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Abstract

Bacterial resistance to antibiotics is nowadays becoming a major concern. Several reports indicate

that bacteria are developing resistance mechanisms to various antibiotics. Moreover, the processes in-

volved in the development of new antibiotics are lengthy and expensive. Therefore, an alternative to an-

tibiotics is needed. One promising alternative are bacteriophages, viruses that specifically infect bacteria,

causing their lysis. Hence, it would be interesting to discover which bacteria a specific phage recognizes.

The bacterial receptors determine phage specificity, using tail spikes/fibres as receptor binding proteins

to detect carbohydrates or proteins, in bacterial surface. Studying interactions between phage tail spikes/-

fibres and bacterial receptors can allow the identification of interaction pairs. Machine learning algorithms

can be used to find patterns in these interactions and build models to make predictions.

In this work, PhageHost, a tool that predicts hosts at a strain level, for three species, E. coli, K.

pneumoniae and A. baumannii was developed. Several data was extracted from GenBank, retrieving

general, protein and coding information, for both phages and bacteria. The protein data was used to

build an important phage protein function database, that allowed the classification of protein functions,

namely, phage tail spikes/fibres. In the end, several machine learning models with relevant protein features

were created to predict phage-host strain interactions. Compared with previously performed works, these

models show better predictive power and the ability to perform strain-level predictions. For the best model,

a Matthews correlation coefficient (MCC) of 96.6% and an F-score of 98.3% were obtained. These best

predictive models were implemented online, in a server under the name PhageHost (https://galaxy.bio.di.

uminho.pt).

Keywords: bacteriophages, phages, host prediction, bacterial strain, machine learning.
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Resumo

Resistência bacteriana a antibióticos está a tornar-se uma preocupação hoje em dia. Várias bactérias

foram descritas desenvolvendo mecanismos de resistência a diversos antibióticos. Aliado a isto, estão os

longos e dispendiosos processos envolvidos no desenvolvimento de antibióticos. Por isso, há a necessi-

dade de procurar uma alternativa aos antibióticos. Uma alternativa promissora são os bacteriófagos, vírus

que infetam especificamente bactérias e levam à sua lise. Posto isto, seria interessante descobrir qual

a bactéria que um certo fago reconhece. A especificidade de fagos é dada pelos recetores da superfí-

cies das bactérias que conseguem reconhecer. Eles usam proteínas das spikes/fibras para reconhecer

recetires proteicos ou hidratos de carbono nas bactérias. Estudar as interações entre spikes/fibras das

caudas de fagos e recetores bacterianos pode permitir a identificação de pares de interação. Algoritmos

de aprendizagem máquina podem ser utilizados para descobrir padrões nestas interações e construir

modelos para realizar previsões.

Neste trabalho, a ferramenta PhageHost foi desenvolvida. Permite a previsão de hospedeiros ao nível

da estirpe, para três espécies, E. coli, K. pneumoniae e A. baumannii. Vários dados foram extraídos

do GenBank, nomeadamente informações gerais, de proteína e codificante, para fagos e bactérias. Com

todos os dados proteicos, uma base de dados importante foi construída, que permitiu a classificação

de funções proteicas, nomeadamente, spikes/fibras das caudas dos fagos. Finalmente, vários mode-

los de aprendizagem máquina, com características proteicas relevantes, capazes de prever interações

fago-hospedeiro, a nível da estirpe. Em comparação com outros trabalhos semelhantes, estes modelos

demonstraram melhor poder preditivo, assim como capacidade de prever interações a nível da estirpe.

Para o melhor modelo foram obtidos um coeficiente de correlação de Matthews de 96.6% e um F-score

de 98.3%. Os melhores modelos foram implementados online, num servidor com o nome PhageHost

(https://galaxy.bio.di.uminho.pt).

Palavras-Chave: bacteriófago, fago, previsão de hospedeiro, estirpe bacteriana, aprendizagem

máquina.

vi

https://galaxy.bio.di.uminho.pt


Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1 Historical context on bacteriophages . . . . . . . . . . . . . . . . . . . . . . 3
2.2 What are bacteriophages? . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Bacteriophage life cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Phage-host recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4.1 Bacterial receptors . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4.2 Bacteriophage tails . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Bacterial resistance and phage survival . . . . . . . . . . . . . . . . . . . . 14
2.6 Computational approaches for prediction of phage-bacteria interactions . . . . . 15

2.6.1 Genome sequence-based approaches . . . . . . . . . . . . . . . . . 16
2.6.2 Protein-protein interactions . . . . . . . . . . . . . . . . . . . . . . 19
2.6.3 Protein-carbohydrate interactions . . . . . . . . . . . . . . . . . . . 21
2.6.4 Protein interaction methods not specific to phages . . . . . . . . . . . 22

2.7 Machine learning (ML) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.7.1 Development of an ML algorithm . . . . . . . . . . . . . . . . . . . 26
2.7.2 Types of ML algorithms . . . . . . . . . . . . . . . . . . . . . . . . 27
2.7.3 Evaluation of model performance . . . . . . . . . . . . . . . . . . . 27
2.7.4 Model optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.7.5 Model selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.7.6 Machine learning algorithms . . . . . . . . . . . . . . . . . . . . . 31

3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.1 PhageHost dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Data filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 Feature construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5 Galaxy implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.1 Finding phage-bacteria interacting pairs . . . . . . . . . . . . . . . . . . . . 49
5.2 Constructing and filtering bacterial data . . . . . . . . . . . . . . . . . . . . 51
5.3 Constructing and filtering phage data . . . . . . . . . . . . . . . . . . . . . 52
5.4 Feature exploration and construction . . . . . . . . . . . . . . . . . . . . . . 53
5.5 Machine learning performance . . . . . . . . . . . . . . . . . . . . . . . . 54

vii



con t en t s viii

5.5.1 Dataset standardization . . . . . . . . . . . . . . . . . . . . . . . . 54
5.5.2 Assessing the number of negative cases . . . . . . . . . . . . . . . 55
5.5.3 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.5.4 Hyperparameter tuning . . . . . . . . . . . . . . . . . . . . . . . . 58
5.5.5 Overall model performance . . . . . . . . . . . . . . . . . . . . . . 59

5.6 Galaxy implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

A Supporting material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80



Abbreviations

aa Amino acid. 53

ANN Artificial Neural Networks. 20, 33, 40, 54–56, 58, 59

BLAST Basic Local Alignment Search Tool. 16, 17, 24, 34, 36, 37, 42, 44, 45, 48

C Cytosine. 17, 21

Cas CRISPR associated proteins. 17

CRISPR Clustered Regularly Interspaced Short Palindromic Repeats. 17–19

CSV Comma-Separated Values. 34

CT Conjoint Triad. 25, 39

DNA Deoxyribonucleic acid. 1, 4–6, 13, 14, 17, 20, 21

dsDNA double-stranded DNA. 4, 5

FN False Negatives. 29

FP False Positives. 29

G Guanine. 17, 21

HMM Hidden Markov Models. 24

ID Identifier. 34, 43–45, 47, 48, 62, 65

ID3 Iterative Dichotomiser 3. 32

IDE Integrated Development Environment. 43

KNN K-Nearest Neighbours. 20, 32, 40, 46, 54–56, 58, 59

LPS Lipopolysaccharide. 9–11

LR Logistic Regression. 33, 40, 54–56, 58, 59, 82

MAD Mean of Absolute Deviation. 29

MCC Matthews correlation coefficient. v, 28, 41, 47, 59, 66

ML Machine Learning. 15, 18–21, 23–27, 30, 31, 33, 35, 38–42, 46–48, 51, 52, 54–59, 63, 66

ix



Abbreviations x

NAG N-acetylglucosamine. 7, 8

NAM N-acetylmuramic acid. 7, 8

NCBI National Center for Biotechnology Information. 15, 34, 35, 43, 44, 47, 49, 62, 65

PDB Protein Data Bank. x, 22, 23

PECC Percentage of Examples Correctly Classified. 28, 29

PSI Position-Specific Iterative. 24

PSSM Position-Specific Scoring Matrix. 22

RBF Radial Basis Function. 31

RF Random Forests. 20, 40, 41, 47, 54–59, 63, 66

RMSE Root Mean Squared Error. 29

RNA Ribonucleic acid. 4, 5, 17

ROC Receiver Operating Characteristic. 29

RSA Relative Accessible Surface Area. 38

ssDNA single-stranded DNA. 5

SSE Sum of Square Errors. 29

SVM Support Vector Machines. x, 20, 31, 32, 40, 47, 54, 55, 58, 59, 63, 66

TN True Negatives. 29

TP True Positives. 29

TSV Tab-Separated values. 42, 63, 64



List of Figures

Figure 1 Phage life cycles . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Figure 2 Bacterial membrane and wall structures . . . . . . . . . . . . . . . 7

Figure 3 Families of tailed phages . . . . . . . . . . . . . . . . . . . . . . 12

Figure 4 Queries made on PDB and UniProt, for phage tails . . . . . . . . . . 23

Figure 5 Changes in classification using different parameters for the SVM algorithm 32

Figure 6 Schematic for finding unknown protein functions . . . . . . . . . . . 37

Figure 7 Local descriptor method . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 8 Structure and workflow of this work . . . . . . . . . . . . . . . . . 43

Figure 9 Frequencies of strains for each phage . . . . . . . . . . . . . . . . 50

Figure 10 Galaxy interface of the PhageHostPrediction tool . . . . . . . . . . . 63

Figure 11 Output results of an example of a PhageHostPrediction instance . . . 64

xi



List of Tables

Table 1 List of known phage receptors in gram-positive bacteria . . . . . . . . 8

Table 2 List of known phage receptors in gram-negative bacteria . . . . . . . 10

Table 3 Computational approaches to predict phage-host interactions . . . . . 16

Table 4 Computational methods for prediction of protein-carbohydrate interactions 22

Table 5 Confusion matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Table 6 New classification of amino acids . . . . . . . . . . . . . . . . . . 39

Table 7 List of keywords to filter phage tail proteins . . . . . . . . . . . . . . 46

Table 8 Performance of standardization techniques . . . . . . . . . . . . . . 55

Table 9 Performance of the two datasets created . . . . . . . . . . . . . . . 55

Table 10 Confusion matrices for the unbalanced dataset, for KNN and RF . . . 56

Table 11 Confusion matrices for the unbalanced dataset, for ANN and LR . . . 56

Table 12 Confusion matrices for the balanced dataset, for KNN and RF . . . . 56

Table 13 Confusion matrices for the balanced dataset, for ANN and LR . . . . 56

Table 14 Effect of feature selection on the performance of the dataset . . . . . 58

Table 15 Hyperparameter tuning on the five models . . . . . . . . . . . . . . 59

Table 16 Example of three phages from each species, with predicted E. coli host strains 61

Table 17 Example of three phages from each species, with predicted A. baumannii host

strains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Table 18 Example of three phages from each species, with predicted K. pneumoniae

host strains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Table 19 Complete list of features . . . . . . . . . . . . . . . . . . . . . . . 80

Table 20 List of removed features . . . . . . . . . . . . . . . . . . . . . . . 81

Table 21 List of features that highly influence outputs for the LR model . . . . . 82

xii



1 Introduction

1.1 Motivation

Bacteriophages (phages), are viruses that infect and lyse bacteria. Generally, phages recognize their

hosts by adsorption of their tail fibres/spikes proteins to the bacterial receptors, that can either be of

proteins or polysaccharides. After adsorption, they enter the cell, replicate and lyse the bacterial host,

releasing the progeny (1).

Development of resistance by bacteria is a major healthcare issue in current time. Antimicrobial

resistance has spread to the general public. Bacteria have and are developing resistance mechanisms to

various antibiotics (2;3). Various mechanisms of resistance exist, from the destruction or modification of

the antibiotic, efflux from the cell, modification of receptors, to mutations and acquisition of foreign DNA

(plasmids) (2).

There is, therefore, a need for an alternative to antibiotics. A promising alternative are phages.

Recently, there has been a renewed interest in phages applied to humans, as an alternative to antibiotics.

Therefore, several phages have been sequenced and characterized, which gives us more knowledge and

insight into phage-bacterial interaction. The large amount of data generated is also essential for building

algorithms that identify them.

Identifying interactions between phages and their hosts is crucial in order to know which virus to

apply to a given bacterial infection. Tail spikes/fibres are proteins used by phages to recognize bacterial

hosts, defining their host range (4). To successfully know, beforehand, which phage is used against a

given bacteria, we propose machine learning based approaches, using these tail proteins as features for

classification and using phage tail-host receptor interactions for classification, at strain level

Work performed in this area was only applied to predict interactions at bacterial species level, at most.

Other more general works of molecular interactions were mostly based on tridimensional structures, which

are scarcely available for phages.

There are three types of machine learning algorithms: unsupervised, supervised and reinforcement

learning (5). We will use supervised learning, in which, a dataset is represented by a set of features with

1



1.2. Objectives 2

known outputs. For the training, each set of features has a correct answer. With the model built, a given

set of inputs will predict a certain output. This methodology has the potential to predict almost every phage

host, since it involves prediction of protein and polysaccharide-based bacterial receptors.

1.2 Objectives

The main objective of this work is to develop supervised machine learning models for the analysis of

phage-host specificity. The models will be generated using supervised methods to predict phage receptors

specific to a given set of hosts. More specifically, the work will address the following scientific/technological

objectives:

• Review the relevant literature for machine learning methods and their applications in related sce-

narios;

• Studying the available data sources of phage and bacterial datasets, retrieving their protein and

coding sequences;

• Developing pipelines for tail fibre/spike classification, using the available data and evaluating the

different alternatives based on the defined criteria;

• Developing machine learning supervised pipelines for phage-host interactions, using the available

data and evaluating the different alternatives based on the defined criteria;

• Publishing the developed tools on a web-platform, to make it easy to use for scientists;

• Writing the thesis and, possibly, scientific publications with the main results of this work.



2 State of the art

2.1 Historical context on bacteriophages

Phages were first discovered by Frederick Twort in 1915, after observing antibacterial activity. It was

only two years later that Felix d’Herelle proposed the existence of phages, as virus that predate bacteria,

after his observations of the formation of clear areas in bacterial cultures, when inoculated with a mixture

containing phages (6;7). He noted that the application of phages in patients with hemorrhagic dysentery

correlated with disease clearance (8).

Phage therapy was pursued in the following years, being used, for example, by d’Herelle, to treat

dysentery, cholera, or bubonic plague. Phages even started to be commercially produced in France and in

the United States. However, due to the ambiguity in the effectiveness of these preparations and because

antibiotics started to be commercially produced, phage therapy was abandoned in western countries. Only

in some eastern european countries phage thereby was continued (6–8).

In Soviet Russia and Poland, several papers regarding phage therapy were written. In one paper,

more than 30 000 children with bacterial dysentery disease were tested with Shigella phages. Almost

half of the group did not receive treatment (control), while the rest were administered with phages. During

the study period, the disease was about 4 times more prevalent in the control group (6). Besides the

human testing, clinical trials can be performed on animals (9). One of the more prevalent studies reports

the administration of mice with a lethal dose of E. coli. It was observed that injection of phages into the

mice was more effective than the use of antibiotics (10). Many phages specific to bacterial species have

been reported in animal testing (11).

Even though these studies look promising, attention has only been given recently to phage therapy

as an alternative to antibiotics. This is because, in the past, most studies failed to do basic methodologies,

such as use of a control sample of the population. Phage therapy effect was not clear, since formulations

were not properly prepared. This meant replication of results was hard to achieve and an appropriate

phage for a target bacteria was not being carefully selected (6;9;12). The recent attention is derived from the

emergence of bacteria resistance to antibiotics. As this problem gets worse and attracts more mediatic

attention, phages come up as an interesting and promising alternative.

3



2.2. What are bacteriophages? 4

In comparison to antibiotics, phages are specific to their target. So, unlike antibiotics, phages should

not affect the normal bacterial flora of our organism (6). In fact, there have been no reports of side effects

from the administration of phages (6;11). Phages replicate upon reaching the site of infection, increasing

in number, as opposed to antibiotics that are often metabolized and eliminated. While development of

resistance exists against phages, the effect is not as severe as in the case of antibiotic resistances. Contrary

to antibiotics where the developing of new drugs can take many years and is costly (6), phage therapy could

be used as cocktails, for example, selecting phages that are easily isolated from nature and that target the

same bacterium using different receptors. This thesis proposes a solution to finding suitable phages for

therapy.

2.2 What are bacteriophages?

Bacteriophages, (phages), are viruses that solely target and kill bacteria. They have a genome en-

capsulated in a protein shell, called the capsid. Although occurring very rarely, phages can be further

surrounded by a lipidic layer, called the envelope (1). The majority of phages have tails, structures that are

essential in phage adsorption to bacteria. In terms of the genome, phages can have DNA or RNA, in their

capsid, and it can be double or single stranded and even circular or linear (1;13). The genome size varies

from 3.5 to 500 kb (8). Most phages contain enzymes needed to penetrate and inject the genetic material

into the bacteria (1).

