation for Jetson
Nano was, by far, the most time-consuming one, which required an extremely caution analysis
of each component and each task that defines the whole workflow.

Deploying and running this DL algorithm revealed itself to be a slower operation than
expected. At first, the results seemed to be very reasonable, showing a speedup on inference
time, comparing to Raspberry Pi inference times.

As illustrated in Figure 53, TensorRT performed even faster than the quickest Raspberry Pi
implementation, executing in less than half of the Arm NN inference time.

Figure 53: Performance of Jetson Nano TensorRT against Raspberry Pi implementations

These results seemed to be quite accurate for the NVidia platform, but a quick verification
on the predicted values, showed the generated values were being wrongly predicted. Since
the values were not being correctly predicted, a re-evaluation of the network performance
was done.
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For this evaluation, it was created a black image, for test-purposes only. This image used on
multiple implementations and it was fed to the same convolutional neural network. Despite
the test had been done on different libraries, the output results should be the same or pretty
close1, since the same (black) image is being fed to each network input.

Raspberry Pi multiple implementations produced the same output values after an inference
evaluation, lets choose them as a baseline to the correct predict values (Figure 54).

However the output values on Jetson Nano, using TensorRT, was not the expected ones,
producing values too far from the expected ones. The miscalculated outputs using the
heterogeneous implementation are illustrated in Figure 55. It is possible to notice the TensorRT
predicted a steering angle too different from the Raspberry Pi implementations, and eve the
lane view value suffered some deviations.

Figure 54: Correct output values predicted by TensorFlow, TensorFlow Lite and Arm NN

Figure 55: TensorRT wrong predicted values

Multiples paths were covered to find the solution for this inference issue. First, the con-
version pipeline that parses the original trained model, and generates the final specific file
format supported by TensorRT engine, was revised and debugged. As the issue could reside

1 A different outcome can occur if the weights are changed or optimized, such as changing the precision of the
network (single-precision to half-precision, or vice-versa). Yet, although such optimizations introduces differences
on the output values, they should not be too away and must be close to each other inside a narrow margin.
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on a conversion process in between all the conversion pipeline that is necessary to import the
model to TensorRT. Both tasks were revised.

Loading the weights file into the NVidia engine required two file conversions. The process
starts by converting the original model file, which was exported to a TensorFlow/Keras
format (.h5) into an optimized frozen TensorFlow graph. The exported frozen graph defined
on a .pb file already contains some optimizations within. Then this .pb model file needs to be
converted to such file extensions readable by TensorRT, as mentioned on the earlier subsection.
This two-stage conversion pipeline is illustrated in Figure 56.

Figure 56: TensorRT conversion pipeline

The first conversion (.h5 to .pb) was deeply analysed, and the (.pb) weights file was tested
on different libraries. The results taken showed the same predicted output values, running on
Keras and on TensorFlow, the same as Figure 54, as well. This concluded the first conversion
stage is not generating flaws on the network architecture.

Lastly, the algorithm that generates the .uff file from the .pb model file was also examined.
A converter provided by NVidia was used to discard any flaw on this implementation. The
converter is able to parse a TensorFlow model and internally converts it to the required format
by TensorRT. The results obtained were exactly the same as the previous mentioned in Figure
55.

Debugging the pipeline did not led to find any solution to fix the TensorRT issue. But this
process assured the problem came after the .uff model file that was being imported into the
NVidia engine.

This problem could occur during the final phase of internal TensorRT optimizations of the
network. Issues coming from the non-support of some layers were discarded, since all layers
that define the CNN are supported by TensorRT. This CNN is composed by convolutional,
max pooling, dropout, dense and flatten layers, which all are supported by TensorRT.

To discard any potential problem on GPU memory during an inference execution, a profile
was taken measuring different amounts of maximum memory being able to be used by GPU.
Several inference profiles were executed on each one.
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Nevertheless, the CNN architecture was tweaked and multiple versions were created to
analyse the behaviour of each layer execution.

The strategies applied on debugging the Arm NN implementations to find the bottleneck
issue were also applied on this solution. Consequently, five different neural networks archi-
tecture were created and trained aiming to find a version that successfully predicts on Jetson
Nano.

All these networks were also tested on Raspberry Pi using TensorFlow, TensorFlow Lite
and Arm NN, which showed consistent results on every platform and framework. These
baseline tests were compared against the TensorRT library on Jetson Nano platform.

The original CNN presents two output neurons that produces wrong output data on both of
them. To discard any issue resulting of processing a multiple output neuron neural network,
a single output net was tested. Figure 57 depicts the network architecture and also a wrong
output value when compared with the baseline results. The conclusion of this single test
suggests that processing two output neurons is not the cause of the wrong prediction.

Next, a simpler neural network was defined (Figure 58), basically consisting of an input
layer that diverges into two output neurons. TensorRT could correctly predict the right output
value, producing the same as predicted on the other frameworks. Since this layer can properly
compute the two right values, the next created neural networks came up by extending the
previous one by adding more layers.

Figure 59 defines the next extension of the previous neural network architecture with
an additional convolutional layer. Unexpectedly, the evaluation of this network shows
wrong output values again. The only difference introduced on the neural network was a
convolutional layer.

To test if the wrong predicted values are coming due to the presence of convolutional layers,
two additional neural networks were created, which are not composed by any convolutional
layer.

Figures 60 and 61 show the last versions of the original CNN. Figure 61 has the particularity
of carrying all the original layers except the convolutions. Tests showed TensorRT could
successfully predict the correct output values using both neural networks, which indicates
the issue is coming from the convolutional layer.

The performed tests shows the inference issue comes by the execution of any convolutional
layer, which contradicts the TensorRT API caliming to support convolutional operations. The
evaluation was originally performed on Jetson Nano, which at the time was setup with CUDA
(version 10.2) and TensorRT (version 5). The latest version (TensorRT 6) was not available yet
to embedded devices, only on desktop environments.

