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A B S T R A C T

Ontologies are very powerful tools when it comes to handling knowledge. They offer a good
solution to exchange, store, search and infer large volumes of information. Throughout the
years various solutions for knowledge-based systems use ontologies at their core.

OntoDL has been developed as a Domain Specific Language using ANTLR4, to allow for
the specification of ontologies. This language has already been used by experts of various
fields has a way to use computer-based solutions to solve their problems.

In this thesis, included on the second year of the Master degree in Informatics Engineering,
OntoDL+ was created as an expansion of the original OntoDL. Both the language and
its compiler have been improved. The language was extended to improve usability and
productivity for its users, while ensuring an easy to learn and understand language. The
compiler was expanded to translate the language specifications to a vaster array of languages,
increasing the potential uses of the DSL with the features provided by the languages.

The compiler and some examples of the DSL can be downloaded at the website https:

//epl.di.uminho.pt/∼gepl/GEPL DS/OntoDL/ created for the application and presented in
the final chapters of the thesis.

Keywords: Ontology, Domain Specific Language, Automatic Code Generation
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R E S U M O

As ontologias são formalismos muito poderosos no que toca a manipulação de conhecimento.
Estas oferecem uma boa solução para trocar, armazenar, procurar e inferir grandes volumes
de informação. Ao longo dos anos, várias soluções para sistemas baseados em conhecimento
usaram ontologias como uma parte central do sistema.

A OntoDL é uma Linguagem de Domı́nio Especı́fico que foi desenvolvida através do uso
de ANTLR4, para permitir a especificação de ontologias. Esta linguagem foi já utilizada por
especialistas de diversos áreas como forma de utilizar soluções informáticas para resolver os
seus problemas.

Nesta tese, incluı́da no segundo ano do Mestrado em Engenharia Informática, OntoDL+
foi criado como uma expansão tanto à linguagem e como ao seu compilador. A linguagem
foi extendida para melhorar a usabilidade e produtividade dos seus utilizadores, mantendo-
se fácil de aprender e perceber. O compilador foi expandido para ser capaz de traduzir
as especificações de OntoDL+ para um leque de linguagens mais vasto, aumentando os
potenciais usos da DSL através das funcionalidades providenciadas pelas linguagens alvo.

O compilador e alguns exemplos da DSL podem ser acedidos no sı́tio https://epl.di.

uminho.pt/∼gepl/GEPL DS/OntoDL/ criado para a aplicação e mostrado nos capı́tulos
finais da tese.

Palavras Chave: Ontologia, Linguagem de Domı́nio Especı́fico, Geração Automática de
Código
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1

I N T R O D U C T I O N

Ontologies can be used in knowledge domains as a form of declarative formalism. Through
ontologies it is possible to represent the different objects, as well as relationships between
them, in human-readable text by using the representation vocabulary defined for the
ontology (Gruber, 1993). These can solve many problems regarding maintenance and
growth of systems, due to the ability to write, search and store information in a way that is
understandable for both humans and machines (Martini and Henriques, 2016; Gali et al.,
2004).

The heterogeneity of the hardware system, as well as the different programming languages
and network protocols, poses a challenge to the creation of shared, reusable knowledge-
based software. The inter-operability of said system requires that they are able to operate
and communicate using a formal knowledge representation. That said, in order to try and
solve this problem the use of ontologies has since long been proposed and analysed (Gruber,
1995).

Currently, various knowledge-based systems are resorting to the usage of ontologies as a
way to exchange information/knowledge between heterogeneous systems. The combination
of knowledge from different systems, has also proven to be quite useful in information
dependent systems (Araújo, 2016; Lehmann et al., 2015; Brickley and Miller, 2014).

As such the tool OntoDL was one of the tools created as a means to enable an easier way to
specify ontologies and translate them into other languages. This Domain Specific Language
(DSL) created using ANTLR4, has already been used to create and manage ontologies in
other projects (Martins et al., 2019). It looks primarily to ensure an easy way to create and
analyse ontologies without the need of previous knowledge basis relative to computing.
However the language and its compiler can be still improved to widen the range of usages
of the tool.

During this Master Thesis, OntoDL+ will be implemented as an improved version of
OntoDL. The language will be extended for a better usage, and its compiler expanded in
order to allow for a more wide variety of usages for the tool.
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1.1. Motivation 2

1.1 motivation

This Master Thesis was done in order to enable both less experienced and experts with the
usage and specification of ontologies, to be more efficient in their work.

It also provides a more intuitive visualization of the ontologies created. Providing a more
intuitive way to interpret the information and how it is represented.

Finally given the formal nature of ontologies and their connection with artificial intelli-
gence, OntoDL+ also provided a closer and easier connection with logic programming and
model checking.

1.2 objetives

Considering that the main purpose of this project is to improve OntoDL, the objectives
defined for the Master Thesis here reported are:

1. Extend the language to allow the instantiation of attributes during individuals’ decla-
rations.

2. Extend the language to remove redundancies in the declaration of triples.

3. Adapt the context validator to ensure the semantic correction of every OntoDL+
specification.

4. Expand the capabilities of the language compiler by adding the possibility of conversion
to other ontology formats.

5. Integrate the Domain Specific Language with external tools in order to allow for a
better visualization of the ontologies created.

6. Expand the capabilities of the language compiler to allow for the conversion of
ontologies to logic programming languages as well as the dynamic validation, inference
and exploration of the ontology resorting to said languages.

7. Extend the capabilities of the language to allow a conversion to specification languages,
enabling formal model checking of the ontologies’ specifications written.

Objectives 1. through 3., aim at extending OntoDL+, as a means to improve its usability
and the productivity of it’s users while using the language.

Objectives 4. and 6. aim at expanding the DSL improving the contexts in which it might
offer a proper solution to a system’s problem.

Objective 5. has the purpose of providing users of the DSL with better tools for the
development of ontologies using OntoDL+.

Finally objective 7. provides a way to enable formal static model checking of ontologies.
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1.3 research method

In order to properly achieve the described objectives of this Master Thesis, the Design Science
Research methodology was implemented.

Design Research is an inherently trial and error process, that is comprised of mainly two
goals: creation/design and evaluation/research. The main purpose of the design process
is to create an artifact, or work, that addresses a problem. The second step, consists in
evaluating the created artifacts, analysing and testing them for their utility (Manson, 2006).

In order to ensure that this two main goals are achieved, several steps are to be taken
during this research, these consist of (Manson, 2006; Kuechler et al., 2007):

1. Discovery of The Problem

A researcher as to come into contact with a meaningful problem, research system
requirements and functionalities, and have a good insight on the related subjects/dis-
ciplines.

Most importantly, the researcher as to be fully aware of the problem that is trying to
solve.

2. Solution Proposal

The researcher will then have to provide one or multiple suggestions of Tentative
Designs. During this step, the functionalities of the different components and relation-
ships among them should be very clear.

3. Development

During this step, the implementation of one or more artifacts will be done in order to
achieve the proposed solution.

4. Evaluation

After developing the artifacts, these ought to be tested, and their behavior analysed. It
is possible that there are deviations from the predicted behavior. If this is to happen,
then the researcher should analyse the problem and the artifacts again, in order to
correct the problem.

5. Conclusion

Even if there are possible deviations from the predicted behavior, there comes a time in
which the research effort is considered ’good enough’ marking the end of the research.
At this stage, the achieved results should be documented and the knowledge gained
should be classified as being firm (facts that can be applied repeatedly) or as loose-ends
which may conduct to further research.
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1.4 research hypothesis

During this project it will be shown that it is possible to increase the usability of OntoDL,
through the implementation of small changes to the language and its’ compiler.

1.5 document structure

After analysed the main objectives and motivation of this Master Thesis in Chapter 1, the
state of the art will be presented in Chapter 2, with some key concepts and related work.

In Chapter 3, OntoDL was analysed to identify its features and grammar. The liabilities of
OntoDL are also shown along this chapter.

In Chapter 4, OntoDL+ proposal is presented, indicating the language extensions and
compiler expansions as well as the planned benefits from them. Meanwhile, Chapter 5

presents the development decisions that were taken during this project.
Chapter 6 covers the Website created to publicize OntoDL+, showing the pages of the site

and explaining their purpose.
Chapter 7 contains practical examples to test and analyse the results of the development

done in this Thesis.
Finally Chapter 8 the conclusions of this thesis are drawn and prospects of future work

are presented.



2

S TAT E O F T H E A RT

As previously stated, during this Master Thesis, OntoDL was improved, however there
are some concepts and notions which ought to be clarified before advancing any further.
Therefore, it will be organized in the following sections:

• An explanation about the concept of ontology and its usages

• Logic Programming languages and their applications in ontology specification

• An explanation about the concept do DSL and some of its advantages and drawbacks

• Software development which covers subtopics such as model checking and code
refactoring.

2.1 ontologies

An ontology is a formalism used to represent knowledge. In the knowledge engineering
context, one of the most cited definitions of ontology is that “An ontology is an explicit
specification of a conceptualization.” (Gruber, 1993). This was further expanded describing
an ontology as a set of definitions associating a term with axioms, constraining its use
and relating it to other terms (Falasconi et al., 1994). That being said, in computer science
ontologies provide a formalism to represent knowledge, defining terms and describing their
relationships, constraints and axioms within the knowledge domain described.

Formally, Serra and Girardi (2011) represent an ontology as the tuple O = (C, H, I, R, P, A)

where:

• C is the set of terms available within the knowledge domain of the ontology. This set
can be described as C = CI ∪ CC where CC is the set of concepts, and CI the set of
instances or individuals.

• H is the set of hierarchic relations described among concepts.

• I is the set of relationships between concepts and instances.

5



2.2. Logic Programming 6

• R is the set of all other relationships in the ontology.

• P is the set of properties of classes

• A is the set of axioms

Based on Serra and Girardi (2011) definition, Martini et al. (2016) proposed as an alternative
to define an ontology structure the 4-Tuple O = (C, I, P, A), where:

• C is the set of concepts of the ontology. The set is equivalent to the set CC from Serra
and Girardi (2011).

• I is the set of individuals of the ontology. The set is equivalent to the set CI from Serra
and Girardi (2011).

• P is the set of properties of the ontology. The set can be described as P = Pdt ∪ PO

where,

– Pdt is the set of data type properties between classes or individuals and atomic
values. It is equivalent to the set P from Serra and Girardi (2011).

– PO is the set of object properties between classes or individuals and other classes
of individuals. Adapted from Serra and Girardi (2011) such that PO = H ∪ I ∪ R.

• A is the set of axioms of the ontology.

OntoDL as adopted the 4-Tuple definition from Martini et al. (2016) for its’ DSL imple-
mentation. The syntax of the language was implemented creating sections to describe each
set of components belonging to the tuple.

2.2 logic programming

Logic programming is a formalism that was introduced by R Kowalski in 1974 (Kowalski,
1974). It has evolved to become a new programming paradigm with the introduction of
Prolog (Apt, 1990). This is a logic programming language based on predicate logic, being
a highly declarative programming language. Despite initially being created envisioning
natural language processing (Apt, 1990), new applications for the paradigm were discovered.
Currently, logic programming is also used in the fields of intelligent systems simulation
(Abelha et al., 2007) and knowledge representation (Lima et al., 2011).

Ontology oriented languages such as OWL2’s RDF-syntax can provide a large supply of
tools to build and reason over ontologies. These languages, however, have some drawbacks
associated, namely: OWL2 typically has complex development environments, these envi-
ronments are directed to domain experts instead of computer scientists or programmers;
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RDF-syntax can be too low level to use with axiomatized OWL2 ontologies (Vassiliadis
et al., 2009). Comparatively, logic programming languages offer very simple, direct and
intuitive representation of knowledge. Research has already been made into exploring logic
programming for ontology specification (Vassiliadis et al., 2009).

The usage of a logic programming language enables the development of reasoning systems
over the specified knowledge. Through these, it would be possible to create logic programs
containing ontology specifications which would allow searching and querying the ontology.
The user can further develop the program and specify verification rules to be applied to the
ontology.

Given that logic programming is highly used in the knowledge representation fields, -
and given that an ontology is the representation of knowledge of a given universe, - it is
considered that this is an appropriate paradigm for ontology representation/specification.

2.2.1 Prolog

Vassiliadis et al. (2009) as expressed some advantages of using Prolog as an ontology
processing language for ontology manipulation:

• Prolog programs are sets of horn clauses with the form Head :- Body.

Horn Clauses are used in Prolog to represent knowledge. An horn clause with an
empty body is regarded as a fact. Facts can be used to represent explicit knowledge
of the ontology. Horn clauses with non-empty bodies can provide relations through
composition of other relations, as well as provide restraints to relations and terms.

• Prolog programs implement not using negation-as-failure to achieve the closed world
assumption

In a Prolog program, it is assumed that the described knowledge represents all
knowledge. If a predicate does not match the represented knowledge in the program,
it is considered to be false.

• Prolog offers non-logical predicates such as cut

The cut predicate can be used to prune a search tree in prolog. Using cut it is possible
to stop the backtracking process of a query, enabling a run-time restriction of solutions.

• Prolog offers meta-logical predicates to perform aggregate operations.

Aggregation operations such as finding all answers to a query are possible in Prolog.

By using Prolog it is also possible to use a querying system, enabling reasoning over the
specified information. It is also possible to create verification queries in order to ensure that



2.3. Domain Specific Languages 8

the system follows desired rules. Therefore it is considered that Prolog is a language that
enables ontology specification.

