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frente.

Ao Nuno, Rui e Tiago deixo um enorme abraço por terem enchido os meus anos em Braga
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A B S T R A C T

The (re-)construction of Genome-Scale Metabolic (GSM) models is highly dependent on
biochemical databases. In fact, the biochemical data within these databases is limited, lacking,
most of the times, in structurally defined compounds’ representations. In order to circumvent
this limitation, compounds are frequently represented by their generic version. Lipids are
paradigmatic cases: given that a multitude of lipid species can occur in nature, not only is
their storage in databases hampered, but also their integration into GSM models. Accordingly,
converting one lipid version, in GSM models, into another can be tricky, as these compounds
possess side chains that are likely to be transferred all across their biosynthetic network.
Hence, converting a lipid implies that all its precursors have to be converted as well, requiring
information on lipid specificity and biosynthetic context.

The present work represents a strategy to tackle this issue. Biochemical cOmplex data
Integration in Metabolic Models at Genome scale (BOIMMG)’s pipeline encompasses the
integration and processing of biochemical data from different sources, aiming at expanding the
current knowledge in lipid biosynthesis, and its integration in GSM models.

Generic reactions retrieved from MetaCyc were handled and transformed into reactions with
structurally defined lipid species. More than 30 generic reactions were fully (and 27 partially)
characterized, allowing to predict over 30000 new lipid structures and their biosynthetic context.

The integration of BOIMMG’s data into GSM models was conducted for electron-transfer
quinones, glycerolipids, and phospholipids metabolism. The validation accounted on the
comparison of models with different versions of these metabolites. BOIMMG’s conversion
modules were applied to Escherichia coli’s iJR904 model [1], generating 53 more matching lipids
and 38 more matching reactions with iJR904 model’s iteration iAF1260b [2, 3], in which the
conversion was performed and curated manually.

To the best of our knowledge, BOIMMG’s database is the only with biosynthetic information
regarding structurally defined lipids. Moreover, there is no other state-of-the-art tool capable
of automatically generating complex lipid-specific networks.

Keywords: Genome-Scale Metabolic models, Biochemistry, Lipid metabolism, Biosynthesis,
Bioinformatics, Chemoinformatics

v



R E S U M O

A reconstrução de modelos metabólicos à escala genómica (GSM na lı́ngua inglesa) depende
grandemente da informação bioquı́mica presente em bases de dados. De facto, esta informação
é muitas vezes limitada, podendo não conter representações de compostos estruturalmente
definidos. Como tentativa de contornar esta limitação, os compostos quı́micos são frequente-
mente representados pela sua representação genérica. Os lı́pidos são casos paradigmáticos,
dado que uma multitude de diferentes espécies quı́micas de lı́pidos ocorrem na natureza, difi-
cultando o seu armazenamento em bases de dados, assim como a sua integração em modelos
GSM. Desta forma, o processo de converter lı́pidos de uma versão genérica para uma versão
estruturalmente definida não é trivial, dado que estes compostos possuem cadeias laterais que
são transferidas ao longo das suas vias de biossı́ntese. Consequentemente, essa conversão
implica que todos os precursores desses lı́pidos também sejam convertidos, requerendo haver
informação relativa a lı́pidos especı́ficos e às suas relações biossintéticas.

O presente trabalho representa uma estratégia para resolver esse problema. A pipeline do
software desenvolvido no âmbito deste trabalho, Biochemical cOmplex dataIntegration in Metabolic
Models at Genome scale (BOIMMG), engloba a integração e processamento de dados bioquı́micos
de diferentes fontes, visando a expansão do conhecimento atual na biossı́ntese de lı́pidos, assim
como a sua integração em modelos GSM.

Relativamente à segunda fase, reações genéricas extraı́das da base de dados MetaCyc foram
processadas e transformadas em reações com lı́pidos estruturalmente definidos. Mais de 30

reações genéricas foram completamente (e 27 parcialmente) caracterizadas, permitindo prever
mais de 30000 novas estruturas de lı́pidos, assim como os seus contextos biossintéticos.

A integração dos dados nos modelos GSM foi conduzido para o metabolismo das quinonas
transportadoras de eletrões, glicerolı́pidos e fosfolı́pidos. A validação teve em conta a
comparação entre modelos com diferentes versões destes metabolitos. Os módulos de con-
versão do BOIMMG foram aplicados ao modelo iJR904 de Escherichia coli [1], gerando mais
53 lı́pidos e 38 reações que se encontram no modelo iAF1260b [2, 3], uma iteração do modelo
iJR904 cuja conversão de lı́pidos se procedeu manualmente.

A base de dados gerada pelo método BOIMMG é a única que contém informação biossintética
relata a lı́pidos estruturalmente definidos. Adicionalmente, BOIMMG é uma ferramenta única
que permite gerar redes complexas de lı́pidos automaticamente.

Palavras-Chave: Modelos Metabólicos à Escala Genómica, Bioquı́mica, Gap-filling, Ontolo-
gias
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1

I N T R O D U C T I O N

1.1 Context and Motivation

The study of biological systems as a whole by accounting the interactions between all the
parts is dubbed as Systems Biology. In fact, those entire systems represent a paraphernalia of
data that needs to be summarized and contextualized. Correspondingly, the reconstruction of
biomolecular networks as mathematical models is oftentimes employed as means to compile
genomic, biochemical and physiological knowledge [4].

The inexorable emergence of high-throughput sequencing techniques allowed the generation
of the so-called omics data, leading to an increasing number of sequenced genomes [5] and
available biochemical data. Therefore, the development of metabolic models at genome-scale
has been facilitated, over the years. As a consequence, GSM models have eventually arisen
as tools used for a deeper and faster comprehension of living organisms’ metabolism. These
computational tools have been guiding metabolic engineering towards the improvement of cell
factories, attempting to drive more flux into the production of value added compounds [6, 7].

As useful as these models can be, their reconstruction is limited by the biochemical set present
in conventionally used databases. Complex macromolecules’s metabolism is simplistically
represented by their generic version, as biochemical data sources lack in specificity and
structurally defined compounds. Accordingly, lipid representation is a paradigmatic case.
Considering that each subclass is composed by a multitude of combinations of fatty acids,
long chain alcohols or even repeating isoprene units, their representation in GSM models is
often generic. In turn, it is expected that these models do not account on the individual lipid
distribution for each subclass [7]. Moreover, they will not be able to capture the complex
topology of lipid biosynthesis network, making it harder to represent and flexibly manipulate
a given model’s lipid metabolism.

Therefore, it becomes imperative to create a resource that could automatically revise lipid
metabolism in GSM models, accelerating their reconstruction and, at the same time, ensure lipid
specificity. Correspondingly, being able to rapidly predict the lipid and fatty acid distribution
in genetically and environmentally perturbed biological systems would be relevant.

The development of such tool requires the integration of lipid specific information and gen-
eration of valuable biochemical knowledge capable of capturing the biosynthetic relationships
between lipids. Although other online resources such as LIPID MAPS [8] and SwissLipids
(SLM) [9] represent valuable and useful contributions to the field, they lack in biosynthetic

1



1.2. Objectives 2

information. Moreover, to the best of our knowledge, there is no automatic computational tool
that integrates specific lipid information in GSM models without using experimental data.

1.2 Objectives

The main goal of the present work was to develop a chemo- and bioinformatics tool able
to generate relevant biochemical information and to ensure its integration in GSM models.
Such tool must be capable of capturing relevant biosynthetic relationships between lipids, by
generating annotated functional and structural relationships in a graph database. Then, lipid
representation in GSM models is to be revised automatically, using the previously generated
information. Accordingly, the representation of electron-transfer quinones, phospholipids and
glycerolipids will be revised in Escherichia coli, Saccharomyces cerevisiae model, and validated
against another model of E. coli with lipid specificity.

Given this aim, the following objectives were specified

• Generate structural hierarchies and biosynthetic relationships for electron-transfer quinones
(semi-automatically);

• Integrate and generate structural hierarchies and biosynthetic relationships for several
types of lipids (automatically);

• Develop new bioinformatics tools capable of revising the lipids representation (automati-
cally);

• Test the developed tools in different GSM models, in order to validate the present work;

• Implement a user-friendly web-service both to navigate in the database and revise the
compounds representation in GSM models.

Firstly, the structural hierarchies and biosynthetic relationships will be generated and
integrated using the chemoinformatics tool rdkit (https://www.rdkit.org/), consulting the
available information regarding lipid species. Moreover, information present in SLM [9],
LMSD [10] and ModelSEED [11] is aimed to be extracted and integrated. Furthermore, this
information will be stored and handled in a graph database using Neo4j database management
system (https://neo4j.com/). Moreover, a bioinformatics tool is aimed to be developed on top
of COBRApy [12] to revise the lipid metabolism in GSM models. For this task, information
retrieved from the previously implemented database will be used.

Finally, the web-service will be developed using Django (https://www.djangoproject.com/)
and Flask (https://flask.palletsprojects.com/) frameworks. This web project and the afore-
mentioned tool are to be compiled in Docker (https://www.docker.com/) containers along
with their dependencies and requirements.

https://www.rdkit.org/
https://neo4j.com/
https://www.djangoproject.com/
https://flask.palletsprojects.com/
https://www.docker.com/
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1.3 Document organization

Chapter 2 - State of the art

This chapter aims at contextualizing the present work by describing and combining concepts
in GSM modelling, chemoinformatics, and lipid’s computational representation.

• Section 2.1 contextualizes the field of study of the present work.

• Section 2.2 describes fundamental concepts in GSM modelling, main reconstruction and
simulation tools, as well as the applications of GSM models.

• Section 2.3 enumerates the main types of chemical representations, ending with the
description of the chemoinformatics tool rdkit.

• Section 2.4 briefly describes and compares the state-of-the-art databases and online
resources regarding relevant biochemical information. Herein, the computational repre-
sentations of compounds available in each database are enumerated.

• Section 2.5 relates basic information about the main lipid classes with their computational
representation.

• Section 2.6. enumerates fundamental considerations about the representation of com-
pounds in GSM models. Furthermore, it explains and analyses the advantages and
disadvantages of state-of-the-art tools regarding this issue.

• Section 2.7. justifies the usage of a graph database in the present work, as well as briefly
describes Neo4j database management system.

Chapter 3 - BOIMMG framework

This chapter’s main goal is the thorough description of all the processes, algorithms, and
definitions.

• Section 3.1 starts by presenting formal notations and biochemical definitions to be utilized
in the following sections.

• Section 3.2 describes processes regarding the data integration.

• Section 3.3 describes methods and algorithms regarding knowledge expansion.

• Section 3.4 describes software architecture and integrated methods regarding BOIMMG’s
data integration in GSM models.

• Section 3.5 enumerates all the definitions and methods of evaluation and validation of
both knowledge expansion, and BOIMMG’s data integration in GSM models.
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• Section 3.6 describes the web-service implementation.

Chapter 4 - Results and discussion

The results of each stage of BOIMMG’s pipeline are shown, described and discussed in chapter
4.

• Section 4.1 delivers results on the extraction and integration of lipid data from several
sources.

• Section 4.2, general statistics are enumerated, described, and analysed.

• Section 4.3 shows and describes the knowledge expansion stage results regarding the
relationships’ aptitude to generate new reactions.

• Section 4.4 thoroughly presents and analyses the results concerning BOIMMG’s data
integration in GSM models.

• Section 4.5 contains illustrations on how to use the web-service.

Chapter 5 - Conclusion

The last chapter summarizes the present work, enumerates future perspectives and includes
this work’s scientific outcomes.



2

S TAT E O F T H E A RT

2.1 Computational Systems Biology

2.1.1 Emergence of Systems Biology

During the 20
th century, molecular biology relied upon reductionist approaches [13], based

on the idea that the whole could be explained by the accurate understanding of the separate
parts. The prevailing reductionist mindset led to one of the most remarkable scientific break-
throughs of human history: the Watson and Crick’s discovery of Deoxyribose Nucleic Acid
(DNA) structure [14]. More than 20 years later, DNA sequencing methods appeared such as
Maxam–Gilbert’s and Sanger’s [15, 16], being dubbed as the first generation of sequencing
techniques [17]. At the turn of the century, the first genomes were fully sequenced, including
human’s [18]. Later on, high-throughput sequencing techniques started to emerge. As this
novel technologies were quite more fast and automated than its predecessors [17], it did not
take long until big amounts of the so-called omics data were generated.

These high-throughput sequencing technologies, also known as Next Generation Sequencing
(NGS), drove biology into a paradigm shift. Although the prevailing approaches allowed big
steps towards the understanding of biological components, it turned out to be insufficient when
it came to comprehend systems as a whole. Biological systems are complex and its components
are multifuncional, diverse, and their interaction is usually selective and nonlinear. Accordingly,
evolution managed to create a whole set of interactions between system’s components. From
cells to ecological webs, the interpretation of those complex entities should adopt integrative
and system-level approaches. [19]

2.1.2 Systems Biology

Systems Biology is an emergent field that aims at the better understanding of biological
systems in an integrative manner, rather than only entirely focused on the system’s components
separately. To achieve such goal, several efforts in different scientific fields have had to
converge. Molecular biology, computer science, genetics and so forth are examples of fields
whose contributions have helped to converge into a better comprehension of biological systems.

5
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According to Kitano [20], there are four domains of learning when it comes to accomplish this
goal.

• System’s Structure: the understanding of structural relationships between components
as well as the interpretation of the quantitative data related to those. This information can
range from regulatory relationships between genes to the organism physical structure.

• System’s Dynamics or System’s Behaviour: the comprehension of systems’ behaviour
over time, given a set of conditions.

• Control Methods: the deeper understanding of mechanisms that manage the system’s
state. For instance, mechanisms underlying the cell cycle.

• Design Method: the development of new ways to design and change biological systems
aiming at its properties improvement.

A common practice in biology is the adoption of hierarchical thinking for biomolecules. For
instance, amino acids are the building blocks for larger molecules like peptides, then, together,
they form polipeptide chains, secondary structures and so forth. Correspondingly, genome-
scale networks must not deviate from this practice [4]. Reactions must be the irreducible
components, which, along with others, combine into modules and form metabolic pathways
[4].

The ultimate goal of Systems Biology is the full understanding of biological entities. Such
objective would be accomplished with a combination of both computational and experimental
approaches [19].

2.2 Metabolic Modelling

2.2.1 Genome-Scale Metabolic modelling

Although the first GSM model was reconstructed in 1999 [21], the dawn of metabolic
modelling had occurred years before. Yet, these models were biochemically limited and did not
resort to genome-wide information. The advent of several online databases and bioinformatics
resources made it easier to access NGS outputs and analyse them, as well. Consequently, along
with the increasing number of sequenced genomes, GSM modelling also picked up the pace
(http://darwin.di.uminho.pt/models, http://bigg.ucsd.edu/models) for both eukaryotic and
prokaryotic organisms.

GSM models compile Biochemical, Genetic, and Genomic (BiGG) [22] knowledge. They have
been relevant in the better and faster comprehension of metabolic networks, over the last 20

years. Models such as these must rely on several principles [4]:

• Equations must be formulated for all chemical reactions taking place in the cell.

• Experimental data and annotated genome sequences must be combined.

http://darwin.di.uminho.pt/models
http://bigg.ucsd.edu/models
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• Cell’s functions are subjected to constraints (physico-chemical, topological, environmental
and regulatory);

• Cells have different behaviours in different environments.

• Mass conservation law must be applied. Chemical equations can be set in a stoichiometric
matrix (S) and fluxes of each reaction can be put in a vector (v). So, applying the mass
conservation law, the linear equation S · v = 0 can define the steady states of a given
system.

• Cells are subjected to selective pressure. Objective functions can be defined in order to
find optimal states under a given environment and genetic perturbations.

Concerning this principles, a protocol was developed by Thiele and Palsson in order to
produce high-quality GSM models [23].

The first two stages focus on the generation of a Genome-Scale Metabolic Reconstruction
(GENRE), whereas the last two stages are focused on the conversion of the GENRE into a
mathematical model, its evaluation, and refinement.

The first main stage is the creation of the draft reconstruction. Such process includes the
search for genes related to different metabolic functions (metabolic genes). Accordingly, it can
be operated by identifying biochemical reactions in databases, literature and in the annotated
genome (see Figure 1). [23–27]

The following stage is the manual reconstruction refinement [23, 28], where one must
check whether there is missing and incorrect information in the reconstructed network [24].
Accordingly, an evaluation is performed and several information is collected. Then, the
refinement is conducted as well as the reconstruction assembly, adopting a pathway-by-pathway
approach [23]. Such modus operandi could be helpful to identify missing gene annotations and
additional reactions as well. Useful information is nonetheless gleaned: substrate and co-factor
usage, reactions’ stoichiometry, directionality, compartmentalization as well as energy and
growth requirements [23, 27]. Also, gene-protein-reaction (GPR) associations and the biomass
composition are determined [27].

The next step encompasses the conversion from a reconstructed network into a mathematical
model [23, 28]. At this stage, a stoichiometric matrix S is defined, where the columns correspond
to the reactions and the rows correspond to the metabolites. Once the S matrix is defined,
the systems boundaries have to be determined [23]. Then, an objective function is set and
constraints ought to be added to the model by accounting on specific media conditions [28].
The outcome from this stage is a condition-specific and computable model that is, desirably,
saved in Systems Biology Markup Language (SBML) format [29].