After the the development and evaluation period, NVidia released the updated TensorRT
version 7 and support for the TensorRT version 6 on embedded devices. So a fresh installation
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Figure 57: Single
output
neural
net w/ a
convolut
layer

Figure 58: Basic neural net with two out-
put neurons

Figure 59: Single convolutional layer fol-
lowed by two output neurons

of the full environment was performed, carrying the most recent packages and libraries. This
operation was the last try to fix the wrong prediction coming from the convolutional layers.

After the full-setup with CUDA (version 10.2) and TensorRT (version 6), a last evaluation
of the original CNN was done.

Now, the output results came correct and the issue presented in Figure 55 was no more
occurring. Original errors were coming from internal issues on previous TensorRT versions,
and upgrading all NVidia environment fixed the original inference output issue.

To detect traffic signs

Some challenges were also faced when fully exploiting GPU-cores of Jetson Nano to aid
support to the algorithm processing. To enable this secondary processing unit, which manages
to run DL workloads in a more efficient way than the CPU, TensorRT inference engine was
used.
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Figure 60: CNN without the convolutional and the
max pooling layers

Figure 61: CNN without convolutional layers

TensorRT starts by importing the FgSegNet trained model and by allocating enough mem-
ory to save the predicted data, namely a matrix of the size of the original input image. On the
communication mechanism level, the CPU maps the image to be readable by the GPU. The
coprocessor executes the inference phase and maps the output data back to the address space
that contains the original images, allocated by the CPU.

After all the necessary stages had been set to enable GPU processing, at runtime, the engine
detected an unsupported operation on the imported model (Figure 62).

Figure 62: TensorRT error while parsing the FgSegNet model
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The problem resides on an operation — Resize Nearest Neighbor — that is present into the
UpSampling layer and that is not natively supported by the TensorRT engine.

TensorRT allows the creation of custom layers inside the engine, so it can map the original
one that is not supported by the NVidia engine into a customized one.

To overcome this parsing issue of the engine, a custom plugin was added that simulates the
Resize Nearest Neighbor operation. The custom plugin node was registered in the TensorRT
Plugin Registry and the namespace of the original unsupported operations were mapped into
the customized ones, now available in the registry.

When importing the FgSegNet model, the graph was re-created and re-optimized by the
engine, now using the plugin suporting the Resize Nearest Neighbor operation.

TensorRT used external preprocessing tools that allowed to transform the internal model
graph, tuning it by replacing all the Resize Nearest Neighbor operations present on the
UpSampling layer by the operations defined on the plugin.

After the preprocessing phase, the NVidia engine could successfully import the pre-trained
model and properly execute the inference phase. Figure 63 shows one inference execution,
segmenting a reasonable area around the real traffic sign presented on the input image.

Figure 63: FgSegNet prediction using TensorRT



4

E X P E R I M E N T A L R E S U L T S

After the development and the success deployment of the multiple implementations, the
embedded systems that controls the RC vehicle were properly evaluated.

In this chapter, two types of experimental results are discussed: a quantitative and a
qualitative assessment.

Both evaluations were taken using either the Raspberry Pi and the Jetson Nano, running
on the different implementations with the same goal of drive autonomously the RC vehicle

The experimental results were retrieved by a real-time evaluation of the system that was
coordinating the RC vehicle to autonomously drive on the predefined path, as illustrated in
Figure 64. The real-time evaluation and the obtained results were also retrieved using the
developed automated evaluation script.

Figure 64: Autonomous driving of the RC vehicle

81
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4.1 H O M O G E N E O U S V S . H E T E R O G E N E O U S : A C O M PA R AT I V E E VA L U AT I O N

4.1.1 Following a Path

Raspberry Pi 4

This first evaluation was performed on the Raspberry Pi 4 embedded platform. For this test,
the fours implementations were executed, based on TensorFlow, TensorFlow Lite, Arm NN
and PyArmNN libraries or engines.

Three different neural networks were also used: a simple neural network, a CNN without
data augmentation and the same CNN with data augmentation.

Results in Figure 65 shows the inference times of the four different libraries running
inference, where TensorFlow is the slowest one. This is due to TensorFlow does not fully
exploit multiprocessing and hardware advanced features, neither is the optimal framework
to be used to run on an ARM device.

Figure 65: Inference times on Raspberry Pi 4

The TensorFlow Lite implementation can predict more frames per second, producing an
output twice times faster than TensorFlow. The reason TensorFlow Lite can deliver more
Frames Per Second (FPS) is because it is highly optimized for embedded devices. Leading
to the appliance of several optimizations on the neural networks after had been internally
loaded, such as pruning techniques, which eliminates irrelevant weights from the network.

Arm NN speed is quite similar to TensorFlow Lite execution, delivering approximately
6451 FPS (against the 680 FPS of the TF Lite).

1 Value obtained by using CNN noaug or CNN aug model
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The Arm NN inference library fully exploits the hardware capabilities, specially the ARM
Cortex-A architecture. By using advanced optimization techniques alongside with optimiza-
tions introduced on the neural network model (as TensorFlow Lite), the obtained inference
times are also more than twice faster comparing against the TensorFlow version.

In terms of inference time, PyArmNN implementation is roughly processing the same FPS,
comparing against the Arm NN version. Execution times are identical because both uses
the same Arm NN engine backend, the ARM Compute Library (ACL), which means both
implementations are executing the same inference engine. The difference between the two
implementations is the frontend interface. Inference phase of Arm NN implementation was
developed using the C++ API, instead of PyArmNN that offers a tested Python interface
environment that interacts with the Arm engine.