2.3 domain specific languages

As the name implies, a DSL differs from a general purpose language by being designed
and implemented for a particular domain. Unlike General Purpose Language (GPL) that
should be able to address every problem, regardless of the complexity and effort needed to
implement a solution, by design, a DSL will not be able to do that, neither are they supposed
to be able to do it (Kolovos et al., 2006; Van Deursen et al., 2000). So, in order to atone for this
lack of generality, a DSL offers a lot of expressive power through notations and abstractions
to increase the productivity of it’s users. As previously stated, their expressive power and
application are usually restricted to a particular domain problem (Van Deursen and Klint,
2002).

Languages such SQL, TEX, LEX and YACC are some examples of well known DSLs
(Van Deursen et al., 2000). These languages offer a good solution and great expressive power
regarding, relational database management, document generation and parser generation
(both LEX and YACC) respectively. One would be incapable of using these languages alone
to solve every problem. Yet, as tools to solve problems regarding their particular domains,
these DSLs are good options to be considered.

Therefore, generally speaking, DSLs will offer both advantages and disadvantages. It is
important to keep in mind these benefits and drawbacks attached to the usage of DSLs. That
is important in order to accurately determine whether or not it is worth using DSLs, as well
as ensure an adequately designed DSL, correctly balanced regarding the advantages and
disadvantages it provides.

2.3.1 Advantages of DSLs

As previously stated, it is important to determine the advantages of DSLs: (Van Deursen
et al., 2000)

• DSLs allow the design of solutions with a proper level of abstraction and idiom for
the problem domain.

DSLs can be used to adequately represent the concepts and constructs of a particular
problem domain. Furthermore, these can be represented in the language adopted by
the users of the DSL, enabling domain experts to use the DSL.

The creation of an higher level language also decreases the learning curve of the
language for new users.
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• DSL programs allow the creation of more concise and self-documenting code, while
improving re-usability.

The usage of DSLs with an appropriate level of abstraction and available statements
can significantly improve documentation. Higher level languages, closer to the level of
natural language are easier to analyse and properly understand. If these abstractions
and statements are appropriately defined the code produced will be shorter, and there
will be no need to produce natural language documentation (Ladd and Ramming).

• DSLs have the potential to increase productivity, reliability, maintainability, and
portability.

DSLs have been used to reduce the production time of products from an average of
months, to weeks (Deursen and Klint, 1998), other cases of productivity being enhance
several times is also talked in Kieburtz et al. (1996); Herndon and Berzins (1988).

Automatising code generation tasks through DSLs also enables a better understanding
of modifications made to the language, and their impact, as well as the verification of
the code generated, improving the overall reliability in the DSL (Deursen and Klint,
1998). The amount of times that a module has to be tested before it’s considered
finished may also be a factor to consider in the reliability of the generated code. If
application modules have to be rewritten a lesser amount of times due to the usage of
DSLs, it may be an indicator that the application writers have a better understanding
of the code due to the appropriate abstraction level. Therefore, reducing the number
of failed programs also increases reliability in the programs produced, which was the
case verified by Kieburtz et al. (1996).

DSLs can further improve maintainability of costs of the applications (Deursen and
Klint, 1998; Herndon and Berzins, 1988) and improve it’s portability (Herndon and
Berzins, 1988).

• DSLs explicitly declare domain knowledge, enabling its conservation and reuse

The knowledge generated through a DSL can be reused by different applications
(Deursen and Klint, 1998).

• DSLs can improve validation and optimization.

Code generation DSLs also have the advantage of being able to introduce optimizations
to the generated code, while simultaneously allowing the introduction of validation
constraints in the language (Menon and Pingali, 1999; Basu et al., 1997; Bruce, 1997).
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2.3.2 Disadvantages of DSLs

Now, having the advantages of DSLs in mind, we should also analyse the setbacks of
implementing and using a DSL: (Van Deursen et al., 2000)

• The overall costs in the design, implementation and maintaining the DSL.

Despite the advantages, every DSL as an initial cost of designing and implementing it.
Furthermore, maintaining and extending DSL can sometimes present more unexpected
costs and difficulties (Deursen and Klint, 1998).

• Appropriate scopes for the DSL may be hard to find.

Finding a DSL for the correct domain, or with the proper abstractions presented for
the task at hand may sometimes be difficult.

The usage of a DSL for a prolonged period of time may reveal some flaws in it,
propelling the necessity of extending the language (Deursen and Klint, 1998).

• The costs of educating DSL users.

Despite being designed to be more appropriate for the development under the right
domain, its users will always have to learn how to write Domain Specific Descriptions
(DSDs), which comes with a cost.

2.3.3 DSL Design and Implementation

When designing and implementing a DSL, there are various techniques which can be used.
They will commonly follow already established patterns, and some work has been done
to try to establish such patterns (Spinellis, 2001; Gamma et al., 1995; Mernik et al., 2005).
Among these, it is important to highlight:

• Piggyback pattern (Mernik et al., 2005; Spinellis, 2001), consisting of making use of an
existing language within the DSL, to enable desired features from it. Therefore, the
DSL uses an existing base language as an implementation tool. The compilation of
such DSL specification will convert the DSL components to the base language, while
leaving the base language code unchanged. ANTLR is an example of a DSL that
follows such pattern. Being a DSL for grammar specification, ANTLR supports the use
of Java to define semantic actions and attributes.

• Language specialization pattern (Mernik et al., 2005; Spinellis, 2001), in which an
existing language is changed, removing features in order to restrict it. This pattern
can be used with objectives such as: creating a safe DSL by restricting unsafe features
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from an existing language, or improving the learning curve or usability by removing
unneeded elements. OWL-Light is an example of a DSL following a specialization
pattern.

• Language extension pattern (Mernik et al., 2005; Spinellis, 2001), occurs when a
language is changed to add domain specific features. Typically the existing language
features will remain available. This pattern differs from the piggyback pattern, since
the piggyback uses a base language as an implementation tool for certain features,
while the language extension pattern will change syntactic and semantic aspects of the
base language to adapt it to the domain problem.

• Source to source transformation pattern (Mernik et al., 2005; Spinellis, 2001), in
which the DSL code is entirely translated into an equivalent source code in a different
language. This approach enables the use of tools provided by the target translation
language.

2.4 software development

In software development, systems tend to evolve and, frequently, increase their complexity.
With complexity increase, system comprehension and error correction also become harder.
It’s been estimated that over 80% of software costs derive from system evolution and
maintenance (Ouni et al., 2016).

Some of the more frequent software development problems include: implementation
problems - like inappropriate documentation and use of global variables (Stewart, 1999),
long methods, etc., - and design problems - resulting from lack of modelling (Stewart, 1999)
or model checking. To address some of these problems multiple techniques have been
created to assist the process. In order to address implementation it’s necessary to highlight
code refactoring techniques as possibly some of the most used. However, formal techniques
such as model checking, can aid in detection of system specification errors, increasing system
robustness.

2.4.1 Code Refactoring

Code refactoring is a technique used to facilitate software maintenance tasks, and it improves
software architecture or implementation, without changing the behavior of the program.
These techniques are used to facilitate code manipulation improving comprehension reuse
and future evolution.

The refactoring process starts with identifying the code portions to be refactored, typically
referred to as AntiPatterns (Brown et al., 1998), Bad Smells (Mantyla et al., 2003; Murphy-



2.4. Software development 12

Hill and Black, 2010; Beck et al., 1999) or design defects (Ouni et al., 2016). They are code
patterns that often occur in software implementation which increase difficulty in maintaining,
comprehending and evolving the system. Detecting a smell does not necessarily mean that
something is inherently wrong in the program, but such sections usually request some
special attention, - either because they could likely be rewritten in order to be clearer and
more efficient, or because they are more likely to be at the source of errors.

Following the smell identification, it should be determined which refactoring method
to apply, and refactor the code, ensuring behavior preservation (Ouni et al., 2016). This
can improve readability, performance, extensibility or other metrics. The same technique
can improve various code analysis metrics simultaneously, but often it is necessary to
compromise some metrics to benefit others.

After applying the technique, it should be evaluated its effect on the program, through
comparison of metrics before and after the refactoring process is done. It is also important
to ensure that the program retains consistency, updating documentation, tests, and other
needed documents not included in the refactoring process (Ouni et al., 2016).

Bad Smells

A lot of work has been done in order to develop a taxonomy which allows identification and
handling of various types of smells (Ouni et al., 2016; Mantyla et al., 2003; Murphy-Hill and
Black, 2010; Brown et al., 1998; Sharma and Spinellis, 2018; Beck et al., 1999). Among these
we can highlight some of the more frequent smells like:

– Blob

• Definition

The Blob (Brown et al., 1998; Ouni et al., 2016) also referred to as God Class (Sharma
and Spinellis, 2018), is found in systems where a single class is responsible for
the majority of the computations of the system. Typically the Blob possesses an
abundance of methods, attributes or both and represents a controller class of the
system (Brown et al., 1998; Sharma and Spinellis, 2018). Meanwhile, classes other
than the Blob will primarily store and provide data with little to no processing
responsibilities of their own (Ouni et al., 2016; Brown et al., 1998).

• Consequences

The Blob generally is accompanied by low cohesion of methods and data (Sharma
and Spinellis, 2018). Most times, the Blob behaves like a procedural main program,
compromising the advantages of an object-oriented design (Brown et al., 1998).
Because of its excessive complexity , the Blob is hard to evolve and maintain. Its’
reuse and testing is often to complex to be viable as well.
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• Solution

Brown et al. (1998) has proposed that to deal with the Blob, one should start
by identifying groups of methods and attributes with a common behavior of
feature. For instance, if a store system possesses most operations in a controller
class, trying to identify which operations are related to customers and which
are related to products. Following the identification of groups of functionalities,
they should be migrated to the their appropriate class, - i.e., methods relating
individual costumers should be migrated to the costumer class, and so on. Finally
any redundant associations should be removed.

– Comments

• Definition

Comments (Beck et al., 1999; Mantyla et al., 2003; Sharma and Spinellis, 2018;
Murphy-Hill and Black, 2010), inherently are not a bad thing, however, thickly
commented blocks of code often try to hide bad code (Beck et al., 1999). That
usually indicates that one or more different bad smells may exist in that portion
of the program, refactoring tends to render most of those comments irrelevant
(Mantyla et al., 2003; Beck et al., 1999; Murphy-Hill and Black, 2010).

• Solution

Trying to identify other smells hidden by the comments smell, and refactor the
code according to those new smells. Afterwards, some of the comments can be
deleted.

– Data Class

• Definition

The Data Class (Ouni et al., 2016; Mantyla et al., 2003; Sharma and Spinellis, 2018;
Beck et al., 1999) is a class with no processing responsibilities, containing only
data. Often the only methods of these classes are comprised of getting and setting
methods.

“Data classes are like children. They are okay as a starting point, but to participate as a
grownup object, they need to take some responsibility.” Beck et al. (1999)

• Consequences

If a class is important enough to be created, then at some point it will have to be
manipulated far to much by other classes (Beck et al., 1999). Therefore, the origin
of errors resulting from inappropriate manipulation or usage of the information
of those classes might be much harder to track down, - making it harder to debug
possible errors.
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If a Data Class is manipulated by many different methods or classes, chances
are, there will be repeated code spread among those classes/methods. Therefore,
comprehension and evolution of the system might become harder.

• Solution

Find methods and classes that manipulate the information of the Data Class and
either: try to move those methods to the Data Class; or if impossible, extracting
the manipulation code into a different method and moving it to the Data Class.

– Lava Flow

• Definition

The Lava Flow (Brown et al., 1998; Sharma and Spinellis, 2018) or Dead Code
(Brown et al., 1998) smell is comprised of a piece of code which nobody under-
stands, no one exactly knows if it is used or not, so it just stays immovable in
order to avoid bugs.

“Sometimes, an old, gray-haired hermit developer can remember certain details, but,
typically, everyone has decided to “leave well enough alone”” Brown et al. (1998)

• Consequences

If Lava Flows are not removed at an early stage, they can propagate to other
sections through code reuse (Brown et al., 1998).

The code becomes harder to analyse, verify and test (Brown et al., 1998).

Loading Lava Flow code into memory can be expensive, reducing performance
and consuming computational resources.

• Solution

The best solution for Lava Flow is to prevent it entirely by properly planning the
system architecture. If a Lava Flow is already in place the first step is to define a
clear architecture. Such step should already help to identify unused lines of code
allowing to remove them safely. Removing suspected dead code may introduce
errors, but those should be properly analysed and understood, in order to avoid
the creation of more dead code to solve it. (Brown et al., 1998)

– Long Method

• Definition

The Long Method (Murphy-Hill and Black, 2010; Mantyla et al., 2003; Sharma
and Spinellis, 2018; Beck et al., 1999) smell is pretty self explanatory. In object
oriented languages, using short methods pays off (Beck et al., 1999) methods to
long usually indicate a lack of task delegation.
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• Consequences

Long methods become harder to understand and evolve. Testing and debugging
may also become more difficult with programs suffering from long methods.

• Solution

This smell can be solved by extracting portions of code to a different method and
naming it appropriately (Beck et al., 1999).

– Long Parameter List

• Definition

The Long Parameter List (Mantyla et al., 2003; Sharma and Spinellis, 2018; Beck
et al., 1999) smell identifies methods that receive long lists of parameters. In
object oriented contexts, a method does not need to receive every piece of data it
needs in the form of parameters. Instead, the method only needs to receive the
appropriate data in order to allow the method to fetch additional information
from other methods or classes.