One way to classify phages is to divide them into tailed, polyhedral, filamentous or pleomorphic, with

the latter three not possessing tails (8;13). Tailed phages can be further classified several families, with the

most important three being Myoviridae (long contracted tail), Siphoviridae (long non-contracted tail) and

Podoviridae (shot non-contracted tail) (7;8;14). This Caudovirales order is the most abundant, representing

about 96% of all phages (13;14).

All tailed phages possess linear dsDNA with an icosahedral or elongated head. At the end of the tail,

that is not connected to the head, there can be a baseplate structure to which tail fibres/spikes connect to.

These structures can be nonexistent, but the fibres/spikes still exist, as they are required for phage-host

interaction. The tail structures are always proteins and can have enzymatic activity (15).
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Cubic or polyhedral phages, as said before, lack tail structures. In terms of their genome, they either

have DNA or RNA, double or single stranded and circular or linear. They can have a lipidic capsid or even

an envelope (13). Filamentous phages are long filaments that can be enveloped. They possess either a

circular ssDNA or a linear dsDNA. Pleomorphic is the viral group that contains the fewest number of known

phages, all possessing linear or circular dsDNA (13).

2.3 Bacteriophage life cycles

Figure 1.: Schematic representing both life cycles of phages. Image extracted from Madigan et al. (1)

In terms of life cycle, the phage can have a lytic or lysogenic life cycle (figure 1) (1;8). In both cases,

the phage requires a host cell to produce its viral components to successfully replicate. The general steps

of infection are the same for both types of phages, namely adsorption, DNA injection, viral replication and

cells lysis.
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The adsorption, in most cases, involves the interaction of the phage tails with bacterial receptors,

that can include surface proteins, polysaccharides, lipopolysaccharides and even pili or filaments (1;7;16).

Therefore, the adsorption step is crucial in defining the specificity of each phage.

The next step is injection of the genetic material into the host. This can be accomplished by enzymes

present either in the tails components or in the capsid, that normally degrade the cell wall (1;7), exposing

the membrane. Nobrega et al. (17) exemplifies enzymatic activities found in phages. During injection, only

the genetic material enters the cytoplasm of the host. The capsid and remaining components stay outside

the cell.

There is an important distinction between lytic and lysogenic phages. In the lytic (or virulent) phages,

the bacterial metabolism is directed to synthesis of new viral particles, to be assembled into complete

phages and released during lysis of the host. The lysogenic (or temperate) phages, however, remain in a

resting state, called lysogeny, in which the viral genome is integrated into the bacterial DNA or remains in

the cytoplasm, as a plasmid. In either case the viral genome is replicated in synchrony with the host cell,

being then transmitted to all of the bacteria’s progeny during cell division (1;7).

The next step is directed towards the synthesis of the nucleic acids and proteins required to assemble

the virus, the assembly and packaging of the phage. In the case of temperate phages, this process only

occurs when the cell is in a stress condition, in which the virus exits the lysogeny state and proceeds

with the lytic pathway. For a given phage, several viral particles can be produced in a single cycle. The

efficiency of this process is phage, host and environmental-dependent (1).

The lysis of the cells is the final step of the phage cycle. This event in timely synchronized by

the expression of mostly two important proteins, the holin and the endolysin. After the new phage par-

ticles are properly assembled, the holin permeabilizes the bacterial cytoplasmic membrane and the en-

dolysin degrades the peptidoglycan, thereby causing the burst of the cells and the release of the phage

offspring (18).
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2.4 Phage-host recognition

Asmentioned, tailed phages use their tails to target bacteria, through the host receptors. This tail-host

receptor interaction is what defines the host range and specificity of phages to their bacterial targets (4;17).

Successfully identifying these interactions can allow us to determine in advance, which phage to apply to

a given bacterial infection/contamination.

2.4.1 Bacterial receptors

Figure 2.: Structure of gram-positive (a) and gram-negative(b) cell wall, membrane and its components. Image
adapted from Madigan et al. (1)

The type of receptors vary considerably whether if phage is targeting a gram-positive or gram-negative

bacterial host. In figure 2 the structures of cell wall, membrane and different receptors, for both bacterial

types is represented. In gram-positive bacteria, the majority of receptors are found in the cell wall, for

being the outermost component in these bacteria. The peptidoglycan itself can be targeted as a phage

receptor (19). Monteville et al. (20) described seven phages that adsorb to cell wall sugars, like glucose and

rhamnose, and to the N-acetylglucosamine (NAG) of the cell wall itself. Gaidelyte et al. (21) described phage

Bam35, able to adsorb to peptidoglycan N-acetylmuramic acid (NAM) of Bacillus thuringiensis. Several

more examples are provided in table 1.

One of the most common receptors in gram-positive bacteria are the teichoic acids that can be

attached directly to the peptidoglycan of the cell wall, or to constituents of the membrane (4;22;23). It has

been reported that bacteria having similar teichoic acid structure can be targeted by the same phages (4).
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Teichoic acids are composed of a disaccharide connected to peptidoglycan via a phosphodiester bond (in

the case of wall teichoic acids) and to a polyol repeat unit, also by a phosphodiester bond (22).

Several phages are known to adsorb to wall teichoic acids (19;24). Xia et al. (25), for example, studied

several phages that interacted with NAG bound to wall teichoic acids and one phage that interacted with

the backbone of the teichoic acid itself. There have been reports of phages interacting with lipoteichoic

acids, such as phage 𝜙SLT that targets Staphylococcus aureus (26). Since the structure is similar to wall
teichoic acids, phage proteins also bind to the same basic units. In the example given, phages interact

with the repeating unit (26). More examples are given in table 1.

There are a few phage receptors in gram-positive bacteria described, namely, protein YueB is used

by phage SPP1 to recognize Bacillus subtilis (27;28) and, GamR, a LPXTG protein located in the surface

of Bacillus anthracis, that is targeted by phage 𝛾 (29). Phages present in the first line of table 1 have the

ability to bind to a membrane protein, named PIP (phage infection protein) (20). A list of all known bacterial

protein receptors are listed in table 1.

Table 1.: List of known phage receptors found in gram-positive bacteria.

Phage Host Receptor Reference

c2, ml3, 1,

TP901-1, 𝜙LC3
Lactococcus

lactis
Cell wall polysaccharides

Monteville et al. (20); Ainsworth

et al. (30)

A118
Listeria mono-

cytogenes

Peptidoglycan and wall tei-

choic acids
Habann et al. (31)

A511
L. monocyto-

genes
Peptidoglycan Wendlinger et al. (32)

Bam35
B.

thuringiensis
NAM of peptidoglycan Gaidelyte et al. (21)

𝜙29, 𝜙25, SP01 B. subtilis
Glycosylated wall teichoic

acid

Sao-Jose et al. (27); Yasbin

et al. (33); Xiang et al. (34)

𝜙11, 𝜙47,
𝜙Sa2mw

S. aureus NAG of wall teichoic acid Xia et al. (25)

𝜙11 S. aureus O-acetyl of cell wall NAM Li et al. (35)

𝜙812 S. aureus
Wall teichoic acid back-

bone
Xia et al. (25)

Continued on next page



2.4. Phage-host recognition 9

Table 1: continued from previous page

Phage Host Receptor Reference

𝜙29 B. subtilis Wall teichoic acids Xiang et al. (34)

𝜙SLT S. aureus
Lipoteichoic acids repeat

unit
Kaneko et al. (26)

LL-H
Lactobacillus

delbrueckii

Glucose and glycerol of

lipoteichoic acids

Munsch-Alatossava and

Alatossava (36)

SPP1 B. subtilis Protein YueB
Sao-Jose et al. (27); Baptista

et al. (28)

𝛾 B. anthracis Protein GamR (LPXTG) Davison et al. (29)

c2, ml3, kh, l, 1 L. lactis PIP Monteville et al. (20)

In gram-negative bacteria, the structure and composition of the cell wall and membrane is different

from their gram-positive counterparts. These have an external membrane mainly composed of lipopolysac-

charide (LPS) and proteins, followed by a thin peptidoglycan cell wall and an inner membrane (19;37). These

bacteria are highly permeable, possessing a high number of transmembrane proteins that form channels.

These proteins can be used as receptors for phages. The different LPS sites can be used in phage inter-

action with host (4;23). Unlike gram-positive bacteria, several gram-negative’s phage receptors have been

identified, being either proteins or saccharides (19).

As the name indicates, LPS are composed of saccharides and fatty acids. They have a core com-

posed of lipid A, that is a disaccharide of glucosamines with phosphate groups attached, connected to the

core polysaccharide. This core can bind to O-antigen, with both of these containing several carbohydrate

units (19;38). Phages are highly specific to LPS receptors containing the O-chain (also called smooth LPS),

displaying a narrow host range. LPS containing only the core and not the O-chain (called rough LPS) can

be recognized by phages, but, in this case, the host range is more broad, since the core is more con-

served (4;19). Phages T7 and SSU5, for example, bind with their tail fibres to rough LPS of Escherichia

coli and bacterial species of the genus Shigella and Salmonella (39;40). More examples of phages binding

to LPS are present in table 2.

The proteins located in the outer membrane can be transport proteins, channels, like porins, or

structural proteins that interact with the cell wall. All of these are exposed to the exterior and can be used
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in phage interaction, as several examples have been reported (4). Phage T4, for example, has shown the

ability to adsorb to OmpC (outer membrane protein C) of E. coli (as well as smooth LPS) (41). OmpC from

S. enterica are targeted by phage S16 (42). Bacteriophage Yep-𝜙 has shown the ability to bind to outer

membrane proteins Ail and OmpF (and to rough LPS) of Y. pestis (43). Other examples of phages recog-

nizing protein receptors include: phage SPC35, which interacts with BtuB (cobalamin outer membrane

transporter) from S. enterica (44); phage 𝜆 use protein LamB (a maltoporin) of E. coli (45); phage H8 ini-

tially adsorbs to FepA (an outer membrane receptor) and then to TonB (a transport protein) of both E. coli

and S. enterica (46). A more complete list of phages and bacterial proteins they adsorb to is present in

table 2.

Besides the most obvious receptors found in either gram-positive or gram-negative bacteria, phages

can adsorb to receptors found in capsules, pili, flagella and other filaments (17). In these cases, however, the

phage does not release the genetic material upon receptor recognition. Rather, it moves until the bacterial

inner surface is reached (4). There have been reports of phages that attach themselves to flagella with

the head, leaving the tails free. This way, upon reaching the surface, the tails are used for adsorption (47).

There are reports on phages that bind via their tails to the flagella (17).

Phages 𝜙Cb13 and 𝜙CbK interact with proteins in the flagellum of Caulobacter crescentus (48).

Bae and Cho (49) reported phages MPK7, LKA1, 𝜙KMV, able to bind to TFP (type IV pili) of Pseudomonas

aeruginosa. Several Acinetobacter and Klebsiella phages are reported to recognize their hosts through

their capsular polysaccharides (50;51). Table 2 reports examples of phages interactions to gram-negative

receptors.

Table 2.: List of known phage receptors found in gram-negative bacteria.

Phage Host Receptor Reference

T7, SSU5

E. coli,

Shigella spp,

Salmonella spp

Rough LPS
González-García et al. (39); Kim

et al. (40)

M1 E. coli OmpA Hashemolhosseine et al. (52)

T4 E. coli OmpC, smooth LPS Washizaki et al. (41)

S16 S. enterica OmpC Marti et al. (42)

Yep-𝜙 Yersinia pestis Ail, OmpF, rough LPS Zhao et al. (43)

SPC35 S. enterica BtuB Kim and Ryu (44)

Continued on next page
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Table 2: continued from previous page

Phage Host Receptor Reference

BF23 E. coli BtuB Bradbeer et al. (53)

𝜆, K10 E. coli LamB Gehring et al. (45); Roa (54)

H8
E. coli, S.

enterica
FepA, TonB Rabsch et al. (46)

ST27, ST29, ST35 S. enterica TolC Ricci and Piddock (55)

T5, ES18
E. coli,

Salmonella
FhuA Breyton et al. (56)

9NA, P22, Det7 S. enterica Smooth LPS
Andres et al. (57); Perez

et al. (58); Walter et al. (59)

Mu, P1, D108
Erwinia spp, E.

coli
Smooth LPS Sandulache et al. (60)

Sf6 S. �exneri Smooth LPS Parent et al. (61)

T6 E. coli Tsx Manning and Reeves (62)

T3 E. coli Smooth LPS Prehm et al. (63)

N4 E. coli NfrA
McPartland and Rothman-

Denes (64)

JG004 P. aeruginosa Smooth LPS Le et al. (65)

𝜙CR30 C. crescentus
Paracrystalline surface

layer protein
Edwards and Smit (66)

JG004, 𝜙CTX P. aeruginosa Core of LPS
Garbe et al. (67); Yokota

et al. (68)

ES18 S. enterica FhuA Killmann et al. (69)

L-413C, P2 vir1,

𝜙JA1, T7
Y. pestis LPS core Filippov et al. (70)

𝜔8 S. enterica FhuA Killmann et al. (69)

𝜙Cb13, 𝜙CbK C. crescentus Flagellin Guerrero-Ferreira et al. (48)

iEPS5 S. enterica Flagellin Choi et al. (71)

PBP1 B. pumilus Flagellin Lovett (72)

𝜙AcS2, 𝜙AcM4
Asticcacaulis

biprosthecum
Flagellin Pate et al. (47)

7-7-1
Rhizobium

lupini
Flagellin Lotz et al. (73)

Continued on next page
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Table 2: continued from previous page

Phage Host Receptor Reference

𝜙AcM2
A.

biprosthecum
Pili Pate et al. (47)

MPK7, LKA1,

𝜙KMV
P. aeruginosa TFP (type IV pili) Bae and Cho (49)

K2 K. aerogenes Capsular polysaccharides Yurewicz et al. (74)

ViO1, o507-KN2-1
S. enterica, K.

pneumoniae
Capsular Vi antigen Pickard et al. (75); Hsu et al. (76)

𝜙K1-5 E. coli Capsular polysaccharides Scholl et al. (77)

2.4.2 Bacteriophage tails

As this thesis focuses on tailed phages, only mechanisms of adsorption from tails of the most known

phage groups will be mentioned. Myoviridae are the only phages with contractile tails. Siphoviridae

have long non-contractile tails, while Podoviridae have short tails (figure 3) (13;17). These protein tails are

essential in recognizing the bacterial host receptors described in the previous section.

Figure 3.: Representation of the three families of tailed phages. Image extracted from Nobrega et al. (17)
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SinceMyoviridae have contractile tails, this is the most complex family of the three. In their structure,

myophages possess a tail tube, attached to the capsid and to the baseplate complex, which is the structure

to which tail fibres and tails attach to. This tube is enveloped in a sheath that allows contraction to happen,

allowing viral DNA to be expelled into the bacterial host. When bacterial receptors interact with tail fibres

and spike, the virus contracts and infects the host (17). Depending on the bacterial receptor type, phages

of this family can have different baseplate structures. If the receptor is a protein, phages have conical tail

tips, but if the receptors are polysaccharides, the tail tip will generally be a complex baseplate (15).

A well studied myophage, bacteriophage T4 (phage that infects the gram-negative E. coli), containing

long and short tail fibres in the baseplate, begins by interacting with the bacterial hosts via the longer tail

fibres. Each of these binds itself to the host receptor, reversibly, ultimately finding an optimal position.

When two or three of these are bound to bacterial receptors simultaneously, the baseplate changes its

conformation in order for the short tail fibres to attach irreversibly to the host. After this, the baseplate

suffers further conformational changes and the sheath contracts. Consequently, the tail tube penetrates

the bacterial membrane and injects the viral DNA into the bacteria (17).

Siphoviridae, on the other hand have long non-contractile tails and therefore, lack the sheath.

Siphophages have been reported to have a simpler baseplate structure (when compared to the myophages),

or can even lack this structure. Siphophages that target gram-positive bacteria have the baseplate, while

phages targeting gram-negative have a simpler structure or even lack it. Like Myoviridae, depending on

the type of host receptor, the baseplate can be more complex, or have a conical shape. Further than this,

however, siphophages, infecting gram-positive bacteria, which, interact with protein receptors have a tail

fibre or spike. Phages that interact with polysaccharide receptors of gram-positive bacteria have side fibres

in their baseplate. Siphophages that infect gram-negative bacteria have a more general structure and can

contain tail spike and tail fibres (15;17).