When comparing the different neural networks used, it is visible that the Linear Model
(presented in Figure 65) is always faster predicting the data, despite the library or framework
being used. Inference times are lower because the neural network is simpler than the CNN,
holding less number of layers, which defines a smaller net. Consequently, this smaller neural
network will have less matrix operations to be computed, running faster with a smaller
amount of neurons to be computed.

However, running faster has a cost on the quality of the output predicted data, which will
have less accuracy and a larger deviation from the baseline values of the predicted steering
angle and on the efficiency to detect if the lane road is visible or not. This leads to a worst
performance of the autonomous driving quality.

Although the Linear Model can provide higher FPS, making more decisions in real-time, the
drawback comes when checking the quality of the predicted decisions. These decisions will
not be as accurate as the predicted ones from both CNN noaug or CNN aug.

Test drives of the RC vehicle, naturally show a smoother driving and a bigger capacity
of keep driving alongside the road lane, when using the CNN models instead of the Linear
Model.

Technically, the CNNs presented in the previous figure are the same, carrying the network
architecture. Their difference resides on the amount of data provided to the neural network
at the moment of being trained.

CNN noaug was trained with exactly the dataset generated while manual driving the
vehicle.

CNN aug is provided with the twice of the amount of images of the original dataset. Which
means that it will be applied a data augmentation technique to double the data from the
dataset. The data augmentation horizontally flips each image in the dataset, feeding the
neural network with knowledge of steering the vehicle to the opposite way that it was driven.

A higher amount of data will impact the times of only the training phase of the neural
network, which will, naturally, take more time to evaluate the additional data and to train
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the convolutional neural network. However the time impact on inference phase will be
none since both trained neural networks are equivalent, carrying exactly the same layers and
neurons.

Since both CNNs are architecturally identical, results in Figure 65, shows exactly the same
average inference time when using these models, despite the inference framework being used.
As these two neural networks have an identical behaviour on inference phase and because
Linear Model offers a poor accuracy of predicated values, only one CNN model will be tested
on the following evaluations.

Memory Consumption

Followed by the execution times, the second important performance metric that must be
evaluated is memory consumption. The resources of each embedded device must be analysed
to check if there are some memory constraints causing bottlenecks on the implementations.

Results of Figure 66 shows that RAM usage is not a problem for the 4 GiB RAM in Raspberry
Pi 4 despite the implementation being used.

The profiling indicates that the TensorFlow implementation uses more memory resources,
up to a maximum of 125 MiB. The amount of memory used by the implementation reflects on
a 3% of total RAM, still remaining about 2 GiB of free memory.

These results show memory usage is not a problem because the embedded system has
enough available RAM when executing each implementation on Raspberry Pi 4.

Figure 66: RAM Memory consumption on Raspberry Pi 4

Jetson Nano

Jetson Nano evaluation is described next, which used the CNN aug model during the execu-
tion of the model. For this evaluation it were used the same metrics defined earlier for the
Raspberry Pi: inference time (real-time metrics) and memory consumption.
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An additional evaluation was performed on this system, it was performed a comparison
between half-precision and single-precision floating-point execution times, since the GPU of
this platform has native support for FP16 operations.

Multiple tests were executed on TensorRT to get the real values of the inference phase
executed on the Jetson Nano accelerator. As described on the earlier chapter, TensorRT
implementation requires additional preprocessing and memory maps, so that all data can be
prepared and sent to the GPU.

There are three necessary stages needed to be executed to enable TensorRT inference engine:
(i) the preprocessing, which transposes some matrices (input image) since TensorRT reads
images differently2 than the Raspberry Pi frameworks; (ii) the memory mapping, so the data
saved on shared memory system can be readable also by the GPU; and (iii) the prediction
itself.

Figure 67 presents the times obtained during each stage and inference times while executed
on FP16 or FP32 mode.

Figure 67: Inference times on TensorRT (half-precision vs. single-precision)

Analysing single-precision operations first, TensorRT inference takes on average, approx-
imately, 0.55 milliseconds. Yet, considering only this operation on inference phase is not
fair, since it is necessary to also perform, per every frame processed in real-time, additional
computations. Thus to properly perform the prediction, the 0.55 ms needs to be added up to
0.68 ms to include a second stage — memory mapping. However, when taking in account
preprocessing phase, the average time of total inference phase rises up to 0.74 milliseconds to
frame.

Therefore, when analysing inference phase of TensorRT, mapping and preprocessing phase
will be included on the overall inference phase, since they are required on every frame
prediction.

2 Tensor inputs must be on the NCHW format instead of the conventional NHWC
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Jetson Nano GPU has native support to perform half-precision operations, which theo-
retically would lead to doubling the performance, when comparing with single-precision
execution. However, the times displayed in Figure 67 shows that the inference execution on
FP32 mode performs faster than on FP16.

The developed code was validated to discard any potential issue during its development,
but the following execution measurements showed that the half-precision mode kept execut-
ing slower.

The CNN model being used was originally trained to predict 64x48 frames, which is
the image resolution being sent to the GPU. However a smaller resolution of this type
can, eventually, perform slower when executing in half-precision because of the additional
overhead introduced. Each value of every image is stored in memory with a single-precision
floating-point format. Before half-precision processing, these values must be converted to
a half-precision floating-point format. After all internal operations, output data must be
converted again to single-precision format.

Because frames are too small, the necessary time to execute the precision-format conversion
pipeline can overcome the advantage of the parallel half-precision operations, leading to a
lack of performance when comparing with single-precision inference execution.

To fully exploit the FP16 capabilities of the GPU, a new CNN was trained. This new model
it is defined by the same layers defined before, but instead of being trained to predict 64x48
images, the resolution was increased four times. Resulting on a model that theoretically needs
more system resources to predict frames with resolution of 256x192 pixels.

An evaluation of this bigger model was executed, which resulted on performance improve-
ments when executing prediction on half-precision mode, as presented in Figure 68.