• Consequences

Much like the Long Method smell, the Long Parameter List reduces ease of
comprehension of the method, they rapidly become inconsistent and hard to
use (Beck et al., 1999). Because it stems from inappropriate data transfer to the
method in the form of parameters, evolving the method may be synonymous
with adding more parameters, further reducing usability.

• Solution

Most times, the smell can be fixed be passing parameters with objects that can
access the intended data, instead of passing the data directly (Beck et al., 1999) -
since it is highly likely that there will be objects which can request multiple of the
necessary data fields.

– Shotgun surgery

• Definition

The Shotgun Surgery (Ouni et al., 2016; Mantyla et al., 2003; Sharma and Spinellis,
2018; Beck et al., 1999) smell relates to methods or classes which are used by
a large amount of external methods. Therefore, when making changes to the
method of class, a lot of external methods or modules will have to be revised and
tested again, - you take a change that you want to make on your system, load
it on your shotgun, aim it at the intended method or class, and after firing the
change, a lot of classes will be hit by shrapnel.
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• Consequences

When changing the method presenting the smell, changes will occur in a lot
of different classes, increasing the risk of missing some changes causing errors.
Evolution and debugging of the system becomes harder.

• Solution

The solution is to identify groups methods and fields affected by the change, and
try move them to a single class -, creating one if needed. (Beck et al., 1999)

– Spaghetti Code

• Definition

Spaghetti Code (Ouni et al., 2016; Sharma and Spinellis, 2018; Brown et al., 1998)
defines a code block without any clear structure. It is typically resultant from
procedural thinking while programming in object-oriented paradigm (Ouni et al.,
2016).

• Consequences

Spaghetti Code highly undermines object-oriented mechanisms such as polymor-
phism and inheritance (Ouni et al., 2016; Brown et al., 1998; Sharma and Spinellis,
2018). Maintenance costs also increase and code reuse is very difficult. If the
problem is not addressed eventually there will be a time when maintaining the
code is more expensive then create an entirely new solution (Brown et al., 1998).

• Solution

In order to refactor a block of spaghetti code, one should start by removing direct
accesses to variables of classes -, replacing them by getting and setting methods.
While analysing the code, identify small processes that can be extracted to smaller
methods, easier to use and understand. Remove unused portions of code, since it
improves readability of the program and prevents the appearance of Lava Flows.
Ensure that the naming system of classes, functions or data types, follows a
system standard. (Brown et al., 1998)

– Switch Statement

• Definition

The Switch Statement (Mantyla et al., 2003; Sharma and Spinellis, 2018; Beck et al.,
1999; Murphy-Hill and Black, 2010) smell refers to switch statement on type codes
which are duplicated throughout many code sections. It doesn’t make use of
polymorphism, and when you have to make any change to the switch, you have
to find every instance where it is used to update it.
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• Consequences

Evolution of the system might become slower where changes to the switch are
involved, due to the need to find and replicate the change across the code.

• Solution

A solution can be achieved by extracting the switch statement onto a method and
moving the method to an appropriate class. Depending on the circumstances, it
may also be appropriate to replace the type codes with subclasses making use of
hierarchy and polymorphism. (Beck et al., 1999; Mantyla et al., 2003)

2.4.2 Model Checking

In software development, system modeling should be done at an early stage. By specifying
the system and its’ properties it is possible to identify and fix design flaws with more
efficiency and reliability - after system implementation, changing its’ design might mean
multiple changes to several modules of the system, making the process slower and more
complex. By using model checking tools and techniques it is possible to better comprehend
and reason about the system to be developed.

Through system model checking, it’s possible to make both static and dynamic verification
of the system. Static verification allows a structural verification of the system, ensuring that
it is correctly built. Dynamic verification allows behavioral analysis of the system, verifying
the system’s interactions and its’ evolution over time -, also verifying that the properties
remain valid at every stage of execution(Macedo et al., 2016).

The more successful model checker provide a simple yet expressive and flexible language.
Typically static modeling relies formal languages based on first order logic, while dynamic
modeling relies on languages base on temporal logic. Furthermore, most model checkers
focus mainly on only one of those verification strategies, - static or dynamic. Nevertheless,
there are some model checkers which allow for a simultaneous static and dynamic verifi-
cation, given however, that extensions are used. Using the Electrum extension for Alloy,
it’s possible to simultaneously perform structural and dynamic verification of the system
(Brunel et al., 2018).

Performing static model checking on an ontology, would be equivalent to verify a speci-
fication of the concepts, relations, inference rules and restrictions defining the ontology -,
ensuring the preservation of those rules. By statically verifying an ontology, it is possible to
check if the specification is adequate to represent the intended domain knowledge. Applying
dynamic verification to an ontology would involve specification of the system that the
ontology integrates, along with its actions and effects. It is intended to analyse processes
allowing to ensure that the system holds certain properties over time.
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Alloy

Alloy is a specification language based on first order logic and relational calculus (Dennis
and Seater, a). Using the language it is possible to specify models along with it’s rules
and restrictions. The language is highly declarative and it enables both static and dynamic
modeling. However, without the use of extensions, an Alloy specification should focus only
on one type of modeling. That means that in order to properly verify a system statically and
dynamically, two specifications are advised. For example, when model checking an ontology,
each static model will represent a possible state of the ontology, which is allowed by the
specification written, while its’ properties will represent invariants (Dennis and Seater, c) -
it’s appropriate to verify structural correctness. However, each dynamic model will represent
transitions between states of the ontology, while its’ properties represent interactions with
the system (Dennis and Seater, c) - it’s appropriate to verify processes which interact with
the ontology.

Currently, Alloy is used mostly to model systems (Cunha et al., 2015; Macedo et al., 2016;
Ferreira and Oliveira, 2009), however, it’s considered that the language can also be used to
model ontologies. When statically specifying an ontology, given that Alloy signatures are
sets of atoms with common features, - which allow the definition of hierarchy among them, -
they are adequate to represent the classes of the ontology. Similarly, the fields would be used
to represent the ontology’s relations, along with domain, counterdomain and cardinality.
Properties can also be defined to specify invariants. During dynamic specification of an
ontology, the ontology is specified according to the system it integrates. In an ontology
dynamic model each atom would represent a state of the ontology -, or system to which the
ontology belongs, - while properties are used to represent actions. (Dennis and Seater, b)

Using Alloy Analyzer, it’s possible to verify if there is any inconsistency that prevents
the creation of models. When a specification poses no errors, the analyzer will create and
populate models according to the established signatures and relations. It’s also possible to
create predicates and assertions to define additional desired system properties and verify if
they are respected, or force the creation of new models following the properties. The created
models can then be graphically viewed and styled using the analyzer, allowing for a better
understanding of the specified ontology.

2.5 summary

Along this chapter, the concepts of Ontology, Logic Programming, DSL and Software Devel-
opment have been explored. The formal ontology structure used by OntoDL was explained.
Programming languages have been analysed in the context of ontology manipulation lan-
guages. The advantages, disadvantages and some of the best practices regarding DSL
development have been described. Finally, the main concepts concerning software develop-
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ment have been presented, identifying good practices such as model checking, as well as
common bad practices present in software and how to solve them.



3

O N T O D L

OntoDL is a DSL created to specify ontologies. The language was created using ANTLR4

and aims at being simple and intuitive. Therefore, the main purpose of the language is
to offer an easy to learn syntax, requiring little to no previous knowledge to ensure its
usability and correction. The DSL also tries to improve productivity of developers using the
language. Comparatively to the syntax of other ontology specification languages, such as
the RDF-Schema or OWL, OntoDL improves productivity by defining specific sections for
each group of declarations. This way, the language becomes structuraly more rigid, however,
there are benefits to that strictness such as:

• Ease of access to declarations: OntoDL groups declarations with similar character, i.e.,
there are sections destined to the specification of information of certain entities. The
classes/concepts, used in a given ontology will all be specified in the same section.
The same principle applies to the relationships, triples and individuals to be used.

Said separation by sections eases the burden of analysing, growing, debugging and
maintaining the ontologies developed. This way, tasks that involve declarations of
certain specific components of the ontology (such as classes or relationships of the
ontology for instance), become much easier and non-fallible. That is due to the close
proximity of said declarations, being that they will be enclosed in a well defined region
of the specification. The same can’t be said of languages like OWL which, despite
giving more freedom to users in regards to the order of declarations by enabling an
arbitrary order of declaration, also makes it harder to search, analyse and update said
declarations over time.

• Self-explanatory syntax: The separation of the different sections of declarations is
well distinct. The terminal symbols and reserved words used to delimit the borders
of the sections were defined in a clear manner, which will in turn point the different
sections of the DSL where declarations should be included.

20
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• Reduction of the necessary source code: Through the usage of OntoDL it is possible
to considerably reduce the necessary code to specify ontologies. Much of the redundant
syntax used in other languages can simply be concealed due to the language design.

OntoDL also has a compiler to process the language files, recognizing the declared
information and detecting errors. If a specification possesses no errors, OntoDL’s compiler
with create two output files, one of which possessing the same specification written in OWL,
and the other possessing a DOT specification to enable the creation of an ontology graph.

3.1 grammar

The language was created using Portuguese as the idiom to attribute names to the non-
terminal symbols. Despite the good choice of names, easing the burden of analysing and
comprehending the grammar to Portuguese people, it is also quite limiting. That is due
to the fact that developers that do not know how to read and write in Portuguese will
encounter unnecessary development challenges when working with the grammar.

The ontology’s starting production is ontologia, showed in listing 3.1. In it, it’s possible to
distinguish four primary sections to be used in ontology specification, those being: concepts,
individuals, relationships and triples. It’s important to note that in OntoDL, there is no
section uniquely oriented to the declaration of data properties.

on to l og i a : ’ Ontologia ’ TEXT

conc e i t o s

i nd i v iduo s ?

r e l a c o e s

t r i p l o s

’ . ’

;

Listing 3.1: Production ontologia

It’s also possible to observe that, such as the non-terminal symbols, some of the restricted
words used also have Portuguese as its’ idiom. This limitation might reduce the potential
users of the DSL to only Portuguese speaking users. It’s also possible to note that the idiom
used in name attribution is inconsistent, given that terminal symbols are written using
English as its’ idiom while non-terminals and reserved words use Portuguese.

It’s possible to declare data properties/attributes to be associated with concepts during
concept declaration in an ontology, because of the productions in listing 3.2. Said attributes
should be associated with individuals instantiated as part of the defined class. However,
this type of declaration is not optimal, since should two or more concepts possess the same
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attribute, the name and type of the attribute will have to be declared multiple times. In said
situations, given that the attribute is the same, its’ type should always be the same as well,
but the current syntactic structure creates redundant code, diminishing productivity and
increasing the likelihood of errors by enabling the declaration of the same attribute with
different types.

c on c e i t o s : ’ c on c e i t o s ’

’{ ’ c1=conce i t o

( ’ , ’ c2=conce i t o ) *

’} ’
;

c onc e i t o : TEXT

at r i bu t o s ?

;

a t r i bu t o s

: ’ [ ’ a1=at r i bu to

( ’ , ’ a2=at r i bu to ) *

’ ] ’

;

a t r i bu to

: a t r=TEXT ’ : ’ t i po=TEXT

;

Listing 3.2: Concept related Productions

The individuals specification section, listing 3.3, is well design when concerning code
reduction and productivity increase, however some improvements could be made. In the
grammar design, it is uncertain the purpose of the symbol TEXT?, given that the semantic
actions of its’ production never make use of it. As there is already a terminal symbol
dedicated to comment capture, it is possible to exclude comments as a possible use of said
terminal. As the semantic actions also ignore the symbol entirely as well, it seems to be
no more than a mistake in the grammar design. Said mistakes eases the appearance of
mistakes such incomplete ontologies that do not use the proper separators in individual
declaration, causing in turn the creation of translated ontologies that do not contemplate all
of the declared individuals.

i nd i v iduo s : ’ i nd i v iduo s ’

’{ ’ TEXT TEXT?
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( ’ , ’ TEXT TEXT?) *

’} ’
;

Listing 3.3: Production individuos

The relationships specification section, listing 3.4, is very well designed regarding its’
simplicity, however it’s not as descriptive as OWL defined relationships. That’s due to the
fact that it’s possible to declare more information regarding relationships in OWL than in
OntoDL. For instance, it is possible to declare relational cardinality in OWL, which can not
be done in OntoDL. Despite being an optional feature, it might be important in situations
where it is necessary to ensure the structural correction of the ontology. Therefore, it is
considered that the relationships specification area is still incomplete.

r e l a c o e s : ’ r e l a c o e s ’

’{ ’ TEXT

( ’ , ’ TEXT )*

’} ’
;

Listing 3.4: Production relacoes

Finally, the triple declaration section, listing 3.5, also possesses some interesting features,
such as enabling the usage of some relationships without requiring its’ previous declaration.
These however, are hard-coded in the grammar, making it impossible to use any other
relationship without its’ previous declaration. That means that the usage of external vocabu-
laries, such as the usage of relationships, concepts or data properties from a vocabulary, - for
example the FOAF vocabulary (Brickley and Miller, 2014), - is also impossible. Said behavior
reduces the potential usages of OntoDL, therefore, some companies and organizations might
choose to not use the language. Even so, by design, this is the desired behavior for the
language, given that it’s mainly focused on an institutional and educational usage. It is
desired that the users make its’ own specifications and understand them, instead of using
external ontologies specified by someone else, be those in OWL or other language different
from OntoDL.

t r i p l o s

: ’ t r i p l o s ’

’{ ’ t r i p l o

( ’ ; ’ t r i p l o

) * ’} ’
;
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t r i p l o :

’ ( ’ ? c1=TEXT ’=’ ( ’ i o f ’ | ’ i n s t a n c i a ’ ) ’=> ’ c2=TEXT a t r i b I n s t s ? ’ ) ’ ?

| ’ ( ’ ? c1=TEXT ’=’ ( ’ pof ’ | ’ parte ’ ) ’=> ’ c2=TEXT ’ ) ’ ?

| ’ ( ’ ? c1=TEXT ’=’ ( ’ i s - a ’ | ’ s ub c l a s s e ’ ) ’=> ’ c2=TEXT ’ ) ’ ?

| ’ ( ’ ? c1=TEXT ’=’ ( ’ synonym ’ | ’ s inonimo ’ ) ’=> ’ c2=TEXT ’ ) ’ ?

| ’ ( ’ ? c1=TEXT ’=’ r e l=TEXT ’=> ’ c2=TEXT ’ ) ’ ?