Finally, the fourth stage is the in silico network verification, evaluation and validation [23,
28]. At this stage, gap-filling is performed, the stoichiometrically balanced cycles are identified
and, desirably, eliminated [23]. Furthermore, the production of biomass precursors is tested,
reactions not carrying flux are identified and other simulations for phenotypic predictions take
place. Experimental data is then used to validate the results [25, 28].



2.2. Metabolic Modelling 8

The reconstruction of GSM models is an iterative process. Thus, arriving at the fourth stage
does not mean that the process is over. Correspondingly, the process continues on and on, until
a desirable model is achieved (regarding the expert purpose and scope). [23, 28]

Figure 1: Reconstructed process of GSM models. Adapted from [25]. The GPR associations scheme was taken
from [30] and reaction set taken from merlin 4.0

2.2.2 Reconstruction tools

The reconstruction of GSM models involves strenuous efforts and time-consuming processes
[28]. Hence, in the last 15 years, several computational tools were developed in order to assist
such a laborious task (see Table 1).

The computational tools enumerated in Table 1 assist and automate several steps on the
reconstruction of GSM models. All these tools are able to generate a draft reconstruction,
however, FAME (2012) is not able to assist the model reconstruction for microorganisms
which are not in KEGG [39]. In fact, CarveMe (2018), Model SEED version 2.2 and Pathway
Tools version 22.0 have great performance in the draft reconstruction [28]. As for the manual
refinement stage, merlin version 4.0 provides a suitable interface to perform it [25].

2.2.3 Simulation and phenotype prediction methods

At the end of the third phase of the reconstruction process, one would have a well defined
mathematical model. This model is represented by a stoichiometric matrix in which the
constraints (substrate availability, uptake rate, secretion rate, etc) of the network are defined.
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Table 1: Computational tools that ease the reconstruction of GSM models

Tool Type Associated databases Reactions inferred from Reference

AuReMe Command-
line

BiGG, MetaCyc Template models [31]

CarveMe Command-
line

BiGG Template model [32]

AutoKEGGRec Command-
line

KEGG Database [33]

CoReCo Command-
line

KEGG Database [26]

RAVEN Command-
line

KEGG, MetaCyc Database and template
models

[34]

merlin Standalone KEGG MetaCyc, UniPro-
tKB, TCDB

Database [25]

Pathway Tools Standalone MetaCyc and PGDB Database [35]
MetaDraft Standalone BiGG Template model [36]
MEMOSys Web service KEGG, Uniprot, ChEBI Template models [37]
Model SEED Web service Model SEED Template model [38]
FAME Web service KEGG Database [39]
KBase Web service KEGG BiGG and Meta-

Cyc
Database [40]

Moreover, a steady state is considered, so that the amount of a given compound being produced
is equal to the amount consumed. Ultimately, the constraints and compound balances impose a
specific space of flux distributions. In other words, an interval of consumption and production
rates is defined for every metabolite taking place in every reaction of the network. [41]

The space of flux distributions represents itself potential physiological states [42]. These
states can be simulated and predicted as well. For that, the following in silico approaches can
be employed.

• Flux Balance Analysis (FBA) - This approach is underlain by the mass balances and steady-
state growth assumption. Additionally, a linear objective function is defined. Generically,
FBA computes the way how the fluxes must be balanced towards the achievement of
an optimal homeostatic state [42], using a Linear Programming (LP) approach on the
optimization process.

• pFBA - This is a parsimonious version of FBA where two LP optimizations are per-
formed. An optimization to maximize (or minimize) the objective function and another
to minimize the sum of the fluxes [43].

• Flux Variability Analysis (FVA) - Rather than identifying all the optimal solutions, this
approach aims at the estimation of the flux variability within a specific solution. This is
an LP-based approach that operates from alternate optimal solutions. Using one of those
solutions, each reaction is subsequently minimized and maximized in order to estimate
the range of flux variability [44].
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• Minimization of Metabolic Adjustment (MOMA) - This approach aims at the determina-
tion of the flux distribution of mutants, using Quadratic Programming (QP). Considering
gene deletion constraints, MOMA minimizes the distance between the wild-type’s point
and the mutant’s in the flux space. Although suboptimal for the mutant, the solution
generated by MOMA is the closest to the wild-type optimal state [45].

• Regulatory On/Off Minimization of metabolic fluxes (ROOM) - By using Mixed-Integer
Linear Programming (MILP), this approach aims at predicting the metabolic steady-state
after gene knockouts. ROOM minimizes the number of flux changes and tries to maintain
flux linearity. Furthermore, as for gene knockouts, ROOM tries to redirect metabolic flux
to short alternative pathways in order to soften the gene knockout effect. [46]

Indeed, the afore mentioned approaches reveal to be very useful for the fourth stage of
the GSM model reconstruction. The applications of such techniques encompasses knockout
simulations, genotype-phenotype predictions in different growth environments, iterative model
improvement and discovery of regulatory interactions. Also, gap-filling can be performed by
using some of these methods, allowing one to discover ”dead-end” metabolites, new metabolic
reactions and functions. [42]

2.2.4 COBRApy

COnstraints-Based Reconstruction and Analysis (COBRA) for python, also known as
COBRApy [12] is a python package that includes the great majority of COBRA methods [47].
It relies on the object oriented programming paradigm to represent the main components of
complex metabolic networks such as metabolites, reactions, and genes.

It includes methods that allow reading, manipulating and exporting an altered model. The
compatible formats for GSM model files are tab-separated values (TSV), SBML, and MatLab
format. Model manipulation includes adding, modifying or removing metabolites, reactions,
genes and so forth. This is particularly useful for those interested in developing software
packages that modify GSM models.

The metabolite object includes relevant properties for model mapping and integration. These
can be the name of the metabolite, its formula, charge, or annotations. The metabolite’s
annotations are substantially useful when it comes to mapping the model and revising the
compounds’ representation. In turn, this property includes cross-references, and information
related to the compound chemical structure.

Finally, COBRApy gathers a group of methods to simulate, analyse and even gap-fill the
metabolic network.
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2.2.5 Applications of GSM models

At first, GSM models were built aiming at the deeper and faster comprehension of an organ-
ism metabolism concerning its genetics. However, other applications have arisen, eventually.
Their applications encompass the guidance of Metabolic Engineering (ME), the contextualiza-
tion of omics data, network property discovery and multi-species relationships [6].

Figure 2: Applications of GSM models. Adapted from [6]

Genome-scale approaches can guide ME towards the production of desirable compounds
and strain optimization (Figure 2A). Small scale approaches were traditionally employed by
ME to achieve such aims [6]. Yet, metabolic networks are complex and so is the interaction
between their components. Metabolic reactions are controlled by several mechanisms and
layers of regulation, making the prediction of certain metabolic outcomes difficult to perform.
Hence, a systems-wide tool like GSM models can guide ME into the identification of targets for
genetic and environmental alterations [48]. Besides, it can save time by minimizing the number
of experimental attempts to achieve optimal phenotypes and outputs [48].

High-throughput techniques generate high amounts of omics data. GSM models can be
useful to organize, and to put these data into the context of the whole system (Figure 2B).
Moreover, this data can be converted into constraints, since they represent the organism’s
physiological states under certain environmental circumstances [6, 48]. Correspondingly, the
range of solutions in the flux distribution can be narrowed [48]. In a way, GSM models can be
completed by omics data. Simultaneously, these data, which are oftentimes noisy, incomplete
and complex, can be contextualized by GSM models.

Other important contributions of GSM models encompass both discovery of network prop-
erties (Figure 2C) and multi-species’s relationships (Figure 2D). From the existence of loops
to pathway redundancy, multiple discoveries of network properties were driven by the usage
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and analysis of GSM models [6]. Also, by analysing the model of a pathogen, one can predict
essential genes and metabolites for drug targeting [49].

2.3 Computational Representation of Compounds

2.3.1 Background

Molecules and atoms have been depicted since the early 1800s. It started in 1808 with
the first scientific description of the atomic theory by John Dalton. Back then, he filled his
publications with the first symbols of atoms and molecules [50]. Later, the so-called chemical
formula was proposed by Berzelius as a way of representing the relative numbers of atoms
in a compound. This was the first chemical representation suitable to be typed in a text body.
The following two centuries were gifted by several breakthroughs that allowed the better
understanding of chemical structures and properties.

So, generically, it can be stated that a chemical compound is a substance with two or more
atoms of different types linked by chemical bonds and held in a well defined stoichiometry. The
atoms are arranged spatially in different manners. This relative arrangement of the constituent
atoms, along with the electronic structure, define the chemical structure of the compound. [51]

The representation of chemical compounds relies on the chemical structure, the type of
atoms and/or even on their chemical properties. [52]

The advent of methods such as crystallography, Nuclear Magnetic Resonance (NMR) and
Computer-Assisted Structure Elucidation (CASE) enabled the better and large-scale description
of molecular structures [52]. As a result of those advances, more complex molecular structures
had been identified. As a consequence, conventional methods of naming compounds (system-
atic chemical nomenclature) started to become unsuitable for such complexity since the names
generated by those were often long and complex [53].

Chemical graph formalism

From a computational perspective, chemical structures can be represented as graphs, where
the atoms are the nodes and the bonds are the edges. These graphs are undirected and labeled,
since bonds have no direction and the nodes are labeled with the atom symbol. Moreover,
concerning that two atoms can have more than one bond linking them, analogously, two nodes
can have more than two edges between them. [53–55]

In fact, the analogy between a given compound structure and a topological graph underlies
the development of many algorithms. These algorithms allow one to process and glean
information about a given compound structure, such as the constituent atoms and their bonds.
However, they are not able to capture their 3D structure. [54]
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2.3.2 Connection tables

Connection Tables (CT) are 2D descriptors of chemical compounds [55]. Generically, there
are two ways of presenting CTs. The first encompasses two lists: one for the atoms and
another for the bonds (see Table 2: the connection table of benzene (depicted in Figure 3)).
Another way of presenting these tables stands on redundant CT, which is later converted into
a non-redundant one. [54]

Figure 3: Benzene structure arbitrarily labeled

Table 2: CT of benzene

Atom list

1 C

2 C

3 C

4 C

5 C

6 C

Bond list

1 atom 2 atom bond order

2 1 2

3 1 1

3 1 1

4 3 2

5 2 1

6 4 1

5 6 2

Either way, atoms are labeled canonically or arbitrarily, however, canonical labeling ensures
an unique molecular representation and the reproducibility of its structure [53]. This canon-
icalization is underlain by the Morgan algorithm [56]. This algorithm’s criteria to identify
compounds is the connectivity value, starting on choosing the atom with the higher value and
moving on its neighbors in a descendent manner [53]. Since the publication of the original
algorithm in 1965, an update was performed in order to handle stereochemistry [57].

There are other ways of representing molecular graphs such as the matrix-based ones
(adjacency matrix, distance matrix, bond-electron matrix, etc), however, in these approaches,
the number of entries increases with the square of the number of atoms. Whereas in the CT,
the number of entries increases linearly with the increase of the number of atoms. [54, 55]

Even so, CTs turn out to have some limitations. A CT only accounts on single valence bound
structures, lacking on the representation, for instance, of delocalized bonds [53]. Moreover, CTs
do not handle π-systems, coordination, inorganic compounds, reaction intermediates [58] and
are not suitable for indexing in databases.

Although CTs have such limitations, they reveal to be the most utilized way of representing
compound structures [55], with particular emphasis to Molecular Design Limited (MDL)
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connection table or CTfile [53, 59] (see Figure 4). Several versions of CTs were also developed:
molfile, Rgroup file, Reaction file, Structure-data files, Reaction-data files and so on [53].

Figure 4: A CT of benzene used in CTfile format. CT downloaded from https://www.ebi.ac.uk/chebi/searchId.
do?chebiId=CHEBI:16716 (ChEBI [60]).

2.3.3 Line notations

Line notations are linear strings of alphanumeric symbols [53] as well as compact, human
readable and machine-friendly ways to encode molecules’ structures [61]. The first widely used
notation was the Wiswesser LineFormula Notation (WLN) [53, 62]. However, it revealed to
have some limitations encoding compounds’ stereochemistry. Eventually, its usage started to
phase out in the 1980s. Later on, the Simplified Molecular Input Line Entry System (SMILES)
emerged [63] and prevailed as the most popular until now [61, 64]. Furthermore, other line
notations have been developed over the years (see Table 3, referring to the line notation of
benzene structure depicted in Figure 3). Apart from SMILES, the IUPAC’s InChI is the most
widely used notation [61].

https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:16716
https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:16716
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Table 3: The different line notations of benzene ring.

Line notation Representation Reference

WLN R [62]
SMILES C1=CC=CC=C1 [63]

SLN C[1]H:CH:CH:CH:CH:CH:@1 [65]
ROSDAL 1-2=3-4=5-6=1; [66]

InChI 1S/C6H6/c1-2-4-6-5-3-1/h1-6H [67]
InChIKey UHOVQNZJYSORNB-UHFFFAOYSA-N [67]

CAS 71-43-2 [68]

SMILES

SMILES are compact, human-readable and -writable. There are two main types of symbols
in this notation: atoms and bonds. Having considered that, one is able to generate a molecular
graph and, thus, apply graph-based algorithms to it. This notation is defined as a string
with the chemical element symbol, bonds, indexes of broken cycles and parentheses enclosing
branching vertices [63, 69]. The main disadvantage of SMILES is that they are not canonical (a
compound can have different representations) [61]. However, several efforts have been made
towards the development of a standard method for the generation of canonical SMILES [61,
63].

SMILES have several extensions such as SMILES arbitrary target specification (SMARTS) and
SMIRKS.

SMARTS is a description language for molecular patterns that allows querying molecules
substructures. Here, the labels of the nodes and edges are extended to include logical operators,
special atomic and bond symbols. This allows SMARTS to represent atoms and bonds in a
general manner. For instance, the symbols [c,n;H1] represent a molecule with an aromatic
carbon or an aromatic nitrogen, and exactly one hydrogen atom.

SMIRKS results from the hybridization of SMILES and SMARTS language. It aims at the
description of generic reactions by accounting on the transformation of reactants into products
[70].

InChI

InChI is a way of representing compounds developed by International Union of Pure and
Applied Chemistry (IUPAC) in 2005 as a non-proprietary, open source, and freely available
resource [71]. InChI generation method relies on a structure-based and hierarchical approach.
It ensures a strict uniqueness for each compound. Although it encompasses the entire organic
compounds representation, InChI does not cover all the inorganic set [67].

An InChI is generated by using a CT. The method is divided in three steps: normalization,
canonicalization and serialization [53, 67, 71]. Those steps are described below:

1. Normalization - the compound structure is converted into data structures. The normal-
ization of mobile hydrogens, variable protonation and charge is performed [53].
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2. Canonicalization - The atoms are labeled with numbers in a canonical manner by
accounting on atomic equivalence/inequivalence relations [53, 67].

3. Serialization - the structure is serialized taking into consideration the labels assigned to
each atom (node) and the output is generated [53].

As a hierarchical approach, this method formulates an output string (example in Table 3)
with hierarchical layers. This is the most important characteristic of InChI [67]. Each layer
(divided by ”/”) represents a class of structural information: the main layer (divided into the
formula, atomic bonds and H-atoms sub-layers), charge, stereochemistry, isotope, fixed-H, and
reconnected layer [53] (see an example in Figure 5). Note that not all layers are represented in
the Figure. This occurs because only the main layer is present in all InChIs, the other layers are
variable, depending on the compound properties and structure.

Figure 5: The InChI of β-D-glucose.

One of the main limitations of InChI is that search engines have difficulties in breaking the
InChI character strings [53]. Another problem generated by the high detail of InChI is the
incredibly high number of characters they can contain. This can be another drawback when
it comes to storing this notation [53]. In order to address these limitations, the InChI can be
converted into an InChIKey. Regarding the fixed number of characters in the key (check the 24

numbers of benzene InChIKey in Table 3), the storage of the chemical structure as well as its
indexation in databases have been facilitated. InChIKey is divided into three blocks: the first
block is for connectivity, the second for stereochemistry and the third for protonation.
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2.3.4 Fragment codes

By describing a given compound, a set of characteristics are pointed out concerning the
compound’s functional groups, ring system, and so on. Correspondingly, a set of chemical
substructures or characteristics that describe a given compound are the basis of the fragment
coding system [53].

As a matter of fact, fragment codes are basically dictionaries that allow the indexation of
the chemical ”fragments” [54]. This can be useful to represent either the presence or the
absence of fragments in a given structure. Assuming that 0s (zeros) represent the absence of a
given substructure and 1s the presence of it, one can record a given compound as a bitstring
composed only by 1s and 0s (zeros). This representation is often dubbed as ”fingerprints” (see
Figure 6) [53, 54]. As simple as these can be, they have one major limitation: ambiguity. The
same fragment code can index different structures. However, this coding system reveals to be
useful when it comes to divide molecules into classes. [54]

Figure 6: Example of a fragment encoding of phenylalanine. Adapted from [54].