Figure 68: Inference times on TensorRT (half-precision vs. single-precision), using 256x192 image
resolution

By increasing the image resolution, TensorRT executed inference mode faster on the FP16
format when compared against the FP32 format, with a speedup of approximately 10%.
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The last evaluation shows that the half-precision mode is substantial faster, hence this is
the preferable mode to be used when using large models. However, as the CNN being used
on this use-case predicts small resolution images, greater performance is achieved using
single-precision mode.

Memory Consumption

During the runtime of the TensorRT algorithm, a profiling was also performed. This procedure
was driven to check if memory resources of Jetson Nano are enough for the real-time algorithm
developed.

Memory tests are visible in Figure 69. It is noticeable the algorithm uses a maximum of 490
MiB when using the simple Linear Model, and a maximum of 1004 MiB when using the CNN
intended to be deployed.

Figure 69: RAM Memory consumption on Jetson Nano.

This amount of RAM memory being used will not have a noticeable impact on the algo-
rithm’s performance since Jetson Nano has a total of 4 GiB of RAM. The OS normally uses
approximately 1 GiB, on which it stills remains about 2 GiB of available memory.

The memory usage of the inference algorithm was handled by executing a kernel instruction
to define an upper memory limit to be used by TensorRT algorithm. A performance impact
happens when this limit is changed, as illustrated in Figure 70.

By reducing the upper-memory limit, inference times naturally decreased but maintained a
good quality on the inference times, for the memory limitations that was confronted against.
The minimum memory being used by TensorRT was about 100 MiB and yet inference time
only decreased about 0.05 milliseconds.

For a maximum memory limit greater than 1000 MiB the performance stabilized, not
existing any improvements on performance when TensorRT used more RAM.
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Figure 70: TensorRT inference executions varying the upper-limit of memory usage.

Comparative Evaluation

When comparing real-time inference execution times of both platforms, presented in Figure 71,
it is possible to notice that the Jetson Nano implementation performs faster than all Raspberry
Pi inference engines or libraries used.

Figure 71: Overall comparison of inference times among both embedded systems

Tensorflow Lite algorithm is the fastest implementation on the Raspberry Pi 4, performing
more than twice faster against the slowest algorithm (on this platform). This is due to the
best use of TensorFlow Lite on advanced features of the Cortex-A CPU, such as enabling
multiprocessing and the SIMD accelerator instructions, like described earlier.

On the other side, TensorRT, using the GPU-cores, performs each frame prediction even
faster, in approximately 0.74 milliseconds — almost twice faster than the fastest Raspberry Pi
implementation. This performance achievement is reached because Jetson Nano enables the
GPU-cores to process the heavy DL workload.
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As described on the section about Jetson Nano technical details, these hardware components
can process more FLOPS, turning this embedded system more computationally powerful
than Raspberry Pi 4 by empowering a co-processor. This unit will extend the main CPU
to perform tasks that CPU cannot perform efficiently. Consequently, TensorRT inference
execution can process almost the double of FPS, comparing against the ones processed by
TensorFlow Lite on Raspberry Pi.

On both platforms, memory consumption is not a problem, since both embedded systems
have 4 GiB of RAM, which is not fully used by the multiple implementations developed.

All Raspberry Pi implementations empower a lower memory usage, about an average of
110 MiB per implementation execution (Figure 66), against the 1 GiB on Jetson Nano. Yet, if
there were memory limitations on the Jetson Nano, the memory manipulation would bypass
this constraint. This constraint operation would lead to a minimal loss of performance on
Jetson Nano. However TensorRT performance would keep to be greater than all Raspberry Pi
implementations, despite of limiting memory to the same amount of 110 MiB.

It is not fair to compare only the inference times obtained on both embedded system
against the driver reaction times that were studied on the state of the art chapter, because per
each frame being processed some additional time must be accounted for. This is, not only
the inference phase takes CPU or GPU time. The additional phases — preprocessing and
communication phases — and synchronization mechanisms takes some additional time when
executing these DL workloads.

A complete iteration time was measured, meaning the amount of time needed to capture
the frame, preprocess it, synchronize all necessary routines, predict the data and send the
information to the microcontroller was taken into account.

The complete execution time required to process each frame, using the multiple implemen-
tations on both embedded systems is displayed in Figure 72.

Real-time metrics

Earlier studies indicates that processing an image in real-time should not take longer than
300 milliseconds to simulate an human driver reaction time. Providing this maximum time
for the frame to be processed and to the information be sent to the vehicle, mimics an ideal
human driving reaction.

The camera installed on the RC vehicle was configured to capture images on a framerate of
30 FPS, which means that the time to process each frame must not exceed 33,33 milliseconds.
If the resulting time did not stay within the defined range, a delay on driving reaction will
occur. Meaning the frame being processed at the moment could had be took way too time,
and the vehicle will be driving some distance ahead of the processing frame, resulting on
outdated predicted information.
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Figure 72: Overall comparison of execution times among both embedded systems

This necessary frame processing execution time is lower than the maximum 300 millisec-
onds of human driver reaction. This real-time processing time kept within the defined range,
which indicates to react faster than the human drivers average.

The iteration time evaluation represented in Figure 72, reveals that the complete iteration
time on Raspberry Pi 4 and Jetson Nano is taking approximately 10 ms and 9 ms, respectively.
The actual DL workloads are performing comfortably well within the defined margin, which
permits some complexity be added to the algorithm.

Giving the efficiency of the algorithms there was the necessity to increase the model
complexity, since these workloads does not push enough the available system resources.

4.1.2 Inference Performance of Traffic Signs

A quantitative analysis of the traffic signs detection algorithm was executed to trace its
performance during inference phase — the main aspect this dissertation aims to evaluate and
to improve.

The algorithm was real-time again executed using different libraries — TensorFlow, Tensor-
Flow Lite, Arm NN, PyArmNN and TensorRT — and the both embedded systems. Figure 77
presents an overall evaluation of inference times of the traffic signs algorithm.