;

a t r i b I n s t s

: ’ [ ’ a t r i b I n s t

( ’ , ’ a t r i b I n s t ) *

’ ] ’

;

a t r i b I n s t : a t r i b=TEXT ’=’ va l o r=TEXT

;

Listing 3.5: Triple Related Productions

The usage of hard-coded declared relationships in the grammar design provides other
advantages, such as semantic verification of the relationships offered by the language.
Additionally, the declaration of data properties of individuals, can only be done during the
instantiation of an individuals’ class. That in turn eases comprehension of the ontology,
given that by grouping relevant information regarding an individual, the specification can
be translated to natural language in a very intuitive manner.

brg = i o f => City [ d e s c r i p t i o n = ‘ ‘ Archbishops ’ c i t y ’ ’ ,

d i s t r i c t = ‘ ‘Braga ’ ’ ,

name= ‘ ‘Braga ’ ’ ,

populat ion = ‘ ‘140000 ’ ’ ] ;

Listing 3.6: Triple Example

As we can see in listing 3.6, the declared triple will be read in natural language as “brg is
an instance of City whose description is Archbishops’ city, the district is Braga, the name
is Braga and population is 140000”. Given the close proximity of the DSL declaration
with natural language, its’ expected to fair well in educational contexts. It also ensures
the necessary and sufficient vocabulary to ensure the declaration and comprehension of
ontologies, as well as the knowledge contained in them, making it in a clear and intuitive
manner.
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3.2 semantic actions

Despite providing the intended processing of information, the semantic actions of the
language are very poorly structured and disorganized, making it harder to analyse and
comprehend. In them it is possible to observe two primary problems: excess of inherited
and return attributes in various productions, with unclear names regarding its’ usage - Long
Parameter List 2.4.1; to extensive to comprehend and analyse semantic actions - Long Method
2.4.1. This problem can be verified in a generalized manner throughout the grammar source
file. These are design and not implementation errors and many of them repeat themselves in
only slightly different variations in different productions. Therefore, it will not be done an
individual documentation of every problem in the productions, instead a general overview
of the underlying problems will be done. To such an end, one of the productions with more
of these problems will be analysed: the production of the symbol triplo.

t r i p l o [ HashSet<St r ing> concts , HashSet<St r ing> i nd ivs , HashSet<St r ing> r e l s

, HashMap<Str ing , L i s t<St r ing>> tabConcsin , S t r ing outputDOTin , S t r ing

outputOWLin ]

r e tu rn s [ S t r ing t r ip , boolean er roTr ip lo , HashMap<Str ing , L i s t<St r ing>>

tabConcsout , S t r ing outputDOTout , S t r ing outputOWLout ]

Listing 3.7: Triple Production Attributes

Beginning by the initial declaration of triplo, listing 3.7, it’s possible to detect the Long
Parameter List smell. The production inherits six different attributes, four of those attributes
were initially declared in the grammars’ starting production (ontologia). The other two
attributes represent input texts to be altered to produce output texts. The return of the
production suffers the same problem with excessive attributes. Being there a control error
Boolean, two output strings created from the input strings, a String containing the triples’
information and finally an output concept table. At a first glance, the output concept table
seems to be created from the input concept table. Further analyses of the attributes revealed
that:

1. The output HashSet is unrequired

As stated, at a first glance the output HashSet tabConcsout seems to be created from
tabConcsin as a different object. However, the semantic actions reveal that at any
moment those two objects represent different things. Never at any moment the object
tabConcsin is cloned, therefore the information present in the two objects at the end of
the productions’ semantic actions is exactly the same. Such fact is easily highlighted
by observing the last semantic action present in each of the triplo’s productions, that
being exactly:
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$ t r i p l o . tabConcsout = $ t r i p l o . tabConcsin ;

So, at the end of performing the semantic actions, tabConcsout is always the same
as tabConcsin. Therefore the usage of two different variables with different names
pointing to the same object is a poor practice that hardens comprehension. A single
object tabConcs would be enough.

2. The input and output Strings represent unnecessary computational work at the
moments used.

The input Strings have the ontologies’ knowledge recognized to the point, converted to
both DOT and OWL. These however, are in constant growth and represent duplicated
information, while its’ usage will only come to be necessary at the end of the ontology
recognition. Furthermore, they will only be used in case that there are no semantic
errors in the ontology, worst case would be a single semantic error at the last triple
of the ontology. All the excess storage used to store the information in the proper
syntax of the languages to be translated would only amount to the memory of the
computer and computational resources used to create them being wasted. At the end,
all the generated strings would be discarded though to a single semantic error. If
the information was properly stored within objects destined to receive it, a lot less
resources would be used in information storage. And only after ensuring that there
are no mistakes in the ontology description would the computational resources be
used to create the output Strings.

3. All the inherited HashSet could be represented using a single object.

The four HashSet represent all of the ontology information retrieved until the triple
recognition. That said, the inheritance of four objects might be confusing when a single
object Ontology would be able to represent all the required information.

t r i p l o

@in i t { L i s t<St r ing> l s tA t r i b s = new ArrayList<St r ing> ( ) ;

i n t numAtribsPrev=0; i n t numAtribsReal=0;

Boolean e r r oAt r ib s = f a l s e ; }

Listing 3.8: Triple Production Initial Variables
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Along with the attributes there are also some variables which are always initialized, listing
3.8, but are only used some times, in specific situations and productions of the symbol,
again, wasting computational resources unnecessarily.

Finally the analyses of a single production of this symbol, listing 3.9, is more than
enough to highlight the major problem spread throughout the entire design of this grammar:
procedural programming using a language with an object oriented paradigm, resulting in
Spaghetti Code (explored in section 2.4.1). Lets focus on the semantic actions of the following
production:

| ’ ( ’ ? c1=TEXT ’=’ r e l=TEXT ’=> ’ c2=TEXT ’ ) ’ ?

{ i f ( ! ( ( $ t r i p l o . conct s . conta in s ($c1 . t ex t ) ) || ($ t r i p l o . i nd i v s .

conta in s ($c1 . t ex t ) ) ) )

{ $ t r i p l o . e r r oTr i p l o = true ;

System . out . p r i n t l n ( ”ERRO: O s u j e i t o <”+$c1 . t ex t+”> Nao

E Conceito Nem Indiv iduo ” ) ; }
i f ( ! ( ( $ t r i p l o . conct s . conta in s ($c2 . t ex t ) ) || ($ t r i p l o . i nd i v s .

conta in s ($c2 . t ex t ) ) ) )

{$ t r i p l o . e r r oTr ip l o = true ;

System . out . p r i n t l n ( ”ERRO: O obje to <”+$c2 . t ex t+”> Nao

E Conceito Nem Indiv iduo ” ) ; }
i f ( ! ( $ t r i p l o . r e l s . conta in s ($ r e l . t ex t ) ) )

{ $ t r i p l o . e r r oTr i p l o = true ;

System . out . p r i n t l n ( ”ERRO: O predicado <”+$ r e l . t ex t+”>

Nao E uma Relacao ” ) ; }˝
$ t r i p l o . t r i p = $c1 . t ex t + ” , ” + $ r e l . t ex t + ” , ” + $c2 . t ex t ;

i f ( ! $ t r i p l o . e r r oTr ip l o ){
$ t r i p l o . outputDOTout = $ t r i p l o . outputDOTin + ”\ t\ ”” + $

c1 . t ex t + ”\” -> \”” + $c2 . t ex t + ”\” [ l a b e l=\”” + $ r e l

. t ex t + ”\” ] \n” ;

i f ( ( $ t r i p l o . i nd i v s . conta in s ($c1 . t ex t ) )&&($ t r i p l o . i nd i v s .

conta in s ($c2 . t ex t ) ) ) //Sao Ambos Ind iv iduos

{ $ t r i p l o . outputOWLout = $ t r i p l o . outputOWLin + ”\n\ t<
ObjectPropertyAsser t ion>\n\ t\ t<ObjectProperty IRI

=\”#” + $ r e l . t ex t + ”\”/>\n\ t\ t<NamedIndividual

IRI=\”#”+ $c1 . t ex t + ”\”/>\n\ t\ t<NamedIndividual

IRI=\”#”+ $c2 . t ex t + ”\”/>\n\ t</

ObjectPropertyAsser t ion>\n ” ; }
e l s e {

$ t r i p l o . outputOWLout = $ t r i p l o . outputOWLin + ”\n\ t<
ObjectPropertyDomain>\n\ t\ t<ObjectProperty IRI=\
”#”+ $ r e l . t ex t + ”\”/> \n\ t\ t<Class IRI=\”#”+ $c1
. t ex t + ”\”/> \n\ t</ObjectPropertyDomain>\n”

+ ”\ t<ObjectPropertyRange>\n\ t\ t
<ObjectProperty IRI=\”#”+ $
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r e l . t ex t + ”\”/¿\n\ t\ t<Class

IRI=\”#”+ $c2 . t ex t + ”\”/> \n
\ t</ObjectPropertyRange> \n ” ;
}

}
$ t r i p l o . tabConcsout = $ t r i p l o . tabConcsin ;

}

Listing 3.9: Triple Production, Semantic Actions

The production has 3 distinct moments in its’ semantic actions: error control code (painted
red), triple information storage (painted black) and output generation code (painted blue).
These three moments could be easily extract onto external methods easing code analyses
and comprehension, as well as debugging and error correction. Creating objects to store
information as previously suggested would also present be advantageous in the correction of
this design error, allowing a cleaner separation of methods. All the blue code could also be
extracted onto a method that would only be executed at the end of the ontology recognition,
ensuring that no resources are unnecessarily wasted. Naturally the same could be done
regarding the error control code, given that many of the semantic checks are common to
various different productions of the symbol.

The comprehension of the semantic actions and tests performed, as well as bug correction
would be much easier by structuring the grammar in order to take advantage of objects
created to store and process information present in the ontology specification.

3.3 features

File recognition is not the only task of OntoDLs’ compiler, the language gains usability
through the features implemented by its’ compiler. These are a central part of the DSL, serv-
ing two main purposes: analyses and semantic error detection in the ontology specification,
as well as conversion of the analysed information.

The semantic error detection is done throughout the ontology recognition. If any semantic
error is detected in the specification, data conversion will not follow throw. Even so, to
ensure a smooth development cycle, the compiler ensures that it’s possible to detect all the
semantic errors of an ontology through a single compilation. That way it’s possible to avoid
a repetitive cycle of compilation and error correction to ensure semantic correction. The
checks performed to the ontology ensure that:

• There are no multiple declarations of ontology terms or triples.
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During the ontology reading process, all the concepts, individuals, relationships and
triples are analysed to check if the element was previously registered. An error will be
generated in case of multiple declarations of the same element.

• It’s not possible to used unrecognized terms in triple specification.

During triple specification, all the different terms belonging to the triple are verified,
to ensure they were previously declared in the ontology. It is important to note that
the relationships is-a, synonym, pof and iof are the only exception to this rule. Given
that they are relationships provided by the language without requiring its’ previous
declaration.

• Hard-coded relationships are coherent.

For the four relationships provided by the ontology, additional semantic checks are
performed. These ensure that the terms used were not only declared, but also of the
correct type. In the usage of the synonym relationship both the left and right side
terms should be concepts or both should be relationships. It is not possible to declare a
concept as synonym of a relationship or vice versa. The usage of individuals along with
the synonym relationship is also forbidden. The iof (instance of) relationship ensures
that the left term is an individual and the right term is a concept, further ensuring that
all the data properties were duly specified. The pof (part of) relationship ensures that
both terms are concepts, or both are individuals. And the is-a relationship ensures that
both terms are concepts.

After the specification file recognition, if there are no syntactic of semantic errors, OntoDLs’
compiler will generate two output files. These will contain the same ontology, but specified
in OWL and DOT. That enables the usage of the ontology in external tools that support
OWL and its’ graph visualization through the DOT file compilation.

3.4 summary

Along this chapter, the OntoDL was analysed. The grammar specification was introduced
and explained. The semantic actions were also explored, exposing some of the key bad
practices used during the implementation. Lastly, the features provided by the language
were also described. The possible limitations of the language were also identified to allow
its further improvement.
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O N T O D L + , S P E C I F I C AT I O N

In this chapter, the several objectives of ONTODL+ are analysed, presenting a more detailed
overview of the problem at hand, and planned solutions.