Phage T5, for example targets protein receptors of gram-negative bacteria. Therefore, it has three

side tail fibres, which increase adsorption to the host. This phage possesses a central tail spike that

contains one receptor binding protein specific for a transmembrane transporter (17). The siphophage p2

infects gram-positive bacteria and targets polysaccharides from the host. As a result, it has six side tail

fibres, each containing three receptors specific for the host’s polysaccharide. This phage initially connects

just one receptor in each of the tail fibres. This causes a conformational change that alters the structure

of the virus, enabling all the receptors to bind to the host in a irreversible way (15;17).
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The last group of the tailed phages family is Podoviridae. Podophages are composed of a short

non-contractile tail, lacking a sheath. The general structure is similar across all podophages. The lower

part of the tail can have six or twelve tail fibres or spikes, but it lacks a baseplate, that was observed in

most cases of the previous two groups. Each phage belonging to this group has a similar mechanism

of adsorption and infection. Their tail spikes or fibres interact with the host’s receptors to cause either a

conformational change that allows DNA to be released or have enzymes that allow penetration of the host

and release of the genomic information (15;17)

2.5 Bacterial resistance and phage survival

Like it happens with antibiotics, bacteria have the ability to develop resistance in order to survive/avoid

phage infection. One of the advantages of phage therapy to antibiotics is that phages can mutate to over-

come these resistances. In this section, only resistance mechanisms at receptor level will be mentioned,

since they are the only ones relevant for this work. Labrie et al. (78) described in more detail mechanisms

associated with blocking DNA entry, DNA degradation, which will not be mentioned here.

The first level of bacterial defense against phages is at the receptor level. Bacteria can build physical

or chemical barriers that block the adsorption of phages. One of the mechanisms observed is the direct

blocking of phage receptors. This can be achieved by changes to the structure of the receptors, such as

binding of molecules, or changes in the tri-dimensional conformation of the receptor. One example is the

production of protein A by S. aureus, that binds to the bacterial receptors and blocks phage access (79).

Nonetheless, phages are able to mutate their tail receptors, which allows them to recognize new receptors.

From these mutations, phages might even be able to interact with more than one bacterial receptor, which

is advantageous, for example, when bacteria repress the production of one receptor, phages will still be

able to infect the host via the other receptor (16;78).

Another mechanism at the receptor level is the production of an extracellular matrix by bacteria. This

matrix is a layer of polymers that physically block the phage from accessing the receptors. Phages can

develop to recognize this matrix and can even produce enzymes to degrade it. Pseudomonas species

produce a matrix called alginate. The species producing it was found to be phage resistant. However, a
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phage was found to have developed alginate lyase that dispersed the matrix and allowed phage-bacteria

interaction (80).

2.6 Computational approaches for prediction of phage-bacteria

interactions

Discovery of interactions between two cellular structures has typically been studied in laboratories.

Usually these processes take a long time and numerous resources. Using computational approaches

to predict these interactions, has the advantage of being faster, more automatized and requiring less

resources. Obviously, experimental data is required to build these tools. There is a large amount of

information available, enabling its development, with satisfactory results.

Relevant databases are available containing information on interactions between phages and its

hosts and can be used to develop these predictive tools. The Virus-Host Database (81) has 4014 sequenced

phages, with sequenced host species defined; however, only seldom does this database specifies the strain.

Zhang et al. (82) manually verified published articles for phage and their binding receptors. PhageReceptor

provides a high-quality database for experimentally proven receptors phages adsorb to, further dividing

them into receptor type, while, not specifying host strain. PhagesDB (83) contains information on my-

cobacteriophages, including sequence and host strain information. The National Center for Biotechnology

Information (NCBI) Virus database (84) is probably the most complete and thorough. It provides a col-

lection of phages, available in the GenBank (85), with genomic information available and other relevant

features.

Many tools have been developed and made available to predict interaction between phages and

hosts. These can be based on genomic sequence similarity, for example, or interactions between phage

proteins and bacterial proteins. These approaches may use machine learning (ML) algorithms for predic-

tion. Regarding interactions between phage proteins and bacterial carbohydrates, it is more complicated

to develop an algorithm as these interactions are more dynamic since they are weak (86). Computational

approaches for these interactions have been described, although most of them are too specific and not

applicable in the context of the present thesis. The most relevant algorithms will be mentioned in this

section.
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2.6.1 Genome sequence-based approaches

A work by Edwards et al. (87) reviewed and evaluated several computational based approaches to

predict phage-host interactions. Most of these were based on the similarity of sequences between the

interacting pair. One of the approaches is based on abundance profiles. As viruses depend on their

bacterial hosts to replicate, it is expected that the number of phages increase with a higher number

of their hosts. Although previous works already reported this condition (88;89), only Edwards et al. (87)

tried to properly use this premise to predict and evaluate a phage’s host. However, only 12% of correct

predictions were obtained, when classifying interactions at the species level. This method does not seem

ideal, because it appears to have a really low predictive power and it requires knowledge of the whole

metagenome. This means it is not possible to identify a host for any given phage as they must coexist and

have been described in a metagenome, for example.

Other methodologies evaluated by Edwards et al. (87) are based on genomic sequences. A brief sum-

mary is shown in table 3. The first one is genetic homology. It is self-explanatory, as only homology

between whole genomic sequences of phage and bacteria is sought. It is expected that interacting pairs

have similarity regions, as phages may insert their genes into the bacterial genome (1), while phages can

also incorporate bacterial genes into their genome, providing competitive advantage or even increasing

host range (90;91). Edwards et al. (87) carried out BLASTn (nucleotide-nucleotide) and BLASTx (translated

nucleotide-protein), to test this methodology. Basic Local Alignment Search Tool (BLAST) is a tool that does

sequence comparisons, returning a score for each pair (92). Using these tools, better results for classifica-

tion at bacterial species level were observed, with BLASTn, at about 30% of correct hosts predicted. For

BLASTx similar results were reported. However, the number of false positives was much higher (87).

Table 3.: Computational genome based approaches to predict phage-host interactions (87). Code and datasets used
are present in http://edwards.sdsu.edu/PhageHosts/

Name Description Advantages Disadvantages

Genetic

homology

Looks for homology

between genomic se-

quences of phage and

bacteria

—
Not precise, not

applicable to every phage

Continued on next page

http://edwards.sdsu.edu/PhageHosts/
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Table 3: continued from previous page

Name Description Advantages Disadvantages

CRISPR based

The CRISPR system incor-

porates viral DNA, allow-

ing for homology search

Specific for each pair
Applicable to a low

number of cases

Exact matches

Based on CRISPR sys-

tems, conserved regions

and integrated prophages

Also specific, while being

applicable to a larger

number of pairs

—-

Oligonucleotide

profiles

𝜅-mer profiles are created
and compared

Applicable to every pair

Assumptions can be

verified by chance, lowest

percentage of correctly

predicted pairs

CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and Cas (CRISPR associated

proteins) system based approaches were used for prediction. These are used as a mechanism of immunity

for bacteria against phages. Basically, the CRISPR system incorporates viral DNA and upon a recurring

infection, the recognition of this sequence leads to a production of Cas proteins, that conjugate with

the CRISPR transcribed RNA sequence. This complex binds to the phage genome and cleaves it (8;16).

Therefore, in this sequence there should be an identifiable high similarity with the phage genome. On this

basis, Edwards et al. (87) aligned the CRISPR spacer sequences to phage genomes with BLASTn, adapting it

to enable the use of much shorter sequences. The results look encouraging, as they are specific. However,

as pointed out by the authors, there are few significant hits. Furthermore, not all bacteria encode the

CRISPR-Cas system (around 50%), making them unavailable for phage prediction (93).

Another methodology was based on exact matches between phage and bacterial genome. These

include the CRISPR systems, conserved regions and integrated prophages (temperate phages). This ap-

proach is sensitive, specially for longer exact matches. Despite, only 40% of correct classification of

bacterial species was obtained. This was the best performance of all tested methodologies (87).

The last approach was formulated on oligonucleotide profiles, in which all the bacterial genome is

fragmented into k-mers of a defined length. A profile is created as a vector containing the relative frequency

of all k-mers. Two cases were created, in which length was 1 and 3, corresponding, respectively, to GC
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content and codon usage. In every case, Euclidean distance between the phage’s and bacteria’s profile

was used for classification. For the best case, the classification was correct on only 17% of cases (87).

These methods described by Edwards et al. (87) have the disadvantage that most limit the number of

organisms that can be analysed. CRISPR classification, for instance, is limited to bacteria that enclose this

system. On the other hand, oligonucleotide profile classification is limited to lysogenic phages. Besides this,

classification was performed on species level, at most, with results that leave much to be desired.

HostPhinder (94) is a tool that performs prediction of host bacteria against a phage, at species level.

It is based on genomic similarity of a query phage against similar already described phages. Basically, the

assumption is that similar phages infect the same bacterial species. This was performed by calculating

k-mers on the query, and comparing them with the reference phages, calculating a similarity score. In

the end, a 74% of correct predictions was obtained for classification at species level, which is a vast

improvement comparing with the previously mentioned work.

Another work by Gałan et al. (95) used ML to distinguish between eukaryotic viruses from phages. This

tool based its calculations on mono, di and trinucleotide frequencies in the viral genome, classifying the

virus as eukaryotic or bacteriophage. The best results obtained were of 95% correct predictions. However,

this classification is quite simple, for the problem proposed here.

VirHostMatcher-Net (96) is a tool that predicts virus and host interactions, for metagenomes. It is

based on genome sequences, by calculating features such as CRISPR sequences, homology and alignment

scores. The best predictive score was of 85%, observed at genus level (above species), at most. Once

again, although the results seem promising, it is not as specific as this work intends to be.

PHISDetector (97) uses genetic features, as well as protein-protein interaction information. For the

purpose of consistency, the whole of this tool will be mentioned in this section. A correct classification

of 85% of interactions, at bacterial species level, was achieved. CRISPR features were constructed by

predicting CRISPR spacers in bacterial genomes. These spacers are aligned against phage genomes, to

find hits, retrieving features related to these. A prophage analysis was also performed, in which, a prophage

was identified in a bacterial genome, genomic and protein sequences were retrieved, ran against the phage

genome and proteome, for homology scores. Simple genomic sequence similarity scores were calculated

through k-mer based distance and similarity metrics. The protein analysis was performed for homologous

proteins between the pair, in which interaction scores were retrieved. For this work the results appear
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satisfactory, however, basing the predictions solely on similarity may limit the search space. As will be

discussed in the next section, protein-protein interaction may not be the most optimal way to approach this

problem. Furthermore, the classification is performed on species level, less specific than the proposed

work.

These methods have the disadvantage that most limit the number of organisms that can be anal-

ysed. CRISPR classification, for instance, is limited to bacteria that enclose this system. Therefore, in the

next sections, alternative computational approaches for predicting interactions between phage and host

receptors will be discussed.

2.6.2 Protein-protein interactions

The ubiquitous phage-bacteria proteins’ interactions are a relevant advantage when developing a

computational approach. Unlike the genome based approaches in which there were differences between

species that hindered the classification, every phage possesses an adsorption step. Furthermore, phages

are composed of proteins that interact with the host. Nevertheless, only two works are known to have

used protein-protein interactions for classification (98;99), besides the work mentioned in the previous sec-

tion (97).

In the work of Leite et al. (98) ML algorithms to predict phage-bacteria pairs were developed. Firstly,

1064 phage sequences from the GenBank and PhageDB databases were extracted. In this process, every

necessary information was checked to ascertain if it was complete, namely, phage gene information, host

information and protein sequences. If either was missing or could not to be determined, the phage would

be excluded from the dataset. Regarding the respective bacterial host, these needed complete gene and

protein information, otherwise the host and respective phage would not be included. In the end, the

dataset was composed of the mentioned 1064 phage-bacteria pairs. However, 915 of them corresponded

to the same bacterial host, which is not ideal when running ML algorithms. To attenuate this effect, the

remaining pairs were oversampled by replicating the interactions around 300 times. This methodology

might not be ideal for ML, because it can lead to overfitting, where the model learns the examples far too

well (100). A negative interaction dataset was created, composed of phage-bacteria sets that theoretically do

not interact with each other. However, the creation of this dataset might be hard to achieve. The number

of negative interactions would be far higher than the number of positive ones, since the number of bacteria
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a phage does not interact with is higher than the number of interacting hosts. Given this fact, this negative

dataset would have a higher dimension. The same number of positive and negative interactions were

maintained.

Having extracted all the information, the features to be used in the algorithms were defined. To study

protein-protein interactions, datasets based on interactions between domains and another based on protein

primary structure from the interacting pairs were created. From the domain interaction dataset, for each,

protein pair, all the domain-domain interaction scores were obtained. The sum of all these scores, would

correspond to the protein-protein interaction score. Therefore, each phage-host pair would be described by

a vector of protein-protein interactions (Protein-Protein Interaction). The data was normalized to be applied

in ML. For the remaining dataset, protein primary structure information was used, including amino acid

composition, chemical elements composition and molecular weight. For each protein-protein interaction,

mean and standard deviation were calculated for all features (98).

Every dataset created, was tested with four ML algorithms, K-Nearest Neighbours (KNN), Random

Forests (RF), Support Vector Machines (SVM) and Artificial Neural Networks (ANN), with cross-validation.

It was noticed that KNN and RF lead to overfitting, reflected on high prediction values. For the other two

algorithms, overfitting is not mentioned, but it is still a possibility, as the overall the prediction values seem

quite good.

Even though the process described by Leite et al. (98) might not be robust, it is indeed promising. It

could be improved by, for instance, creating a dataset containing more bacterial species. For this, there is

a need to explore a higher number of databases to find more information. Nevertheless, the approaches

for obtaining protein-protein interaction scores seem to work well.

In the work of Boeckaerts (99), ML methods were used to predict phage-host interactions, at a species

level. To build the dataset, phage tail spikes and fibres protein sequences were extracted, from UniProt

KB (101). A total of 425 phage proteins were obtained from UniProt (99). For each protein, the respective

bacterial host information was added, if available. Each protein was characterized by phage and bacterial

host information and protein and DNA sequences information. The dataset was further filtered to 330

instances, thus ML algorithms would have to classify only three different outputs (only three bacterial

species were considered) (99).
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The next step was feature construction, from the dataset. As reported by Edwards et al. (87), features

were built based on DNA sequences. These included frequency of each nucleotide, GC-content and codon

frequency and usage bias. Besides DNA based, protein features were also considered, such as amino

acid frequency, molecular weight, aromaticity, among others, and protein secondary structure features (a

more complete list is present in the thesis (99)).

Four ML algorithms were used, logistic regression, linear discriminant analysis, random forests and

gradient boosting. A four-fold cross-validation and hyperparameter optimization were used to build the

models. For all the models, a score above 88% was observed, with the best performing model being linear

discriminant analysis (99).

The protein interaction pairs for classification of phage-bacteria pairs appear to be promising. Meth-

ods based on these pairs are used to classify phages for a given bacteria well. However, it would be

interesting to include interactions between phage proteins and bacterial carbohydrates, as interactions

may involve these two biomolecules. No work was found, to specifically predict these interactions, based

on phage-bacteria interactions. In the next section, approaches using protein-carbohydrate interactions are

mentioned. Although these mostly refer to specific carbohydrates or to enzymes that do not have interest

to this thesis, the basis of each approach can be applied in a new methodology to classify phage-host

pairs.

2.6.3 Protein-carbohydrate interactions

Through the same logic as in protein-protein interactions, in the adsorption step, phage proteins also

interact with external carbohydrates from bacteria. These types of interactions are specific and predic-

tions should not rely on many assumptions, as is the case for genome-based predictions. However, to

the best of our knowledge, no work specific for phage-bacteria interactions is available. In the next sec-

tion, more general works predicting interactions between proteins and proteins or carbohydrates will be

discussed.
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Table 4.: Computational methods for prediction of protein-protein and protein-carbohydrate interactions.
Name/Reference Description

3D
st
ru
ct
ur
e

Taroni et al. (103) Prediction of glycan binding sites
Shionyu-Mitsuyama et al. (104) Spatial distribution of protein atoms around carb-binding sites

COTRAN (105) Looks for galactose-binding sites. Uses geometrical and
structural features

SPOT-CBP (105) Based on existing 3D structures of proteins that interact with
carbohydrates

ISMBLab (106)
Based on the distribution of proteins in the surface of

carbohydrates

InCa-SiteFinder (107)
Uses van der Waals forces, carbohydrates and amino acid

propensities

MaSIF (108)
Based on a representation of the molecular surface. For every

point, geometric and chemical features are calculated

Se
qu
en
ce

PROCARB (109) Finds carb-binding residues from single sequences or
evolutionary profiles

PreMieR (110) Uses binary and PSSM, composition profiles
MOWGLI (111) Predicts mannose-binding proteins based on PSSM profiles

SPRINT-CBH (112) Based on sequences in the interaction pockets

2.6.4 Protein interaction methods not specific to phages

The methods described in this section are not used for phage-bacteria interactions. However, these

could provide insights into how to perform predictions for this work. In table 4, a list and short description

of these tools is present. A separation can be made for these tools into methods that rely on tri-dimensional

structures and sequences for prediction. Malik et al. (102) did a review that covers these methodologies,

for protein-carbohydrate interactions.