Among the multiple developed implementations for Raspberry Pi, the one deployed using
TensorFlow library was the fastest one, yet taking more than 6 long seconds to predict one
single image. On the other hand, TensorFlow Lite is the slowest implementation.

It was expected TensorFlow Lite version could provide an higher throughput but this was
not the case. Unlike the previous CNN model, TensorFlow could handle the DL model faster
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Figure 73: Overall evaluation of traffic signs inference on multiple libraries

than Lite version. The situation is due to the complexity of the FgSegNet model, presenting
an higher number and variation of layers rather than the CNN.

This evaluation among both TensorFlow versions suggests the TensorFlow Lite library
performs efficiently when parsing and optimizing light DL models. Where TensorFlow library
is more suitable to run larger and complex models.

However, it is not recommended to run these Raspberry Pi implementations because it
cannot provide the desirable FPS to properly identify a traffic sign in real-time.

Raspberry Pi 4, should not be used to run this specific workload since it takes more than 6
seconds to detect an eventual traffic sign on the road. Thus, using this embedded device to
process the required use-case would lead to a major delay on detecting traffic signs. The RC
vehicle would not be capable to stop on an eventual stop sign, which would be detected only
6 seconds later.

Nevertheless, there is a major improvement on the efficiency of the algorithm while being
executed on TensorRT. This heterogeneous implementation enables GPU processing of the
Jetson Nano embedded device, improving much more the inference comparing with the
Raspberry Pi implementations. The optimizations carried by TensorRT might lead to a
speed-up up to 27 times, comparing with TensorFlow (on Raspberry Pi).

These inference times carried by Jetson Nano are quite suitable to perform the required
real-time tasks without major delays on the detection of traffic signs. TensorRT can predict
a traffic sign from an image in about 414 milliseconds, which summing with the remaining
pre and post-processing operations, does not reach the maximum suggested of 700 ms per
iteration. This efficient real-time processing, marks the Jetson Nano platform as ideal (from
both compared embedded devices) for this complex DL workload processing.
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Half-precision

As explored on the CNN model, Jetson Nano is the only platform that allows to exploit
half-precision operations during runtime. TensorRT also allows to enable such advanced
optimization to improve the performance, depending of the algorithms.

During the FgSegNet model execution, this mentioned feature was also explored, which
led to the results presented in Figure 74.

Figure 74: Traffic signs inference time on TensorRT using half and single-precision

It took about 410 ms to detect a traffic sign from an image, on FP32 mode. Yet, this time can
be decreased if half-precision mode was enabled. Floating-point manipulation evaluations
indicates the algorithm runs approximately 25% faster on half-precision, comparing against
single-precision execution.

An ideal speedup of two times is not reached, when enabling half-precision, because there
are multiple additional data conversions when this mode is activated.

When running on this particular mode, the stored weights of FgSegNet model are converted
from a representation of 32-bits into 16-bits. The input frame being predicted suffers the
same conversion, as well the output image which comes on a 16-bits representation. Output
image is internally converted again into a 32-bits representation, so the data can be used.
These additional steps do not contribute to an ideal half in inference time, comparing against
single-precision mode. Yet, this additional pipeline and half-precision mode execution can
process faster than single-precision.

Memory Consumption

Memory consumption of the the multiple implementations was also evaluated, which is
presented in Figure 75.

The initial Raspberry Pi 4 (2 GiB RAM version) deployment issue revealed the TensorFlow
could not run FgSegNet because the algorithm was consuming more than 1 GiB of the system
resources. As the device was using about 1 GiB to OS management, the algorithm could not



4.1. Homogeneous vs. Heterogeneous: a Comparative Evaluation 93

Figure 75: Memory consumption of traffic signs detection algorithm on multiple libraries

properly execute. Therefore it is necessary a platform with a minimum of 4 GiB of RAM to
properly execute this particular version.

The two remaining libraries — TensorFlow Lite and Arm NN — used about 800 MiB of
memory to run the DL workload, and therefore the 2 GiB Raspberry Pi 4 version is enough.

Thus, the original Raspberry Pi version (with 4 GiB of RAM) to target these DL workloads
do not present memory constraints since the maximum memory used by these implementa-
tions is about 1 GiB.

On the other system, the algorithm developed for the Jetson Nano initially used about
1024 GiB of memory. This rounded value was achieved because it is the default maximum
value of memory that the processes have access to. Therefore, the memory being used by
TensorRT can be manipulated, and the user can set a maximum arbitrary value of memory
being accessed by TensorRT engine.

4.1.3 Traffic Signs: Number of Layers in the Neural Net

An extensive deployment process was required to correctly and efficiently run the different
DL models on both embedded devices. So it is important, from a deployment point of view,
to profile the given machine learning models, at a layer level, to find possible performance
issues or relevant performance data from layers that could lead to the construction of an
efficient neural network.

If a machine learning expert knows the performance impact of each layer, it makes possible
the creation of neural networks with inference performance in mind.

A profiling of the FgSegNet model was executed, where each layer was teased, and infer-
ence time per layer was obtained.

All the used inference libraries do not provide a direct mechanism to measure each layer
inference time while predicting data. It is only possible to probe the first and last layer to
measure the elapsed time between both, obtaining full inference time (of all layers).
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To measure the elapsed time of each layer, a DL profiling tool was developed. After the
tool import the model, several submodels are internally generated. The number of submodels
created is equal to the number of layers the original model has. The generation of n submodels
(where the original model has n layers) is dictated by the following rule: the first submodel
has the first layer; the second submodel has the second layer; and so on until reach the n-th
submodel defined by the n first layers.

Due to some constraints found during the creation of the tool, the obtained inference times
per layer cannot be truly trusted, although an another relevant performance data was found.