2.3.5 Generic structures

Generic or abstract structures are diagrams that allow one to represent classes or sub-classes
of compounds. These structures are composed by a fixed core and variable parts (R-groups).
The definition of a given compound can rely on the part attached to the R-group. However,
this does not occur in all abstract molecules. As for the representation of compounds such as
quinones, repeating units are defined as enclosed structure regions assigned with a variable
(number of repeating units). Whereas for other lipids, the R-group is defined by other molecules
(fatty acids in this case). Having considered that, the class of compounds ”ubiquinones” can be
represented as depicted in Figure 7. Moreover, a region in R-group is enclosed by brackets with
an associated variable (defining how much isoprene units the ubiquinone contains). In this case,
the number of isoprene units in the R-group will specify the ubiquinone. On the other hand,
phosphatidylglycerol has the fixed core composed by two glycerol bones linked by a phosphate
group, whereas the R-group is defined by other molecules (fatty acids in this case), as shown
in Figure 7). Herein, the variable structure is defined by the character R.
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Figure 7: Example of a generic structures of ubiquinones and phosphatidylglycerols (retrieved from KEGG [72]).
The R-group in the ubiquinone is enclosed by brackets and defined by an integer (number of isoprene
units), whereas the R-group in the phosphatidylglycerol is defined by the character R (fatty acid’s
hydrocarbon chain).

2.3.6 rdkit

rdkit (http://www.rdkit.org) is an open-source chemoinformatics toolkit that allows han-
dling and manipulating chemical structures. It includes Python wrappers that permit one to
read molecular line notations, manipulating R groups, generating new molecules with SMARTS
transformations, and so forth.

As for similarity and substructure search, SMARTS notations can be easily read and used
to find all the molecules that share a specific substructure. In turn, one can decompose a
compound and extract that specific substructure. This is particularly relevant for gleaning
information of both long chains and molecular fixed cores.

Another interesting feature is the fact that one can filter molecules based on the chemical
elements that compose their substructures, the type of established bonds (single, double or
triple), and other characteristics.

Finally, rdkit allows the conversion of line notations from either manipulated or newly
generated structures. Furthermore, it allows the estimation of relevant chemical properties
based on the molecule structure.

Conclusively, rdkit is a flexible software with multiple features for reading, manipulating
and retrieving chemical structures.

http://www.rdkit.org


2.4. Biochemical databases and online resources 19

2.4 Biochemical databases and online resources

The access to biochemical databases underlies the GSM models’ reconstruction. From
annotated genomes, and their sequence, to information related to biochemical reactions, all of
this information is extracted from databases.

Table 4: The different biochemical databases.

Database Type of data Compounds structure format Website

ChEBI C MOL file, InChI, SMILES,
InCHIKey

https://www.ebi.ac.uk/chebi/

Metacyc G, C, P, E and
R

MOL file, InChI, SMILES,
InChIKey

https://metacyc.org/

ModelSEED C, R and M SMILES, InCHIKey http://modelseed.org/
genomes/

KEGG G, C, P, E and
R

MOL file https://www.genome.jp/
kegg/

BRENDA E InCHI https://www.brenda-enzymes.
org/

BiGG M, C and R - http://bigg.ucsd.edu/

MetaNetX M, C and R SMILES, InCHI and InCHIKey https://www.metanetx.org/

LMSD C (lipids) MOL file, InChI, SMILES,
InChIKey

https://www.lipidmaps.org/

SLM C (lipids) and R MOL file, InChI, SMILES,
InChIKey

https://www.swisslipids.org/

REACTOME P, R, C - https://reactome.org/
G - genes; C - compounds; P - pathways; E - enzymes; M - models; R - reactions;

ChEBI [60] is a database that contains an ontology for compounds of biological interest. It
has thousands of annotated metabolites with cross-references to other databases.

Metacyc [73] is a curated database for metabolic pathways. It contains information related to
genes, metabolites, reactions and enzymes. Moreover, Metacyc contains several internally and
externally developed ontologies. All this information is adapted for all domains of life.

ModelSEED [11] is an online resource that assists on the reconstruction of GSM models. It
uses RAST to automatically generate annotations [74]. ModelSEED has an internal database
that integrates different GSM models, biochemical reactions, metabolites as well as subsystems.

KEGG [72] is an online resource with eighteen databases. They are divided into four cate-
gories: systems information (includes information about pathways, functional hierarquies and
modules), genomic information, chemical information (compounds, reactions, enzymes, etc)
and health information. Markedly, KEGG represents a useful resource for the understanding
and contextualization of large-scale molecular data.

BRENDA [75] is a database with a wide collection of enzyme functional data. All these data
is extracted from literature and annotated manually by experts. Accordingly, the topics covered
by this collection of enzyme data ranges from enzyme function and structure to genomic and

https://www.ebi.ac.uk/chebi/
https://metacyc.org/
http://modelseed.org/genomes/
http://modelseed.org/genomes/
https://www.genome.jp/kegg/
https://www.genome.jp/kegg/
https://www.brenda-enzymes.org/
https://www.brenda-enzymes.org/
http://bigg.ucsd.edu/
https://www.metanetx.org/
https://www.lipidmaps.org/
https://www.swisslipids.org/
https://reactome.org/
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protein sequences. Furthermore, all the information is organized by the respective Enzyme
Comission (EC) number.

BiGG Models [22] is a knowledge base that contains high-quality and curated GSM models. It
aims at the standardization of reactions and metabolites across all models and their integration.
Moreover, it has a platform that enables the quick search and visualization of models.

MetaNetX [76] is a GSM models and biochemical pathways repository. It uses MNXref [77]:
an algorithm of ”reconciliation” between the different nomenclatures of compounds. This
algorithm is particularly relevant in the context of GSM models since metabolite identifiers
found therein do not have references to databases of compounds. Instead, they are specific to
the research group which is reconstructing the model [76].

The Lipid Maps Structure Database LMSD [8] is a relational database with annotated
lipid structures and their in silico representation. LMSD divides lipids into eight categories
(fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterol lipids, prenol lipids,
sacccharolipids, polyketides). Moreover, this database is populated by data extracted from
other databases, literature, experimental data and structures of lipids generated in silico.

SLM [9] is a knowledge resource that aims at exploring and describing lipidomic data. It
includes an hierarchical classification of lipids as well as the linkage between them, metabolism
and mass spectrometry data. Moreover, it is worth noting that SLM’ strategy is hypothesis-
driven, as it incorporates in silico feasible predictions of lipids’ structures. To date (November
2020), 779759 lipid structures are comprised in this database.

REACTOME [78] is a freely available relational database that contains manually curated
biological information. In this database, the core unit is the reaction. Moreover, biological
compounds as well as their interactions are markedly organized into processes and pathways.
Indeed, intermediary metabolism, signaling, regulation and other processes are well described
and curated. Moreover, REACTOME browser provides a zoomable visualization of general
representation of pathways as well as detailed information inside each pathway.

2.5 Lipids

Lipids are a ubiquitous and varied group of compounds. Their biological roles include
being cell membranes’ components, energy storage sources, and being involved in signaling
pathways. Generically, they are defined as hydrophobic and amphipathic molecules, and their
main components are ketoacyl and isoprene groups. All of them derive from the condensation
either of one of those sub units or another. Remarkably, there are no accurate estimations of
how many different lipidic structures exist, as there happens to occur a panoply of alterations
and transformations to their structures [10]. Moreover, due to the high number of different
components with respect to the hydrocarbon chains and linking bonds, their combination to
form lipidic structures results in a combinatorial explosion of different defined structures.

In 2005’s LIPID MAPS consortium, a set of standards regarding the lipid classification
were defined. Correspondingly, the defined main classes were the following: Fatty Acids,
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Glycerolipids, Glycerophospholipids, Sphingolipids, Sterol Lipids, Prenol Lipids, Saccharolipids
and Polyketides [10, 79].

Accordingly, one can split the structure of a lipid into two different parts: the backbone and
the side chain. The backbone corresponds to the structural part that is common to a plurality
of lipids (e.g. a phosphocholine), whereas the side chain is variable across a given class, and is
composed either by ketoacyl or isoprene groups.

In the present work, only the main Glycerolipids (GL), Glycerophospholipids (GP), Sphin-
golipids (SP), and Prenol Lipids (PL) will be explored.

2.5.1 Glycerolipids

According to the LIPID MAPS classification, GL are a group of compounds that includes
acylglycerols as well as alkyl and 1Z-alkenyl variants [10]. Their generic structure holds a
glycerol backbone linked to one, two or three hydrophobic chains that have either ester or
ether linkage to the backbone. They have a major role in bacteria, plant and mammalian’s cell
membrane formation [10]. An example of a GL structure is shown in Figure 8.

Figure 8: 1-O-hexadecyl-2-(9Z-octadecenoyl)-sn-glycerol structure extracted from LIPID MAPS. Here, the main
features of this class of molecules are depicted.

Computational representation

The main structural groups of GL are the following: the glycerol backbone and the side
chains. Commonly, in order to represent the abstract structure of each class of GL, the
hydrocarbon chains are represented as R groups. The different types of GL are depicted in
Table 5. It is worth noting that these representations can vary according to the type of linkage
and position of the hydrophobic side chain.

2.5.2 Glycerophopholipids

GP, commonly referred to as phospholipids, are key components of the membrane lipidic
bilayer of all types of cells. As for their structure, they are typically composed by at least
one glycerol unit in the backbone, as well as at least one phosphate group. Furthermore, the



2.5. Lipids 22

Table 5: GL computational representation. The chosen compounds are representative, as their representation
can vary according to the type of linkage and position of the hydrophobic side chain.

Glycerolipid Backbone SMILES (Backbone)

Monoacylglycerols OCC(CO)OC(R)=O

Diacylglycerols OCC(COC(R)=O)OC(R)=O

Triacylglycerols RC(=O)OCC(COC(R)=O)OC(R)=O

sn-1 or/and sn-2 positions of the glycerol backbone are occupied by long chain fatty acids.
Nevertheless, what distinguishes them the most is the nature of the polar head group at the
sn-3 position. This description can be followed up in Figure 9.

Figure 9: 1-heptadecanoyl-2-(9Z-tetradecenoyl)-sn-glycero-3-phospho-(1’-myo-inositol) structure extracted from
LIPID MAPS. Here, the main features of this class of molecules are depicted.

Computational representation

The main groups of GP are the following: the backbone (glycerophosphate), the polar group
and the fatty acids. Commonly, in order to represent the abstract structure of each class of GP,
the hydrocarbon chains are represented as R groups. The different types of GP is depicted in
Table 6.

2.5.3 Sphingolipids

SP are a diverse group of compounds that share a sphingoid base backbone. The difference
between chemical species within the class resides on the presence or absence of fatty acids,
as well as on the structural groups attached to the sphingoid backbone (phosphocholines,
phosphoethanoamines, sugar monomers, and polymers). The previous description is illustrated
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Table 6: GP computational representation.

Glycerophopholipids Backbone SMILES (Backbone)

Glycerophosphocholines C[N+](C)(C)CCOP([O-
])(=O)OCC(COR)OR

Glycerophosphoethanolamines [NH3+]CCOP([O-
])(=O)OCC(COR)OR

Glycerophosphoserines [NH3+][C@@H](COP([O-
])(=O)OCC(COC(R))OC(R))C([O-
])=O

Glycerophosphates [O-]P([O-])(=O)OCC(CO(R))OR

Glycerophosphoinositols OC1C(O)C(O)C(OP([O-
])(=O)OCC(COR)OR)C(O)C1O

CDP-Glycerols Nc1ccn([C@@H]2O[C@H](COP([O-
])(=O)OP([O-])
(=O)OC[C@@H](COC(R)=O)
OC(R)=O)
[C@@H](O)[C@H]2O)c(=O)n1

Glycerophosphoglycerophospho- glyc-
erols

OC(COP([O-])(=O)OC[C@@H]
(COR)OR)COP([O-])
(=O)OC[C@@H](COR)OR

in Figure 10. This group includes ceramides, phosphosphingolipids, and glycosphingolipids,
essentially.

Figure 10: N-(octadecanoyl)-sphing-4-enine-1-phosphocholine taken from LIPID MAPS web-page. In this figure
is shown the basic structure of a sphingolipid.
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Computational representation

The main groups of SP are the following: the sphingoid backbone, the variable group and
the fatty acid. Commonly, in order to represent the abstract structure of each class of SP, the
hydrocarbon chains are represented as R groups. The different types of SP are depicted in
Table 7.

Table 7: The different types of sphingolipids, their backbone, and their computational representation.

Sphingolipid Backbone SMILES (Backbone)

Sphingophospholipid O[C@H](R)[C@H](COP([O-
])(=O)OR)NC(R)=O

Glycosphingolipids O[C@H](R)[C@H](COR)NC(R)=O

Ceramides OC[C@H](NC(R)=O)[C@H](O)R

Sphingoid bases and
derivatives

[NH3+][C@@H](COR)[C@H](O)R

2.5.4 Prenol Lipids

PL are a class of compounds that contain terpene units. Their ultimate precursors are the
isopentenyl diphosphate and dimethylallyl diphosphate. Although this class is extensively
wide, the present work will only focus on the electron-transfer quinones, as the polymeric
nature of electron-transfer quinones rises problems in their computational representation.

Electron-transfer quinones are polymers that are represented by both generic and complete
structures in several databases. Moreover, the biosynthetic pathway of these quinones is
relatively small. These features will be explained and described thoroughly in the next
paragraphs.

Ubiquinones, plastoquinones, menaquinones, rhodoquinones, and phylloquinones are a
group of electron-transfer quinones with isoprene units arranged in a long side chain. The
length of this chain varies among species. [80]

Ubiquinones are benzoquinones that occur in the plasma membranes of prokaryotes and in
the inner mitochondrial membrane of eukaryotes [81]. They act as electron-transfer species in
the oxidative phosphorylation stage of cellular respiration [80].

Plastoquinones are benzoquinones that occur in the chloroplast tylacoids of cyanobacteria
and plants [80], having an important role in photosynthetic electron-transfer chain [82].
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Table 8: Electron-transfer quinones

Quinone Type Occuring organisms Electron-transfer in

ubiquinone benzoquinone prokaryotes and eukaryotes oxidative phosphorylation
plastoquinone benzoquinone cyanobacteria and plants photosynthesis
menaquinone naphthoquinone bacteria and archea anaerobic respiration and

photosynthesis
phylloquinones naphthoquinone plants and cyanobacteria aerobic photosynthesis

Menaquinones are naphthoquinones that are involved in anaerobic ATP-generating redox
reactions [83]. These compounds are constituents of membranes in bacteria and archaea and
are the most common respiratory quinones found in biological systems [84].

Rhodoquinones are benzoquinones that are involved in anaerobic metabolism of bacteria
and eukaryotes that live in hypoxic environments [85].

Phylloquinones are naphthoquinones found in plants’ and cyanobacterial chloroplasts. They
act as electron-acceptors during oxygenic photosynthesis [80, 86].

Computational representation

Isoprenoid quinones have two main structural groups: a head group and an isoprenoid
side chain. The generic structure of these quinones is represented as follows: the head group
is the backbone (defining the abstract or generic representation of the different isoprenoid
quinones), whereas the variable part is the isoprenoid side chain (the number of repeating
units will define the complete structure of these quinones). In Table 9 the head group of each
electron-transfer quinone is described, with the exception of phylloquinone. In Figure 11, the
isoprene unit along with its SMILES notation is illustrated.

It is worth noting that the computational representation of such compounds differs from
the previously described lipids. The side chains of electron-transfer quinones only vary in the
number of isoprene units. In contrast with the other lipids, the side chains do not present
combinations of other molecules like fatty acids. Rather, the differentiation factor across the
same subclass is the length of the side chain.

Figure 11: Isoprene unit.

Reference databases are not in total accordance with literature reports [80] regarding the
variety of electron-transfer quinones and their precursors. Most of the databases do not list all
the possible quinones’ representation as enumerated in Table 10.
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Table 9: Electron-transfer quinones’ head group representation and the complete quinone representation in
databases (with represented isoprene units)

Quinone Head group SMILES (Head group)
Number of isoprene units
(in databases)

Ubiquinone C1=C(C)C(=O)C(OC)(R)=C(
OC)C1=O

1-10

Plastoquinone RC1=CC(=O)C(C) =C(C)C1=O 1,2,3,8,9

Menaquinone RC1=C(C)
C(=O)c2ccccc2C1=O

1-13

2.6 The compound representation problem

The biochemical information present in GSM models is highly dependent on the data
extracted from databases. As pointed out in the previous section, due to the complex structural
representation of several compounds and their biosynthetic precursors, biochemical databases
often represent them as abstract classes. On the other hand, in metabolic models, the absence
and the complexity of such information lead experts to set biosynthetic pseudo reactions.
Though this strategy can cope with the complex representation of such chemical species,
several information can be lost.

2.6.1 Compounds representation in GSM models

Electron-transfer quinones

Several quinones and quinols are acceptors and donors of electrons, respectively. Even
though different molecules of these kind are species-specific, the available genomic and
proteomic resources are insufficient to provide valuable information regarding the type of
quinone each organism should use. For this reason, it is relevant to flexibly change these
species’ representation version and make it easier to highlight similarities between different
metabolic models.