Methods based on the tri-dimensional structure, limit the possibility of applicable cases, because

there is a limited number of receptor binding protein structures from Caudovirales available. Searching

the Protein Data Bank PDB (113) (a database of biomolecular structures) for phage tail proteins, 11 entries

were retrieved, even though not all are likely to be relevant (figure 4 (A)). A query on the UniProt KB (101)

for phage tails, retrieved 48 entries with structures available, with possible overlap with the 11 from PDB

(figure 4 (B)). However, these can provide good insight and alternative to how proteins bind to bacterial

proteins or carbohydrates, if available.

Works, based on structures, highlighted that features such as charged residues that contact with the

polysaccharide, hydrophobicity, or interacting forces between protein and carbohydrate can be important in



2.6. Computational approaches for prediction of phage-bacteria interactions 23

Figure 4.: Queries made on PDB (A) and UniProt (B), for phage tails. A search was performed for organisms con-
taining bacteriophages mentions, while removing entries that mentioned unwanted functions.

the ML algorithms tested (114;115). These two methods, even though the performance seemed satisfactory,

were built on small datasets.

Another example of using tri-dimensional structures for prediction was the work developed by Taroni

et al. (103). Here, three parameters (relative accessible surface area, protrusion index and residue propen-

sity) were found to best predict glycan binding sites, with and accuracy of 65%. However, this work is quite

dated, with mixed results.

Other methods based on the spatial arrangement of the proteins were developed (104;105;116). These

all use the protein structure to predict if binding to polysaccharides occurs. The first one (104) is probably

the most interesting for this study, since it evaluates different parameters for prediction. The second

one (105) is not as helpful or applicable to many cases, since it is based on detecting proteins interacting

only with galactose. The last (116) predicts the structure of a protein, based on already known arrangements

of proteins that are known to interact with carbohydrates. It is available online with the name SPOT-CBP.

One issue with this method is that it requires the knowledge of the tri-dimensional structure, coupled with

knowledge of the way a carbohydrate interacts with a protein. In the case of phage-host interactions this

method would not be feasible, as there is no known related work.

ISMBLab (106;117) predicts the binding of a variety of ligands to protein structures. A ML model was

constructed for 30 protein atoms, based on the physicochemical characteristics of superficial atoms. It

predicts the probability of each atom being involved in binding to the specified ligand. Besides only predict-

ing probabilities for single atoms, instead of the whole protein, it is a very lengthy process that performs

predictions for just one protein at a time. Using this for multiple structures, would not be feasible, since it

requires lag times and manual uploading of each structure.
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Another similar method is InCa-SiteFinder (107), that uses van der Waals forces, carbohydrates and

amino acid propensities to identify carbohydrate binding sites. The authors reported good specificity and

sensitivity scores. However, this tool is not available (as of 17/02/21).

MaSIF (108) is based on a representation of the molecular surface of proteins. For every point of

this surface, geometric and chemical features are calculated and applied to a deep learning algorithm.

For protein-protein interactions it outputs a score for each vertex that corresponds to the probability of

being involved in an interaction. The authors have reported a supposedly better score than other available

tools.

Overall, it does not seem feasible to apply tri-dimensional structures for prediction of interactions,

due to the low number of available phage structures. A very high number of structures would have to be

constructed through homology modelling of the already limited number available. Besides, most of these

methods focus on predicting general interaction sites for each protein, when the preferred goal would be

to predict interactions with certain proteins or carbohydrates.

Malik et al. (102) also described methods based on sequence information. Even though there are

methods described for only one type of carbohydrate, the way the datasets and algorithms were set up

can give an idea on how to apply ML to a larger variety of proteins interacting with carbohydrates. Works,

based on structures, highlighted that features such as charged residues that contact with the polysaccha-

ride, hydrophobicity, or interacting forces between protein and carbohydrate can be important in the ML

algorithms tested (114;115). These two methods, even though the performance seemed satisfactory, were

built on small datasets.

Other ML methods based on protein sequences were developed. These are mostly based on se-

quence conservation, on the basis that binding sites can not suffer several mutations, or they will risk losing

function. On this note, ML algorithms have used Hidden Markov Models (HMM) (118) or Position-Specific

Iterative BLAST (PSI-BLAST) (119) to detect homologies. A database containing known and predicted protein

binding carbohydrates, was developed and is available online with the name PROCARB (109). Besides this

database, the authors developed a prediction tool for protein binding carbohydrates, CBS-Pred. Unfortu-

nately, this tool does not seem to be available, at the moment of writing. Only the database seems to be

accessible. Malik et al. (102) describe methods mostly for application to specific carbohydrates. Tools are

also available in the form of web-servers, such as PreMieR (110) and MOWGLI (111). There is a method that



2.7. Machine learning (ML) 25

uses both sequence and structure information for prediction (112) and it is available and functional online,

with the name SPRINT-CBH.

A method to describe protein-protein interactions, named Conjoint Triad (CT), was described by Wang

et al. (120). It is simple, in the sense that it only requires protein sequences and is reported to have very

good predictive power. Briefly, each amino acid is assigned into one of seven groups, based on dipoles and

volumes of side chains. A sequence is then represented by seven different characters. With this, different

features are calculated, such as, k-mers of size two, local descriptor, in which ten subsequences are

created and analysed for composition, transition and distribution. Even though a high number of features

are created, this method is based on a simple and easily applicable premise, with desirable results.

Overall, sequence based methods seem to be the best solution to apply, as of right now. However,

should more information be made available relating to protein structure, it would certainly be advantageous

to use this data for more accurate prediction and characterization of protein interactions.

2.7 Machine learning (ML)

Machine learning (ML) algorithms solve problems by finding relationships in the data. These algo-

rithms adapt and improve with experience, that is, with new data inputted, they make/improve on relation-

ships (121;122). ML algorithms are to be applied to situations where a large amount of data has unknown

patters that need to be discovered, when a problem is not well known or when there is a problem that

needs to adapt to ever-changing conditions. The following concepts are essential better to understand

these algorithms (121;123).

• Dataset is a collection of data in the form of a table. Usually, rows represent the different sam-

ples/instances and the columns represent its attributes. One of these attributes can be used as

the output for ML.

• Instances correspond to observations of the data and are characterized by a set of features.

• Attributes or features are what describe the samples, and can be continuous, categorical or

binary.
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• A model describes/summarizes the data learnt and is used for prediction based on that data. It

finds patterns in data and tries to predict an output for another data set based on those patterns.

• Classifier is the function that assigns a test data to an output.

• Algorithms are mathematical/logical instructions that create the best model with the training data.

There are a multitude of algorithms described later on in the text.

• Sample is a collection of instances, with the respective features.

2.7.1 Development of an ML algorithm

Although there are different types of algorithms, all have the same general development steps. The

first step is collecting data and preparation for application on anML algorithm, as instances. Data collection

is not straightforward, as good knowledge of the problem to solve is required, to select the data useful for

solving the problem. Selecting a large amount of data, will most likely bring disadvantages, since the

algorithm will base its learning on useless data for the problem in question (121).

Care is needed when aggregating data as each attribute might need to be standardized according to

factors, meaning specific values should not be considered from absolute values, but relatively to another

factor (123). Other initial processes involve cleaning the data to remove/replace missing data and can

require data to be normalized, discretized or categorized. Defining the format of the dataset is important,

for it to be easily accessible.

After the dataset is processed, ML can be applied by dividing the data into train, test datasets. The

train dataset will likely contain the largest portion of the original dataset and is used to build the model

through ML algorithms. Precautions should be taken when constructing this dataset; for instance, checking

wether data is balanced, preventing the over-representation of one type of attribute. The division in train and

test datasets can be performed by sampling techniques, like cross-validation, or leave-one-out, for datasets

with a small number of instances. These methods help in improving the accuracy. The remaining test

dataset is used to evaluate if the model created has a good performance. From these test results, the

algorithm or dataset is then tweaked to find the best predictive model that will finally be applied to predict

other cases (121).
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2.7.2 Types of ML algorithms

ML algorithms can be supervised, unsupervised, semi-supervised, or reinforcement learning. In

supervised learning, the dataset contains the attributes and labels for each example, in which labels

are a feature subject to the predicting algorithms. The model is learns how this labelled training data

determines the relations between the vector of features (input) and the output feature. With this model, an

external vector of features with unknown output can validate this instance. Overall, these algorithms aim at

minimizing errors; thus, overfitting can become a relevant problem (explained in a later section) (121).

Unlike the previous algorithm, in unsupervised learning the data does not contain labels. It is used

mainly to find relations in data; hence, there are no wrong answers. The model is created with a set of

instances as input and no output attribute. Practical examples include clustering, in which the goal is to

simply find relations between examples of the dataset, or dimensionality reduction, in which the goal is to

reduce the number of features of the dataset (124).

Semi-supervised is a combination of the previous two algorithms. It uses a few labelled instances

and a larger of unlabelled. It is useful because there are large amounts of unlabeled data, since it is easier

to obtain data, than to classify it. It has the same objective as supervised learning, to classify unknown

attributes of a given instance (121).

In reinforcement learning, the algorithm has the objective of maximizing the reward. As described

in Awad and Khanna (121), this algorithm works like a trial-error, where certain actions are rewarded or

penalized. The algorithm automatically determines the ideal behavior, obtaining the best reward.

Given this work’s nature, supervised learning algorithms will be used, as it allows for classification

and output prediction, while providing better predicting power. Furthermore, there is a fair amount of data

available for use in instances and attribute classification.

2.7.3 Evaluation of model performance

After the model has been built based on the training dataset, the model performance can be calcu-

lated with the test subset. As the test set is composed of instances that have not been considered for the

model, they can assess how the model predicts new instances. Depending on the type of output feature,
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the model evaluation metrics will be different. For instance, regarding classification, concepts need to be

defined,namely wether the prediction is either correct or incorrect. An NxN confusion matrix can be built,

in which N is the number of possible ways to classify the instance (number of possible outputs). A simple

confusion matrix is represented in table 5. Usually, the real values are represented in the rows, while the

predicted values are in the columns. The diagonal cells of a confusion matrix correspond to the correctly

predicted values (121).

Table 5.: A 2x2 confusion matrix, for a classification problem of an attribute with two possible values.

Real
Predicted

Positive Negative

Positive True Positive False Negative
Negative False Positive True Negative

These confusion matrices, allow calculating important metrics, such as precision, defined as the ratio

of correct positive predictions by the total number of positive predictions (equation 1) and recall/sensitivity,

which is the ratio of correct positive predictions and the total number of real positive examples in the

set (equation 2). Precision is the percentage of relevant results and recall is the percentage of correctly

classified positive cases. There are cases in which improving precision is preferred (a higher number of true

positives, while having low false positives), instead of improving sensitivity (high number of positive values,

reducing false negatives). Usually, increasing one leads to a decrease in the other, and a compromise must

be reached. Alternatively, an in-between metric named accuracy/PECC (Percentage of Examples Correctly

Classified), defined as the ratio of correctly classified instances by the total number of instances (equation

3) is used (124). The last metrics to mention for classification are the F1 score, which is considered an

average of precision and recall and defined as two times the ratio of precision times recall by the sum

of precision and recall (equation 4) (123;125), and Matthews correlation coefficient (MCC), considered the

more balanced score, taking into account true, false positives and negatives (126).
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃 (1)

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁 (2)

𝑃𝐸𝐶𝐶 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (3)

𝐹1 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (4)

𝑀𝐶𝐶 = 𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁
√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)

(5)

A good way to visualize these metrics is through ROC (Receiver Operating Characteristic) curves.

These graphs are built with recall (also called True Positive Rate for these kinds of graphics) in the y-axis

and False Positive Rate, defined as 𝐹𝑃𝑅 = 𝐹𝑃
𝐹𝑃+𝑇𝑁 , in the x-axis. The graph provides a summary of the

performance of the model and the higher the area under the ROC curve, the better the model.

Regression problems, in which the output variable is numerical and continuous, are more straightfor-

ward for evaluating performance. The models are evaluated based on the distance between the predicted

values and the real values. Several metrics can be calculated, such as SSE (Sum of Square Errors), RMSE

(Root Mean Squared Error), which is the square root of the ratio of SSE and the number of instances; and

MAD (Mean of Absolute Deviation) (equations 6-8) to perform this assessment. For a model to have a

good performance, the closer to zero these metrics are, in theory, the better the model (124;127).

𝑆𝑆𝐸 =
𝑖=1
∑
𝑁

(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖 − 𝐴𝑐𝑡𝑢𝑎𝑙𝑖)2 (6)

𝑅𝑀𝑆𝐸 = √𝑆𝑆𝐸
𝑁 (7)

𝑀𝐴𝐷 = 1
𝑁

𝑖=1
∑
𝑁

|𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖 − 𝐴𝑐𝑡𝑢𝑎𝑙𝑖| (8)

These performances should be handled with care, since underfitting and overfitting can impair mod-

els. Underfitting occurs when the model does not learn the training dataset well and cannot predict the

output correctly, because the training dataset is small or the selected features are not relevant to the



2.7. Machine learning (ML) 30

problem at hand. On the other hand, overfitting happens when the model learns the examples too well,

because there are too many features, or the algorithm is too complex. Methods such as feature selection,

reshaping of the training dataset can help prevent overfitting (124).

Cross-validation, leave-one-out or bootstrap are more robust ways to assess performances. The first

two methods are useful when there are few instances in the training dataset. Cross-validation starts by

dividing the data into several defined parts. The ML algorithm is trained with all subsets except for one,

which will be used in training. This process is repeated for all created subsets, and the performance is

provided by the average of the defined subsets (123;124).

Leave-one-out is similar to cross-validation in every aspect except one. The only difference is that

each training/testing subset is created by assigning only one instance to the test, while the rest of the data

is used in training. Although having a higher computational burden it is useful for smaller datasets. The

performance is also determined by the average of all the subset’s performance (123).

Lastly, bootstrap is more useful for larger datasets. It has the same principle as cross-validation,

but instead of creating subsets without replacement (in cross-validation instances can not be repeated

in different subsets), it can create subsets with repeated instances. It has the advantage of allowing to

have instances that are used in the training algorithms and can be used for testing. The performance is

provided by the average of all the sub-models created (123).

2.7.4 Model optimization

After creating several models, these have to be evaluate, using methods such as the hyperparameter

optimization. All ML algorithms have various parameters that control themodel performance. The objective

of hyperparameter optimization algorithms is to provide a model with parameters that obtain the best

performance for a dataset (123).

An example of a hyperparameter optimization algorithm is the grid-search. Although simple, this

algorithm can be computationally demanding, as it will test every possible combination of the different

parameters and its inputted values. For example, testing an algorithm with two parameters, each with four

possible values will lead to 16 models to analyse (124).
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More efficient methods are available, such as random and bayesian search. Whereas the former’s

parameterization is based on a statistical distribution which defines the number of combinations, the latter

determines parameters based on past evaluations, in which the parameters’ previous assessments are

considered (124).

2.7.5 Model selection

Ensemble learning algorithms are model selection methods that combine several models with low

performance called weak learners, instead of trying to build the best model. Combining multiple learning

algorithms and the results, leads to more robust and better performing models and can reduce overfitting,

rather than just using one algorithm (123).

An example of these ensemble learning algorithms is Bagging. Several weak learners are combined,

receiving equal weight; thus, the final predictions will average of all the model’s predictions. One application

of bagging are Random Forests, that use decision trees as weak learners (123;124). Another ensemble

learning algorithm is boosting, which considers previously built models, by assigning higher weights to

models that perform better, like AdaBoost (123).

2.7.6 Machine learning algorithms

Although several algorithms are available, only the ones considered relevant for this work will be

considered.

SVMs (128) are ML algorithms used for classification or regression problems. SVMs try to find the

hyperplane that better separates two classes. Each new observation is assigned to a class; thus, usually

being used for binary classification (121). A hyperplane will not separate all examples correctly. SVMs

account for a soft margin (possible errors) that go through the hyperplane boundary, which prevent outliers

from building a poor model (129). Another parameter is called kernel function, which is useful for cases

in which the hyperplane is not linear. The most used kernel is Radial Basis Function (RBF) and the most

important parameters are C and gamma that define the hyperplane margin and the points considered

for separation, respectively. A large gamma value can lead to overfitting as all points will be separated
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from the rest. Conversely, small values of gamma might lead to underfitting (124;130), as shown in figure

5.

Figure 5.: Changes in classification of two variables, represented in red and blue, through changes in the values of
C and gamma, parameters for the SVM algorithm. From left to righ, gamma’s value increases; from top
to bottom, the value of C increases. Image extracted from Scikit-learn (130)

KNN (131) is a classification algorithm that bases classification of new examples on their closeness

to classes of the training subset, by calculating distances and assigning the example to the closest class.

Hence, labelled examples for the training dataset, the distance metric and the number of nearest neigh-

bours (k), are required for this algorithm. The higher the value of k, the more classes with single points

will be created. Lower values can lead to misclassification, because of underfitting. There is a need to

balance this k value (121).