4.1 system architecture

In order to accomplish the established goals, the following architecture has been designed
for OntoDL+:

Figure 1: System Architecture

30
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The architecture of OntoDL+ can be split into grammar design and compiler architecture.
The grammar design encompasses the syntax and reserved vocabulary has well as the
semantics provided by the domain specific language. The OntoDL+ grammar design is
the result of extending OntoDL. The grammar design is written in ANTLR4 and after
processed, it will generate an OntoDL+ compiler. The compiler architecture addresses the
processing of the domain specific descriptions written in OntoDL+ and its’ translation into
other specification languages. The OntoDL+ compiler is an expanded version of the OntoDL
compiler.

The color scheme serves to represent the differences and similarities among OntoDL
and OntoDL+. The red boxes represent features already achieved through OntoDL. The
green boxes represent the target goals implemented by OntoDL+, being that, OntoDL+ also
provides all the features already present in OntoDL.

4.2 language extensions

Several language extensions were planned to implement in the language. These extensions
address some of the issues with the previous DSL, OntoDL.

4.2.1 Triples grouping

Previously, each triple existent in an OntoDL ontology has to be declared as a separate triple.
This generates a lot of redundant syntax when dealing with individuals and concepts with a
lot of relations/properties.

An ontology being currently developed using OntoDL, showed in listing 4.1, provides a
great example of this flaw.

ano2 =desenvo lve=> Pensamento Computacional ;

ano2 =desenvo lve=> Rac io c in i o Logico ;

ano2 =desenvo lve=> Anal i s e ;

ano2 =desenvo lve=> Abstraccao ;

ano2 =desenvo lve=> Exploracao ;

ano2 =desenvo lve=> Criacao ;

ano2 =introduz=> Decomposicao ;

ano2 =introduz=> Var iave l ;

ano2 =introduz=> Depuracao ;

Listing 4.1: Triple Declaration Example

OntoDL+ provides a more simplified syntax, by removing redundant syntax. As a first
approach OntoDL+ enables the user to omit repeated entities. This measure will provide
less textual syntax such as shown in listing 4.2.
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ano2 =[ desenvo lve=> Pensamento Computacional ;

desenvo lve=> Rac io c in i o Logico ;

desenvo lve=> Anal i s e ;

desenvo lve=> Abstraccao ;

desenvo lve=> Exploracao ;

desenvo lve=> Criacao ;

in t roduz=> Decomposicao ;

in t roduz=> Var iave l ;

in t roduz=> Depuracao ;

]

Listing 4.2: Triple Declaration in OntoDL+

That being done, OntoDL+ also removes even more redundancy by allowing the omission
of repeated relationships. With this change OntoDL+ will provide the syntax presented in
listing 4.3.

ano2 =[ desenvo lve=> Pensamento Computacional ,

Rac i o c in i o Logico ,

Anal i se ,

Abstraccao ,

Exploracao ,

Criacao ;

in t roduz=> Decomposicao ,

Var iave l ,

Depuracao ;

]

Listing 4.3: Triple Declaration in OntoDL+

With these changes OntoDL+ will reduce the volume of code necessary to specify an
ontology, and improve the readability of the specified ontologies.

4.2.2 Ontology Constraints

OntoDL+ also extends OntoDL by allowing the creation of constraints. Currently, OntoDL
does not support the creation of constraints for the relations. By introducing this feature,
OntoDL+ will allow the creation of better structured ontologies.

These restrictions can be described in a new optional section of an OntoDL+ specification
file, and they are converted to Prolog only. The constraint specification syntax follows a
syntax similar to Prolog although not entirely equal. Through these constraints, it will be
possible to use Prolog to verify if the ontology satisfies the described constraints, that way, it
will be possible to impose more rigor into OntoDL+ specifications.
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r e s t r i c t i o n s {
G =belongs to plat form=> P : -

G =i s a v a i l a b l e=> A, (A==Dig i t a l O f f l i n e ; A==Di g i t a l Online ) .

} .

Listing 4.4: Restriction example

As can be seen in listing 4.4, within the restrictions section it is possible to select a
relationship to be restricted. The restriction rules follow the syntax from Prolog, being
represented by in the format Head : −Body. The triples will be represented using OntoDL+
syntax, and the structure of the head and body is similar to Prolog.

4.2.3 Idiomatic and syntactic normalization

OntoDL was designed mainly to be used by Portuguese language speaking users. Although
some key relations, such as instance of, are supported in both Portuguese as instancia and
in English as iof, some syntactic elements such as triplos, and relacoes are only supported in
Portuguese, not having the English equivalent triples, and relations. OntoDL+ will provide
an English equivalent for such syntactic elements, enabling non-Portuguese speaking users
to better use the DSL.

Furthermore, the terminology used by OntoDL is not properly aligned with the commonly
used ontology terminology, neither with the OWL terminology. So, while still supporting
the current OntoDL terminology, alternative possibilities for terminology will be introduced.
These try to normalize terms such as concepts and relations currently in use by OntoDL, and
provide the alternative (and more standard) terminology classes and properties respectively.

4.2.4 Normalization of data properties

OntoDL+ provides an alternative to the current definition of data properties, normalizing its
definition and preventing redundant syntax such as shown in listing 4.5

c on c e i t o s { Pessoa [ nome : s t r i ng , CC: s t r i ng , contacto : s t r i n g ] ,

Comarca [ nome : s t r i n g ] ,

Objecto [ desc : s t r i n g ] ,

Sentenca [ desc : s t r i n g ]

}

Listing 4.5: Concepts Declaration
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In which the type of the data properties nome and desc have to be specified more than one
time.

Therefore, the syntax of listing 4.6 was proposed as a way to improve readability of the
DSL.

a t r i bu t o s {
nome : s t r i ng ,

CC: s t r i ng ,

contacto : s t r i ng ,

desc : s t r i n g

}

c on c e i t o s { Pessoa [ nome , CC, contacto ] ,

Comarca [ nome ] ,

Objecto [ desc ] ,

Sentenca [ desc ]

}

Listing 4.6: Attributes Normalization

Having a section destined to describe the attributes to be used in the ontology, will increase
productivity by reducing the amount of code necessary to represent the an ontology. It will
also enable easier correction and management of the attributes used. This change also looks
to introduce sets of literals as a range of data properties.

4.2.5 Relation specification

In order to enable a more complete specification, OntoDL+ extended OntoDL relations
specification. By allowing the description of properties of each relation, it is possible to
create ontologies with more rigor in its’ structure. It’s also possible to specify the relation
domain and counter-domain. This is an optional feature that will be translated to the Alloy
specification. The example in listing 4.7 shows a possible usage of the feature:

r e l a c o e s {
temDestino [ domain : Ligac ão , codomain : Cidade ] ,

temOrigem [ domain : Ligac ão , codomain : Cidade ] ,

éDestinoDe [ props : inver seOf=temDestino ] ,

éOrigemDe [ props : inve r s eOf=temOrigem ]

}

Listing 4.7: Relations Example
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Within square brackets it’s possible to specify domain, codomain, and properties in any
intended order. It’s also possible to describe multiple properties by enumerating them within
curved brackets. However, the properties allowed are restricted, the properties provided by
OntoDL+ are:

• simple

• entire

• injective

• surjective

• representation

• function

• abstraction

• surjection

• injection

• bijection

• inverseOf=<R>

By declaring a relation A as an inverse of B, the declaration of domain and counter
domain can be omitted in either relation A or B, since they can be inferred. Triple
declaration can also be simplified, since the inverse triples will be automatically
generated by OntoDL+ compiler.

By making use of said properties it’s possible to create more complete specifications, and
by enabling it’s translation to Alloy, better models can be created.

4.3 compiler expansions

Along with the language extensions, OntoDL+ introduces some expansions to the compiler.
These look, primarily, to enable the translation of the DSL to a larger variety of languages.
Along with OWL and DOT, OntoDL+ will also translate its’ ontologies to Alloy and Prolog.

4.3.1 Alloy

With the usage of Alloy, OntoDL+ looks to provide a better way to create correct ontologies,
by enabling the static model checking of the ontologies’ classes, constraints and relations.
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The ontology model checking step is recommended to be followed before specifying triples
associated with individuals. The best recommendation would be for the user to specify the
ontologies’ relations, concepts, and triples which do not require the usage of individuals -
such as relationships among concepts.

By generating the Alloy specification, it will be possible to use the Alloy Analyser in order
to create models and simulations of ontologies, as well a verify properties and constraints.
That way it will be possible to ensure much more correction when creating ontology
specifications - given that if the specification is lacking, then either the verifications will
fail, or some undesirable ontologies will be created as examples by the Alloy tool. In such
fashion, it will be possible to detect flaws and possible errors much quicker without having
to commit such mistakes, nor have them propagate through the ontology specification -
saving time and effort.

Using the Alloy language, the translation from OntoDL+ can become quite intuitive.
Given it’s appropriate vocabulary it enables a representation of most of the ontology
elements present in OntoDL+ descriptions. The translation of said elements can also be a
direct translation given that Alloy specification language possesses elements which can be
considered equivalent to its’ ontology counterpart.

• Individuals

Alloy does not support the static declaration of individuals. Since individuals are
generated randomly by the Alloy tool to create various models, individuals will not be
translated to Alloy.

• Concepts

Concepts are used to describe sets of instances of the same type. The Alloy equivalent
is the sig (signature), each signature represents a set of atoms of the same type.

• Attributes

Attributes represent data atoms which will be related to a given individual in ontology
specification. Given that it’s impossible in Alloy to specify individuals, and since each
atom is considered to be the simplest of entities and indivisible, attributes are also not
translated to Alloy. That is because attributes would represent information regarding
the instance, and following OntoDL+ specification rules, attributes are always present
in a 1:1 relation with an individual. Therefore, attributes would add complexity to the
model, without adding any modelling benefit.

• Relations

Given the relation domain, - which can be explicitly defined in OntoDL+ or inferred
through triple analysis, - the relation can be added as a field in the corresponding
relation in the Alloy specification.
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• Relation Properties

The properties provided by OntoDL+ will be translated into Alloy facts to enforce in
the model, ensuring that the generated models follow the properties specification.

• Triples

There is only one type of triple which will influence the Alloy model, which is triples
describing the is-a relation among concepts. Other triples will not have influence in
ontology specification.

After the translation to Alloy, the user can generate models as is, however, OntoDL+
specification will only translate the limited set relation properties provided. An OntoDL+
specification does not possess any dedicated section to define system properties nor any
invariant which will be translated to Alloy. Therefore, it’s recommended that the created
model is further refined in order to define and verify any desired, more complex, properties.

4.3.2 Prolog

Prolog is also a target language of conversion for OntoDL+. By translating ontologies from
the DSL to Prolog, OntoDL+ looks to exploit some of the advantages previously presented
in section 2.2.

The translation to Prolog will enable the usage of a different language to:

• Manipulate ontology knowledge

Although a translation from Prolog to OntoDL+ will not be developed during this
Thesis, at any given moment, an OntoDL+ user will be able to convert its ontology
to Prolog. This conversion allows further addition of facts to the translated ontology,
enabling its’ enrichment.

• Enable a querying system for OntoDL+

The primary advantage sought after with this expansion, will be the introduction of a
querying system for ontologies.

The usage of Prolog as a querying system, may bring further advantages as a validation
tool for ontologies. The automatic generation of queries that verify the constraints of a
given ontology can provide a validation system for ontologies created using OntoDL+.

Prolog as a language also enables a simple translation from OntoDL+. Most of the
translated knowledge is declared as facts of the ontology, while any Prolog restraints that
might have been defined in the OntoDL+ specification, will be translated as clauses with
head and body.
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During translation, the triples, concepts, individuals, relations and attributes will be
represented as facts of the specification. The possible restrictions will be translated generating
a clause with both head and body. The properties of the relations however, will not be
translated to Prolog.

The created Prolog specification, serves mostly as a factual knowledge base, all the
knowledge specified in OntoDL+ will be translated to Prolog. However, in order to use
Prolog effectively, the user should further specify new clauses to enable reasoning.

4.4 summary

Along this chapter the language extensions and compiler expansions were proposed. The
language extensions were analysed and justified based on the problems of the OntoDL.
In order to increase the range of usages of the DSL, some compiler expansions were also
envisioned based its uses and utility. The compiler expansions were also described regarding
what components of the ontology would be translated for representation, its importance
and meaning. It was also explained why some components of the ontology would not be
translated to every target language.
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O N T O D L + , D E V E L O P M E N T

In order to enable an incremental continuous development of OntoDL+, the previous instance
of OntoDL has suffered some refactoring. The OntoDL development was made in a non
scaleable approach without proper division of different components of the semantic actions.
Given that the development is being conducted in ANTLR4, it was decided to abstract some
of source code needed in the semantic actions and create a java package in order to support
the actions. The package created enables the encapsulation of code reducing the difficulty in
both debugging and comprehension. Such package will be further analysed in section 5.1.
The language extensions where developed after the refactoring of the previous code. Those
will be detailed in section 5.2. Finally, we will analyse the compiler expansions developed in
section 5.3.

5.1 code refactoring

As analysed in section 3.2 the semantic actions previously present in OntoDL, suffered from
various smells such as Long Method, Spaghetti Code and Long Parameter List. These smells
were softened in order to enable an easier analysis and development of the software.

Various refactoring techniques where used to improve the previous iteration of OntoDL.
Most of the smells, - namely Spaghetti Code and Long Method smells, - where refactored
using method extraction techniques. The cases of long parameter list present in the grammar
were addressed with the creation of classes which would represent objects with the adequate
information. These resulted in the creation of various Java classes and consequently the
creation of a Java package. The combination of these abstraction techniques has allowed a
serious reduction in the semantic code present in the grammar file. That resulted in a clearer,
easier to read and maintain grammar.