Markedly, it is expected that different GSM models utilize different chemical species of
quinones (with different number of isoprene units). While it is true that this distinction is
important for the model accuracy, it is not that it eases comparisons between multiple models.
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Table 10: The eletron-transfer quinones complete representation in several databases

Database Quinone Complete representation
All possible
representa-
tions?

ChEBI
Ubiquinone Ubiquinone-[1-10] yes
Plastoquinone Plastoquinone-9 no
Menaquinone Menatetrenone, Menaquinone-[7-9] no

MetaCyc
Ubiquinone Ubiquinone-[1-10] yes
Plastoquinone Plastoquinone-9 no
Menaquinone Menaquinone-[1-13] no

Model SEED
Ubiquinone Ubiquinone-1,-2,-6,-8,-9 no
Plastoquinone Plastoquinone-1,-9 no
Menaquinone Menaquinone-[2-13] no

KEGG
Ubiquinone Ubiquinone-1, -2, -6,-8,-9,-10 no
Plastoquinone Plastoquinone-1,-9 no
Menaquinone Menaquinone-9 no

BIGG
Ubiquinone Ubiquinone-6,-8,-9,-10 no
Plastoquinone - no
Menaquinone Menaquinone-4,-6,-8,-9,-10,-11 no

LIPID MAPS
Ubiquinone Ubiquinone-4,-6,-8,-9,-10 no
Plastoquinone Plastoquinone-1 no
Menaquinone Menaquinone-9 no

As far as this is concerned, quinones with different side chains can be considered as different
instances of the same entity.

Furthermore, the biosynthetic intermediates of these chemical species are specific, as they
possess the same number of isoprene units as the quinone they are producing. For this reason,
when introducing these pathways or swapping the type of quinone, inconsistencies might
appear across the network. Thus, when one intends to swap a quinone, one has to do so for
the whole set of biosynthetic precursors and conjugated acids.

Other Lipids

Due to lipids’ variability and complex structures, their representation in GSM models
is often generic. For instance, in biochemical databases, lipids’ biosynthetic pathways are
represented generically, as they are composed by generic reactions with generic lipids as
reactants and/or products. Such reactions can be derived into reactions with structurally
defined metabolites, originating complete/granulated reactions.

There are different approaches regarding the representation of lipid metabolism in GSM
models. The first approach is the definition of a singular molecular formula as an abstract
representation of several molecules. As an example, consider the Equation 1 retrieved from the
Saccharomyces cerevisiae S288C model (iMM904) [9]. Herein, the 1-Acyl-sn-glycerol 3-phosphate,
with a chemical formula of C1920H3622O700P100, is defined as a representative entity of 100

molecules of its kind. Correspondingly, the reactions with this metabolite will always have the
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stoichiometric coefficient scaled by 1/100. This formulation derives from the stoichiometries of
the Acyl CoAs assigned as reactants.

Glycerol3-phosphate + 0.08 Dodecanoyl-CoA + 0.17 Hexadecenoyl-CoA + 0.19 Octadecynoyl-CoA

+0.1 Tetradecanoyl-CoA + 0.05 Stearoyl-CoA + 0.27 Palmitoyl-CoA + 0.09 Octadecenoyl-CoA

→ 0.01 1-Acyl-sn-glycerol 3-phosphate + CoA
(1)

This strategy was extensively adopted in several yeast models prior to the Yeast consensus
model [7]. Although it reveals to be very concise, its rigideness in stoichiometric coefficients and
the demand of having all the molecules listed in the reaction does not capture the adaptability
and flexibility of the lipidome [7].

Another approach encompasses the usage of ”ISA” reactions. Essentially, ”ISA” reactions
are additional reactions that permit the encapsulation of specific chemical species into generic
ones. However, instead of defining rigid stoichiometries to the chemical species in one single
reaction, ”ISA” reactions are defined per each chemical species of a kind. All these reactions
will produce an abstract entity, which will, afterwards, be used in other reactions (Figure 12).

Figure 12: Some of the ”ISA” reactions defined in the Yeast v6.0 model. There is one ”ISA” reaction per Acyl
CoA chemical species. This way, all the species are encapsulated into an abstract entity

The main advantage, comparing to the first approach, is that this one does not require the
presence of all chemical species in order to satisfy the generic term requirement. Therefore,
using ”ISA” reactions, an ”OR” rule (the model can use one chemical species OR another) is
set and the eventual need for the generic compound is fulfilled. [7]

According to Aung and collaborators [7], the drawbacks of such approach are the following:

• Loss of information on individual reaction specificity;

• Chemical species that should not be used in some reactions will, however, be in computa-
tional simulations due to their conversion into the generic compound;

• Not capable of performing an inverse strategy: transforming a generic entity into a well
defined compound;
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Conversely, aiming for more accuracy in the representation of lipids, another strategy can be
employed. This approach relies upon the generation of categorized individual reactions with
structurally defined chemical species. This way, the abstract compound could be granulated,
utilizing specific and adequate chemical species. As far as this approach is concerned, it can
largely improve the accuracy and level of detail of GSM models’ lipid metabolism. Moreover, it
might provide better insights into the lipidome flexibility and output. However, this strategy
would largely increase the number of reactions in the model, which can be a drawback,
depending on the user’s modelling scope. [7]

2.6.2 Useful considerations for the biochemical representation problem

As afore mentioned, the biochemical representation problem in GSM models highlights
several gaps between lipid-specific databases and modelling. Therefore, several useful relation-
ships and considerations will be, hereby, discussed.

Relationships

Biosynthetic relationships between compounds should be considered to ensure the correct
and accurate representation of biochemical entities. Since structurally defined chemical species
are related to their structurally defined precursors, the need of such relations is raised.

In fact, as shown in Figure 13, the information extracted from these relationships are
of paramount importance when trying to granulate generic reactions. This is particularly
corroborated by the absence of data related to reactions concerning structurally defined lipids.

Figure 13 depicts a way of capturing these relationships. Herein, functional and structural
relationships are being established simultaneously, as the biosynthetic precursor of a specific
compound is selected by the structural similarity between the product and reactants’ side
chains. In turn, this can also be considered a functional relationship, as it contains biosynthetic
information.

Furthermore, it would be fundamental to assess whether a structurally defined chemical
species is an instance of a generic entity. If so, structural relationships can be established.
Examples of useful structural relationships are shown in Figure 14.

As for the electron donors’ and acceptors’ representation in GSM models, useful relationships
can be established, mainly the ”conjugated acid of” and ”conjugated base of” ones. This
information will be particularly useful when swapping electron-transfer chemical species, as if
one has changed, its conjugated acid or base has to be changed, as well.

2.6.3 State-of-the-art tools

This subsection aims at describing both the advantages and disadvantages of the state-of-
the-art computational tools for the revision of lipids’ representation in GSM models.
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Figure 13: Reaction of cardiolipin synthesis using two L-1-phosphatidyl glycerol as reactants. The reaction A
corresponds to the generic reaction constituted by generic compounds, whereas the reaction B is
the granulation of the generic reaction A with the respective individual chemical species of each
abstract entity. The ”R groups” are replaced by variable parts. In the lipids’ case, the ”R groups”
are replaced by carbon chains. The ”precursor of” relationship is established relying upon the type
of side chain attached to the backbone.

Figure 14: Reaction of cardiolipin synthesis using two L-1-phosphatidyl glycerol as reactants. The reaction A
corresponds to the generic reaction constituted by generic compounds, whereas the reaction B is
the granulation of the generic reaction A with the respective structurally defined chemical species
of each abstract lipid. The ”R groups” are replaced by variable parts. In the lipids’ case, the ”R
groups” are replaced by carbon chains. The ”is a” relationship is established relying upon the type
of backbone.
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Figure 15: Succinate dehydrogenase reaction. This reaction is a typical acid-base reaction where the conjugated
base and acid are generated. Correspondingly, it shows useful relationships between electron acceptors
and donors.

SLIMEr

Split Lipids Into Measurable Entities (SLIMEr) [87] is a computational resource that revises
lipids’ representation as biomass components. SLIMEr combines fatty acid methyl ester (FAME)
analysis with lipid profiling data to obtain correct predictions of the lipids’ production and
decomposition. The algorithm splits the generic lipid molecule into two parts for this matter:
the acyl chains and the backbone.

FAME analysis is utilized to formulate the correct relative abundances of the acyl chains.
Correspondingly, the acyl chains are assembled into a generic token (representing all the
acyl chains) in a pseudo-reaction, whereas lipid profiling data is used for the estimation of
relative abundances of each lipid class. Then, they are assembled into a generic backbone
(representing all the lipid classes). Finally, a pseudo-reaction is generated to link the two
previously assembled parts.

The authors tested their approach in an yeast model, using experimental data measured in 9

different conditions. Unsurprisingly, as experimental data was used to define stoichiometric
coefficients for each backbone and acyl chain, the results from model simulations were similar
to the experimentally determined. This approach has been described as useful towards the
improvement of yeast model’s predictive capability under different levels of stress.

The major drawbacks of this computational resource are the high dependence on experimen-
tal data, lack of the topological representation of lipid metabolism, and the fact of being only
available on MatLab, which is not freely available for the non-academic community.

Poupin et al. 2020

The work of Poupin and collaborators [88] aims at mapping lipids in GSM models using
ChEBI ontology. Specifically, this approach tries to reduce the gap between experimentally
measured molecules and GSM models, as the differences in the level of annotation between
lipidomics data and these models are patent.

The association between generic chemical structures and structurally defined ones is estab-
lished accounting on the distance in the ChEBI ontology. Accordingly, the distance in the level
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of annotation of a generic compound in the metabolic network and another molecule species
in the lipidomics dataset can be computed.

This method is available in a python package and can be also used in the MetExplore
web-service [89].

Zhukova et al. 2014

Zhukova and collaborators’ method [90, 91] relies on ChEBI ontology to generalize GSM
models and highlight possible missing reactions.

The algorithm starts to compute a model by generalizing compounds and reactions. Herein,
reactions that have the same generic compounds are assumed to be generic reactions. In the
end, one will obtain a generalized model that allows an easier analysis and curation. [90]

Cyclic processes (with repeating reactions) taking place in the cell, such as the β-oxidation of
fatty acids, can be captured as a cycle as well. So, any missing reaction in these processes will
be easily highlighted. [91]

This method is available in a python package and is used by Mimoza [92] to aid in the
generalized network visualization.

2.7 Graph databases and Neo4j

Graph databases had been used to connect complex biologic data over the years. Modelling
the interactions between pathways, reactions, genes as well as metabolites and proteins can be
tricky, involving hierarchies, and multiple relationship types between the same or different
entities. The retrieval of such interactions ends up, most of the times, being highly recursive.
In relational databases, multiple self-referential JOINS would be needed to capture much of
this information, making it substantially inefficient.

In the case of lipids’ hierarchies, implementing a relational database to represent and query
this data would have a staggering difference in performance and in the length of the queries.
For instance, if one wants to get the whole set of classes associated to a given lipid in a relational
database, one has to query multiple JOINS in order to go all the way up in the hierarchy.

Furthermore, biological problems are oftentimes dealt with as path-y. Metabolic pathways
are undoubtedly paths composed by reactions, that, in turn, are composed by metabolites.
The establishment of ”precursor of” relationships will, in all likelihood, generate relevant
and highly branched paths easy to retrieve in a graph database. However, if one wanted to
model it in a relational rigid schema, one would require more storage space. Accordingly,
each of the pathway intermediates of a given lipid would have to be linked directly to it by an
intermediate table. In turn, each of the intermediates would, compulsorily, possess most of
the intermediates associated to its successor. Thus, highly redundant data would be generated
and stored without necessity. On the other hand, using a graph database, one would only
have to establish relationships between direct precursors and successors (having reactions that
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transform one into another). Consequently, one would retrieve the intermediates by simply
applying classic graph crossing algorithms.

Neo4j (https://neo4j.com/) is a No Structured Query Language (NoSQL), open-source, and
graph-based database management system that applies graph theory for storage purposes. It
includes a query language based on Cypher, which is very similar to SQL, and allows one to
create, modify, transverse and extract useful information from the database. Moreover, Neo4j
possess drivers that allow one to integrate Cypher queries in software developed in GO, Python,
C#, JavaScript and Java. Lastly, it includes a highly efficient primary tool designated Neo4j
Admin. This tool allows one to import high volumes of data in less than one minute, making
backups, reports, and even analysing the consistency of the database. These features make
it staggeringly easy to integrate and access information from a Neo4j database into a custom
software.

https://neo4j.com/
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B O I M M G F R A M E W O R K

Several online resources and ontologies were designed to account on the structural rela-
tionships between chemical species. However, they fail to capture the functional relationships
between compounds and their biosynthetic precursors. This is highly relevant in the context
of GSM modelling, as it eases the process of converting generic biosynthetic pathways into
specific ones and vice-versa. Moreover, to the best of our knowledge, there is no computational
approach to integrate such information.

BOIMMG, a novel and modular approach aiming at tackling several issues in the representa-
tion of lipids in GSM models, is proposed in this chapter.

BOIMMG is here presented as a framework that follows essentially three steps: the integration
of several databases, the generation of complex biochemical knowledge, and its integration in
GSM models (Figure 16).

Figure 16: In this figure is depicted the BOIMMG pipeline. 1 - Integration of several databases; 2 - Semi-
automated knowledge expansion 3 - integration of this information in GSM models

The second step of the pipeline can be a laborious task as the number of possible relationships
between chemical species is high. Herein, a completely automated method for the detection of
such relationships was not employed, since the high number of false positives could lead to a
time-consuming curation. Thus, a semi-automated strategy was set and will be thoroughly
described in the next section.

Lastly, the third part is the integration of the previously gathered and generated data in GSM
models. This integration, however specific for each chemical species, was implemented in a
flexible way to address similar cases. Consequently, as it is to be described in the next sections,
different approaches were employed for the integration of glycerolipids, glycerophospholipids
and electron-transfer quinones.

34
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3.1 Formal Notation

A formal notation will be herein defined to describe the developed algorithms. The patterns
enumerated in Table 11 will be followed to standardize the algorithms’ notation.

Table 11: The notation that will be further used for writing algorithms and definitions

Type Definition Example

Cut zero Empty set ∅
Calligraphy typing Special sets C, R, O

Capital letters Sets A, B, C
Lowercase letters Single instances a, b, c

Greek letters Generic Functions π, τ, Ψ
Verbose word Biochemical functions IsStructuralParentOf, GetReactions

Lowercase word Specific property name, id
Sigma Boolean σ

The notation can be extended to include derivations from the ones already defined.

Definition 1. Properties of single instances

A subscript symbol can define properties of single instances of a lowercase letter. For example: if a

given instance is defined by a, and A is a given set of attributes, then aA is defined by the attributes

of a. Similarly, if a given identifier is defined by id and an instance by a, then aid will be the instance’s

identifier.

Definition 2. Properties of a set or of special sets

Properties of a set or of a special set can be defined by a subscript symbol of a capital letter, or

calligraphy typing letter. For example: if a set is defined by A, and B is a given set of attributes,

then AB is defined by the attributes associated to the set A. Similarly, if a given identifier is defined

by id and a set by A, then Aid will be the identifier associated to a given set.

The following notation will be considered for the elements within brackets, and braces.

Table 12: List of symbols to represent sets

Type Definition Example

Brackets Ordered set 〈〉
Braces Unordered sets {}

Moreover, several basic operations over sets and single instances will be useful later on. They
will be defined as follows.

• Element of a set: an arbitrary instance x is an element of a given set X when it is written
x ∈ X;

• Subset of a set: an arbitrary set A is a subset of B if it is written A ⊆ B;

• Union operation: the union between an arbitrary set A and another defined as B is
written as A ∪ B;
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• Set size: the total number of elements of the arbitrary set A will be written as |A|;

• Cartesian product: the Cartesian product of A and B, written A× B is defined as follows:
{〈a, b〉 : a ∈ A and b ∈ B};

• Power set: the power set of a given set A, written θ(A), is defined as the set of all the
subsets of A;

• Negation: the negation, written ¬ returns f alse if ¬true and true if ¬ f alse;

• Incrementation: incrementation applied to an arbitrary i ∈N, written i + +, increments
1 to the integer i;

Function 1. Subset or substring of a given length:

Domain: τ : θ(A)× (N∪ {−1})→ θ(A), such that A is an arbitrary set

For an arbitrary ordered set X, the subset Y ⊆ X with length i will be defined by the following

function: τ(X, i). Moreover, for this purpose, the last element of a set will be defined by the integer

−1. Hence, the subset Y with all elements of X except the last will be defined by the following:

τ(X, −1). Analogously, if a string is defined by the ordered set S, the substring of S with length

|S| − 1 will be returned by the function: τ(S, −1)

Function 2. Get the ith element of a set:

Domain: ϕ : θ(A)× (N∪ {−1})→ A
Let A = {a1, a2, ..., an}, such that a1 is the first element of a, a2 is the second element of a, and so

forth. In order to obtain the ith element of a, one will write as follows: ϕ(A, i). For example: the

third element of the ordered set A will be returned by the following function call: ϕ(A, 3). Such as

in function 1, the integer −1 can be defined as the last element. Hence, returning the last element of

A would be achieved with the following function call: ϕ(A, −1)

Function 3. Add elements to a given set:

Domain: π : B× θ(A)→ θ(A) ∪ θ(B)

An arbitrary element b will be added to the end of the ordered set A by the following function:

π(b, A). For example: let A = 〈a1, a2, ...an〉 and b an arbitrary instance, the function π(b, A) will

mutate A such that A will be, for that time forth, the set 〈a1, a2, ...an, b〉.