Trees (132) use a decision tree structure, in which the nodes have rules, which indicates an example

of what branch it should move. After going through several nodes and branches, the algorithm reaches

the leaves that contain the classification output for that example (123). The most used algorithm is ID3

(Iterative Dichotomiser 3) (132), in which the split of a node does not depend on attributes. Hence, an

optimal solution cannot be reached. The algorithm stops when there are no more attributes to go through,
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the maximum tree depth has been reached, or when all examples have been classified. The larger the

depth of the tree, the higher the likelihood of overfitting (124).

Logistic regression (LR) (133) despite what the name might indicate, is a classification algorithm ap-

plicable to binary problems and can be used in multiple classifications. It uses the sigmoid function for

classification. If one test instance’s output is closer to 0 than 1, it will be classified as 0. The output is a

probability value, ranging from 0 to 1. This calculation is based on linear regression variables, calculated

from the training dataset (123;124).

Artificial Neural Networks (ANN) (134) are inspired by brain neurons. This algorithm is used for clas-

sification or regression problems. An input is passed through multiple connections, each associated with

a weight. Then, a value is calculated with the input values and the weights. This value is applied to an

activation function, in which the output is determined. This activation function can be binary (if the input

value is below a specific number, the function will classify it as 0 or 1), logistic (as explained before),

hyperbolic, among others (121).

ML pipelines were developed in this work to determine existing interactions between phage proteins

and the bacterial receptors. Given the possible application of phages to eliminate bacteria in therapy

or industrial processes, developing a tool to quickly identify phages that target a particular host can be

advantageous. Although such an approach is not new (98;99), it is possible to improve these works by

increasing the number of bacterial hosts and improving datasets. The novelty of this work was to find

relationships and patterns between phage and bacterial strains.



3 Methods

3.1 PhageHost dataset

The target for this study, PhageHost, was defined with phages that infect E. coli, Klebsiella pneu-

moniae and Acinetobacter baumannii, gram-negative bacterial species. A table containing all available

sequenced bacteriophages, for the species defined, was obtained from National Center for Biotechnol-

ogy Information (NCBI) Virus database (84). A comma-separated values (CSV) file (135) with three columns,

phage accession identifier, phage name and bacterial host was retrieved from the database.

Different approaches were followed, to find bacterial hosts for each phage. Initially, the respective

GenBank entry was obtained from the phage identifier (ID) (85). Using Biopython’s Entrez package (136),

the infecting bacteria name was obtained for each phage when available. There was either a ”host” or

”lab_host” feature in the phage’s GenBank entry, that specified this information. The bacteria name would

only be added if the strain was specified. The next step was to search the NCBI nucleotide database for the

bacterial strains associated with each phage (name search), though only for the three bacteria defined

before, excluding contigs, gene sequences, or shotgun sequencing, thus filtering for complete genomes.

Furthermore, the IDs would be automatically added if these contained the strings ”NC_”, ”NZ_”, ”AC_”,

”CP”, ”AE”, ”CY”, ”AP” at the beginning of the ID (based on NCBI handbooks (137;138)). However, this

process was fallible, and a manual check was necessary for dubious cases.

The other method of finding bacteria that possibly interact with phages was to query, for each phage,

all the associated PubMed publications (PubMed search). Another query was performed for each pub-

lication against the nucleotide database, to find related bacteria. With the same rules as before, only

appropriate IDs were selected. From these PubMed articles, a text search was also performed in the

abstracts (abstract search). This search aimed at finding references to strings related to the bacterial

species’ strain specifications.

A search for prophages was performed in bacterial genomes (prophage search). Prophages are

phages that integrate into the bacterial genome (139). Therefore, if a phage sequence is found in a bac-

terial genome, almost certainly the phage will infect that bacteria. Based on this, a BLASTn search was

performed with phage genomes as input against a specific bacterial species (92). Finally, a check on all

34
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the added bacteria was performed by accessing the nucleotide NCBI accession and a manual filter: if any

reference to virus, phage, or unwanted bacterial species was present in the accession title, it would be

removed from the PhageHost dataset.

A method to count the number of bacteria added for the four search methods was implemented. How-

ever, many accesses to the NCBI Entrez services were required, rendering the processes time consuming

and, if the internet connection was unstable, the counting would be halted. Hence, a way of resuming

queries was implemented, though, resuming the counting of bacterial strains was not accounted for. Fur-

thermore, this counting method also accounted for bacteria that were later removed from the PhageHost

dataset.

After the maximum amount of information was extracted, all protein sequences and functions were

extracted and saved in dictionaries, for each phage and bacterium present in the dataset. If protein

sequence information was missing from an organism, the entry would be removed from the PhageHost

dataset.

3.2 Data filtering

With every phage and bacterium associated with its proteome, there was a need to filter more relevant

proteins, to reduce the size and dimensions of the data, and find more relevant ML features. For the

bacteria, the process was simply performed by filtering proteins, considering only external proteins. In

theory, only these could be used for possible phage binding. Finding the type of carbohydrates or capsules

present outside each bacteria was also analysed though not retrieving relevant results. External proteins

were to be filtered using PSORTb (140). However, PSORTb was too slow, and thus all bacterial proteins were

used.

Even though there are several carbohydrate databases available online, no relevant information for

exterior sugars extracted. A capsular database, the E. coli K antigen 3-dimensional structure database

(EK3D) was analysed (141). Databases of bacterial carbohydrates were also explored (Bacterial Carbohy-

drate Structure DataBase (142)) and other more general (GlyTouCan (143), PolysacDB (144), Glycosciences (145)).

Capsular prediction tools, such as Kaptive (146), for K. pneumoniae and A. baumannii, and Serotype-

Finder (147), for E. coli, were also explored, but not implemented in the current work.
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For phages, only phages’ proteins that possibly interact with a host were considered. First, a local

BLASTp was performed, using proteins with annotated functions to create a local database. Hits were

considered significant for e-values lower than one and bit scores of at least 30. These thresholds were

defined based on a manual curation of the query proteins’ attributed functions. In the cases of multiple

hits, the lowest e-value and maximum bit scores were considered. The e-value was set to higher than what

is common for BLAST searches, as an homology search was performed against a small database. Thus,

e-value scoring was not as relevant as the bit score, which provides a normalized result independent of

sequence length (148). From the manual curation, values higher than 30.0 usually indicated proteins with

significant homology.

After this, CD-HITs were performed for all available proteins (149). CD-HIT is used for clustering bio-

logical sequences. The program ran, setting the identity threshold as 90%, which guaranteed that highly

similar proteins are clustered. After the clusters were defined, the annotations would be propagated to

all proteins. CD-HIT was implemented together with BLAST, as it is a different algorithm. Since BLAST

works by comparing a sequence to every other in the database and finds the most similar, CD-HIT instead

creates clusters of similarity. CD-HIT might not group the most similar sequences in the same cluster, but

guarantees that the sequences are significantly similar. Hence, BLAST complements this gap, by finding

the most similar hit for each protein (92;150).

Finally, if unknown proteins were still present, a domain/family search was performed with Inter-

ProScan (151), which retrieves domains from various sources, namely Pfam (152), CDD (153), PROSITE (154),

among others. The e-value threshold was set to 1.0, because the InterPro search retrieves significant

matches and hits from irrelevant databases were removed. A specific protein could be associated with

multiple domains/families. Therefore, manual validation and verification was performed and only relevant

functions were used to attribute functions.

This process is represented in figure 6 and was repeated three times, to ensure a minimal amount

of unknown proteins.

A filtering on known protein functions and domains was performed, to obtain phage tails and proteins

that interact with the host’s receptors. The process was a mix of automatic filtering according to keywords

and manual verification. Words associated with nucleic acid binding, gene regulation, capsid proteins,

lysozyme, amidase were used to filter unwanted proteins. Words associated with tail fibres, tail spikes,
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Figure 6.: Schematic representing the process of finding functions of unknown phage proteins. Starting with unknown
proteins, a local BLASTp was performed and new functions found. Then, all proteins were clustered with
CD-HIT to find additional functions. The remaining unknown proteins were submitted to an InterProScan
search to find functions. This process can be repeated using the remaining unknown proteins.

and host binding proteins were used to filter proteins that potentially bind to host receptors. A complete

list is present in chapter 4.

3.3 Feature construction

After the bacteria and phage data were properly filtered, the best approach for constructing features

relied on sequence information. The sequence information does not limit the dataset, as countless or-

ganisms have the protein sequences described. As explained before, other types of information, namely

structural and carbohydrates, are lacking and would significantly reduce an already small dataset. Fur-

thermore, it is possible to explore protein sequences to obtain satisfactory predictive models (described in

more detail in section 2.6.4).

Before features were calculated, organization is crucial to obtain significant and relevant results. The

objective of PhageHost is to predict phage-host interactions at the strain level. The algorithm’s output as a

strain designation for each phage would be unfeasible, due to the high number of outputs and few training

cases for each strain.

Moreover, this approach is complex in terms of input. Ideally, only phage proteins should be used as

input to predict the bacterial strain. However, such an input does not seem sufficient to classify interactions

with such high specificity, as it would require a much broader training dataset. Boeckaerts (99) resorted to

phage data, however their classification was at species level. In contrast, Leite et al. (98) resorted to both

bacteria and phage data for species-level classification.

Using both phage and bacteria data seems to be the best way to give accurate prediction. Methods

to make a trinary output prediction of ’Yes’, ’No’ and ’Unknown’ were analysed. The positive cases would

be considered the ones identified and present in PhageHost’s dataset (as described in section 3.1), the
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negative cases would be assumed to be pairing phages of one species to bacteria of different species,

assuming that phages do not infect bacteria outside their species range. Usually, phages have narrow

host ranges, rarely infecting hosts outside the defined species, or closely related organisms (155). While

not always correct, it should be a fair assumption to take, since the cases where a phage infect more

than one species are rare. The problem of the trinary output arises for the ’Unknown’ cases. It was

suggested that phages of a given species would be classified as unknown when paired with a host of the

same species, in which a positive interaction was not found. The problem that arises is that phages not

found to have positive prediction, that in reality have, could be classified as unknown, which is not correct,

creating an incorrect bias in predictions. Besides this, if two similar phages grouped with two similar

bacteria, one with demonstrated positive interaction and the other marked as unknown, it would lead to

a similar set of features having two possible outputs, which, in turn would lead to dubious and probably

wrong outputs.

On this note, a binary output, ’Yes’ and ’No’, was selected for the dataset applied to ML. Positive

interactions are found in the PhageHost dataset and negative are as described in the previous paragraph.

For unknown cases (same species interactions with no proven output), no classification was assigned.

Each PhageHost dataset entry would correspond to an interacting or non-interacting pair of a phage and

a bacterium strain.

The next question is how to balance the data, and not have an overrepresentation of either case,

which would lead to a bias towards that response. If this were to happen, the ML model’s fitting could lead

to incorrect predictions. Two datasets were created, one with the approximate same number of positive

and negative outputs and one with three times more positive cases than negative. It was intended to also

create a dataset with three times more negative cases than positive; however, feature calculation time was

extremely lengthy. For the balanced dataset, negative cases were built by randomly assigning 12 bacteria

from the two host species, different from the species it infects. The negative cases were built by pairing

each phage randomly with four different bacteria species.

After building the datasets, features described by Leite et al. (98) were explored. DOMINE was explored

to extract interaction scores for proteins (156), without success. Instead, sequence information features

were explored, such as amino acid frequency, molecular weight, aromaticity, flexibility, all calculated with

Biopython functions (136). Another interesting set of features was calculated with NetSurfP (157), which

allows predicting relative accessible surface areaRSA, with deep learning. If this value was above a certain
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threshold, an amino acid could be considered superficial and possibly involved in binding sites. These

superficial amino acids were characterized and used as ML features. These features were discarded, as

initial results were not adequate.

Different features were then explored. The features described by Wang et al. (120) and in section 3.3

were calculated. According to their dipoles and volumes of side chains, each amino acid is placed in one

of seven groups, first used in the Conjoint Triad (CT) method (158). Sequences are represented as a set of

seven numbers (table 6), and features constructed based on them. A list of all the features is present in

the supplementary table 19.

Table 6.: New classification of amino acids into seven groups based on dipoles and side chains’ volumes.

Group 0 Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

Ala, Gly, Val Cys
Ile, Leu,
Phe, Pro

Tyr, Met,
Thr, Ser

His, Asn,
Gln, Tpr

Arg, Lys Asp, Glu

One of the features, called local descriptor (120), involved dividing the sequence into ten groups, as

shown in figure 7. This method (labelled grouping) was given the name of ’phage_group_X_n’ or ’bacte-

ria_group_X_n’, where X is the letter corresponding to the groups (A-J), and n the amino acid group (0-6).

Relative frequencies of amino acids were obtained for each group and these values were normalized by

the total number of proteins considered for each calculation. For example, for group A, seven features are

calculated, corresponding to the normalized frequency of each amino acid.

Figure 7.: Representation of the local descriptor method, in which a sequence is divided into ten groups. Four of
them (A, B, C, D) represent 25% of the sequence, three of the groups (E, F, G) represent 50% and the other
three (H, I, J) 75% of the sequence.
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Another feature was the composition of the seven amino acid, that involved calculating each amino

acid’s relative frequency. The features for this method (labelled composition) were named ’phage_comp_n’

or ’bacteria_comp_n’, where n is the number of the amino acid (0-6). The values were normalized by a

min-max scaling, before the same normalization performed in grouping. The min-max scaling is presented

in equation 1, in which for a set of frequencies x, each value y is normalized to the minimum and maximum

of the set. Thus all frequencies are within the same range and are easily comparable.

The final set of features added were k-mers, of size two, named ’phage_kmer_n’ where n is a given

k-mer of size two. Counting k-mers involves calculating the frequency of subsequences, in this case, of

size 2, within a sequence. As before, min-max scaling and normalization against the number of proteins

of an organism were performed.

𝑥𝑛𝑜𝑟𝑚 =
𝑥𝑦 − 𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥) (1)

Two datasets were created to be tested with ML algorithms. Both had the same number of positive

cases, the difference being in the number of negatives. One of them had approximately the same number

of negative features as positives and the other had one third of the amount of positives as negatives.

3.4 Machine learning

The train and test datasets were created with 80% of the original dataset, whereas the remaining

20% was available for validation. The test dataset was created with 30% of the available dataset while

the remaining 70% were used for training. These partitions were performed so the output resulted in a

balanced proportion of ’Yes’ and ’No’.

ML algorithms were applied to predict phage-bacteria strain interactions. First, different standard-

ization were tested for one dataset, against five ML algorithms, KNN, random forests (RF), SVM, artificial

neural networks (ANN) and logistic regression (LR). F-scores (equation 4 of section 2.7) were calculated

for the cases of no standardization, standard feature scaling, min-max scaling, maximum absolute value

and normalization. For no standardization unprocessed values were used. For standard scaling, min-max
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scaling, maximum absolute value, equations 2, 3 and 4 were used to calculate new values, where 𝑥 rep-

resents a feature, 𝑥𝑖 a single value. For normalization, new values were calculated allowing the features

to follow a normal distribution.

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 = 𝑥𝑖 − 𝑚𝑒𝑎𝑛(𝑥)
𝑠𝑡𝑑(𝑥) (2)

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 = (𝑥𝑖 − 𝑚𝑖𝑛(𝑥)
𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥)) × (𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥)) + 𝑚𝑖𝑛(𝑥) (3)

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 = 𝑥𝑖 ÷ 𝑚𝑎𝑥(𝑥) (4)

The same five ML algorithms were used to evaluate the created , balanced (same number of positive

and negative cases) and unbalanced (3 times more positives than negatives) datasets, mentioned in

section 3.3. F-scores were calculated and confusion matrices built to understand the performance of the

two datasets better.

Dataset reduction was performed with recursive feature elimination and a five-fold cross-validation,

using RF. Removed features were checked, and the performance of the five ML algorithms assessed, with

a five-fold cross-validation, returning accuracy scores and running time, in seconds. If the running time

was lower, and the score was not significantly different, the reduced dataset was selected for the ML

algorithm.

Hyperparameter tuning was performed for the algorithms, with a grid search five-fold cross-validation,

against a manually defined space of parameters for each algorithm. Thus, the best parameters were

retrieved, and the F-score, MCC (equation 5), precision and recall metrics calculated. Feature importance

was calculated with the parameters for each algorithm, to avoid overfitting. Permutation importance was

calculated, and the features sorted according to their bias towards the model performance.

A method for predicting interactions between a pair of phage and bacteria was implemented, and

the dataset fitted to the ML algorithm. When the phage or bacteria were not available in the dataset, the

proteins were retrieved and filtered, allowing to implement the same features. After the pair contained all

features and was properly standardized, the interaction prediction was performed, with the output being

a simple ’Yes’ or ’No’.
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3.5 Galaxy implementation

A method to apply the studied ML algorithms for prediction was implemented. If either phages or

bacteria were absent from the created dataset, the proteins were retrieved, or imported as a FASTA file.