39
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5.1.1 Java Package

The package ontodlp was created in order to divide the source code present in OntoDL into
reusable functions and classes that enable a better management of the software. To establish
the intended features of the language, the classes shown in figure ?? were created.

Figure 2: Package Architecture

The classes were created to enable the usage of objects to store and manipulate the
information required for the ontology recognition, reducing the problem of Long Parameter
Lists in the grammar. Each class has attributes representing the data necessary to describe
the component of the ontology. The Ontology class is the main class, aggregating most of the
ontology knowledge into one single class. The class also possesses various control methods
used to coordinate the translation of the various objects contained within the class, as well
as the entirety of the semantic error verification code. The Triple, Concept, Restriction and
DataProperty classes encompass the attributes necessary to describe the objects, along with
methods to manipulate and translate the information stored into the target languages. The
SemError and Relation classes are Data Classes grouping important information to be used
(mostly by the Ontology class).

It was considered unnecessary to create a class to just represent the individuals, since dur-
ing OntoDL+’s individual declaration, the only known information regarding an individual
is its’ name, therefore, each individual is stored as a string in the Ontology class. Further
data involving the individuals can be declared in the triples section, either as data properties
describing an individual, - which will be stored as DataProperty objects, - or as relationships
that the individual has with other concepts or individuals - which will be stored as a Triple.
That is due to the fact that each individual is considered an atomic component described
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only by name, which in turn can be required to describe some triples or data properties,
however, the individual can stand alone without being used by any triple or property.

The creation of the package has enabled the creation and distribution of methods through
the classes, reducing the cases of Long Method and Spaghetti Code smells. However, since
most of the ontology semantic verification code requires information regarding various
components of the ontology simultaneously, the Ontology class takes a role of controller
class, centralizing semantic error control methods. Such development has created a slight
Blob smell in the Ontology class.

5.2 language extensions

OntoDL language was improved in order to enable easier to write and maintain OntoDL
specifications. However, since this language was already in usage by some people, compati-
bility with the original OntoDL specification was taken into account. Therefore, OntoDL+
does offer numerous extensions, however, it is entirely compatible with the previous OntoDL
language. The extensions where done in an incremental manner without removing or forcing
the replacement of previously introduced rules.

OntoDL+ differs from OntoDL mostly by presenting new optional functionalities. Since
they allow specification of more optional rules for the ontology, these can be used to specify
more complete ontologies. OntoDL+ language also allows the creation of more concise,
shorter and easier to read and write specifications when compared to OntoDL language.
This is derived from the focus given to the simplification of the language, allowing a user to
specify the same information while writing less code.

5.2.1 Triples grouping

OntoDL rules for triple analyses was quite restricted. It required the user to write quite a lot
of additional, repeated, information. That was because, by design, the language required the
user to write every triple in its entirety, as shown by the productions in listing 5.1.

t r i p l o [ Ontology onto ] :

’ ( ’ ? c1=TEXT ’=’ IOF ’=> ’ c2=TEXT a t r i b I n s t s ? ’ ) ’ ?

| ’ ( ’ ? c1=TEXT ’=’ POF ’=> ’ c2=TEXT ’ ) ’ ?

| ’ ( ’ ? c1=TEXT ’=’ ISA ’=> ’ c2=TEXT ’ ) ’ ?

| ’ ( ’ ? c1=TEXT ’=’ SYN ’=> ’ c2=TEXT ’ ) ’ ?

| ’ ( ’ ? c1=TEXT ’=’ r e l=TEXT ’=> ’ c2=TEXT ’ ) ’ ?

;

Listing 5.1: OntoDL Triple Specification
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Therefore, to provide the proposed alternative syntax, new rules were added to the
grammar, shown in listing 5.2. These rules allow the specification of triples which shared
equal information on the left-side of the triple. Similarly, triples with matching left-side and
relationship can also be grouped due to the new rules added.

t r i p l o [ Ontology onto ] :

’ ( ’ ? c1=TEXT ’=’ IOF ’=> ’ c2=TEXT a t r i b I n s t s ? ’ ) ’ ?

| ’ ( ’ ? c1=TEXT ’=’ POF ’=> ’ c2=TEXT ’ ) ’ ?

| ’ ( ’ ? c1=TEXT ’=’ ISA ’=> ’ c2=TEXT ’ ) ’ ?

| ’ ( ’ ? c1=TEXT ’=’ SYN ’=> ’ c2=TEXT ’ ) ’ ?

| ’ ( ’ ? c1=TEXT ’=’ r e l=TEXT ’=> ’ c2=TEXT ’ ) ’ ?

| c1=TEXT ’=[ ’ r e lac ionamentos ( ’ ; ’ r e lac ionamentos ) * ’ ] ’

;

r e lac ionamentos [ Ontology onto , S t r ing l e f t S i d e ]

: r e l=TEXT ’=> ’ c2=TEXT ( ’ , ’ r e lMu l t i p l o ) *

| SYN ’=> ’ c2=TEXT ( ’ , ’ r e lMu l t i p l o ) *

| ISA ’=> ’ c2=TEXT ( ’ , ’ r e lMu l t i p l o ) *

| POF ’=> ’ c2=TEXT ( ’ , ’ r e lMu l t i p l o ) *

| IOF ’=> ’ c2=TEXT a t r i b I n s t s ? ( ’ , ’ r e lMu l t i p l o ) *

;

r e lMu l t i p l o [ Ontology onto , S t r ing l e f t S i d e , S t r ing r e l a t i o n ]

: c2=TEXT;

Listing 5.2: OntoDL+ Triple Specification

As can be noticed, the already established productions were not altered or removed in
order to preserve the previously OntoDL syntax.

5.2.2 Relation properties

Relational properties were introduced to OntoDL+ mainly to improve the accuracy of the
alloy models generated. However, these are also compatible with OWL, which also supports
the properties introduced. Since conversion to other languages is required, the properties
were introduced in a static manner, inhibiting any non-supported properties. At it’s core, 5

properties were introduced:

1. InverseOf=<Relation>

Determining that a relation is the inverse relation of <Relation>.

2. Simple
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Determining that a relation is simple, i. e. every existing value in the domain has at
most one corresponding value in the co-domain.

3. Entire

Determining that a relation is entire, i. e. every existing value in the domain has at
least one corresponding value in the co-domain.

4. Injective

Determining that a relation is injective, i. e. every existing value in the co-domain has
at most one value in the domain corresponding to it.

5. Surjective

Determining that a relation is surjective, i. e. every existing value in the co-domain
has at least one value in the domain corresponding to it.

From the introduction of these 5 basic properties, 6 other “free” properties can be derived
in order to enable an easier declaration of properties.

1. Representation

A relation that is both entire and injective is called a representation.

2. Function

A relation that is both simple and entire is called a function.

3. Abstraction

A relation that is both simple and surjective is called an abstraction.

4. Injection

A relation that is an injective function, therefore, a relation that is simultaneously
injective, simple and entire.

5. Surjection

A relation that is a surjective function, therefore, a relation that is simultaneously
surjective, simple and entire.

6. Bijection

A bijection or isomorphism is a relation that is simple, entire, injective and surjective.

The domain and co-domain of a relation can now also be specified in OntoDL+. In
order to enable these improvements, new productions were introduced to OntoDL grammar.
Namely, relInf, properties and property, are all new relations created for OntoDL+ grammar.
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These productions, shown in listing 5.3, ensure a stable version of OntoDL+ capable of
handling various different new information regarding the specification of relations. They
also enable an easier and more optimal usage of alloy as a model checking tool for ontology
specifications.

r e l a c o e s

: ’ r e l a c o e s ’

’ – ’ r1=TEXT ( ’ [ ’ r e l I n f ( ’ , ’ r e l I n f ) * ’ ] ’ ) ?

( ’ , ’ r2=TEXT ( ’ [ ’ r e l I n f ( ’ , ’ r e l I n f ) * ’ ] ’ ) ?) *

’ ˝ ’

;

r e l I n f

: DOMAIN ’ : ’ d1=TEXT

| CODOMAIN ’ : ’ c1=TEXT

| ’ props ’ ’ : ’ p r op e r t i e s

;

p r op e r t i e s

: ’ ( ’ p1=property ( ’ , ’ p2=property ) * ’ ) ’

| p1=property

;

property

: BIJECTION

| INJECTION

| SURJECTION
| ABSTRACTION
| FUNCTION
| REPRESENTATION
| SURJECTIVE
| SIMPLE

| ENTIRE
| INJECTIVE

| INVERSEOF ’=’ r e l=TEXT

;

Listing 5.3: OntoDL+ Relation Specification

Although the introduction of static properties through grammar constraints is not the ideal
solution in terms of scalability of the language, its’ design ensures a more strict and assertive
usage. This strictness along with the introduction generation of the alloy specification, is
expected make it easier to ensure the structural correction of ontologies.
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5.2.3 Constraints

The constraints have been added to OntoDL+ as a new feature of the language. Given
the different capabilities and usages of the different targeted languages of conversion, the
constraints will not be translated to every language. Being that they were a feature directed
to increase Prolog usability in ontology specification, they are only being translated to Prolog
as well.

Following a similar logic to Prolog, although some changes are noticeable, just like Prolog
rules, the constraints will have a head and a body. The body can be comprised by conjunction
or disjunction of predicates, but there can not be any conjunctions or disjunctions in the
head. Triples used in the constraints will retain an OntoDL+ syntax, however, some other
operators were changed.

Unlike other sections of the specification where ’,’ and ’;’ are used as separators, in the
constraints section, ’.’ is actually the separator for different constraints. The ’,’ and ’;’
symbols are used instead as symbols meaning ’and’ and ’or’, respectively. Also following
Prologs’ grammar, the conjunction (’,’) has a higher precedence than the disjunction (’;’).
Therefore, constraints of the form:

Tr ip l e : -

PredicateA , PredicateB ;

Pred i ca te C, PredicateD .

Will be analysed as:

Tr ip l e : -

( PredicateA ∧ PredicateB ) ∨ ( PredicateC ∧ PredicateD ) .

Instead of:

Tr ip l e : -

PredicateA ∧ ( PredicateB ∨ PredicateC ) ∧ PredicateD .

A predicate can also include disjunctions with higher precedence than the conjunctions,
but they must be duly signalized by being within brackets.

The translated file also includes the rule not(X), which allows for the negation of predicates
with a closed world approach.
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not (X) : -X, ! , f a i l .

not (X) .

Listing 5.4: Implementation of predicate ’not/1’ in Prolog

Negations in the constraints section of the OntoDL+ specification, will be translated to
Prolog as not(Constraint), as illustrated in listing 5.4.

5.2.4 Attributes Normalization

The attribute normalization was implemented and proposed as an alternative to the previous
OntoDL attribute specification. It looks to reduce redundancy as well as errors in ontology
specification. However, due to the need to support OntoDL syntax fully, the previous
declaration format for attributes in placed can be freely used and intertwined with the
normalized format with few restrictions. The user is free to choose where it is most
convenient to declare the attributes, however it is recommended that said declarations take
place in the attributes section to reduce ontology errors and increase productivity.

a t t r i b u t e s {
attr ibA : s t r i ng ,

at t r ibB : s t r i n g

}

concepts {
ConcA [ attr ibA , att r ibC : s t r i n g ] ,

ConcB [ attr ibA , at t r ibB ]

}

Listing 5.5: Attributes Normalization Example

An attribute declared in the attributes section needs to have its’ type declared and its’
type can’t be re-declared in the concepts section. That is, there isn’t only one place capable
of accepting attribute declaration, but there can not be multiple declarations of the same
attribute. Therefore, the attributes section is entirely optional, it is not required to exist in
an OntoDL+ specification as long as all the attributes used are properly declared following
OntoDL syntax, like attribC of the example listing 5.5.
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5.2.5 Expands Feature

The expands feature was also added in order to improve organization of extensive ontologies.
It’s a command that allows the expansion of source code from a different file in the ontology
file following the syntax of listing 5.6.

expands < f i l e ˙ n ame> ;

Listing 5.6: Expands Example

During a preprocessing phase which was added to OntoDL+ processor, the occurrences
of a file expansion will be replaced by the target file content. The preprocessing will create
a temporary file containing all the ontology knowledge within it. Afterwards, OntoDL+’s
compiler will process the file and delete it upon completion. This allows for the introduction
of modularity to OntoDL+ specifications. This extension can be especially useful when
dealing with large ontologies. By allowing the import of knowledge from different files, it is
possible to create a knowledge structure or organization, enabling easier maintenance and
readability.

5.3 compiler expansions

The OntoDL+ compiler is an expansion of the OntoDL compiler. It supports the features
from its’ predecessor while implementing and translating the new features added to the
language. Furthermore the compiler was also expanded to include two target languages for
translation. With the expansion, OntoDL+’s compiler can not only translate the ontology
specification to OWL (RDF/XML syntax) and DOT, but also to Alloy and Prolog.