Alternatively of what it can be believed on most times, the number of layers in a neural
network have an impact on the final inference performance but not due to the increasing
number. A trained model with an higher number of layers might be faster on inference
phase than the same model with some layers that had been removed. This suggests most
inference engines or libraries apply internal optimization of the imported model by merging
or combining some layers.

Figure 76 presents the times of each submodel, where the submodel n is defined by the first
n layers from the original model.

It is possible to visualize that submodel 16 runs faster than submodel 15. Despite both
models have 15 common layers with the exact parameters and process the same input, the
submodel that presents one additional layer performs faster because the inference engine
used introduces advanced optimizations within the model layers resulting on improvements
on the performance during the inference phase.

Figure 76: Inference time of generated submodels

4.1.4 Traffic Signs: Latency and Throughput

Latency and throughput metrics are quite important to compare the performance and to
improve the efficiency of DL models.

Throughput is a measurement in ML that refers to the number of data units processed in
one unit of time. The unit of this measure can be images/ second, where image is the input
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data and second is the unit of time. More throughput means a better performance. This is an
important measure when dealing with performance of non-real time applications.

On the other hand, latency is a measure that refers to the time spent to process one unit of
data at a time. The latency is measured in time units, such as seconds or milliseconds. Less
latency indicates a better performance and it is directly tied with the performance of real time
applications or systems.

Higher throughput means the algorithm can process an higher amount of images, in
parallel, per unity of time. Lower latency means the algorithm can process a single image
faster, in a such period of time.

On this use-case, to achieve higher throughput levels on inference, multiple frames must
be recorded first. When the set of frames is collected, this data is fed to the network, which
processes them and predicts the data of each one. However, on this use-case, having a
batch size higher than one, on inference, is not an advantage, since the whole batch will the
processed in parallel but the RC vehicle vehicle needs the first frame predicted first, and so
on, so the car can sequentially analyse the frames and follow the lane road.

On this real-time use-case a higher throughput will not be beneficial: although the engine
is processing each image in a shorter time, it takes longer to generate the output of two or
more predicted images than a single one. In this case, when increasing the throughput, the
algorithm will take longer per iteration and the FPS will decrease.

The above case is not ideal because by increasing the throughput, the latency is worsen,
which plays an important role on real-time processing. This use-case requires the minimal
latency possible from the algorithm because the priority is to reduce the time spent pro-
cessing one single image, because this real-time system requires each frame to be processed
sequentially, generating faster output data.

4.2 Q U A L I TAT I V E A S S E S S M E N T

This subsection presents a qualitative analysis of the RC vehicle driving mode.
Previous results shows that both embedded systems were efficient using the convolutional

neural network, which is capable to predict critic data to the vehicle follow a predefined path.
When adding up the traffic sign detection feature, Raspberry Pi 4 took too many seconds to

predict output data from each frame. However, Jetson Nano could easily predict the steering
angle in milliseconds only, which was a requirement to real-time processing.

These results does not directly indicate the car is able to autonomously drive on the path by
strictly following the lane, either curved or straight. Which means the earlier positive results
might not reflect on an ideal autonomous driving operation, namely the capability of the RC
vehicle to follow the lane, steer the wheels properly and not to deviate its direction from the
lane orientation.
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This qualitative analysis and evaluation will be presented in two subsections. On the first
one it is presented the evaluation of the driving itself, later is presented a qualitative analysis
of the traffic signs detection.

4.2.1 Raspberry Pi vs. Jetson Nano to Follow a Path

In order to the RC vehicle perform accurately whilst accelerating through the path and
steering towards the orientation of the road lane, an optimal training data is required. This
means that the vehicle will have a smoother performance steering the wheels as accurate is
the training data, which is used to train the CNN.

Despite the training data had to be collected manually by manually driving the vehicle,
and therefore it is not the most reliable data existing, both embedded systems had a good
behaviour considering its autonomous driving mode.

Both the Raspberry Pi 4 and the NVidia Jetson Nano systems could capture, process and
predict data within a small range of time that matches the required one to compute in real-
time. Also the accuracy of the predicted data was higher. Both phenomenons leads to a
smooth autonomous driving mode, hence both versions of the RC vehicle — on the Raspberry
Pi and Jetson Nano — managed to successfully follow the predefined path without any
impediments or anomalies.

However, to achieve this smooth driving mode a change had to be done on the settings of
the vehicle speed controller. Initially, the vehicle could not follow smoothly the path, leading
to frequent crashes. This phenomenon happened using the both embedded systems and
it was found out this miss-behaviour was being generated by the initial car speed whilst
following the road lane. A speed limitation through software was built, which fixed the
problem of the vehicle of getting out of its route.

The maximum speed of the vehicle was lowered and thus the vehicle could properly steer
correctly according the orientation of the road lanes.

The initial car crashes was also due to the non-optimal training dataset that did not
possessed the most accurate information regarding to the steering angle direction being
applied upon the lane view.

Autonomous driving with traffic signs

Due to the high performance achieved by processing the CNN responsible for the acceleration
and steering of the vehicle, an additional workload was added: traffic sign detection.

The Raspberry Pi 4 could not handle both workloads. As the algorithm responsible for
detecting traffic signs was taking too long — roughly 6 seconds per frame — there was not



4.2. Qualitative Assessment 97

possible to have ideal conditions to react in time to traffic signs. So the vehicle would always
not react to any traffic sign in time, ignoring them during those six seconds.

On the other hand, using NVidia Jetson Nano, a required performance to real-time pro-
cessing was achieved and on this use-case the vehicle could follow the predefined path
smoothly, spinning the wheels according to the lane orientation, and also process the traffic
signs algorithm.

However, when approaching a stop sign, the vehicle did not behaved as expected, not
stopping before the stop sign. Jetson Nano could handle an autonomous driving but could
not detect traffic signs, hence it always ended running over them. This was due to a issue
regarding to the training of the model capable to detect the traffic signs that is explained next.