The filtering was performed with the local known phage protein database by running a BLAST search. An

optional InterProScan was also implemented to complement the BLAST. The same set of features were

calculated and standardized. After selecting the algorithm for prediction, a binary output of ’Yes’ or ’No’

was returned and saved in a tabular format file, TSV.

PhageHost was implemented in the Galaxy platform (159), with the Planemo software (160), to provide

an user-friendly interface, and, is available online at https://galaxy.bio.di.uminho.pt.

https://galaxy.bio.di.uminho.pt 


4 Development

This work was developed in Python 3.8.5 (161), using the Python IDE (integrated development environ-

ment) PyCharm, divided into 6 core scripts, and an extra one for running in Galaxy, as depicted in figure

8. All the code is available at https://gitlab.bio.di.uminho.pt/PedroAraujo/phage_host.

Figure 8.: Schematic representing the workflow and structure of this work.

process_raw_data.py

A file containing phage IDs and respective names was downloaded fromNCBI Virus (84) and processed

with the ”process_raw_data.py” script. This script updated the file, by adding GenBank (162) IDs from

related bacteria. The original file had three columns, phage ID, phage name, and host bacteria name,

labelled as ’Accession’, ’Species’, ’Host’, respectively.

43

https://gitlab.bio.di.uminho.pt/PedroAraujo/phage_host


44

The phage’s GenBank information was accessed, with Entrez functions from Biopython, to complete

the host’s names (136). These allow accessing Entrez Programming Utilities (E-utilities) which facilitate

searching and querying the NCBI (163). If a reference to a ’host’ or ’lab_host’ was present, and the name

present in the file did not have strain information specified, it would be added. A column ’Host_ID’ was

created, to add infecting bacteria IDs that include a list of IDs for each phage.

The script includes three methods. The first uses the ”Entrez.elink” function, to find PubMed publica-

tions (164) associated with the phage ID and, from these publications, another ”elink” search is performed

to find GenBank IDs of bacteria. The second method resorted to the ’Host’ names present, searching

for bacterial IDs through ”Entrez.esearch”. This search was performed specifically for the described or-

ganisms, including keywords, such as ”complete sequence” and excluding keywords such as ”shotgun”,

”phage”, ”cds”, ”gene”.

The final method is similar to the first, as it finds PubMed articles. However, it seeks the abstracts

for bacterial strains. The ”esearch” was set with the same keyword filtering as before.

All three methods automatically added IDs when strings ”NC_”, ”NZ_”, ”AC_”, ”CP”, ”AE”, ”CY”,

”AP” (based on NCBI handbooks (137;138)) were present. However, a manual check was required for the

remaining cases. When a phage entry did not have bacterial strains associated, it would be removed,

providing a CSV file containing ’Accession’, ’Species’, ’Host’ and ’Host_ID’ information.

Finally, a method to check every bacteria ID was implemented, in which an ”Entrez.efetch” was

performed with the ID, returning the respective GenBank entry. Only the description was verified, and if

a reference to the three bacterial species defined (’pneumoniae’, ’coli’, ’baumannii’) was not available, or

the words virus or phage were not present, the bacteria was removed from the dataset.

prophage_finder.py

”prophage_finder.py” was implemented further to complete the CSV with bacteria IDs and positive

cases. It used the Biopython’s BLAST (92) to find potential prophages integrated into bacterial genomes,

”Blast.NCBIWWW”, for querying and ”Blast.NCBIXML”, for processing the output. Phage genomes were

used as input, against a specific bacterial species, and the expected value threshold was set to 10e-5.

Using the JSON package (165), the results were saved as a dictionary, where a bacteria was associated with

a list of phage IDs.
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get_proteins.py

The ”get_proteins.py” script was used to extract phage and bacterial proteomes from the complete

CSV data. Using the ”Entrez.efetch” function, GenBank features were extracted from IDs and a dictionary

created. An organism (phages and bacteria) ID was associated with another dictionary, in which a protein

ID was associated to a list of protein function and sequence. Dictionaries for both types of organisms

were saved with the JSON package, as ”phagesProteins.json”, for phages, and for bacteria the files were

named after their ID. Simultaneously, a FASTA file was created for all phages (”phagesProteins.fasta”).

The FASTA headers contained the organism ID and the protein ID separated with a hyphen, to more easily

identify.

domain_search.py

The script ”domain_search.py” was used to reduce the dimensions of the files and complexity of

the information, by extracting only external proteins of bacteria and tail proteins of phages. The external

proteins were obtained with the dockerized version of PSORTb (140). First, by extracting the pre-computed

results (166) and then performing a local search for the remaining bacteria. The compilation of these outputs

was saved as ”results_psort.faa.out”.

Proteins with unknown function were annotated by three methods, to find phage tails. A local BLAST

database was created with the command ’makeblastdb’ using the proteins with known function. Unknown

proteins were run against this database, with the command ’blastp’ and new functions were attributed

when the e-value was lower than 1.0, and the bit-score was higher than 30.0. CD-HIT clustering (149) was

also implemented, with the command ’cd-hit’ and the threshold set as 90%. If known proteins were clus-

tered with unknown, the function would be propagated, when relevant. For the remaining, an InterProScan

search (151) was performed for domains and families, with the command ’interproscan’ and the outputs

manually processed to filter relevant results.

feature_construction.py

The actual filtering of proteins was implemented in ”feature_construction.py”. The script’s class

constructor filtered bacteria, by reading the ”results_psort.faa.out” and finding proteins classified as ’Out-

erMembrane_Score’ or ’Extracellular_Score’. The matching proteins were saved as ”externalProts.json”,

for easier read in future runs. For phages, a word search was performed for protein functions. Any ref-

erence to ’tail fibre’, ’lyase’, ’sialidase’, or others (full list available in table 7), would be considered a
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Table 7.: List of keywords to filter phage tail proteins. The positive and negative tags mean that if a protein function
contains at least one of the positive words, but does not contain any negative words, it will be considered
a phage tail.

Positive

fiber, fibre, spike, hydrolase, bind, depolymerase, peptidase, lyase, sialidase, dextranase,
lipase, adhesin, baseplate, protein h, recognizing, protein j, protein g, gpe, duf4035, host

specifity, cor protein, specificity, baseplate component, gp38, gp12 tail, receptor,
recognition, tail

Negative

nucle, dna, rna, ligase, transferase, inhibitor, assembly, connect, nudix, atp, nad, transpos,
ntp, molybdenum, hns, gtp, riib, inhibitor, replicat, codon, pyruvate, catalyst, hinge, sheath
completion, head, capsid, tape, tip, strand, matur, portal, terminase, nucl, promot, block,

olfact, wedge, lysozyme, mur, sheat

host binding protein, as proposed by Latka et al. (167) and verified by manual verification of domains and

functions.

After the filtering was performed, the ML datasets were built in the constructor as a pandas dataframe (168).

A line was built for each interacting phage bacteria pair, with the ’Yes’. A phage was paired with twelve ran-

dom bacteria from the two different species for the negative cases, assembling a dataset with a 1:1 ratio of

positive:negative cases. A dataset with a 3:1 ratio was also assembled. Based on the features described

in section 3.3, this script implemented them with the scikit-bio package’s, that facilitated processing se-

quences and calculating frequencies (169). It was used for grouping and composition, to count the frequency

of amino acids’ types with the function ”Sequence.count”. The function ”Sequence.kmer_frequencies”

was used to retrieve k-mer frequencies. The grouping features’ columns were named ’phage_group_X_n’

or ’bacteria_group_X_n’, the composition columns were named ’phage_comp_n’ or ’bacteria_comp_n’

and the k-mers columns ’phage_kmer_n’ or ’bacteria_kmer_n’. The values were calculated for all fea-

tures, and included in the dataset, in the column identifying the feature. The pandas dataframes were

saved with the pickle package, and named ”FeatureDataset” and ”FeatureDataset_3_1”.

machine_learning.py

The ”machine_learning.py” script initiates by importing the ”FeatureDataset” file and, with scikit-

learn (170), it executes every process required to create and evaluate ML models. All scoring metrics under-

mentioned were calculated with scikit-learn’s ”metrics” functions, such as ”accuracy_score”, ”f1_score”,

”precision_score”, ”recall_score”, ”matthews_corrcoef” and ”confusion_matrix”. The five ML algorithms

were used for all methods described below, with scikit-learn’s ”neighbors.KNeighborsClassifier”, for KNN,
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”svm.LinearSVC” for SVM, ”ensemble.RandomForestClassifier” for random forests, ”neural_network.MLPClassifier”

for artificial neural networks and ”linear_model.Logistic Regression” for logistic regression.

First, the data was standardized with ”preprocessing” functions, like ”StandardScaler”, ”MinMaxS-

caler”, ”MaxAbsScaler” and ”Normalizer”. The dataset was divided into validation, training and test, with

the ”model_selection.train_test_split” method. The scoring metrics were calculated with training and test-

ing datasets to determine the most appropriate standardization techniques for subsequent analysis.

Performance of the two datasets created, ”FeatureDataset” and ”FeatureDataset_3_1” was calcu-

lated. Using the same five ML algorithms, and the training and testing datasets, F-score and confusion

matrices were calculated. Once again the best performing dataframe was selected for analysis.

A feature reduction was performed with ”feature_selection.RFECV”, with five fold cross-validation

and RF. A reduced dataset, ”dataset_reduced”, was created and saved as a pandas dataframe. The

reduced and the full dataset, were used to perform five fold cross-validation for all ML algorithms, with

”model_selection. StratifiedKFold”. The execution time of the cross-validation was measured, with the time

package, as well as the accuracy. For each ML algorithm, the selected dataset had the best compromise

between execution time and accuracy.

Every ML algorithm hyperparameters were tunned with ”model_selection.GridSearchCV”, using a

manually defined space of parameters, against the validation dataset, returning optimal parameters. F-

score, MCC, precision and recall were calculated, to evaluate performance and a ”inspection.permutation_importance”

function was used to avoid overfitting. Ideally, no feature would have greater importance than others.

If either the phage or bacteria were not present, their proteomes would be retrieved and filtered

through processes similarly described for ”domain_search.py” and ”feature_construction.py” to predict

interactions between phage-bacteria pairs. The first step was calculating the input pair’s features, as de-

scribed before, for ”feature_construction.py”. The scaler used in the constructor was used to standardize

the features, with ”preprocessing.StandardScaler”, was saved and used here. Then, a simple ”predict”

function was applied to the constructed models and the predictions were outputted.

run_galaxy.py

This script implements methods of protein retrieval, filtering and prediction of interaction, based on

previously described methods. Regarding input, the algorithm supports either a list of NCBI IDs or a FASTA



48

file, containing a single organism’s proteome. If the IDs are present in the locally created dataset, these are

imported with the JSON package; otherwise, Biopython’s ”Bio.Entrez” package is used to retrieve protein

sequences from GenBank entries.

Initially, the phage’s proteome is filtered by creating a local database with previously predicted and

known protein functions, using the comand ’makeblastdb’. The ’blastp’ command is run for the phage

proteomes, against this protein database, assigning new functions. Although optional, an InterProScan

search, ’interproscan’ can also be run to complement the local BLAST.

The phage tails are filtered using the strings present in table 7. Subsequently, the prediction is

implemented by importing methods from ”feature_construction.py”. The entries are processed and stan-

dardized with NumPy and scikit-learn’s ”preprocessing.StandardScaler”. Finally, the appropriate ML algo-

rithm is imported, the dataset created from previous scripts fitted, and the entries’ output predicted, with

scikit-learn.

This script is called when running the tool through Galaxy, assisted by an XML (Extensible Markup Lan-

guage) file, ”run_galaxy.xml”, which allows the user to easily define inputs and retrieving outputs.



5 Results and Discussion

5.1 Finding phage-bacteria interacting pairs

The table obtained from NCBI Virus (15/12/2020) included 2953 phages infecting the three defined

species (2350 of E. coli, 210 of A. baumannii and 393 of K. pneumoniae). After running the methods

described in section 3.1, 960 phages were associated with at least one bacterial strain. The number

of phages removed, 1993, indicates that there is still a considerable number of viruses that need to be

studied and characterized. PhageHost’s dataset contained 857 phages of E. coli, 26 of A. baumannii

and 77 of K. pneumoniae. This disparity could lead to a serious unbalancing in the machine learning

models. However, this will be discussed in a further section.

A total of 1990 different bacteria were found for the 960 phages. The much higher number of bacteria

than phages is expected, as phages interact with multiple bacterial strains. The bacterial strains include

1350 E. coli, 195 A. baumannii and 449 K. pneumoniae bacteria. Looking at these numbers and

comparing with the number of phages, the two underrepresented phages have a relatively higher number

of bacteria. While E. coli have, on average 1.6 bacteria per phage, A. baumannii and K. pneumoniae

have an average of 7.5 and 5.8 bacteria per phage, respectively. Figure 9 shows that, E. coli has a higher

frequency of phages that infect a low number of bacterial strains, whereas, for the other two species, a

higher frequency of phages infect multiple bacterial strains. This distribution can slightly help dealing with

the unbalancing of the data.

Counting the number of bacterial strains added with the methods described in section 3.1, was only

possible for the name search method, since this was the fastest process, requiring less queries to the

servers. The number of added bacteria strains was 2266 and, since the PhageHost dataset accounted

for 2150 bacterial strains, it confirms that the current implementation of counting added strains will not

produce meaningful results. A simultaneous search and removal method must be constructed to know

objectively how many bacterial strains are added for each method.

These methods have issues that need to be addressed and considered before moving forward. The

name search method retrieves bacterial strains that theoretically are infected by a given phage, while in

reality this could be false. For the abstract search, it is not guaranteed that a strain mentioned in the

49
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Figure 9.: Frequencies of strains for each phage, (A) E. coli, (B) A. baumannii and (C) K. pneumoniae. In each
graphic, in the x axis, the number of strains for each phage is represented, and in the y axis, the frequency
of the occurence of each number.

article is positively related to a phage. It is possible that a strain is mentioned for cases of non-interaction.

Prophage search could find integrated prophages, but because of mutations, currently the phage is not

able to infect the bacteria strain.

Nonetheless, a novel unique dataset, PhageHost, containing sequenced phages and interacting

sequenced bacterial strains was created. This dataset is available at https://nextcloud.bio.di.uminho.pt/

s/xE9zTD8dW4WZFZx, with the name ”NCBI_Phage_Bacteria_Data.csv”.

Comparing PhageHost with other databases, the Virus-Host Database (81), despite having 4014 se-

quenced phages, only seldom does this database specifies the strain. It has the disadvantage of mostly

conveying bacterial species information. Furthermore, it only contains 344 Escherichia phages, 53 Acine-

tobacter phages and 108 Klebsiella. PhageReceptor (82) has the advantage of providing a high-quality

database for experimentally proven phage receptors; however, it does not specify host strain. It contains

https://nextcloud.bio.di.uminho.pt/s/xE9zTD8dW4WZFZx
https://nextcloud.bio.di.uminho.pt/s/xE9zTD8dW4WZFZx
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information for 107 E. coli phages, three A. baumannii and one K. pneumoniae. This database’s appli-

cability is that, for each phage, it would be possible to identify the receptor and, more importantly, hosts

holding that receptor. This is feasible for proteins, as bacterial strains can have fully sequence genomes

and protein information available. However, for carbohydrates such information is harder to obtain, as

discussed in the next section. The PhagesDB although containing a plethora of information, it does not

provide information on the target species of PhageHost’s dataset.

More information could be extracted from online catalogues of bacteriophages, in which, bacterio-

phages are available, with known hosts described. A couple of examples include the DSMZ collection (171)

and ATCC collection (172). It would be possible to extract this information and determine if the phages and

the hosts are sequenced. However, this was not performed because organism sequence information was

not readily available and a query for the species’ strains was required in most cases.

5.2 Constructing and filtering bacterial data

As explained in section 3.2, external carbohydrates and capsules for each bacteria were sought. Sev-

eral carbohydrate databases were explored, since the GenBank accessions and other tools did not provide

this information. The EK3D (141) contains several structures and chemical formulas of E. coli capsules, as

well as proteins involved in their formation. However, it is not possible to retrieve any strain information,

and perhaps a manual check might be required. Similar proteins could be sought in PhageHost’s dataset;

however, the only information provided is related to the capsular group rather than to specific capsule

types.

For the Bacterial Carbohydrate Structure DataBase (142), although providing more information on

organisms and strains, a manual verification on the information extracted from scientific articles was

required. Even though PolysacDB (144) is well organized and has relevant information, it contains few entries.

GlyTouCan (143) and Glycosciences.de (145) only contain carbohydrate structures. Furthermore, even if these

structures could be retrieved and associated with the correct strain, it would add the complexity of trying to

find a way of integrating these into ML models into this work. Several works described interactions between

proteins and carbohydrates using tridimensional protein structures to feed the ML models, as described

in section 2.6.4.
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Knowledge of the carbohydrates that phages target could provide better insight into phage-host range.