5.3.1 Alloy

OntoDL+’s compiler as introduced the translation of ontology specification to an Alloy static
model specification. As analysed in section 4.3.1 the Alloy specification will depend mostly
on the specification of concepts, relations and relation properties, although relations should
have specified its’ domain and counter-domain to ensure better models.

concepts {
Avai lab le ,

Ending ,

Game [ name : s t r i ng , d e s c r i p t i o n : s t r i ng , a g e ˙ r a t i n g : enum(3 , 7 , 12 , 16 , 18) ,

s t o r y l i n e : enum( ’ r e a l world ’ , ’ f i c t i o n ’ , ’ nu l l ’ ) ] ,
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Game Mode ,

Genre ,

Player Number

}

r e l a t i o n s {
b e l o n g s ˙ t o ˙ g e n r e [ domain :Game, codomain : Genre ] ,

has mode [ domain :Game, codomain :Game Mode ] ,

has player ˙number [ domain :Game, codomain : Player Number ] ,

i s a v a i l a b l e [ domain :Game, codomain : Ava i l ab l e ] ,

with ending [ domain :Game, codomain : Ending ]

}

Listing 5.7: OntoDL+ Example

Given the provided (partial) specification of listing 5.7, the Alloy equivalent model, shown
in listing 5.8 will have 6 signatures, - representing the concepts, - with a total of five fields
among them - the ontology relations.

s i g Game{with ending : Ending ,

be longs to genre : Genre ,

has p laye r number : Player Number ,

i s a v a i l a b l e : Avai lab le ,

has mode : Game Mode}

s i g Ava i l ab l e{}

s i g Player Number

s i g Ending

s i g Genre

s i g Game Mode

Listing 5.8: Alloy Specification

Since there are no properties restricting the cardinality of relations, it has not been
represented in the model. However, it is possible to note that not only was a signature
created for each concept, the relations were also created as fields of its domain signature,
while also specifying its’ counter-domain - hence showing the importance of domain and
counter-domain. If the domain of a relation is not specified, it will not be represented as
the field of any signature. If the counter-domain is not specified, it will be specified univ,
alloying the field to relate to every declared signature.
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The properties are mostly represented as facts or combinations of facts, with the exceptions
being the simple, entire and function properties. These three properties do not generate
additional facts, instead they restrict the field cardinality:

• simple

The simple property refers to a field which: for each instance of signature A generated,
there will be at most one signature B connected to it by the field.

sig A {field: lone B}

• entire

The entire property refers to a field which: for each instance of signature A generated,
there will be at least one signature B connected to it by the field.

sig A {field: some B}

• function

The function (simple and entire) property refers to a field which: for each instance
of signature A generated, there will be exactly one signature B connected to it by the
field.

sig A {field: one B}

The properties inverseOf, surjective and injective will be translated as Alloy facts:

• inverseOf

Since Alloy allows the representation of the inverse of a relation, the inverse property
is declared by equivalence. So if a relation A is the inverse of a relation B, then the
inverse relation of A is equal to B. Therefore, those facts are stated as:

f a c t {
˜A = B

}

• surjective

The surjective property is ensured by imposing that the image of the relation is reflexive
(definition 5.36 from Oliveira).
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f a c t { id [<Codomain> ] in img [< r e l a t i o n> ] }

• injective

The injective property is ensured by imposing that the kernel of the relation is coreflexive
(definition 5.36 from Oliveira).

f a c t {ker [< r e l a t i o n> ] in id [<Domain> ] }

The properties: representation, abstraction, injection, surjection and bijection, are defined
as a combination of facts of the previous simpler properties 5.2.2 (surjective, injective,
function, entire and simple).

5.3.2 Prolog

The OntoDL+ compiler also supports translation to Prolog. As referenced in 4.3.2 the
translation will target most of OntoDL+ specification, the exception being the relation
properties. During translation, the names of individuals, concepts and relations used in facts
might be slightly changed from its’ OntoDL+ original representation. Since in Prolog words
starting with capital letter are considered as variables, any term starting with capital letter
will be changed to lowercase. The restrictions support the use of variables which will remain
unchanged in Prolog, as long as they do not match the name of any concept, individual or
relation.

• Individuals, concepts and relations

Each individual, concept, or relation is declared separately. For each existing entity of
those types, one fact describing it’s existence is generated. The syntax used for fact
declaration is of the form <Type>(<name>). - i.e. an individual named John will be
declared as individuo(john).

• Triples

Triples are comprised of the relation, left side and right side. Therefore, the translation
to Prolog goes as follows <R>(<LS>,<RS>). - i.e. factually stating that there is a
relation R among the left side atom LS, and the right side atom RS.
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• Attributes

Since the same individual can have multiple literals described as data properties/at-
tributes, the translation makes use of Prolog lists to reduce the number of facts.
Therefore, the attributes of a same individual are grouped as following the structure:

properties(<Individual>, [<list of literals>]).

• Restrictions

The restrictions where added in OntoDL+, and just like in Prolog, they follow the
form Head :- Body. However, the syntax for triple, individual, concept and relation
declaration is the OntoDL+ syntax. Therefore, the translation follows by translating
the expressions in both head and body from OntoDL+ syntax, to Prolog syntax.

After translation the user will be able to create enhance the specification by adding more
predicates, or simply use the specification as is to achieve a querying system.

5.4 summary

Along this chapter, the implementation decisions taken were presented. The refactored
solution of the previous implementation was presented, identifying some most commonly
used techniques during the process. The ensuing package was also explained describing its
structure and organization. The language extensions were described, highlighting some of
the key changes that had to be done to language grammar. Finally, the compiler expansions
were described, expressing the information to be translated and the choices made during
the translation process.
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O N T O D L + , W E B PA G E A N D E X P L O R AT I O N

In order to publicize the OntoDL+ language and its compiler, a website was created using
HTML, and is currently being hosted at https://epl.di.uminho.pt/∼gepl/GEPL DS/OntoDL/.
It was designed to present the features provided by the language, as well as offer a download
platform for users of the language. The website includes four web pages in total:

1. Home serves to present the language, its advantages and a small introduction

2. Examples provides some code snippets explaining the language extensions in more
detail

3. Download includes an executable version of the compiler application, a template and
examples

4. Contact featuring the contact information of the development team

6.1 home

The home page of the website shown on Figure 3 is a very simple presentation page. It
contains a small introduction to the DSL, as well as the expansions and extensions that
OntoDL suffered. It also includes a short video which was created to give a general overview
of the DSL and its capabilities. The video was published on YouTube, and is currently being
displayed on the website as well.

Some information is contained within collapsible cards to reduce the text shown to the
users of the website, ease their reading, comprehension and navigation on the site.
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Figure 3: Home page

6.2 examples

The examples web page contains a few code snippets to better highlight some of the language
extensions and its advantages. It includes an OntoDL ontology specification as base example
along with equivalent OntoDL+ alternatives. Each alternative features small incremental
changes that can be done to the specification using OntoDL+, improving its readability and
reducing the code required.
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Figure 4: Examples

To improve comprehension of the highlighted features, only the snippets of code being
changed are presented, as shown in Figure 4. In such fashion, it becomes simpler to focus
on the improvements provided by each extension.

6.3 download

The download page provides various resources that the users can download and use to their
discretion, as highlighted in Figure 5. It includes the source code of the application, enabling
users to further extend the language or compiler if proven necessary. It also provides an
executable version of the OntoDL+ compiler, describing the system requirements and short
instructions on how to use the application.



6.4. Contact 55

Figure 5: Download

It further contains a template file, which can be downloaded and immediately compiled to
explore and test the language. The full specification of the ontologies shown in the examples
page is also available at the downloads page.

6.4 contact

The contacts web page is a simple page containing information regarding how a user can
contact the developers of the application. As shown in Figure 6, it includes the emails and
personal web pages of the team responsible for OntoDL+’s maintenance.
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Figure 6: Contact

6.5 summary

Along this chapter, the WebPage for OntoDL was created and explained. The different pages
were explained given the purpose of its use, and some images of the website were shown.
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O N T O D L + , R U N N I N G E X A M P L E

The language being used and tested in parallel with its development. Salete Teixeira has used
OntoDL+ in a master thesis to formally describe the ontology OntoJogo (Teixeira, 2021). An
excerpt of OntoJogo will be used in this chapter to illustrate some of the language extensions.
José Carlos Ramalho has also provided an example of an ontology called OntoMapa written
in turtle syntax (Ramalho, 2020). It was used to create a smaller version of the ontology
written in OntoDL+ language. The OntoDL+ excerpts that will be presented along this
chapter are publicly available on the website described in Chapter 6, in the download page 1.

7.1 ontomapa

OntoMapa is the ontology provided by José Carlos Ramalho, it was created to describe the
road connections between cities. It was shortened and translated to OntoDL, having been
incrementally changed to incorporate the new language features. The various iterations
followed the sequence of implementing the triple grouping feature, followed by the introduc-
tion of relation properties and use of the attribute section. In a final iteration the ontology
was adjusted making use of the all the new features.

c on c e i t o s {
Ligac ão [ d i s t ânc ia : s t r i n g ] ,

Cidade [ d e s c r i c ão : s t r i ng , d i s t r i t o : s t r i ng , nome : s t r i ng , populac ão : s t r i n g ]

}

Listing 7.1: OntoMapa Concepts

As can be observed in listing 7.1, the ontology possesses only 2 concepts: City (Cidade),
and Connection (Ligacão). Each instance of city (cidade) will have its own description
(descricão), district (distrito), name (nome) and population (populacão). Meanwhile the
instances of connection (Ligacão) will specify its length (distância).

1 https://epl.di.uminho.pt/ gepl/GEPLDS/OntoDL/download.html
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i nd i v iduo s {
brg , bcl , pt l , gmr , fml , prt , vct , %C i t i e s

l i g - pt l - bcl , l i g - pt l - brg , l i g - brg - bcl , l i g - brg - gmr , l i g - brg - fml ,

l i g - gmr - fml , l i g - fml - bcl , l i g - fml - prt , l i g - bcl - vct , l i g - vct - prt ,

l i g - gmr - prt %Connections

}

r e l a c o e s {
temDestino ,

temOrigem ,

éDestinoDe ,

éOrigemDe

}

Listing 7.2: OntoMapa Individuals and Relationships

The ontology will instantiate 7 cities and 11 connections, shown in listing 7.2. It will
further specify 4 relationships, which, during the first iterations, did not have any properties
specified. Finally the ontology possesses the triples specification as exemplified in listing 7.3.
Since this is only an OntoDL translation, the triple specification does not have any triple
grouping yet.

t r i p l o s {
brg = i o f => Cidade [ d e s c r i c ão=”Cidade dos Arceb ispos ” , d i s t r i t o=”Braga” ,

nome=”Braga” , populac ão=”140000” ] ;

bc l = i o f => Cidade [ d e s c r i c ão=”Cidade do Galo” , d i s t r i t o=”Braga” , nome=”

Barce lo s ” , populac ão=”60000” ] ;

p t l = i o f => Cidade [ d e s c r i c ão=”Vi la mais ant iga de Portugal ” , d i s t r i t o=”

Viana do Caste lo ” , nome=”Ponte de Lima” , populac ão=”70000” ] ;

. . . .

l i g - pt l - bc l = i o f => Ligac ão [ d i s t ânc ia= ”19” ] ;

l i g - pt l - bc l = temDestino => bc l ;

l i g - pt l - bc l = temOrigem => p t l ;

bc l = éDestinoDe => l i g - pt l - bc l ;

p t l = éOrigemDe => l i g - pt l - bc l ;

. . .

} .

Listing 7.3: OntoMapa Triples
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7.1.1 Triple Grouping

During the first iteration of the ontology modification, it was changed in order to use the
triple grouping feature, as exemplified in listing 7.4. This caused no change in the concepts,
individuals or relationships sections, evolving only the triples section.

t r i p l o s {
brg =[ i o f => Cidade [ d e s c r i c ão=”Cidade dos Arceb ispos ” , d i s t r i t o=”Braga” ,

nome=”Braga” , populac ão=”140000” ] ,

éDestinoDe => l i g - pt l - brg ,

éOrigemDe => l i g - brg - bc l ;

=> l i g - brg - gmr ;

=> l i g - brg - fml ] ;

bc l =[ i o f => Cidade [ d e s c r i c ão=”Cidade do Galo” , d i s t r i t o=”Braga” , nome=”

Barce lo s ” , populac ão=”60000” ] ,

éOrigemDe => l i g - bcl - vct ,

éDestinoDe => l i g - pt l - bc l ;

=> l i g - fml - bc l ;

=> l i g - brg - bc l ;

=> l i g - brg - gmr ] ;

p t l =[ i o f => Cidade [ d e s c r i c ão=”Vi la mais ant iga de Portugal ” , d i s t r i t o=”

Viana do Caste lo ” , nome=”Ponte de Lima” , populac ão=”70000” ] ,

éOrigemDe => l i g - pt l - bc l ;

=> l i g - pt l - brg ] ;

. . .

} .

Listing 7.4: OntoMapa Triple Grouping

The improvement has created an ontology file with a bigger number of lines due to
different indentation decisions. However, the major benefit comes from the amount of
non-spacing characters required to specify the ontology. While the OntoDL version of the
ontology needed a total of 2714 non-spacing characters for a complete specification, the
introduction of the triple grouping feature reduced said number to 2293, a decrease of more
than 15%. Therefore, it was possible to increase the productivity while using the language
by allowing to specify the same amount of knowledge, while reducing the work necessary.