4.2.2 Detection of Traffic Signs

Previous sections presented multiple examples of successfully predicted traffic signs with
good accuracy on the outcome of the segmented zones, yet this led to a misunderstood of
how well can this model behave on different environments.

All tests of traffic signs detection were performed under a controlled environment, so the
test-images from Cityscapes dataset used to train the model are quite different to the ones
captured from the RC vehicle in real time.

When detecting traffic signs with similar images to the Cityscapes dataset, the FgSegNet
application could easily identify multiple traffic signs in the input image. However, an
opposite behaviour, with bad accuracy, began to be registered when using images of an
uncontrolled environment — the ones being recorded by the scaled vehicle.

Several isolated tests were executed, which consisted on predicting traffic signs from images
that does not contains a city environment, unlike the Cityscapes dataset, not being taken
under a controller environment.

Results presented in Figure 77 shows that the model could not properly identify traffic
signs when these objects are outside of a road or a city environment. This particular behaviour
happens due to the restricted trained environment provided by the Cityscapes.

As the FgSegNet was trained using this specific dataset, which consists of thousands of
images recorded in multiples cities, the model will naturally learn how to detect traffic signs
based in these specific conditions only.

The RC vehicle is naturally being tested on a uncontrolled environment, very different to
the Cityscapes environment. The track built to the vehicle drive was built inside a building,
in a laboratory, which does not resemble to a city environment at all, like illustrated in Figure
78 and Figure 79.

Mini-scaled stop signs were placed on the track, and when the vehicle was following it, it
struggle to detect the sign ahead and sometimes it did not stopped. Consequently, a random
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Figure 77: Prediction of an uncontrolled environment images using FgSegNet

Figure 78: Environment of predefined track of RC
vehicle Figure 79: Example of a frame recorded by the RC

vehicle

red marker was also placed on the path, and as the model can run with very poor accuracy,
sometimes the marker was identified as a traffic sign, which lead that the vehicle has stopped
wrongly multiple times.



5

C O N C L U S I O N

This dissertation aimed to improve the inference performance of DL algorithms on embedded
systems. To test and evaluate this type of workloads, a testbed environment was used in this
project: a prototype of a reduced scale remote controlled vehicle and two different embedded
systems. The goal of the algorithms was to autonomously drive the RC vehicle. A real-time
process is always capturing images from a camera on top of the vehicle. Each image is
analysed by the inference engine which predicts the steering angle to be directly sent to the
wheels through a microcontroller.

The tested embedded systems used were a Raspberry Pi, whith a 4-core ARM Cortex-A72
device that targets multiprocessing, and a NVidia Jetson Nano, a heterogeneous system with
a 4-core ARM Cortex-A57 device (a previous architecture generation) and 128 additional
Maxwell CUDA-cores on its NVidia GPU.

To achieve a better performance, the algorithms were deployed and evaluated into different
frameworks and machine learning libraries. On Raspberry Pi 4, TensorFlow, TensorFlow
Lite, Arm NN and PyArmNN libraries/inference engines were used to enable advanced
ARM-based operations and optimizations. TensorRT library was used to engage the 128
CUDA-cores of Jetson Nano while executing the inference phase of the DL algorithms.

While deploying the algorithms on both embedded systems, multiple features were enabled
to maximize performance. DL models suffered multiple conversions and optimizations that
relied on the tools used that were mentioned before. Models were trained on single and
half-precision mode, quantized, predicted on both floating-point modes, and took additional
performance techniques and approaches to optimize the inference phase execution time.

5.1 H O M O G E N E O U S V S . H E T E R O G E N E O U S : A C O M PA R AT I V E E VA L U AT I O N

An extensive debugging phase and bug fixes was performed to correctly install the tools,
deploy and execute the algorithms on the supplied embedded systems and to achieve a
reasonable real-time performance, so the vehicle could autonomously drive with low-latency
levels.

99
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Initially, multiple incompatibility errors on multiple libraries and packages were found due
to the lack of support of the available software versions that the algorithms were deployed
into.

On deployment, major performance issues were faced and fixed, such as the hardness to
engage multiprocessing of ARM CPU, when using Arm NN library, and the difficulty to run
the half-precision inference model on Jetson Nano, using TensorRT.

The performed evaluations on Raspberry Pi 4 showed a speedup higher than two, when
using any tested framework or library, except for the TensorFLow. TensorFlow implementa-
tion was the slowest one, compared against the mentioned Raspberry Pi tested tools, having
an inference time more than twice slower than the remaining tools. TensorFlow Lite was the
fastest implementation, delivering approximately 645 FPS. Memory consumption did not
reveal to be a problem because none implementation exceeded 150 MiB of memory usage.
The Raspberry Pi 4 has 4 GiB of memory RAM.

When using Jetson Nano as the controller embedded system, the performance improved
even more because inference computations were handled by the GPU-cores.

Comparing against the TensorFlow Lite implementation — the fastest one of the Raspberry
Pi 4 — TensorRT speedup was almost two.

However, when enabling FP32 mode, the performance had decreased. The DL model —
a CNN — used on inference does not present a high number of layers and the complexity
of their operations is not high, leading to a drawback when using half-precision on this
particular CNN.

As the DL algorithm was not using a quite complex CNN, both embedded systems could
handle it without major limitations. Consequently, the RC vehicle vehicle could be au-
tonomously driven without major delays and improper latency values, while the algorithm
was being real-time processed.

None embedded system was pushed towards its computational power limits when execut-
ing the original algorithm that used the CNN. To understand the limitations of both systems
that take control of the vehicle driving, a new algorithm was implemented.

An additional DL algorithm was developed that loads an additional and more complex
neural network. The goal of the new algorithm is to detect traffic signs and to stop the vehicle
if any sign is close to the RC vehicle.