If it is experimentally proven that a phage interacts with a certain capsular type, this phage can likely interact

with every bacteria possessing it. PhageHost’s dataset, from the previous section, could be expanded and

completed with this information. Furthermore, even though protein-carbohydrate interactions are the most

common way of phage adsorption, it does not represent every case.

Another way for phages to interact with bacteria is through their external proteins. Hence, a simple

method to predict external bacterial proteins for every bacteria was implemented with PSORTb (140). The

purpose was to input all the proteins into a FASTA file and process the output. Due to the web service’s file

size limitations, a local Dockerized version of PSORTb was used. Pre-computed results and division of the

files into smaller parts were used in order to reduce the data’s dimensions; yet no output was obtained.

Therefore, all the bacterial proteins are being used to calculate the features to be used in ML, making

the feature calculation process more lengthy and resource consuming. The protein filtering would reduce

run costs, and it would theoretically improve the features, as processing all proteins may introduce a bias

due to non-binding proteins. Filtering for external proteins would attenuate this bias. Although not all are

involved in binding, most unwanted proteins would have been removed.

5.3 Constructing and filtering phage data

The methods for finding phage proteins functions, described in section 3.2, reduced the number of

unknown proteins. Instead of the 960 phages present in PhageHost’s dataset, 974 phages were used in

the protein function database. Hence, a larger database of phage proteins functions was built, giving it

more examples and more confidence. It would also be possible to increase the size of this database, by

adding phages not present in the PhageHost dataset.

Finally, phage tails were filtered. From the initial protein database, of 974 phages, 6 phages with

no tail or spike proteins were identified. Of these, five were non-tailed phages and the only tailed phage

had no identified tail/spike proteins. The former, belonged to filamentous or capsular families of phages,

Inoviridae and Leviviridae and did not possess these proteins (13;14). This result indicates that the process

of finding protein functions was successful, as organisms that were not supposed to have tails or spikes

did not contain them. However, it is noteworthy that non-tailed phages were included in this dataset, as
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references to tail spikes were found and considered for host binding. Over 300 phages belonging to the

Microviridae family are present in the dataset, because, although not tailed, all have spikes. Furthermore,

a file containing the functions of tail proteins was created to evaluate tail filtering. Overall the algorithm

seemed to only filter proteins relevant as tails or receptor binding proteins, from a more manual curation.

Moreover, tails were identified for tailed phages, while for non-Caudovirales phages, only spikes were

identified, indicating that this method and the created phage tail database have promising results, since

they can identify each type of protein correctly.

The phage protein database with known function is available at https://nextcloud.bio.di.uminho.pt/

s/xE9zTD8dW4WZFZx, with the name ”phagesProteins.json”

5.4 Feature exploration and construction

Regarding data balancing, not to have an overrepresentation of either positive or negative case, which

would lead to a bias towards that response, two datasets were constructed, balanced and unbalanced. The

total number of positive interactions obtained was 12673, which, must remain unchanged regardless of

the chosen dataset size. The balanced dataset had the same approximate number of positive and negative

outputs and the unbalanced had three times more positive cases than negative. It was intended to also

create a dataset with three times more negative cases than positive; however, feature calculation time

was extremely lengthy. The balanced dataset had 11314 negative interactions and the unbalanced had

3954.

The features described by Wang et al. (120) and in section 3.3 were used. In total, for each pair,

252 features were created, plus one for the output, 140 for grouping (10 groups×7 aa×2 organisms), 14

for composition (7 aa×2 organisms) and 98 for k-mers (49 k-mers×2 organisms). Although providing

good results (discussed in the next section), all these calculations were very time-consuming. For the

balanced dataset, all the calculations took more than two entire days to finish executing (Windows Subsys-

tem for Linux, Windows 10 Pro 64-bits, AMD Ryzen™5 1400, 8,00GB RAM, NVIDIA GeForce®GTX 1650).

Increasing the dataset would aggravate the situation; thus a dataset with more negative cases was not

constructed.

https://nextcloud.bio.di.uminho.pt/s/xE9zTD8dW4WZFZx
https://nextcloud.bio.di.uminho.pt/s/xE9zTD8dW4WZFZx
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5.5 Machine learning performance

After the datasets were constructed and completed with the features, these were tested in ML algo-

rithms. Five models were used, based on the significance to the problem at hand. KNN, RF, SVM, ANN

and LR. These were the algorithms used for other similar works and are default when it comes to ML.

As this problem is binary, SVM and LR were used, as these were originally designed for these problems.

As for KNN and ANN, these provide different ways of looking at data and finding patterns, besides being

commonly used for ML problems. Finally, RF was used because it is an ensemble method, which should

theoretically perform well and avoid overfitting.

5.5.1 Dataset standardization

After the dataset was properly divided into training, testing and validation sets, the first analysis

performed was on the type of standardization and its influence on the performance of ML models. Data

standardization is important for algorithms that predict outputs, based on distances between points or

trends in datasets. KNN, for instance, relies on distance between points, to attribute these to different

clusters. SVM tries to separate the points with a hyperplane, thus depending on distances. In ANN,

generally, standardization should be performed, to prevent the algorithm learning from a single feature

with a high range of values, merely because it was not standardized.

Therefore, four data standardization approaches were explored, standard, MinMax, maximum abso-

lute value scaling and normalization. Besides being compared to one another, these were compared model

performance-wise for the unstandardized dataset. The results for the five ML algorithms are present in

table 8, as F-scores. Standard scaling of the dataset led to better predictive power, with maximum absolute

value scaling close behind, more significant for ANN and LR. As expected, no standardization led to worse

results, as well as normalization, for SVM, ANN and LR. This might happen because with normalization,

features with high variability will still display it. These features are not standardized to be in accordance

with the remaining.

Between the different ML algorithms effects of different standardization techniques are also evident.

The algorithms dependent on standardization for model performance were highly influenced: SVM and
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Table 8.: Performance of standardization techniques with five ML algorithms. The scores are given as F-scores.

Model
Standard None

(F-score)
StandardScale
(F-score)

MinMaxScale
(F-score)

MaxAbsScale
(F-score)

Normalize
(F-score)

KNN 0.9551 0.9615 0.9529 0.9549 0.9606
RF 0.9848 0.9870 0.9848 0.9857 0.9791
SVM 0.8266 0.8963 0.8912 0.8978 0.7660
ANN 0.9356 0.9801 0.9288 0.9412 0.9181
LR 0.7327 0.8972 0.8607 0.8775 0.5924

Table 9.: Performance of the two datasets created, balanced and unbalanced, with five ML algorithms. The scores
are given as F-scores.

Dataset
KNN

(F-score)
RF (F-score)

SVM
(F-score)

ANN
(F-score)

LR (F-score)

Balanced
(1:1)

0.9620 0.9867 0.8816 0.9748 0.8813

Unbalanced
(3:1)

0.8515 0.9376 0.6220 0.9064 0.6179

ANN perform significantly worse when no standardization is applied, as well as LR. The method that was

less affected was RF, as it is not as dependent on standardization os data. In the end, using standard

scaling led to better results for the ML models. Therefore, it was selected for all analyses.

5.5.2 Assessing the number of negative cases

The two datasets created, balanced and unbalanced, were tested, to verify the best ratio of posi-

tive:negative cases, for the five algorithms. The goal was to evaluate the two datasets and not to compare

the algorithms. Theoretically, however, a model will perform worse in an unbalanced dataset, as these

are unable to learn the data properly. For instance, underfitting, in which the algorithm generalizes the

data and leads to poor models. Prediction results for both datasets are presented in table 9. For a more

thorough look at dataset’s performance, confusion matrices were built, providing further insight into the

predictions, as shown in tables 10 and 11 for the unbalanced dataset, and tables 12 and 13 for the

balanced dataset.

From the results in table 9, it is clear that the unbalanced dataset had a worse performance for every

model produced. The only model that obtains a somewhat acceptable performance is the RF. Likewise,

ANN, has interesting results as it relies on feedback to improve predictions. The remaining methods
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Table 10.: Confusion matrices for the unbalanced dataset, for two ML algorithms, KNN and RF.
KNN RF

Real
Pred

Positive Negative Total
Real

Pred
Positive Negative Total

Positive 3051 64 3115 Positive 3079 36 3115
Negative 192 734 926 Negative 77 849 926
Total 3243 798 Total 3156 885

Table 11.: Confusion matrices for the unbalanced dataset, for two ML algorithms, ANN and LR.
ANN LR

Real
Pred

Positive Negative Total
Real

Pred
Positive Negative Total

Positive 3077 38 3115 Positive 3012 103 3115
Negative 127 799 926 Negative 466 460 926
Total 3204 837 Total 3478 563

Table 12.: Confusion matrices for the balanced dataset, for two ML algorithms, KNN and RF.
KNN RF

Real
Pred

Positive Negative Total
Real

Pred
Positive Negative Total

Positive 2931 80 3011 Positive 2963 48 3011
Negative 148 2598 2746 Negative 61 2685 2746
Total 3079 2678 Total 3024 2733

Table 13.: Confusion matrices for the balanced dataset, for two ML algorithms, ANN and LR.
ANN LR

Real
Pred

Positive Negative Total
Real

Pred
Positive Negative Total

Positive 2917 94 3011 Positive 2700 311 3011
Negative 72 2674 2746 Negative 345 2401 2746
Total 2989 2768 Total 3045 2712
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perform rather poorly, since they can not correctly learn from the data and, thus, are unable to separate

the two classes correctly.

When performing an overall analysis of the confusion matrices for the unbalanced dataset, a high

number of negative values are incorrectly classified as positive (false positives). Perhaps the higher weight

these have during the learning phase, leads to a bias in the learning towards the positive cases, which

could be considered underfitting, as the models are too simple and unable to discern the data.

As for the confusion matrices for the balanced datasets, it is perceptible that the ML models perform

better than for the unbalanced datasets. The number of false positives or false negatives is significantly

lower, and the total number of positives and negatives predicted is close to the real values, indicating that

it was able to learn the data. Hence, this dataset is more appropriate to use than the unbalanced. It would

be interesting to explore another dataset, containing more negative cases, than positives, and determine

if the data would lead to better models.

5.5.3 Feature selection

Feature selection for the balanced dataset was performed with RF, the best performing algorithm from

previous analyses. A total of 66 features were removed, leaving the reduced dataset with 186 features.

A list of the removed features is present in supplementary table 20, in which, 32 features were related

to phages and the remaining 34 were related to bacterial features, indicating that, overall, the dataset is

well balanced. Regarding the three different types of features (grouping, composition and k-mers), for

grouping, 20 out of 140 features were removed (ratio of 0.143). For composition, 2 out of 14 were

removed (ratio of 0.143). Finally, for k-mers, 44 of 98 were removed (ratio of 0.449).

It seems that k-mers are not as relevant for the ML. Looking at k-mers for the different organisms,

19 of the removed k-mers were for phages and 25 for bacteria. Features for an organism do not seem

less relevant than the other. It would be interesting to confirm wether changing the size of k-mers from two

to three would lead to more relevant features. However, as mentioned in section 5.4, the time to calculate

all the features was more than two days, with 252 features. Using k-mers of size three, k-mer features

would increase from 98 to 686, which would exponentially increase run time for calculations. Therefore,

this was not performed.
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The reduced dataset was compared with the complete, using five-fold cross-validation, for all five

ML models, measuring classification accuracy, and time to run, reaching a compromise between model

performance and running time. The results are present in table 14. Regarding the best performing

models, KNN, RF and ANN, feature selection led to somewhat better performances, while the time to run

was significantly reduced, especially for KNN and RF. Whereas for the remaining two models, SVM and LR,

classification performance was worse with the reduced dataset, though time differences were negligible.

Therefore, for KNN, RF and ANN the reduced dataset will be used for further analyses, while SVM and LR

models, will use the complete dataset.

Table 14.: Effect of feature selection on the performance of the dataset. The scores are provided as classification
accuracies and time, in seconds.

Dataset Metric KNN RF SVM ANN LR
Accuracy 0.9677 0.9863 0.8911 0.9734 0.8920

Complete
Time (s) 81.73 235.53 7.67 175.75 5.91
Accuracy 0.9696 0.9873 0.8733 0.9745 0.8764

Reduced
Time (s) 63.61 205.09 5.91 166.82 5.03

5.5.4 Hyperparameter tuning

Hyperparameter tuning was performed with grid search against defined space of possibilities. The

parameters that provided the best ML models were obtained, and different performance metrics, that help

evaluate performance with greater detail. All these informations are present in table 15. Furthermore,

feature importance was evaluated, with permutation importance, to determine wether the good model

fitness is due to overfitting the data.

Overall, comparing the F-scores in this table with table 14, shows that the worse performing models,

SVM and LR obtained better results. For the remaining models, no significant differences in performance

were found. The results are not exactly the same as before, as the training, testing and validation datasets

are built randomly, which confirms the results and quality of the predictive models.

The better performing models are RF and ANN, both having similar metrics overall. The model with

worse metrics is LR.

Feature importance was explored, to prevent overfitting. If a set of features is given a high importance,

then the model is dependent on these features, learning them too well. For RF and KNN, no features highly
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Table 15.: Hyperparameter tuning on the five ML models. A list of the best parameters for each model are present,
as well as detailed scoring metrics.

Model Hyperparameters F-score MCC Precision Recall

KNN
’algorithm’: ’auto’, ’leaf_size’: 5,

’n_neighbors’: 2, ’p’: 1, ’weights’: ’distance’
0.9657 0.9281 0.9562 0.9753

RF
bootstrap’: False, ’criterion’: ’gini’,

’min_samples_leaf’: 2, ’min_samples_split’:
4, ’n_estimators’: 200, ’oob_score’: False

0.9834 0.9656 0.9812 0.9858

SVM
’C’: 10, ’degree’: 2, ’gamma’: ’auto’,

’kernel’: ’rbf’
0.9572 0.9092 0.9477 0.9669

ANN
’activation’: ’tanh’, ’alpha’: 0,0001,

’hidden_layer_sizes’: 200, ’learning_rate’:
’adaptive’, ’solver’: ’adam’

0.9828 0.9634 0.9780 0.9877

LR ’C’: 10, ’penalty’: ’l2’, ’solver’: ’liblinear’ 0.9111 0.8138 0.9143 0.9079

influenced the model’s decision making, while on SVM and ANN some features were more determining

than others, although not significantly. LR here also performed the worse out of every model, with eleven

features that influenced the output, present in supplementary table 21.

5.5.5 Overall model performance

The best performing model is RF, because of the performance after hyperparameter optimization and

since it has no bias in the features. These results can be compared with the works, of Leite et al. (98) and

Boeckaerts (99). Since the positive cases are built from the same species interactions and negatives are

built from different species, this classification is similar to these works. Although the models developed

in PhageHost can predict species interactions, they can predict strain level interactions as well. Hence,

the scoring allows determining wether host species are correctly classified and compare these with the

published works.

PhageHost’s best performing model vastly outperforms the best model from Boeckaerts (99). How-

ever, PhageHost’s model requires two inputs, a phage and a host, while Boeckaerts’s model only requires

a phage input. Furthermore, the PhageHost model only requires protein information, being thus sim-

pler.

Leite et al. (98) also use both phage and host data, to predict interactions, though only at species level.

The immediate advantage of PhageHost is that it can to predict interactions at strain level, since it was
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trained with that specificity. Furthermore, the way Leite et al. (98) built the dataset, leads to unbalancing

and classifications may seem better than they actually are. The features are quite simple and do not rely

on filtering, which might make sense in species classification scope. Their data was also trained with a

small number of bacteria, leading to more bias. Their best model performance is similar to PhageHost’s

best model, although the mentioned problems may be falsely improving classification accuracy.

PhageHost’s models were tested by predicting infection of phages against bacteria. This test ran

only for examples present in the dataset with no output predicted, to decrease running time. For example,

an E. coli phage tested against E. coli hosts should not classify every entry as a positive interaction.

Furthermore, interactions with the other two host’s species should lead to negative outputs, for most

cases. Nonetheless, should positive interactions be predicted, it would be interesting to have a more

detailed look into that pair.

Three tables were built, for interaction of three phages from different species, against seven bacterial

strains, for each species, to evaluate the model’s performance applied to specific cases. Tables 16, 17

and 18 detail interactions between phages and E. coli, A. baumannii and K. pneumoniae bacteria,

respectively.

For E. coli bacteria, table 16, predictions seem reasonable for the E. coli phage, as not all are clas-

sified as having positive interactions. Hence, the model seems to differentiate between strains. However,

when looking at the other two phages, some unexpected positive interactions were found, likely associated

with the random assembly of the negative cases in the PhageHost dataset. Perhaps if more negative

cases were considered that included A. baumannii and K. pneumoniae phages, the model could have

better predictions. Instead, since few positive and negative interactions are present for the two species,

predictive power is not as great as for E. coli phages, which is the most represented in the dataset.

As for A. baumannii bacteria, table 17, the same unexpected predictions occur for the E. coli phage.