7.1.2 Relation properties

The introduction of relation properties has allowed further improvement of the ontology and,
full representation of the original ontology provided by José Carlos Ramalho. That’s because
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the initial specification written in OntoDL did not allow for the declaration of relational
properties. However, the ontology provided did possess some relational properties specified,
which were translated during this iteration and are presented in listing 7.5.

r e l a c o e s {
temDestino [ domain : Ligac ão , codomain : Cidade ] ,

temOrigem [ domain : Ligac ão , codomain : Cidade ] ,

éDestinoDe [ domain : Cidade , codomain : Ligac ão , props : inver seOf=temDestino ] ,

éOrigemDe [ domain : Cidade , codomain : Ligac ão , props : inver seOf=temOrigem ]

}

Listing 7.5: OntoMapa Relation Properties

The introduction of properties allowed more usability for the Alloy translations, however,
one of the key improvements becomes clearer with the introduction of the inverseOf property.
Since the property provides automatic triple inference, the OntoDL+ compiler ceases to
require triples with the relations éOrigem and éDestino. As a result, it was possible to further
reduce the ontology, in both number of lines and characters. Length wise, the ontology has
suffered a decrease of slightly over 10% of the lines of the original file. Character wise, the
ontology possess only 2048 non spacing characters, corresponding to a reduction of almost
25% of the OntoDL specification and a reduction of roughly 10% of the triple grouping
iteration.

7.1.3 Attributes Normalization

The following iteration, did not have any major impact in terms of characters written.
However, the feature does improve readability of the specification by reducing line length in
the concepts section, as well as by grouping common information enabling easier access.

a t r i bu t o s {
d i s t ânc ia : s t r i ng ,

d e s c r i c ão : s t r i ng ,

d i s t r i t o : s t r i ng ,

nome : s t r i ng ,

populac ão : s t r i n g
}

c on c e i t o s {
Ligac ão [ d i s t ânc ia ] ,

Cidade [ d e s c r i c ão , d i s t r i t o , nome , populac ão ]
}

Listing 7.6: OntoMapa Attributes Normalization
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As shown in listing 7.6, it was possible to reduce the volume of information concentrated
around the concepts section.

7.1.4 Expand

The expands feature does not have direct implications in the length of the ontology specifi-
cation. It was designed mainly to be used with large ontologies which require introduction
of modularity and division of ontology sections throughout different files. However, an
example using the expands was created and is available for the ontology OntoMapa.

Ontologia mapa

a t r i bu t o s {
expand a t r i bu t o s . odlp ;

}

c on c e i t o s {
expand conc e i t o s . odlp ;

}

i nd i v iduo s {
expand ind i v iduo s . odlp ;

}

r e l a c o e s {
expand r e l a c o e s . odlp ;

}

t r i p l o s {
expand t r i p l o s . odlp ;

} .

Listing 7.7: OntoMapa Expands Feature

Since the example size was small, the expand usage was shown by importing each section’s
text from an external file, as illustrated in listing 7.7.

7.1.5 Processing

The compilation of the ontology generates the 4 outputs required. It is possible to test the
examples by following the instructions on the download page of the website. It is merely
required to have Java 16.0.1 or a higher version installed, then by running the command java

-jar <path to OntoDL.jar> <targetfile>, the output files are created.



7.1. OntoMapa 62

The OWL translated ontology can be viewed, used and updated afterwards using envi-
ronments such as Protégé. In Figure 7 it is possible to see the description of temDestino
provided by Protégé.

Figure 7: Protege temDestino description

The file created has over 7 times more lines of code than the OntoDL+ specification.
Furthermore, having 28707 non-spacing characters, it requires over 10 times more code than
any of the OntoDL+ iterations of the specification.

The generated DOT file stands at 7845 characters used, representing a reduction to nearly
one third of the code used in the OntoDL+. The created DOT file is able to create the image
representation of the specified graph. However, it proves to be a better use to filter the graph
to include only parts of the ontology, creating graphical projections of the ontology. For
illustration purposes, the ontology was commented to include only triples with connections
which include brg (Braga) as either an origin or a destination, creating a filtered view of
Braga’s connections. The graph generated from said filter can be viewed in Figure 8.

Figure 8: DOT Graph of Connections passing through brg

The Alloy file is considerably smaller than the OntoDL+ specification. A big reason for
that has to do with the use of the language. Alloy is not a specification language, it is a
modelling language. Therefore, it will be used to represent only the ontology structure and
properties.

Using the Alloy tool as shown in Figure 9, it is possible to execute the generated file
to create models. Such models can then be used to try to identify possible flaws in the
ontology structure. For instance, Figure 10 shows a possible instance of OntoMapa which
does not have any visible problem, however, Figure 11 shows a connection in which both
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the beginning and the end of the connection belong to the same city, which might be an
undesirable behavior.

Figure 9: AlloyTool execution

Figure 10: AlloyTool Instance 1

Figure 11: AlloyTool Instance 2

Finally there’s the Prolog file, with only 3685 non spacing characters, the difference in
efficiency when producing code is not as prevalent as in OWL and DOT. However, there is
nonetheless reduction in the required code for the specification.
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Figure 12: Prolog consult

The Prolog file can be consulted using tools like SWI-Prolog. As shown in Figure 12, it
can be used to query the ontology. Furthermore, the not function was introduced to allowed
forced negation.

Figure 13: OntoMapa Characters used in each language specification

The graph from Figure 13 shows the comparison of characters used per specification
using the languages OntoDL, OntoDL+, Prolog, DOT and OWL. Through it, it’s possible to
understand that OntoDL+ has fixed the redundant syntax present in OntoDL, proving to
be the language which allows for the smallest file while containing the same information.
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Figure 14: OntoMapa Characters used in each iteration of the specification

Furthermore, the graph from Figure 14 highlights the size differences for each iteration of
the ontology created, enabling a better understanding of the effects of each iteration.
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7.2 ontojogo

OntoJogo is centered on the subject of game representation. The ontology was used to model
the domain knowledge of an application. It allows the description of various information
creating a classification methodology for games, which will be used for game suggestion in
the application.

The ontology was mostly created during the research phase of OntoDL+, therefore, most
of it was written using OntoDL syntax. There is not much use of the language extensions
provided, however, the ontology does use some new features. For this example, most of the
ontology was kept as it was originally. The concepts, and individuals were kept unchanged,
and all the relationships were included as well. The triples however were reduced to ease
comprehension, including only two of the specified games and its triples, as shown in listing
7.8. For this purpose two of the instantiated games were used: Chess and LightBot.

t r i p l o s {
. . .

Chess = i o f => Game [ name= ’ Chess ’ , d e s c r i p t i o n= ’ Chess i s a two p laye r

board game

played on a checkered board , where the goa l i s to k i l l the king o f

the opponent . ’ , age r a t i ng =3, s t o r y l i n e=’ nu l l ’ ] ;

Chess = i s a v a i l a b l e => Non D i g i t a l ;

Chess =with ending=> S ingu la r ;

Chess =has mode=> Competit ive ;

Chess =be longs to genre=> Board ;

Chess =be longs to genre=> Strategy ;

Chess =has in fo rmat ion=> Per f e c t ;

Chess =has p laye r number=> Mult ip layer ;

LightBot = i o f => Game [ name= ’ LightBot : Code Hour ’ , d e s c r i p t i o n= ’

Lightbot i s a

mobile game f o r l e a rn i ng so f tware programming concepts . ’ , age r a t i ng=3 ,

s t o r y l i n e= ’ nu l l ’ ] ;

LightBot =i s a v a i l a b l e => Dig i t a l O f f l i n e ;

LightBot =invo l v e s cha rac t e r cho i c e=> Defau l t ;

LightBot =with ending=> S ingu la r ;

LightBot =has mode=> Casual ;

LightBot =be longs to plat form=> Mobile ;

LightBot =be longs to genre=> Educat ional ;

LightBot =be longs to genre=> Puzzle ;

LightBot =with input=> Touch ;

LightBot =has p laye r number=> S ing l e Player ;

LightBot =has p e r sp e c t i v e=> Third Person ;
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LightBot =has p rog r e s s i on=> Level Based ;

LightBot =has p rog r e s s i on=> Linear

}

Listing 7.8: OntoJogo Triples Example

Furthermore, during development, there have been some slight changes regarding the
proposed design of the restrictions, these can be seen in listing 7.9. Therefore to make full
use of them, they were updated to fix some use issues. Namely, the previously defined
restrictions used variables with equal names to already defined concepts or individuals,
creating errors during translation.

r e s t r i c t i o n s {
G =belongs to plat form=> P : -

G =i s a v a i l a b l e=> A, (A==Dig i t a l O f f l i n e ; A==Di g i t a l Online ) .

G =with input=> I : -

G = i s a v a i l a b l e => A , (A == Dig i t a l O f f l i n e ; A == Di g i t a l Online ) .

G = i s a v a i l a b l e=> A : -

( A == Non Dig i t a l , A \= Dig i t a l O f f l i n e , A\=Dig i t a l Online ) ;

( (A==Di g i t a l O f f l i n e ; A== Di g i t a l Online ) , A\=Non D i g i t a l ) .

} .

Listing 7.9: OntoJogo Restrictions

The new restrictions keep the intended meaning of the original, however, through the use
of variables, they gain usage in a querying system.

7.2.1 Processing

As happened with the ontology OntoMapa, compiling OntoJogo will generate 4 different
outputs. The OWL generated can be used and checked with Protégé as can be seen in Figure
15 and Figure 16.

Furthermore, as can be seen in Figure 17, while the OntoDL+ specification requires 4069

non-spacing characters, the OWL specification uses 39320 characters in its description. This
secures yet again much more productivity when using OntoDL+, given that it is required to
write nearly 10 times less code. Similarly, a full DOT specification stands at 9341 characters
used, more than double the code required in the OntoDL+ specification.

However, the DOT graph is much more useful with the creation of filtered views. By
commenting every individual and triple except the ones used in the specification of one
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Figure 15: Protégé Classes

Figure 16: Protégé Object Properties

Figure 17: Characters Used in Each Language Specification
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game (for instance, Chess), it’s possible to create smaller game oriented graphs, as shown in
Figure 18.

Figure 18: Chess DOT Graph

Given the higher complexity of the ontology structure, Alloy will generate more complex
models, harder to analyse, as highlighted in Figure 19. Given that there are more concepts
and relationships, with next to no rules defined, the models created are considerably larger
than previously. For this reason, Alloy also provides tools to enable easier understanding of
them. Using projections or creating themes as shown in Figure 20, it is possible to make a
more in-depth analysis of the model.

Figure 19: Alloy model
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Figure 20: Alloy Projection

Finally the generated Prolog file can be consulted using SWI-Prolog. Using the corrected
restrictions specification, it is possible to see in Figure 21 that the restrictions can be queried
and verified using Prolog.

Figure 21: Prolog Restrictions
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7.3 summary

Along this chapter OntoDL+ compiler was explored to explain its usage. The improvements
in productivity provided by OntoDL+ were highlighted, showing a decrease of nearly 10

times in the code required for specification. The advantages in using Alloy as a modelling
language were also shown highlighting how some mistakes can be easier to detect, and how
larger ontologies can be analysed and modelled. Finally the purpose of using Prolog as an
inference system was also underlined by expressing some of the queries which can be used.



8

C O N C L U S I O N A N D F U T U R E W O R K

In this final chapter of the Master Thesis, the conclusions taken from the results of the
previous chapters are presented. The final section of this work presents future work that can
be followed to take this project further on.

8.1 conclusions

In this Master Thesis it was proven that it was possible to improve the usability of OntoDL
through language extensions and the implementation of new features.

Extending the language for attribute normalization has improved the readability of the
language. The extension is also useful in avoiding errors during attribute declaration and
has improved the ease of access to the attributes declared in an ontology.

The extensions in the declaration of triples have removed redundancies in the specification,
resulting in a reduction of over 15% of the code required in OntoDL. The language was
further extended to incorporate relation properties and inference, increasing the code
reduction from 15% to 25% comparatively to OntoDL.

The adaptation of the context validator was also executed ensuring that all the desired
semantic verifications from OntoDL were implemented in OntoDL+. To ensure that, some
errors previously present in the context validator were also fixed during the code refactoring
stage.

The compiler expansions also ensure that the generated ontology outputs can be used by
outside applications. For instance, the OWL files created by the compiler can be opened,
analysed and changed using applications such as Protégé, which also allows the automatic
conversion to other ontology syntax formats, such as Turtle. Such conversion further allows
users to benefit from other tools, such as GraphDB, which permits the import and graphical
visualization of the ontology after conversion to Turtle. Similarly, the Alloy, DOT and Prolog
specifications can be used and processed by other applications such as AlloyTool, Graphviz
and SWI-Prolog, respectively.

72
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The compiler expansions have also introduced the translation to Prolog, which in addition
to SWI-Prolog can be used to verify the restrictions introduced in the language. The system
can also be used as a querying system for knowledge recognition and the user can further
developed the generated file to define composed relations allowing the inference of implicit
knowledge. The conversion of the ontology to Alloy, enables the use of the Alloy tool
to perform ontology static model checking. Such expansion has allowed the creation of
models based on the ontology rules, providing a fast and easy method to perform ontology
verification.

Finally, a Website to publicize the application was created, providing tutorials, examples
and templates along with the compiler to enable an easier start for new users of the language.

8.2 future work

In the future it would be important to perform an usability test of the language and its
compiler. Since it would allow the retrieval of more metrics to evaluate the performance of
the application.

It could also be created a compiler application to perform the translation from the
generated formats back to OntoDL+. That way, it would be possible to use OntoDL+ as
an intermediary language for translation. Already existing ontologies created in languages
covered by the compiler could be translated and maintained using OntoDL+. It would enable
already existing system to have a smoother transition to OntoDL+, as well as provide more
means to work with ontologies by connecting languages with different capabilities. The
language could also be extended in order to include the declaration of axiomatic expressions.
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