Function 4. Dictionary

Domain: Dict : K → V
A dictionary will be written, from this time forth, as Dict<something> such that something is the

variable name associated to this function. If K is the universal set of keys in a given dictionary Dict,
and V the image set associated to K, the function Dict will be defined as follows:

Dict(x) =

{
v f or x = k
Dict(x) otherwise

(2)

Thus, assigning the value a to the key b would be defined as follows: Dict(b) ← a. Whereas

returning a given value associated to the arbitrary key b will be written as follows: Dict(b). Moreover,
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in order to define a dictionary in which both K and V are ∅, one will write as follows: Dict ←
Dict[∅→ ∅].

3.1.1 Data structures and integration definitions

Formal definitions regarding data structures and integration will be enumerated in the
present section.

Definition 3. Directed graphs

G = (N , E) such that G is the directed graph. N is defined as the set of all nodes of G and E is

defined as the set of all edges of G. Each edge starts in a given node of G and ends up in a different

node of G, having a well-defined orientation.

Definition 4. Node Labels

One and only one label l is assigned to each node n ∈ N . Each node’s label nl has to respect the

following condition: nl ∈ NL such as NL = { ”ModelSeedCompound”, ”SwissLipidsCompound”,

”LipidMapsCompound”, ”Compound” }

Definition 5. Edge Labels

One and only one label l is assigned to each edge. Each label el has to respect the following condition:

el ∈ EL such as EL = { ”is a”, ”component of”}

Definition 6. Objects

Considering Objects as the universal set O such that O ∈ N and o ∈ O, o is defined by 〈oi, ol , oA〉,
where oi is the internal identifier of a given node, and oA is the set of attributes of o.

Definition 7. Relationships

Considering Relationships as the universal set R, such that R ∈ E and r ∈ R, the relationship r can

be defined as the association of two Objects such that, r = 〈o1, ri, rl , rA, o2〉, and o1, o2 ∈ O
where ri is the internal identifier of an edge, rl ∈ RL, rA is a set of attributes of r, whereas o1 is the

object from where the relationship starts and o2 is the object where the relationship ends. In this case,

rl will have the chemical and/or biological meaning regarding the two involved Objects (o1 and o2).

Definition 8. Structurally defined compounds’ uniqueness

Considering the compounds defined by the arbitrary Object instances o1 and o2 such that o1,o2 ∈ O,

and o1inchikey is the InChIKey of the compound o1 and o1inchikey ∈ o1A, o2inchikey is the InChIKey of the

compound o2 and o2inchikey ∈ o2A, then o1 = o2 if but only if τ(o1inchikey ,−1) = τ(o2inchikey ,−1)

Definition 9. Generic compounds’ uniqueness

Considering the compounds defined by the arbitrary Object instances o1 and o2 such that o1,o2 ∈ O,

considering that o1canonical smiles is the canonical SMILES of the compound o1 and o1canonical smiles ∈
o1A, o2canonical smiles is the canonical SMILES of the compound o2 and o2canonical smiles ∈ o2A, then

o1 = o2 if but only if o1canonical smiles = o2canonical smiles
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3.1.2 Biochemical definitions and operations

Useful biochemical definitions and operations will be enumerated in this subsection. Ac-
cordingly, the understanding of the present work will be considerably facilitated with the
following definitions.

Definition 10. R groups

Let a be the structure bellow. The R group of the structure a is defined by the letter R. It corresponds

to a variable structure that is attached to a well defined and fixed substructure. From this time forth,

an R group will be defined by the following variable: Rgroup.

Definition 11. Backbone/core

Let a be the structure bellow. The backbone/core of the structure a is defined by the substructure of

a (rounded below). It can be stated that the backbone/core is a well defined and fixed substructure

that corresponds to the whole structure of the molecule without the Rgroups.

Definition 12. Generic/abstract compound

Let the generic compound be a. a will be represented by a structure with at least one Rgroup. Thus, a

generic compound can be defined by an entity whose structure is not completely defined. Furthermore,

it is common that these compounds are assigned to a given chemical class, as they can represent a

set of chemical variants with the same backbone.

Definition 13. Structurally defined compound

Let c be the structurally defined compound illustrated below. c, by definition, will be one compound

whose correspondent structure has no Rgroups and is completely structurally defined.
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Definition 14. Side chain

Let c be the compound illustrated below. The side chains will be, from this time forth, defined by the

substructures that substitute the Rgroups. Furthermore, the side chain attached to the backbone will

generate one structurally defined compound.

Definition 15. Structural parent and child

Considering the generic compound p, p is the structural parent of another compound c if and only if

p has a common backbone with c. c is not necessarily a structurally defined compound. Analogously,

if the previous condition is satisfied, then one can also state that c is a structural child of p.

Definition 16. Structural components

Considering the two compounds illustrated below, the one on the right as p and the one on the left

as c, c is a structural component of p if and only if the whole structure of c is contained within p.
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Definition 17. Generic reaction

A generic reaction will be, for this time forth, defined as reactions where at least one of the reactants

and products is a generic compound (according to Definition 12). An example of one generic reaction

is illustrated below.

Definition 18. Granulated/complete reaction

A granulated reaction will be defined, from this time forth, as reactions that can be assumed as

derivations of a generic reaction (according to the Definition 18). The reactants and products of these

reactions are all structurally defined compounds (according to the Definition 13). The aforementioned

derivation is illustrated below. The generic reaction is on top of the image, whereas the granulated

one is present below the arrows.
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Definition 19. Generic biosynthetic pathway

A given generic biosynthetic pathway is defined by the set of generic reactions (Definition 17)

connected towards the production of a generic compound (Definition 12).

For the following functions, let one consider C the universal set of arbitrary compounds,
where C = {c1, c2, c3, ..., cn}. Here, c are the instances of the entity compound C

Function 5. IsStructuralParentOf

Domain: IsStructuralParentOf : C × C → B

Let c1 and c2 be arbitrary compounds. If c1 is structural parent of c2 (according to Definition 15),

then the function returns true, otherwise it returns f alse. Analogously, if IsStructuralParentOf(c1,

c2), then c2 is necessarily structural child of c1.

Function 6. HaveCommonStructuralParentWith

Domain: HaveCommonStructuralParentWith : C × C → B

Let c1 and c2 be arbitrary compounds. Also, let c3 be the structural parent of c1 and c4 be the

structural parent of c2 (according to Definition 15), if c4 = c3, then this function returns true,

otherwise it returns f alse.

3.2 Databases Integration

The first step of BOIMMG’s workflow is the integration of several databases, which has
encompassed the data extraction from different sources, its transformation, loading and further
integration.

Existing databases with specific information of lipids must be considered, according to the
present work’s scope. To the best of our knowledge, LMSD [8] and SLM [9] are the databases
with the broader collection of structurally defined lipid species. Moreover, to bridge these
lipid-specific databases with metabolic modelling, Model SEED data was also integrated. It is
worth noting that Model SEED [11] database not only gathers information from several GSM
models but also from BiGG [93], KEGG [72] and MetaCyc [35].
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The general workflow is defined in Figure 17. The workflow starts with the data extraction
from different sources. Posteriorly, the raw data will be transformed into a standard format
towards its conversion into a graph. Lastly, this information will be loaded into a Neo4j graph
database (version 3.9.). Furthermore, data integration will allow to cope with high volumes of
redundant data.

Figure 17: General workflow of the databases integration. It starts by extracting raw data files from SLM,
LMSD, and ModelSEED. Posteriorly, the data is transformed in two different standardized files: one
for the nodes (compounds) and another for the edges (relationships). This information is converted
into graphs and loaded into a Neo4j database. In the end, an integration of the redundant data will
be performed.

3.2.1 Data details and extraction

This subsection will describe each database’s data files characteristics and extraction method
employed.

SwissLipids (SLM)

Up to the present date (November 2020), the SLM database accounts for 779759 lipid
structures. Moreover, it includes a hierarchy of chemical structures starting from the ”Lipid”
entity (root) and ending up with the structurally defined lipids (leaves). In addition, SLM
contains information about each lipid’s structural components. Regarding the data extraction,
a TSV format file was downloaded from https://www.swisslipids.org/#/downloads. An example of
the information contained in this file is shown in Table 13.

https://www.swisslipids.org/#/downloads
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Table 13: Information contained in the TSV file retrieved from SLM database. It contains information about
compounds: their structural parents, components, name, synonyms, structure representations and so
forth. This table contains an example of the information present in each row.

Data Example

SLM identifier SLM:000000178

Level Isomeric subspecies

Name N-(docosanoyl)-15-methylhexadecasphing-4-enine

Abbreviation Cer(iso-d17:1(4E)/22:0)

Synonyms N-docosanoyl-15-methylhexadecasphing-4-enine —
Ceramide (iso-d17:1(4E)/22:0)

Lipid class SLM:000000002

Parent SLM:000392021

Components SLM:000000827 (n-acyl)

SMILES (pH7.3) CCCCCCCCCCCCCCCCCCCCCC(=O)
N[C@@H](CO)[C@H](O)
\C=C\CCCCCCCCCC(C)C

InChI (pH7.3) InChI=1S/C39H77NO3/c1-4-5-6-7-8-9-10-11-
12-13-14-15-16-17-18-22-25-28-31-34-39(43)40-
37(35-41)38 (42)33-30-27-24-21-19-20-23-26-
29-32-36(2)3/h30,33,36-38,41-42H, 4-29,31-
32,34-35H2,1-3H3,(H,40,43)/b33-30+/t37-
,38+/m0/s1

InChI key (pH7.3) InChIKey=XMCZTIGIXKXPGG-KNEGYRQWSA-
N

Formula (pH7.3) C39H77NO3

Charge (pH7.3) 0

Mass (pH7.3) 608.0336

Exact Mass (neutral form) 607.590345

... ...

CHEBI 71377

LIPID MAPS -

HMDB -

PMID 19372430
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ModelSEED

Up to the present date (November 2020), ModelSEED included 33978 compounds. Data
was extracted from three different tab-delimited text files: one with the compounds general
information (Table 15), a file with their chemical structure representation (Table 16), and another
with the cross-references to other databases (Table 17). These files were downloaded from the
links presented in Table 14.

Table 14: Model SEED files and where they can be downloaded.

File url

ModelSEED compounds’ general infor-
mation file

https:// github.com/ ModelSEED/
ModelSEEDDatabase/ blob/ master/
Biochemistry/ compounds.tsv

ModelSEED compounds’ structures
file

https:// github.com/ ModelSEED/
ModelSEEDDatabase/ blob/ master/
Biochemistry/ Structures/ Unique ModelSEED
Structures.txt

ModelSEED compounds’ cross-
references

https:// raw.githubusercontent.com/
ModelSEED/ ModelSEEDDatabase/ master/
Biochemistry/ Aliases/ Unique ModelSEED
Compound Aliases.txt

https://github.com/ModelSEED/ModelSEEDDatabase/blob/master/Biochemistry/compounds.tsv
https://github.com/ModelSEED/ModelSEEDDatabase/blob/master/Biochemistry/compounds.tsv
https://github.com/ModelSEED/ModelSEEDDatabase/blob/master/Biochemistry/compounds.tsv
https://github.com/ModelSEED/ModelSEEDDatabase/blob/master/Biochemistry/Structures/Unique_ModelSEED_Structures.txt
https://github.com/ModelSEED/ModelSEEDDatabase/blob/master/Biochemistry/Structures/Unique_ModelSEED_Structures.txt
https://github.com/ModelSEED/ModelSEEDDatabase/blob/master/Biochemistry/Structures/Unique_ModelSEED_Structures.txt
https://github.com/ModelSEED/ModelSEEDDatabase/blob/master/Biochemistry/Structures/Unique_ModelSEED_Structures.txt
https://raw.githubusercontent.com/ModelSEED/ModelSEEDDatabase/master/Biochemistry/Aliases/Unique_ModelSEED_Compound_Aliases.txt
https://raw.githubusercontent.com/ModelSEED/ModelSEEDDatabase/master/Biochemistry/Aliases/Unique_ModelSEED_Compound_Aliases.txt
https://raw.githubusercontent.com/ModelSEED/ModelSEEDDatabase/master/Biochemistry/Aliases/Unique_ModelSEED_Compound_Aliases.txt
https://raw.githubusercontent.com/ModelSEED/ModelSEEDDatabase/master/Biochemistry/Aliases/Unique_ModelSEED_Compound_Aliases.txt
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Table 15: Information contained in the tab delimited text file retrieved from ModelSEED database, which
contains general information about chemical compounds. This table contains an example of the
information present in each row.

Data Example

ModelSEED identifier cpd15421

Abbreviation cdpdodecg

Name CDP-1,2-dioctadecanoylglycerol

Formula C48H87N3O15P2

Mass 1007

Source Primary Database

InchiKey PDCWLWQTNQCGRI-IGIWICMZSA-L

Charge -2

is core 1

is obsolete 0

linked compound -

is cofactor 0

deltag 233.19

... ...

Aliases Name: CDP-1,2-dioctadecanoylglycerol—BiGG:
cdpdodecg—EcoCyc: CPD-12814—MetaCyc:
CPD-12814—iAF1260: cdpdodecg—iGT196:
cdpdodecg

SMILES CCCCCCCCCCCCCCCCCC(=O)OC[C@H]
(COP(=O)([O-])OP (=O)([O-
])OC[C@H]1O[C@@H](n2ccc(N)nc2=O)
[C@H](O)[C@@H]1O)OC(=O) CCCCCCCC-
CCCCCCCCC

notes GC—EQ—EQU
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Table 16: Information contained in the tab delimited text file retrieved from ModelSEED database, which
contains information about chemical compounds’ structures. This table contains an example of the
information present in each row.

Data Example

ModelSEED identifier cpd15421

Type SMILES

Aliases CPD-12814

Formula C48H87N3O15P2

Charge -2

Structure CCCCCCCCCCCCCCCCCC(=O)OC[C@H]
(COP(=O)([O-])OP(=O)
([O-])OC[C@H]1O[C@@H]
(n2ccc(N)nc2=O)[C@H](O)[C@@H]1O)
OC(=O)CCCCCCCCCCCCCCCCC

Table 17: Information contained in the tab delimited text file retrieved from ModelSEED database, which
contains information about chemical compounds’ aliases in several databases. This table contains an
example of the information present in each row.

Data Example

ModelSEED identifier cpd15421

External ID cdpdodecg

Source BiGG

LIPID MAPS

LIPID MAPS compiles five databases: Lipid Structures (LMSD), lipid-related genes and
Proteins (LMPD), In-Silico Structure Database (LMISSD), Computationally-generated Bulk
Lipids (COMP DB), and Lipidomic Ion Mobility Database. For the present work, only the
LMSD will be considered. Up to the present date (November 2020), this database includes
more than 45000 lipid structures. Data was extracted from a TSV format file downloaded in
https://www.lipidmaps.org/rest/compound/lm id/LM/all/download. An example of the information
contained in this file is described in Table 18.

https://www.lipidmaps.org/rest/compound/lm_id/LM/all/download
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Table 18: Information contained in the TSV file retrieved from LIPID MAPS database. This table contains an
example of the information present in each row.

Data Example

LIPID MAPS identifier LMGP13010001

Name CDP-DG(12:0/12:0)

sys name 1,2-Didodecanoyl-sn-glycero-3-cytidine-5’-
diphosphate

Synonyms CDP-DG(24:0); CDP-DG(12:0/12:0)

Abbrev CDP-DG 24:0

abbrev chains CDP-DG 12:0/12:0

core Glycerophospholipids [GP]

main class CDP-Glycerols [GP13]

sub class CDP-diacylglycerols [GP1301]

class level4 -

exactmass 841.389098

formula C36H65N3O15P2

inchi InChI=1S/C36H65N3O15P2/c1-3-5-7-9-11-13-
15-17-19-21-31(40)49-25-28(52-32(41)22-20-
18-16-14-12-10-8-6-4-2)26-50-55(45,46)54-
56(47,48)51-27-29-33(42)34(43)35(53-
29)39-24-23-30(37)38-36(39)44/h23-
24,28-29,33-35,42-43H,3-22,25-27H2,1-
2H3,(H,45,46)(H,47,48)(H2,37,38,44)/t28-
,29-,33+,34?,35-/m1/s1

inchi key PTPPKXVNJJIECF-MYNNLVAUSA-N

... ...

SMILES [C@]([H])(OC(CCCCCCCCCCC)=O)
(COP(=O)(O)OP(=O)(O)OC[C@H]1O[C@@H]
(N2C=CC(N)=NC2=O)C(O)[C@H]1O)
COC(CCCCCCCCCCC)=O
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3.2.2 Data transformation and loading

Each source’s data files have their format and type of information. Hence, data transforma-
tions were performed in order to standardize it.