Since A. baumannii is the least represented in the dataset, it could explain these results, as the model may

not be able to learn from such few examples. In the case of K. pneumoniae, the predictions seem correct,

indicating that negative cases were well balanced between k. pneumoniae bacteria and A. baumannii

phages. The A. baumannii shows every single interaction as positive, which may be due to the lack of

variety in the dataset, as well as the fact that almost every A. baumannii phage was found to infect several

bacteria.
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Table 16.: Example of three phages from each species and predicted interactions with E. coli host strains.
NC_007414 (E.
coli O157:H7
EDL933)

MK033499 (E.
coli C600)

CP032679 (E.
coli K-12
MG1655)

NC_013008
(E. coli O157:H7

TW14359)

NC_023323
(E. coli ACN001)

NC_050154
(Escherichia
phage)

Yes Yes Yes Yes No

NC_047817
(Klebsiella
phage)

No Yes No No Yes

NC_041915
(Acinetobacter

phage)
Yes No Yes Yes No

Table 17.: Example of three phages from each species and predicted interactions with A. baumannii host strains.
NC_010606
(A. baumannii

ACICU)

NZ_LN865143
(A. baumannii
CIP70.10)

CP053100 (A.
baumannii
ATCC 17978)

CP050911 (A.
baumannii
DT-Ab020)

NZ_KP890934
(A. baumannii

BM2686)

NC_006877
(A. baumannii

pMAC)

NC_050154
(Escherichia
phage)

Yes Yes Yes Yes Yes Yes

NC_047817
(Klebsiella
phage)

No No No No No No

NC_041915
(Acinetobacter

phage)
Yes Yes Yes Yes Yes Yes

Finally, K. pneumoniae bacteria, table 18 seem to have very good predictive results. This example

shows no infection of phages from different species, while predictions for the K. pneumoniae phage

seem to differentiate between strains. An explanation for this, could be that the negative cases were well

balanced for K. pneumoniae phages, while the number of positive cases are significant enough to make

predictions.

Overall, further study is required on the balance of the negative interactions. Due to a lapse, negative

phages’ interactions were built only with K. pneumoniae bacteria, for E. coli and A. baumannii phages,

while K. pneumoniae phages are only paired with E. coli bacteria. This should explain these results,

which are visibly worse for A. baumannii phages.

Ideally, phage-bacteria should be balanced. Each one should be paired with bacteria from the other

two species. However, the proportion still requires further studying. The question that arises is whether



5.6. Galaxy implementation 62

Table 18.: Example of three phages from each species and predicted interactions with K. pneumoniae host strains.

JN420336 (K.
pneumoniae
pNDM-MAR)

NZ_KY271406
(K.

pneumoniae
H150820806)

MG288678
(K.

pneumoniae
F160070)

MF510496
(K.

pneumoniae
SCKP-LL83)

CP034200
(K.

pneumoniae
KpvST383)

HG918041 (K.
pneumoniae

Kp15)

NC_050154
(Escherichia
phage)

No No No No No No

NC_047817
(Klebsiella
phage)

Yes Yes No Yes Yes Yes

NC_041915
(Acinetobacter

phage)
No No No No No No

A. baumannii phages would require more negative interactions, or if the same proportion should be

maintained, to avoid bias towards negative prediction.

Furthermore, for E. coli phages, another pertinent question is how many bacteria from the other

two species should be used for negative interactions. PhageHost does not seem able to classify all K.

pneumoniae bacteria as negative, indicating that a higher proportion is necessary. Such bias is perhaps

associated with the greater number of E. coli examples in the positive dataset.

5.6 Galaxy implementation

Finally, PhageHost was implemented in Galaxy (https://galaxy.bio.di.uminho.pt), an intuitive soft-

ware that allows users to define the inputs for the prediction easily. PhageHost is depicted in figure 10,

accepts NCBI IDs, or FASTA files as inputs, for both phage and bacteria. If the inputs are FASTA files, it

only accepts one organism, with the FASTA having protein information for that organism. Otherwise, IDs

are recommended as input, as these allow extracting more information, from the GenBank accession, and

allow multiple inputs for one organism type, for example, it accepts one phage input and several bacteria,

and vice-versa, though it is not possible to input more than one ID for phages and bacteria at the same

time, also represented in figure 10.

The tool has two advanced options. Performing an InterProScan search is optional, as it is quite

demanding and time-consuming. If left off, tail functions will be sought against the locally created phage

https://galaxy.bio.di.uminho.pt
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tail database (mentioned in section 5.3). Performing the InterProScan search should complete missing

protein functions and is recommended when FASTA input is used for the phage.

The default ML model to perform the prediction is the RF model, that obtained the best predictive

power. An option to perform prediction with the SVM model is also available, to theoretically reduce run

times. However, it is highly recommended to use the first option.

Figure 10.: Galaxy interface of the PhageHostPrediction tool. Example of inputs are provided, along their organization.

The output, is returned in a tabular format (TSV) in which the first column contains the phage-bacteria

pair, separated by ’-’, and the second column contains the prediction result, a simple ’Yes’, for positive

predictions and ’No’ for the negative. An example of an output from the tool is present in figure 11.

According to several tests, eight interactions take between 2 to 3 minutes to calculate and generate the

output. The output can also be downloaded as a TSV file. A small help section is available for easier

understanding of the modus operandi.
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Figure 11.: Output results of an example of a PhageHostPrediction instance. The output is provided in a tabular, TSV
format.



6 Conclusions and future work

Overall, a pipeline implementing protein data filtering and extraction and a phage-host prediction

method, PhageHost, was developed in this work. Several metrics were tested and better predictive

power was obtained, compared to similar works, while also having the ability to predict strain-level in-

teractions.

The first major result obtained from this work was a dataset of predicted positive interactions between

phages and bacteria, at strain level, which has never been performed before with this level of detail.

Previous databases only described interactions at species level, or described only phage binding receptors.

This work managed to develop a dataset of 960 phages with bacterial hosts fully described, for the three

species proposed, E. coli, K. pneumoniae and A. baumannii, and could be expanded to other species,

through the methods and scripts developed.

Although innovative, this dataset is not perfect. It is not guaranteed that searching the article’s ab-

stract will always find positive interaction cases. There could be situations in which a bacteria is mentioned

for a phage, but as a negative infection case. For example, improvements could be made with @Note,

which would allow for a more rigorous verification of even the whole article, if available, and implementing

queries that automatically update the PhageHost dataset. Other methods/databases that identify phage

receptors could be used to find bacteria and increase the interaction dataset, as described in sections 2.6

and 3.2. The dataset should also be updated, often, by checking the NCBI Virus website for updates, or

using other phage information sources. Inconsistencies are also present in this database, for instance,

entries (phage or bacteria) with different IDs, that correspond to the same genome. A manual verifica-

tion for this is not feasible, due to the of the data’s high dimensionality, though it could be verified with

programmatic access.

Another important result from this work is constructing a phage protein database, containing more

than 960 examples of phages with tails identified. Besides providing information on phage tails, it also

contains several other proteins with different functions. It can be used as a basis to find protein functions

for related organisms. The main purpose of this database was to find phage tails through a similarity

search. Possible improvements to this database, could be to include structural information. However is

not feasible as of now, due to the low number of structures available. This purpose could be achieved by
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predicting proteins’ structural features and finding fingerprints for tails, adding another level of complexity

however, due to the high number of predictions involved.

Two ML datasets were obtained, each with 252 features. The best predictive ML model had a MCC

score of 96.6% and F-score of 98%. These results are better than previous works, either sequence-based,

such as the works from Leite et al. (98), Boeckaerts (99) or genome-based, such as Edwards et al. (87), Villar-

roel et al. (94), Gałan et al. (95), Wang et al. (96) and Zhang et al. (97) described, while having the capability

of making predictions at bacterial strain level.

Pre-processing the dataset, found that using a standard scaler on the dataset leads to better predictive

power for all models. Analyzing the number of negative cases, showed that the dataset with more negative

cases produced significantly better results. More negative cases should be tested in the future, to improve

the data balance. Feature selection reduced the number of features in the dataset to 186, a reduction of

66 features. Finally, hyperparameter tuning was performed and the best predictive models were found with

the optimal parameters. Two ML models were implemented into a Galaxy instance, named PhageHost,

available online. The more accurate and slightly slower RF model, and the less accurate but slightly faster

SVM model, were implemented.

These models need improvements, especially by balancing the dataset’s negative cases, to balance

species such as A. baumannii representation. Nonetheless, innovative predictive results were obtained,

when finding host strains for E. coli and K. pneumoniae phages. A different set of features could also

be explored, for instance, by using k-mers of size three, which might represent the protein sequences

better. Using NetSurfP could also lead to interesting features, since it would enable the characterization

of superficial amino acids, possibly involved in binding.

The main objectives proposed in this thesis were achieved. An interaction database for phage-host,

was obtained from different sources. A method to predict and classify phage tails was provided, with a

protein database created for 674 phages. Machine learning models were developed and implemented

online, for prediction of phage-host interactions at strain level.
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A Supporting material

The following tables contain features present in the PhageHost dataset, described in section 3.3. The
last numbers in each represent the amino acid groups (from table 6), whereas the first and second strings
indicate the organism and method to calculate the features. This way, ”bact_groupA_0”, for instance,
is the frequency of the amino acid ”0” in group ”A”, of bacterial proteins, whereas ”phage_kmer_12”
represents the frequency of the k-mer ”12” for phage proteins.

Table 19.: Complete list of features calculated as described in section 3.3.
bact_groupA_0 phage_groupA_0 bact_groupB_0 phage_groupB_0 bact_groupC_0
phage_groupC_0 bact_groupD_0 phage_groupD_0 bact_groupE_0 phage_groupE_0
bact_groupF_0 phage_groupF_0 bact_groupG_0 phage_groupG_0 bact_groupH_0
phage_groupH_0 bact_groupI_0 phage_groupI_0 bact_groupJ_0 phage_groupJ_0
bact_groupA_1 phage_groupA_1 bact_groupB_1 phage_groupB_1 bact_groupC_1
phage_groupC_1 bact_groupD_1 phage_groupD_1 bact_groupE_1 phage_groupE_1
bact_groupF_1 phage_groupF_1 bact_groupG_1 phage_groupG_1 bact_groupH_1
phage_groupH_1 bact_groupI_1 phage_groupI_1 bact_groupJ_1 phage_groupJ_1
bact_groupA_2 phage_groupA_2 bact_groupB_2 phage_groupB_2 bact_groupC_2
phage_groupC_2 bact_groupD_2 phage_groupD_2 bact_groupE_2 phage_groupE_2
bact_groupF_2 phage_groupF_2 bact_groupG_2 phage_groupG_2 bact_groupH_2
phage_groupH_2 bact_groupI_2 phage_groupI_2 bact_groupJ_2 phage_groupJ_2
bact_groupA_3 phage_groupA_3 bact_groupB_3 phage_groupB_3 bact_groupC_3
phage_groupC_3 bact_groupD_3 phage_groupD_3 bact_groupE_3 phage_groupE_3
bact_groupF_3 phage_groupF_3 bact_groupG_3 phage_groupG_3 bact_groupH_3
phage_groupH_3 bact_groupI_3 phage_groupI_3 bact_groupJ_3 phage_groupJ_3
bact_groupA_4 phage_groupA_4 bact_groupB_4 phage_groupB_4 bact_groupC_4
phage_groupC_4 bact_groupD_4 phage_groupD_4 bact_groupE_4 phage_groupE_4
bact_groupF_4 phage_groupF_4 bact_groupG_4 phage_groupG_4 bact_groupH_4
phage_groupH_4 bact_groupI_4 phage_groupI_4 bact_groupJ_4 phage_groupJ_4
bact_groupA_5 phage_groupA_5 bact_groupB_5 phage_groupB_5 bact_groupC_5
phage_groupC_5 bact_groupD_5 phage_groupD_5 bact_groupE_5 phage_groupE_5
bact_groupF_5 phage_groupF_5 bact_groupG_5 phage_groupG_5 bact_groupH_5
phage_groupH_5 bact_groupI_5 phage_groupI_5 bact_groupJ_5 phage_groupJ_5
bact_groupA_6 phage_groupA_6 bact_groupB_6 phage_groupB_6 bact_groupC_6
phage_groupC_6 bact_groupD_6 phage_groupD_6 bact_groupE_6 phage_groupE_6
bact_groupF_6 phage_groupF_6 bact_groupG_6 phage_groupG_6 bact_groupH_6
phage_groupH_6 bact_groupI_6 phage_groupI_6 bact_groupJ_6 phage_groupJ_6
bact_comp_0 phage_comp_0 bact_comp_1 phage_comp_1 bact_comp_2
phage_comp_2 bact_comp_3 phage_comp_3 bact_comp_4 phage_comp_4
bact_comp_5 phage_comp_5 bact_comp_6 phage_comp_6 phage_kmer_00
bact_kmer_00 phage_kmer_01 bact_kmer_01 phage_kmer_02 bact_kmer_02
phage_kmer_03 bact_kmer_03 phage_kmer_04 bact_kmer_04 phage_kmer_05
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Table 19: continued from previous page
bact_kmer_05 phage_kmer_06 bact_kmer_06 phage_kmer_10 bact_kmer_10
phage_kmer_11 bact_kmer_11 phage_kmer_12 bact_kmer_12 phage_kmer_13
bact_kmer_13 phage_kmer_14 bact_kmer_14 phage_kmer_15 bact_kmer_15
phage_kmer_16 bact_kmer_16 phage_kmer_20 bact_kmer_20 phage_kmer_21
bact_kmer_21 phage_kmer_22 bact_kmer_22 phage_kmer_23 bact_kmer_23
phage_kmer_24 bact_kmer_24 phage_kmer_25 bact_kmer_25 phage_kmer_26
bact_kmer_26 phage_kmer_30 bact_kmer_30 phage_kmer_31 bact_kmer_31
phage_kmer_32 bact_kmer_32 phage_kmer_33 bact_kmer_33 phage_kmer_34
bact_kmer_34 phage_kmer_35 bact_kmer_35 phage_kmer_36 bact_kmer_36
phage_kmer_40 bact_kmer_40 phage_kmer_41 bact_kmer_41 phage_kmer_42
bact_kmer_42 phage_kmer_43 bact_kmer_43 phage_kmer_44 bact_kmer_44
phage_kmer_45 bact_kmer_45 phage_kmer_46 bact_kmer_46 phage_kmer_50
bact_kmer_50 phage_kmer_51 bact_kmer_51 phage_kmer_52 bact_kmer_52
phage_kmer_53 bact_kmer_53 phage_kmer_54 bact_kmer_54 phage_kmer_55
bact_kmer_55 phage_kmer_56 bact_kmer_56 phage_kmer_60 bact_kmer_60
phage_kmer_61 bact_kmer_61 phage_kmer_62 bact_kmer_62 phage_kmer_63
bact_kmer_63 phage_kmer_64 bact_kmer_64 phage_kmer_65 bact_kmer_65
phage_kmer_66 bact_kmer_66

Table 20.: List of removed features, with recursive feature elimination. To better understand the meaning of each
feature, their calculation is described in section 3.3.

phage_groupB_0 phage_groupD_0 phage_groupE_0 phage_groupF_0 bact_groupC_1

bact_groupE_1 bact_groupG_1 bact_groupH_1 bact_groupJ_1 bact_groupB_2

phage_groupC_2 bact_groupG_2 phage_groupG_2 phage_groupA_3 phage_groupC_3

phage_groupG_3 phage_groupH_3 phage_groupJ_3 bact_groupC_5 bact_groupB_6

phage_comp_0 phage_comp_5 phage_kmer_00 bact_kmer_00 bact_kmer_01

bact_kmer_02 phage_kmer_03 bact_kmer_03 bact_kmer_04 bact_kmer_05

bact_kmer_10 phage_kmer_11 bact_kmer_12 phage_kmer_14 phage_kmer_15

phage_kmer_16 phage_kmer_20 bact_kmer_20 bact_kmer_21 phage_kmer_22

bact_kmer_22 phage_kmer_24 bact_kmer_25 phage_kmer_26 phage_kmer_30

bact_kmer_30 bact_kmer_32 phage_kmer_33 bact_kmer_33 phage_kmer_35

bact_kmer_35 bact_kmer_36 phage_kmer_40 phage_kmer_41 phage_kmer_43

bact_kmer_43 bact_kmer_45 bact_kmer_46 bact_kmer_50 phage_kmer_51

phage_kmer_53 bact_kmer_54 bact_kmer_55 phage_kmer_56 bact_kmer_63

bact_kmer_66
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Table 21.: List of features that highly influence outputs for the LR model. They are given in order of importance, from
the most to the least important. Only significative features are present (above 0.1 importance).

bact_kmer_25 bact_kmer_32 bact_kmer_50 bact_kmer_22 bact_kmer_65 bact_kmer_60
bact_kmer_02 bact_groupJ_1 bact_kmer_42 bact_kmer_24 bact_kmer_03
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