Evaluation results indicates the latency provided by the Raspberry Pi 4 when computing
this additional workload is extremely high. The fastest implementation was achieved on
TensorFlow, but each image processing takes longer than 6 seconds, which is not feasible for
real-time detecting traffic signs.

Although the homogeneous system could not handle this new DL workload, Jetson Nano
managed to run it quite efficiently. TensorRT implementation got a speedup of more than 15
times, comparing against the fastest Raspberry Pi 4 implementation. Each image processing



5.2. Future Work 101

takes approximately 414 ms, which is less than 700-1000 ms, the minimum range suitable for
this kind of detection.

However, the qualitative retrieved data results had shown that the ability to detect traffic
signs is weak. The model used on this algorithm cannot provide accurate results when
detecting traffic signs, which leads the RC vehicle not to stop when a sign is present, or
vice-versa.

5.2 F U T U R E W O R K

This dissertation aimed to improve and evaluate the performance of DL workloads that used
multiple neural networks, which have been previously trained. The CNN responsible for
the autonomous driving had to be trained through training data collected from manually
driving the vehicle. The outcome results and the precision of this data depends on the user
that its collecting them. The better the user drive the vehicle, the better it will perform on
autonomous driving mode.

As the precision of the training data retrieved was not perfect and was affected by the user
performance, it motivates the following suggestions for improvement: a virtual simulation to
automatically train the vehicle in accurate conditions and not user dependent.

Also not restricting this project to the specified tools and embedded systems, there are
some more possible enhancements:

• To upgrade the hardware capabilities of Raspberry Pi 4 by adding an Intel Neural
Compute Stick;

• To improve the accuracy of the traffic signs detection;

• To improve and extend the DL model profiling;

• To explore additional ML libraries and frameworks.
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Tullio Giuffrè, Salvatore Trubia, Antonino Canale, and Alessandro Severino. Automated
Vehicle: a Review of Road Safety Implications as Driver of Change. 27th CARSP Conference,
2017.

Alexander Goldenshluger and Assaf Zeevi. The Hough transform estimator. Annals of
Statistics, 32(5):1908–1932, 2004. URL https://doi.org/10.1214/009053604000000760.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. The MIT Press, 2016.

Allison Gray, Chris Gottbrath, Ryan Olson, and Shashank Prasanna. Deploying Deep Neu-
ral Networks with NVIDIA TensorRT, 2017. URL https://developer.nvidia.com/blog/
deploying-deep-learning-nvidia-tensorrt/.

Jack Greenhalgh and Majid Mirmehdi. Recognizing text-based traffic signs. IEEE Transactions
on Intelligent Transportation Systems, 16(3):–, 2015.

102



B I B L I O G R A P H Y 103

Brendan Gregg. The Flame Graph, 2016. URL http://www.brendangregg.com/flamegraphs.
html.

Song Han. Efficient Methods And Hardware For Deep Learning. PhD thesis, Stanford University,
California, 2017.

Song Han, Huizi Mao, and William J. Dally. Deep Compression: Compressing Deep Neural
Networks with Pruning, Trained Quantization and Huffman Coding. In Proceedings of the
International Conference on Learning Representations (ICLR), 2016.

Hoda Imam, Bassem A Abdullah, Hossam E Abd, and El Munim. Semantic Segmentation
under Severe Imaging Conditions. In Proceedings of the Digital Image Computing: Techniques
and Applications (DICTA). IEEE, 2019.

Petros A. Ioannou and C. C. Chien. Autonomous intelligent cruise control. IEEE Transactions
on Vehicular Technology, 42(4):–, 1993.

Irida Labs and Silexica. Optimizing Deep-Learning Inference for Embedded Devices (white
paper). Technical report, Silexica, 2018.

Ziheng Jiang, Tianqi Chen, and Mu Li. Efficient Deep Learning Inference on Edge Devices. In
Proceedings of the ACM Conference on Systems and Machine Learning (SysML’18), 2018.

Ebrahim Karami, Mohamed S Shehata, and Andrew J Smith. Image Identification Using SIFT
Algorithm: Performance Analysis against Different Image Deformations. CoRR, 2017. URL
http://arxiv.org/abs/1710.02728.

Alexandros Kouris, Stylianos I. Venieris, Michail Rizakis, and Christos Savvas Bouganis. Ap-
proximate LSTMs for Time-Constrained Inference: Enabling Fast Reaction in Self-Driving
Cars. IEEE Consumer Electronics Magazine, 9(4):11–26, 2020.

Andy Lee. Comparing Deep Neural Networks and Traditional Vision Algorithms in Mobile
Robotics. 2016.

Xunyi Li, Jinju Shao, Guo Wei, and Ruhong Hou. AEB Control Strategy and Collision Analysis
Considering the Human-Vehicle-Road Environment. In Pervasive Systems, Algorithms and
Networks, pages 335–346. Springer, 2019.

Long Ang Lim and Hacer Yalim Keles. Learning multi-scale features for foreground seg-
mentation. Pattern Analysis and Applications, 23(6):–, 2019. URL https://doi.org/10.1007/
s10044-019-00845-9.

Yizhi Liu, Yao Wang, Ruofei Yu, Mu Li, Vin Sharma, and Yida Wang. Optimizing CNN Model
Inference on CPUs. In Proceedings of the USENIX Annual Technical Conference, page 16. The
Advanced Computing Systems Association, 2019.



B I B L I O G R A P H Y 104

Hengliang Luo, Yi Yang, Bei Tong, Fuchao Wu, and Bin Fan. Traffic Sign Recognition Using a
Multi-Task Convolutional Neural Network. IEEE Transactions on Intelligent Transportation
Systems, 19(4):–, 2018.

Saturnino Maldonado-Bascón, Sergio Lafuente-Arroyo, Pedro Gil-Jiménez, Hilario Gómez-
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