SLM raw data transformation

SLM’s raw data was divided into two main parts: compounds’ general information and
hierarchy.

As for the compounds’ general information, the raw data was transformed encompassing
the following tasks:

• Generic compounds were filtered only to include the ones with the hierarchy’s ”Level” of
”Class”;

• Rows were filtered to include only structural defined compounds, besides the ones
filtered in the previous task;

• Relevant compounds’ features were maintained: name, SMILES, InChI, InChIKey, for-
mula, charge, and mass (pH 7.3). The rest was not considered.

• Each SMILES was transformed into canonical SMILES with rdkit;

It is worth noting that all SMILES were converted into canonical SMILES prior to the data
loading, to standardize the abstract compounds, as these cannot be represented by InchiKeys
nor InChIs. Nevertheless, only the structurally defined compounds and the main classes were
imported, preventing the integration of unnecessary entries into BOIMMG’s database.

As far as the relationships are concerned, only two types were considered: ”is a” and
”component of”. ”Is a” relationships are defined when there is a structural relationship
between compounds. On the other hand, the type ”component of” refers to the presence of a
given molecule in another one. This information is present in the SLM data file (Figure 13). A
starting point and an ending point were defined for each relationship to transform it into a
standard format.

The ”component of” relationships were extracted from SLM’s raw data as follows:

• Starting point: SLM’s identifiers in the ”Components” column (e.g. in the example
presented in Figure 13, the starting point would be ”SLM:000000827”);

• Ending point: the SLM’s identifier of the compound being analysed (e.g. in the example
presented in Figure 13, the ending point would be ”SLM:000000178”)

On the other hand, ”is a” relationships were extracted from SLM’s raw data as follows:

• Starting point: the SLM’s identifier of the compound being analysed (e.g. ”SLM:000000178”
in Figure 13);
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• Ending point: SLM’s identifiers in the ”Parent” column (e.g. in the example presented
in Figure 13, the ending point would be ”SLM:000392021”);

ModelSEED raw data transformation

As for ModelSEED data, three different files were used and merged. Moreover, several data
was transformed and filtered as follows:

• Relevant chemical information: name, SMILES, InChI, InChIKey, formula, charge, and
mass; the rest was otherwise ignored.

• SMILES were converted into canonical SMILES with rdkit;

• Compounds’ aliases were filtered to include only the ones related to BiGG, MetaCyc,
MetaNetX, and KEGG;

LMSD raw data transformation

The following tasks were performed to obtain a standard format of the LMSD data:

• Relevant compounds’ data was included: name, SMILES, InChI, InChIKey, formula,
charge, and mass; the rest was otherwise discarded.

• SMILES were transformed into canonical SMILES with rdkit;

Graph transformation and Data loading

As for the data loading, the neo4j-admin tools were used, as the respective data im-
porter is considerably faster than using Neo4j Cypher (see more in https://neo4j.com/docs/
operations-manual/current/tutorial/neo4j-admin-import/). Correspondingly, the information
retrieved from different sources was converted into two different files with the neo4j-admin
importer’s standard format. The first file corresponded to each compound’s general infor-
mation, whereas the second contained information about relationships established between
compounds. It is worth noting that the latter were extracted from SLM’s hierarchy, which does
not necessarily include LMSD nor Model SEED compounds.

This information was then converted into a directed graph (Definition 3).
Each node of the database was tagged with one and only one label (Definition 4). The same

logic was applied to the edges (Definition 5).
The set of labels EL in Definition 5 is the one considered for this stage of BOIMMG’s pipeline.

However, other labels will be considered in further stages of the present work.
Furthermore, instances of each node will be defined as Objects (Definition 6). Accordingly,

each Object will contain properties and an internal identifier. As edges connect nodes, Objects
will be associated by Relationships (Definition 7). Each Relationship will also have a specific
set of properties, two and only two different associated Objects.

https://neo4j.com/docs/operations-manual/current/tutorial/neo4j-admin-import/
https://neo4j.com/docs/operations-manual/current/tutorial/neo4j-admin-import/
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The final result of the data loading and graph transformation stage will be a directed graph,
in which each node will correspond to either a generic or structurally defined lipid. Moreover,
each edge will correspond to a biochemical relationship between two lipids (Figure 18).

Figure 18: Graph transformation from two files. One with information about compounds retrieved from different
sources and the other with information about the relationships between them.

The graph presented in Figure 18 is partially disconnected. Only the compounds retrieved
from SLM are connected, as only the SLM’s hierarchy and relationships were imported, not
including the Model SEED and LMSD’s compounds. Hence, the disconnected information will
be conducted in the next section.

3.2.3 Data integration

A consensual node for each hierarchy’s entity was defined to facilitate the posterior knowl-
edge expansion and data integration. Therefore, all nodes tagged with the label ”SwissLipid-
sCompound” were cloned and tagged with the new label ”Compound”, which will be, from
this time forth, referred to as the ”consensual node”. All nodes associated with SLM data
were cloned first, as they already were included in the hierarchy. Accordingly, all relationships
associated to a given cloned compound will be transferred into its respective ”consensual
node”. The ”consensual node” will represent the integrated information regarding the different
sources.

Thus, the data integration was conducted by matching the chemical structures retrieved
from different sources. Correspondingly, the Definition 8 was considered to integrate possible
redundant information,. In fact, the InChIKey is a practical line notation suitable for integrating
this information, as it contains information about the compound’s structure, stereochemistry
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and protonation in only 27 characters. However, the last character will be ignored as it
represents the compound’s state of protonation. In other words, a molecule with the same
chemical structure but in different states of protonation will be considered the same. In a
simplistic sense, the protonation state corresponds to the absence or presence of protons in a
given molecule. Hence, in a stoichiometric sense, two structurally and stereochemically equal
molecules in different protonation states will only differ in the total number of hydrogen atoms.
Hence, there is no point on considering those two compounds as different entities, as the only
implication in GSM models will be the potential unbalance of reactions. The balance problem
will be solved by adding or removing protons from the correct reactions’ side (either in the
reactants or products side).

While this is true for structurally defined compounds, it is not for generic ones, as they
do not have a well-defined structure, InChIKey nor InChI. Consequently, for these cases, the
integration was performed based on the canonical SMILES. As described in the previous
section, these were generated by rdkit. Thus, one and only one possible SMILES representation
for each different generic compound is expected. Correspondingly, a case sensitive match test
regarding SMILES strings was performed (Definition 9) to determine which generic compounds
have the same structure.

Model SEED and LMSD compounds were then integrated and associated with the already
created ”consensual nodes”. On the other hand, the ones that did not match with any of the
SLM compounds were cloned into another ”consensual node”. As for the latter, these other
”consensual nodes” will be disconnected from the previously loaded hierarchy. Correspond-
ingly, the integration of the disconnected ”consensual nodes” into the SLM hierarchy was
conducted. This integration will be discussed in the following subsection.

3.2.4 Data integration in SLM’s hierarchy

As for the relationships integration, the Algorithm 1 was implemented. For the ”is a”
relationship type, two main filters were considered: one for the backbone and another for
the side chains. A substructure match test was performed against all classes of interest in
BOIMMG’s database to assess the backbone presence. On the other hand to guarantee the
correct side chain requirement, a filter was implemented for checking whether the number of
Rgroups in the abstract class is equal to the number of side chains in the structurally defined
compound. When it came to establishing correct ”component of” relationships, the side chains
were extracted from the compounds and matched by structural similarity with the database’s
existing structures. It is worth noting that all these processes were powered by rdkit.
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Algorithm 1: Establishment of relationships between LIPID MAPS, ModelSEED compounds
and BOIMMG compounds

Input: R as the universal set of relationships in the database
C such as C ⊆ O is a list of previously chosen abstract compounds
coreSMILES is a SMILES string representing the core of the components

Output: No output is returned, as the R set will be mutated
begin

Dictdatabase ← DatabaseReader() // It returns the dictionary function with K:
database identifiers; and V : SMILES strings

for c ∈ C do
F ← SubstructureMatchTest(csmiles, Dictdatabase) // It checks whether there are
compounds in the database that possess the same backbone as the compound c.
It returns F ⊆ O

for f ∈ F do
S← GetSideChains( fsmiles, csmiles) // It removes the core of f and returns
the set of side chains

σsidechainsViability ← SideChainsCheck(S, fsmiles, coreSMILES) // checking

whether the number of Rgroups is equal to the number of sidechains
if σsidechainsViability then

π(〈 f , i, ”is a” , ∅ , c〉,R)
for s ∈ S do

p← JoinCoreWithSidechain(s,coreSMILES) // function that joins the
identified side chains with the component core, it returns the
component object p ∈ O

π(〈p, i, ”component of”, ∅, f 〉,R)

end

end

end

end

end

3.3 Semi-automated knowledge expansion

The second step of BOIMMG’s pipeline is the generation and expansion of biochemical
knowledge. The present module can capture functional and structural relationships between
complex chemical species and their biosynthetic precursors.

In the previous chapter, relevant relationships aiming at metabolic modelling were described.
Structural relationships were mainly set and integrated into BOIMMG’s database. Regarding
the ”component of” type relations, they were also loaded from the SLM database and inferred
for LMSD and ModelSEED lipids. However, the ”precursor of” type of relationships do not
exist in any other database.

Regarding the lack of annotated information about electron-transfer quinones, their hierarchy
and relationships were constructed semi-automatically resorting to few methods (enumerated
in the next subsection). Nevertheless, for other lipids, a novel semi-automated module was
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developed to extract biosynthetic information from generic pathways and reactions. These
methodologies will be thoroughly described in the following subsections.

3.3.1 Electron-transfer quinones

As shown in Chapter 2, the information about the structurally defined chemical species of
electron-transfer quinones is scarce in biochemical databases, when compared to literature [80].
Thus, the annotation of such species and the relationships between them are relevant.

A few methods (enumerated below) were used and an extensive manual curation were
performed to tackle such a problem. The algorithm represented in Figure 19 describes the
computational method used to generate the electron-transfer quinone relationships. The
workflow can be defined as follows:

1. Provide the KEGG pathway identifier of quinones biosynthesis;

2. Set a SMILES generic representation for each generic compound;

3. Search for similarity against ModelSEED compounds database;

4. Automatically generate functional and structural relationships;

5. Manual curation;

After the automatic generation of the relationships, extensive data curation was conducted.
The curation was performed pathway-by-pathway, starting by correcting errors produced by
the automatic method. Then, generic structures were generated for each biosynthetic precursor,
conjugated bases or acids without representation in ModelSEED. As afore-mentioned, the
quinones and quinols reported in the literature are not completely represented in reference
biochemical databases. For this reason, defined structures such as those reported in the
literature were generated and the relationships with their respective abstract compounds were
set. Furthermore, each conjugated base or acid relationships were manually established for
the abstract compounds and computationally inferred for the structurally defined chemical
species.

3.3.2 Other Lipids

The other lipids representation problem was solved similarly, however, due to the consider-
ably higher number of structurally defined chemical species, an automatic method was here
developed. Correspondingly, the following considerations must be taken into account:

• For each lipid there is a respective generic biosynthetic pathway;

• Each reaction of those pathways can be represented by a SMARTS notation readable by
rdkit modules;
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Figure 19: This fluxogram depicts the computational method used to aid the establishment of the electron-
transfer quinones relationships. This method received the quinones biosynthesis KEGG pathway.
Then, a SMILES generic representation was set for each generic compound. Afterward, an iterative
similarity search was conducted against the ModelSEED compounds database. This process was
performed aiming to assess which compounds were structurally similar to the previously generated
structure. Finally, the relationships were set based upon the backbone and sidechain structures, and
in the role of each compound in the biosynthetic pathway.

• Each generic entity in the biosynthetic pathway has structural descendants in BOIMMG’s
hierarchy;

The knowledge expansion and generation workflow is depicted in Figure 20. Essentially,
this operation encompasses three computational components: the Network Handlers (NH),
the Relationships Generator (RG) and BOIMMG’s internal database. Moreover, the SMARTS
reaction representations are requested from the user to achieve higher accuracy and to avoid
a high number of false positives. Ultimately, the RG algorithm aims to generate missing
biosynthetic precursors and establish relevant relationships between the different classes and
instances of lipids.

The NH module is composed by operations which cope with the MetaCyc information such
as the pathways ontology and templates. Fundamentally, NH converts the pathway ontology
into a directed graph where the nodes and edges represent the pathways and their relationships,
respectively. In this ontology, the instances (nodes without predecessors) correspond to specific
pathways, whereas the classes (nodes with predecessors) are entities that represent various
pathways. For instance, the ”Phospholipids Biosynthesis” is a class of pathways, representing
all the characterized biosynthetic pathways of phospholipids.

Moreover, NH converts the pathway template into a directed graph. The reactions are
represented with nodes and the pathway sequence of reactions is represented with directed
edges.
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Figure 20: This flowchart depicts the general interaction between the main computational components and the
user to capture valuable relationships between compounds. The NH provide the pathway templates
to the RG algorithm. Herein, all combinations of the SMARTS notation for all the pathway reactions
are provided to the expert. Then, the user selects the correct notations and provide these to the RG.
The RG requires all the hierarchy descendants of the biosynthetic target of the selected pathway.
BOIMMG’s database provide these descendants. The RG algorithm starts to navigate through the
biosynthetic pathway generating the chemical structures of each descendant’s biosynthetic precursor
(red arrows). If these already exist, ”precursor of” relationships will be set. Otherwise, the new
precursors chemical structure will be added to the database and relations will be established (blue
arrow).

The RG is a module that includes an operation to establish biosynthetic relationships. It
receives as input the specific biosynthetic pathway template, the annotated reactions’ SMARTS,
and the structural children of the compound to be synthesized.

The workflow starts with selecting a specific class of compounds to be synthesized, then
the NH seeks the ontology instances of that given class (Pathway ontology in Figure 21).
Afterwards, the RG iterates over the chosen pathway’s reaction set and generates the possible
reactions’ SMARTS (SMARTS 1,2,n in Figure 21). At this moment, the user must be able to
choose the correct SMARTS. Then, the annotated SMARTS are stored and processed by the RG
algorithm (Figure 22).

After gathering all the pathway’s and related reactions’ information, the RG algorithm starts
by reversing the sequence of pathway reactions. Then, it converts the pathway reactions into
virtual ones where the products are converted into reactants and vice-versa. Subsequently, hav-
ing the first generic reactant of the first virtual reaction in the reverse pathway (the biosynthetic
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target), the next step is to load all the hierarchy’s structural descendants (structurally defined
chemical species) from BOIMMG’s database.

Finally, the algorithm iterates over the descendants set and navigates through the reverse
pathway graph. For each node (reaction), the algorithm uses the annotated transformations
to predict chemical structures utilized in that reaction. If the predicted structure exists in the
database, the ”precursor of” relationship is established. Otherwise, the predicted chemical
structure is stored and the respective relationships are set. Cardiolipin is shown as an example
in Figure 22.

Figure 21: This figure illustrates an example of how different combinations of reaction SMARTS are provided.
Firstly, a given MetaCyc pathway ontology instance is selected and converted into its reverse pathway.
Each reaction is transformed into virtual reactions where each reactant is converted into product
and vice versa. Then, the algorithm generates a set of SMARTS combinations for each pathway
reaction. Finally, the user selects and provides to the RG algorithm the correct reaction SMARTS.

3.4 Integration in GSM models

In this section, the integration of the previously generated information in GSM models will
be described. A completely automatic method was developed. The main goal was to provide
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Figure 22: This scheme shows an example of how the RG algorithm works for cardiolipin. It starts by receiving all
the biosynthetic target structural descendants from BOIMMG’s database (blue arrow). Subsequently,
the previously generated virtual reactions, using the SMARTS transformations provided by the
user, will generate the biosynthetic precursors’ chemical structure. The red arrows represent the
established biosynthetic relationships.

a computational tool to generalize, granulate, and integrate complex structurally defined
chemical species.

3.4.1 Software overview

Data integration in GSM models respects the workflow presented in Figure 23. The
computational method to automate this process was developed on top of COBRApy and
encompasses five components: the Representation Problem Solver (RPS), the Model Mapper
(MM), the Network Modifier (NM), the Revisor, and BOIMMG’s database.

The RPS is the module that handles the user’s requests and the GSM model. It aims to solve
two different problems, which will be referred to, from this time forth, as Simple Representation
Case (SRC) and Redundant Representation Case (RRC) problems.

SRC problem will be assigned to those classes of chemical species that one and only one of
its kind occurs in living organisms (e.g. Escherichia coli uses the ubiquinone with 8 isoprene
units long). In order to address the representation problem of those chemical species, it would
be necessary to swap one compound into another, including their biosynthetic precursors.

On the other hand, the RRC problem will be assigned to those classes of chemical species in
which more than one of its kind occurs in a living organism simultaneously (e.g. phosphatidyl-
cholines with different acyl side chains can occur in the same organism). The strategy employed
to tackle this problem encompasses the granulation of generic species into the designated
structurally defined compounds. Accordingly, new reactions must be generated towards the
biosynthesis of these compounds and their biosynthetic intermediates.

The MM identifies all the metabolites in the model and establishes links with several
biochemical databases including BOIMMG’s. Other modules will then use the metabolites’
map to add or modify reactions and metabolites in the model correctly.
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Figure 23: General scheme representing the software architecture of the BOIMMG’s framework. The software
is composed of five main components: NM, Revisor, RPS, MM and BOIMMG’s database. The
workflow starts with the user requests and the submission of a GSM model. Then, the model is
mapped by the MM regarding their InChIKey and databases’ cross-references. Eventually, the NM
will swap or granulate the metabolites from their generic version into their complete (structurally
defined) version, vice-versa or from the defined into another defined version. Moreover, all the
reactions associated to the swapped or granulated metabolites will be changed to their correct
format. Afterwards, the Revisor will balance the altered reactions if necessary. The modified model
is, then, retrieved to the user.

The NM component is composed by the Metabolite Swapper (MS), the Reactions Swapper
(RS) and the Granulator. The primary function of MS is to swap metabolites from one chemical
species into another. For instance, if one wants to generalize all the quinones, the MS will swap
all the requested metabolites and their biosynthetic precursors to the respective generic entity.
The metabolite swapping process includes the compound’s annotations, formula, charge, and
identifier, depending on the model’s database format. Whereas the RS will change all the
reactions associated to the swapped metabolites. Depending on the database’s format, the RS
will search for the new reaction’s database identifier (ID) and its respective Gibbs free energy.
While these components are used to address the SRC problem, the Granulator is used to solve
the RRC. The Granulator’s function is to ensure that all molecular species and associated
biosynthetic reactions are introduced in the model.

The Revisor provides an analysis of the compounds’ representation in the GSM model
and the biochemical consistency of each modified or added reaction. It checks whether the
reactions are balanced and if the compounds’ biosynthetic precursors are correctly annotated
and assigned to a specific reaction. This component is important as, after swapping metabolites,
there could be reactions that are unbalanced. Also, their products and reactants could not
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make sense from a representational point of view. Accordingly, this module uses an algebraic
method to balance reactions, which will be described in the following subsections.

The general workflow can be followed up in the Figure 23. Depending on the user’s scope,
BOIMMG can perform different tasks. Nevertheless, BOIMMG requires either three or four
inputs, depending on the type of representation problem: the GSM model, the actual target to
granulate or swap, the chemical species present in the model, and the target components (e.g.
fatty acids). The latter is only required for RRC type of problem.

The user performs the swapping or granulation request, and a GSM model is submitted.
The swapping or granulation process is performed considering all the information available
in BOIMMG’s database. After swapping or granulating all the compounds and reactions, the
Revisor module will revise the model. The altered model is then returned to the user.

3.4.2 Model Mapper

The Model Mapper aims at identifying all the compounds in the model, considering their
chemical structure and their database links. It iterates all over the model’s metabolite set and
analyses their assigned annotations.

These annotations must contain databases’ identifiers to determine whether the compound is
available in BOIMMG’s database. Therefore, this module generates two maps: one to determine
which compounds are in BOIMMG’s database, and another to get the correspondence between
the model compounds and biochemical databases (Algorithm 2)

This mapping will be particularly relevant in the swapping and granulation process, as these
tasks will highly depend on the chemical structure’s representations present in the model.
Thus, determining which metabolites are represented in the model is essential.

Furthermore, this module will help to update the created model maps whenever a compound
is swapped or generated.

3.4.3 Network Modifiers

The NM are a crucial component of BOIMMG, as they provide the means to change the
compounds’ and reactions’ representation based on the information retrieved from BOIMMG’s
database. The NM are composed by the MS, the RS, and Granulator classes. The first class
instantiates the RS, as only the reactions with swapped metabolites are considered to be
swapped.

Three metabolite swapping types are considered for the implementation of the two swapping
classes: the 0, 1 and 2 (as depicted in Figure 24). The type 0 represents a swapping from one
metabolite into another with a common structural parent. On the other hand, the type 1 and 2

involves the swapping of one metabolite, their biosynthetic precursors and their conjugated
bases and acids (Algorithm 3). The type 1 encompasses only the swap between structurally
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Algorithm 2: Algorithm to map the metabolites present in the model.

Input: model such as model is the GSM model
Output: DictmodelMap and DictboimmgModelMap as dictionary functions to consult each of

the metabolites in the model.
begin

M← modelmetabolites
DictmodelMap ← Dict[∅→ ∅]

DictboimmgModelMap ← Dict[∅→ ∅]

for m ∈ M do
A← mannotations
for a ∈ A do

DictboimmgModelMap(a)← m
oi ← GetBOIMMGCompoundByDBLink(a) // function that returns the
BOIMMG identifier of the queried compound if it exists, otherwise returns
null, such that o ∈ O

if oi 6= null then
DictboimmgModelMap(oi)← m

end

end

end
return 〈DictmodelMap, DictboimmgModelMap〉

end

defined metabolites with the same backbone. Lastly, the type 2 represents the swap between a
defined metabolite with its structural parent.

Regarding the type 1 and 2 metabolite swapping, all the information from biosynthetic
precursors and conjugated base and acid are extracted from BOIMMG’s database.

The Reactions Swapper analyses the swapped metabolites in the changed reactions and
changes their format. It searches for reactions in KEGG, BiGG and ModelSEED to assign their
identifiers and aliases to the new model reaction. If the reaction does not exist in any of the
aforementioned databases, an arbitrary identifier is assigned. Herein and for the granulation
process, it is assumed that the enzymes catalyzing such reactions are promiscuous for a specific
group of chemical species (ubiquinones, menaquinones, and so forth).

As for the Granulator’s implementation, the general algorithm is described below (Algorithm
4). Herein, a set of components and a generic compound are received as inputs. Starting from
this, the Granulator will extract all the structurally defined molecules belonging to the generic
compound class received as input. Furthermore, from these molecules only those containing
the requested structural components will be selected. These compounds will be pushed into
a stack. Then, the granulated biosynthetic pathway will be built, iteratively. Each extracted
lipid will be added to the network in each iteration, starting from granulating all its structural
parent’s associated reactions.

The granulation is performed straightforwardly. Considering that the reaction’s metabolites
are generic, their respective structural children will replace each of them. This information is
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Figure 24: This figure depicts the types of possible swaps. The type 0 occurs from one compound to another
with a common parent, or a structural parent to a child. Whereas the type 1 and type 2 aim at
swapping all the biosynthetic precursors, conjugated bases and acids. Nevertheless, type 1 involves
the swapping between two structurally defined chemical species. On the other hand, the type 2
swap encompasses changing one structurally defined compound to its structural parent, as well as
the other way around.

extracted previously from the database (”is a” and ”precursor of” relationships). Then, in each
iteration, new compounds (the target’s precursors) will be added to the metabolic network.
Thus, in order to trace back the biosynthetic pathway of the initially requested compound,
their precursors are pushed into the stack.

In the next iteration, a compound is popped from the stack and the process is repeated. This
process goes on and on until the stack is empty.

3.4.4 Revisor

The Revisor’s function is to revise the compounds representation in the model and ensure
that all the swapped and granulated reactions are balanced.

The correct compounds’ representation is checked using the maps previously generated, as
these have information on the model’s metabolites. Furthermore, this component will check
whether the reactant’s side chain is transferred within a specific reaction. If not, the reaction is
removed from the model. Otherwise, the reaction is kept.
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Algorithm 3: Algorithm to swap metabolites. (*) The condition is variable considering the
type of swap. Type 1: HasCommonStructuralParentWith. Type 2: IsStructuralChildOf.

Input: replacer id is the compound identifier of the metabolite that will replace the other in
the swapping process.

model is the GSM model
precursorsInModel are the biosynthetic precursors of the metabolite to be swapped
conjugatedAcidAndBaseInModel are the conjugated acid and base of the

metabolite to be swapped
Output: This method will not return anything, rather, it will mutate model
begin

P← GetPrecursorsFromDatabase(replacer id)
A← GetConjugatedAcidAndBaseFromDatabase(replacer id)
C ← ∅
for m ∈ precursorsInModel do

for p ∈ biosyntheticPrecursors do
if HasCommonStructuralParentWith(m,p) (*) then

ChangeMetaboliteFormat(m,p) // this method will mutate m, changing
the metabolite format to p’s format (formula, mass, annotation, etc)

π(m, C)

end

end

end
for m ∈ conjugatedAcidAndBaseInModel do

for c ∈ conjugatedAcidAndBase do
if HasCommonStructuralParentWith(m,c) (*) then

ChangeMetaboliteFormat(m,c)
π(m, C)

end

end

end
ChangeReactions(C) // this method will change all the reactions’ format regarding
the metabolites that were swapped

end

Reaction’s balance

An algebraic approach was considered to balance the either granulated or swapped reactions.
Let one consider the following unbalanced reaction’s equation:

H3PO4 + CaCO3 −−→ Ca3(PO4)2 + H2CO3 (3)

Now, using it as a skeletal chemical equation, let one consider X such that X is a column
vector and X = {x1, x2, ..., xn}, where xi is the ith stoichiometric coefficient, such that xi ≥ 1.
This leads to the following equation:

x1 H3PO4 + x2 CaCO3 −−→ x3 Ca3(PO4)2 + x4 H2CO3 (4)
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Algorithm 4: This algorithm aims at generating granulated reactions with granulated
compounds from a generic biosynthetic pathway.

Input: components such that components is the list of the requested structural components
parent such that parent is the structural parent that is going to be granulated

Output: This algorithm will return a set of new granulated reactions
begin

S← RequestStructurallyDefinedLipids(components,parent) // it returns all the
structurally defined compounds that are structural children of parent and whose
components are present in the set components

R← ∅
while S 6= ∅ do

l ← ϕ(S,−1)
p← GetStructuralParent(l)
R← GetReactions(p) // get all the reactions that uses a given metabolite, it
returns the set of reactions

V ← GetPrecursorsFromDatabase(l) // it returns the set of precursors of the
compound l

for r ∈ R do
g← GranulateReaction(r, l, v) // It derives the generic reaction r to a
granulated reaction (in accordance with Definition 18). It returns the
reaction g.

N ← GetReactants(g)
π(g, R)
S← S ∪ N

end

end
return R

end
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The Dalton’s requirement must be satisfied to each coefficient: mass and atom’s conservation
law.

Then, the reaction’s matrix A can be built using the Definition 20. In this case, the matrix
would be formulated as represented right below the definition.

Definition 20. Reaction Matrix

Considering the Equation 4, the m× n matrix A such that m is the number of rows and n is the

number of columns will hereby represent the reaction’s matrix. Moreover, by definition, each A’s

value aij represents the number of atoms of each chemical element i in each molecule j.

A =

H3PO4 CaCO3 Ca3(PO4)2 H2CO3


0 −1 3 0 Ca
0 −1 0 1 C
−4 −3 8 3 O
−3 0 0 2 H
−1 0 2 0 P

Now, if the Equation 5 is considered, one can derive it into an homogeneous system of five
equations such as the one in Equation 6.

AX = 0 (null column vector) (5)

Ca : x1 = 3x3

C : x1 = x4

O : 3x1 + 4x2 = 8x3 + 3x4

H : 3x2 = 2x4

P : x2 = 2x3

(6)

Lastly, this system of equations is solved by extending and using the Sympy linear equations’
solver modules [94]. The ultimate result is a set of stoichiometric coefficients, which are
assigned to the respective reaction, afterwards.

3.5 BOIMMG’s evaluation and validation

3.5.1 Knowledge expansion evaluation

The knowledge expansion stage will be evaluated based on whether a set of established
relationships can generate new reactions. Moreover, the number of not established relationships
will be further discussed. The assessment methods will be enumerated in this section.
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Capacity of generating new reactions

This first metric will evaluate whether each established relationship is capable of generating
balanced reactions.

MetaCyc generic reactions were used for this end. Each reaction’s reactant and product
will be replaced by their respective structural children, respecting the previously established
biosynthesis relationships. Moreover, the resultant reaction is to be balanced by the algebraic
method described in section 3.4.4. The resultant reaction will then be defined as in Definition
18.

Condition 1. Generating new reactions - Condition 1

Considering the generic reaction r1, where S1 is the set of generic reactants of r1 and P1 is the set

of generic products of r1, r1′ will be the new complete reaction derived from the reaction r1, such

that S1′, and P1′ are the reactants and products of r1′, respectively. This condition is true if and

only if ϕ(S1′, i) is the structural child of ϕ(S1, i), and ϕ(P1′, j) is the structural child of ϕ(P1, j),

such that i ∈ {x ∈N : x ≤ |S1|} and j ∈ {y ∈N : y ≤ |P1|}.

Condition 2. Generating new reactions - Condition 2

A new complete reaction will be generated if and only if it is balanced according to the algebraic

method described in section 3.4.4.

Herein, the wrongly established ”precursor of” relationships per reaction are defined as
those that do not respect Conditions 1 and 2. Accordingly, the bad relationships per reaction
can be identified considering the following:

• If, for each evaluated generic reaction, there is, at least, one relationship whose origin
or target’s structural parent is not any of the generic reaction’s reactants or products,
respectively;

• The generated complete reaction cannot be balanced by the algebraic method described
in section 3.4.4.

Moreover, the number of unestablished relationships was quantified. Unestablished relation-
ships are defined as in Definition 21.

Definition 21. Unestablished relationship per product

Considering P the set of generic products of a given generic reaction r, the number of unestablished

relationships will be determined by the number of structural children of each element of P that has

no relationship associated to r.

Hence, 70 generic reactions extracted from MetaCyc were evaluated. The percentage of
complete reactions wrongly derived from a generic reaction was defined by the following:
the number of wrongly generated reactions divided by the total number of possible reactions.
Moreover, the number of unestablished relationships was also evaluated. The percentage
of unestablished relationships was defined by the following: the number of unestablished
relationships divided by the number of potential targets.
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3.5.2 BOIMMG’s data integration in GSM models

Regarding this topic, two different cases were defined: SRC and RRC. The SRC’s case study
was based on either generalizing or granulating electron-transfer quinones. While for the RRC,
only the granulation was performed and applied to glycerolipids and glycerophospholipids. As
mentioned in section 3.3.1, the solution to address SRC type of cases encompassed swapping
one version of a given chemical species into another. Whereas to solve RRC a more complex
solution was employed (described in section 3.3.3.).

To validate BOIMMG’s data integration for the SRC problem, the metabolite and reaction set
of two different models (the E. coli K-12 MG1655’s iML1515 model [95] and the S. cerevisiae’s
iMM904 [96]) were compared, before and after being either generalized or granulated. Though
from different types (gram-negative bacteria and yeast, respectively), these two models were
selected because E. coli uses an ubiquinone-8, whereas S. cerevisiae uses ubiquinone-6. Con-
sequently, a generalization should be able to leverage the overlap between these two models
regarding ubiquinones. Although their biosynthetic pathways are different, few reactions are
shared.

On the other hand, for the RRC problem, the E. coli iJR904’s metabolic network [1] was
granulated to include structurally defined lipids. This granulation occurred receiving as input
the biosynthesis targets (Cardiolipins and Acyl phosphatidylglycerol) and five components:
myristic acid (14 carbons), myristoleic acid (14 carbons and a double bond), palmitate (16

carbons), palmitoleic acid (16 carbons and one double bond), and (Z)-11-octadecenoic acid (18

carbons and one double bond). Moreover, the granulation was configured to build lipids with
only one type of fatty acids as components of their side chains. However, it is also possible to
perform the granulation of more complex lipids (mixing the side chains).

Afterwards, the granulated model was compared to its iteration iAF1260b [2, 3], which
includes structurally defined lipids. Moreover, for each added compound present in the
biomass reaction, the capacity of carrying flux was evaluated using Biological networks
In Silico Optimization (BioISO)’s web-service [97] at https://bioiso.bio.di.uminho.pt/, after
adding reactions that would link the model network to the generated one.

BioISO [97] can determine whether the selected model’s reactions are carrying flux when
maximized or minimized. Also, it allows for tracking errors in the metabolic network that
impair the synthesis of the reactants and products of a given reaction.

Model comparison

For model comparison, Algorithm 5 was used both for the comparison of the metabolites
and reaction sets.

It is worth noting that although the reaction set comparison algorithm is equal to the
Algorithm 5, it has an additional method of comparison if no annotations are found equal.
This additional method performs a comparison between all the metabolites present in the two
reactions. Protons are added either to the reactants or products side to circumvent the fact that

https://bioiso.bio.di.uminho.pt/
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some reactions could present the same metabolites in different protonation states. If the set of
metabolites is equal, the reaction is considered as equal as well.

Algorithm 5: Algorithm for metabolite comparison between two GSM models.

Input: model1 such that model1 is the first model
model2 such that model2 is the second model

Output: e such that e is the total number of equal metabolites
begin

M1← model1metabolites
M2← model2metabolites
e← 0
m1 ∈ M1
A1← m1annotations
for m2 ∈ M2 do

A2← m2annotation
σf ound ← f alse
for a2 ∈ A2 do

for a1 ∈ A1 do
if a1 = a2 then

σf ound ← true
end

end

end
if σf ound then

e++
end

end
return e

end

3.6 Web-service implementation

A dockerized web application was implemented to provide BOIMMG’s information and
services online. BOIMMG’s framework can be divided into two complementary modules:
the database and the automatic integration in GSM models. Hence, the web-service was
divided into two modules: the navigation and submissions modules. The back-end was
essentially implemented in Django and Flask, whereas the front-end was implemented in
Javascript, Cascading Style Sheet (CSS) and HyperText Markup Language (HTML). This
general architecture is illustrated in Figure 25 and will be briefly explained next.

The navigation module complemented the GSM models integration, allowing users to
visualize eventually newly introduced structures. Accordingly, this module was implemented
on top of Django’s framework, ensuring project’s scalability, robustness and easy access to
BOIMMG’s database. Herein, rdkit was used to depict all the compounds’ structures.
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The submissions module was developed to provide BOIMMG services. In turn, the user’s
submissions are handled in a Flask application. Due to Flask’s flexibility, a queue system of
submissions was implemented, allowing the service to process each request sequentially.

Each HyperText Transfer Protocol (HTTP) request (either navigation or services), is received
and processed by each module, separately. The responses are then retrieved and rendered in
the front-end.

Figure 25: BOIMMG’s web-service holistic architecture. The back-end is composed by two main modules:
navigation and submissions. The navigation module is implemented on top of Django and allows
the navigation in BOIMMG’s database. On the other hand, the submissions module is implemented
on top of Flask and provides BOIMMG services. Although the two are interacting with the database,
the purposes are different. The submissions module contains BOIMMG services, which are database-
dependent. In contrast, the navigation module’s purpose is specifically to render and provide
database’s information. The HTTP requests are handled separately by each module, enhancing the
two modules’ clear functional separation. After retrieving HTTP responses, the result is rendered in
the front-end, which is implemented in HTML, CSS and Javascript.

3.6.1 Navigation module implementation

The navigation module is composed by the following sub-modules: URL patterns, Views
renderer and the Database access layer (Figure 26). The former will be responsible for recog-
nizing the HTTP requests and then passing it to the Views renderer. Therein, the request is
processed and the database access is established. In the Database access layer queries are made
to the database, and the results are processed and retrieved back to the Views renderer. Finally,
the results are rendered in the front-end. It is worth noting that all compounds’ images are
being generated using rdkit.
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Figure 26: Navigation module architecture. The URL patterns’ submodule matches the requests, which are
then processed by the Views renderer. Specific information regarding compound’s structures and
relationships is requested to the database access layer. Afterwards, the database is queried, and the
results stored in their respective datatypes containers. The Views renderer will then use rdkit for
the depiction of compounds, as well as render their information in an HTML page.

3.6.2 Submissions module

The submissions module engine is on top of a queue system that includes two main entities
and three types of submission ”states”. The first entity is the module management, whose
function is to handle HTTP requests from the outside, ensuring that all the submissions
will be processed, and bring the results back to the user. The module workers are Docker
containers with BOIMMG services embedded. They can run BOIMMG services, and retrieve
information about the processing status. Furthermore, there are three main submission status:
the ”submission”, ”processing”, and ”results”. These status are folders that contain information
about each submission.

The modus operandi of this module is depicted in Figure 27. It starts with the submission
of a GSM model and several parameters. These are then stored in the ”submissions” folder,
while an available worker is requested to operate. When at least one is available, all the files
are transferred to the ”processing” folder. Then, as the files are ready to be processed and at
least one worker is available, the submission starts to be processed. When the worker generates
the results, they are transferred into the ”results” folder. The management system is always
checking whether new results are available in the ”results” folder, in which case, the results are
sent back to the user. Lastly, it is worth noting that the workers module can deploy as many
workers as required to deal with submission requests, which is particularly relevant if the
user-base increases significantly, as more workers can be assigned to manage more requests.
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Figure 27: Submissions module’s modus operandi. It starts with the submission of the requested input (GSM
model and several parameters). On the right is shown the Submissions module’s main entities
and submission states: Module management, and Module workers; ”submission”, ”processing”,
and ”results” states, respectively. Whereas on the left is depicted the user and the front-end
implementation. The main interactions between all the dockerized entities and the user are herein
illustrated.
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R E S U LT S A N D D I S C U S S I O N

In this chapter, the results regarding the three phases of BOIMMG’s pipeline will be
presented and discussed. The databases’ integration requires evaluating certain parameters,
such as the number of metabolites that were present in different databases. Furthermore,
the knowledge expansion will be assessed by the number of correctly characterized reactions.
Lastly, the integration in GSM models will be validated with the comparison of different
already curated models.

4.1 Databases integration assessment

The first task of BOIMMG’s pipeline is the integration of the databases. Correspondingly,
the information present in SLM, LMSD and ModelSEED was integrated into a graph-based
database using Neo4j. It is worth noting that these reference databases include information on
both generic and structurally defined lipids. Although LMSD contains generic compounds’
information, it does not include their structure representation (e.g. SMARTS) in the TSV file.
For this reason, only the generic compounds from SLM and ModelSEED were integrated into
BOIMMG’s database.

4.1.1 Generic compounds integration

Regarding the generic compounds, the integration involved using the canonical SMILES of
each compound, which resulted in 71 compounds between SLM and ModelSEED, whereas 876

exclusively extracted from SLM and 203 exclusively extracted from ModelSEED (Figure 28).
The overlap between both databases focused mainly on the most well-annotated lipids such

as the glycerophospholipids, few sphingolipids and glycerolipids classes. These results suggest
that these classes are the most commonly used, revised, and the biosynthetic pathways are
well-characterized in GSM models.

The Model SEED’s unique generic lipids were mainly prenol lipids, such as quinones and
their biosynthetic precursors, as these are incompletely and poorly characterized in the SLM
database.

71
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Figure 28: Venn diagram with the number of generic compounds that have been integrated from each database.

On the other hand, as expected, the SLM’s unique classes were mostly the ones further away
from the SLM’s hierarchy leaves, as ModelSEED does not provide an ontology or hierarchy of
compounds.

4.1.2 Structurally defined compounds integration

Concerning the integration of structurally defined compounds, only 579 were found in all
the integrated databases. On the other hand, 12555 compounds exclusively from LMSD and
SLM have matched. Moreover, 27 were found exclusively in ModelSEED and LMSD, whereas
SLM share 219 compounds with only ModelSEED. Lastly, 406 from ModelSEED, 580062 from
SLM and 30921 from LMSD did not match with any other compound in any other database.
This information is present in Figure 29.

Altogether, the results were the following (Figure 29):

• LIPID MAPS: 30 921

• ModelSEED: 406

• SWISS LIPIDS: 580 062

• LIPID MAPS and ModelSEED: 27

• LIPID MAPS and SWISS LIPIDS: 12 555

• SWISS LIPIDS and ModelSEED: 219

• SWISS LIPIDS, ModelSEED, and LIPID MAPS: 579

Regarding the results presented in Figure 29, it is clear that an effective integration was
performed. It shows that there was redundant information across databases; however, simulta-
neously, unique data was found in all the different sources.

When it comes to the overlap between data retrieved from all databases, the integration
occurred mostly in structurally defined glycerophospholipids, fatty acyls, and derivatives
(Figure 30).
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Figure 29: Venn diagram with the number of structurally defined compounds that have been integrated from
each database.

Figure 30: The pie chart shows the percentage of structurally defined lipids with overlap in all databases.
Results are shown per class of lipid.

Unsurprisingly, the results for Model SEED’s integrated compounds were similar to those in
Figure 30. As Model SEED compiles information extracted from GSM models, the fact that most
of the overlap occurred in classes such as glycerophospholipids, fatty acyls and derivatives
suggests that these are the most widely represented classes of lipids in GSM models.

On the other hand, as shown in Figure 31, an analysis performed over the generated hierarchy
revealed that the most common lipids shared by SLM and LMSD belong to glycerolipids and
glycerophospholipids’ classes.
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Figure 31: The pie chart shows the percentage of structurally defined lipids with overlap in SLM and LMSD
structure database. Results are shown per class of lipid.

4.1.3 Lipids integration in SLM’s hierarchy

This stage’s last step was to establish ”component of” and ”is a” relationships between
LMSD, ModelSEED compounds and the previously loaded SLM’s structures. The results of
this integration are presented in Table 19.

Table 19: Results of LMSD and Model SEED compounds integration in SLM’s hierarchy. This table shows the
number of relationships before and after the integration and the total of new established relationships.

Relationship Before After Total new relationships

is a 481 800 488 549 6749
component of 1 443 920 1 455 977 12057

As shown in Table 19, the integration of LMSD and ModelSEED’s compounds in SLM’s
hierarchy was successful: 6749 ”is a” and 12057 ”component of” relationships were generated.

Table 20: Integration of LMSD and Model SEED compounds in SLM hierarchy. Number of relationships
established between each databases’ compound and other already integrated in the hierarchy. This
table shows the ones which have been integrated from exclusively one database and the ones present
in both.

Relationship LMSD only Model SEED only Both

is a 6105 607 27
component of 11 949 103 0

The next step of BOIMMG’s pipeline aims at establishing biosynthetic relationships between
compounds. As a limited set of lipid subclasses had at least one well-annotated biosynthesis
pathway in MetaCyc database, the scope of this integration was limited to several subclasses of
glycerophospholipids, few of glycerolipids, sphingolipids and fatty acyls (Table 21). Predictably,
the obtained results, expressed in Venn diagram in Figure 29 and Table 20, show that not all
LMSD and Model SEED compounds were integrated.
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On the other hand, prenol lipids were integrated manually because the SLM’s hierarchy
lacked information about prenol lipids, mainly on electron-transfer quinones’ precursors.

Table 21: Number of integrated subclasses per class of lipid

Main class Number of integrated subclasses

Glycerolipids 3
Glycerophospholipids 22

Sphingolipids 2
Prenol Lipids 15

Fatty acyls and derivatives 2

4.2 Final database topology and general statistics

The final database topology is the result of the databases’ integration and the knowledge
expansion process. When transformed into a graph and loaded into the database, several nodes
were disconnected. Nevertheless, manual, semi- and fully automated methods were employed
in order to curate and integrate all the redundant data. Moreover, as the database and new
information was generated, new relationships were created, as well.

Correspondingly, the database final topology will be such as in Figure 32. Basically, the
set of edge labels EL will now be defined as EL = { ”is db link of”, ”component of”, ”is a”,
”precursor of”, ”conjugated acid of”, and ”conjugated base of”. }.

Figure 32: The final topology of the database is shown here. The arrows represent the edges and the circles
correspond to the nodes. Each circle colour corresponds to a specific node label. One internal
identifier is assigned to each ”consensual node” (nodes with the ”:Compound” label).

As shown in Figure 32, one internal identifier is assigned to each ”consensual node” (nodes
with the ”:Compound” label). Moreover, the relationships will be represented by edges with
specific labels. These labels will only be in the subset of EL composed by {”component of”,
”is a”, ”precursor of”, ”conjugated acid of”, and ”conjugated base of”, ”is db link of}. All the
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previous relationship’s types will be crucial for the biochemical complex data integration in
GSM models. The importance of each relationship will be now enumerated:

• :component of: These relationships are important to build the structurally defined lipids
requested by the user. Receiving as input the produced structural components (e.g. fatty
acids), and the structural parent, one can construct the defined structures only consulting
BOIMMG’s database.

• :is a: These relationships will be crucial both for generalizing and granulating chemical
species. The successors in edges with the label ”:is a” allow generalizing one chemical
species. On the other hand, the predecessors in the same type of relationship allow
granulating chemical species.

• :precursor of: These relationships will be of paramount importance to granulate reactions
and characterize complete pathways. Generalizing reactions is substantially easier than
granulating (as it only requires using ”is a” relationships). Considering that each generic
compound represents a whole set of molecules, a generic reaction’s granulation will
require both structurally defined compounds and their correctly assigned precursors.
The latter condition is addressed by querying this relationships in BOIMMG’s database.
Moreover, applying graph algorithms such as Depth First Search or Breadth First Search,
all the biosynthetic intermediates of a structurally defined lipid can be obtained.

• :conjugated acid of and :conjugated base of: These relationships will be particularly
relevant when managing the generalization or granulation of electron-transfer chemical
species. A reaction that transfer electrons is also a typical conjugated acid and base
reaction. As referred in Chapter 2, generalizing or granulating electron-transfer chemical
species implies that their conjugated acid or base are also generalized or granulated. This
condition can be addressed by querying these relationships in BOIMMG’s database.

4.2.1 General statistics

In this section, the general database’s statistics will be presented and discussed.
As explained in the previous section, different relationships were generated. Although

most of the ”is a” and ”component of” relationships were loaded from the SLM database,
others were automatically generated to integrate LMSD and ModelSEED’s lipids. Moreover,
”precursor of” relationships are certainly considered the novelty of the present work and
represent a relevant feature regarding knowledge expansion, as no database nor ontology
includes such information. The number of relationships per type is indicated at Table 22.

As discussed in section 3.3.2, while establishing the ”precursor of” relationships, if the
precursors were not listed, their structure would be automatically generated. Figure 33 exhibits
a Venn diagram with the number of listed compounds per database and the ones not listed.

The generation of theoretical lipid structures has been described here and elsewhere [9, 98].
These approaches aim at leading to theoretical hypothesis and to the elucidation of lipids’



4.3. Knowledge Expansion 77

Table 22: Number of relationships per type in BOIMMG’s database

Relationship Number

is a 515 527
precursor of 749 784

component of 1 509 351
conjugated acid of 128
conjugated base of 128

Figure 33: Venn diagram with the integrated and listed lipids as well as the ones not listed (Unique BOIMMG’s
lipids)

metabolism and biosynthesis. However, it is evident that these methods can be generating
structures that do not exist in nature, thus, the set of false positive structures could eventually
be large. The SLM’s approach [9] generates theoretically feasible lipid structures combin-
ing SMILES of chemical substructures. However, their approach do not account for these
compounds’ biosynthesis, thus several precursors were absent. BOIMMG’s approach, while
generating valuable knowledge, has contextualized both SLM’s theoretical structures and exper-
imentally validated ones within their biosynthetic context. In this context, theoretical reactions
and pathways can be enumerated, driving to several hypothesis waiting to be validated.

4.3 Knowledge Expansion

The Knowledge Expansion was the second step of BOIMMG’s pipeline, which included
the identification of biosynthetic relationships between lipids. This section will include the
integrated assessment of the established relationships by evaluating whether the created
relationships could generate balanced reactions.
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4.3.1 Capacity of generating new reactions

As mentioned in section 3.5.1, 70 generic reactions extracted from MetaCyc were evaluated.
The percentage of complete, wrongly derived reactions, was calculated, along with the number
of unestablished relationships.

The wrongly generated reactions’ and the number of unestablished relationships’ percentages
are depicted in the blue and orange bars in Figure 34, respectively. The results show that only
two generic reactions out of 70 have passed the mark of 10%. Out of these two, only one had a
total percentage of wrongly generated reactions of 100 %.

Figure 34: Wrongly generated reactions (blue bars) and unestablished relationships (orange bars) percentage,
in which 70 reactions were evaluated to assess the efficacy in the knowledge expansion process.
Each bar corresponds to a given generic reaction and shows the percentage of wrongly complete
reactions derived from it, taking into account the previously established ”precursor of” relationships.

The percentage of wrongly generated reactions derived from ”RXN-18301”, and ”RXN-17729”
was of 100%, as Condition 1 was violated. Hence, all the structurally defined compounds
possibly involved in these reactions were not associated with the correct structural parents.
The problem resided in the SMARTS transformation definition, which was wrongly associated
with either an incorrect generic product or reactant. Correspondingly, all the possible reactions
derived from ”RXN-18301” and ”RXN-17729” were wrongly generated.

On the other hand, the wrongly generated reactions that did not reach the mark of 10 %
were also cases in which the Condition 1 was violated, but for a different reason. Most of these
reactions have at least two generic reactants. Consequently, if one of these reactants’ structural
children had no relationship with a structural child of that reaction’s product, the creation
of the complete reaction would be impaired. In other words, at least one precursor was not
related to the reaction’s products, compromising the reaction’s creation.
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Therefore, regarding all the established relationships, the whole set of correctly established
relationships could generate balanced reactions (Condition 2 always met). On the other hand,
this was not true for the Condition 1, enhancing the need to annotate the hierarchy further.

Concerning the number of unestablished relationships (orange bars in Figure 34), 34 out of the
70 analysed reactions had at least one relationship that was unestablished. This result indicates
that several reactions were partially or not processed. A thorough analysis of the reactions with
higher percentages on the ”not established reactions” bar (”RXN-18279”, ”RXN-18310”, for
instance) reveals that either the SMARTS transformation was not correctly formulated or the
reaction was not processed, which compromised the establishment of biosynthetic relationships
between structurally defined compounds.

The establishment of the relationships was based on the MetaCyc’s ontology of pathways.
Each instance of the ontology was converted into separate graphs and processed individually.
The processing order could have compromised or even ignored several potential relationships.
Although allowing to process each pathway sequentially, this order could have ignored reactions
or newly generated structures along the Knowledge Expansion process. Further improvements
in the NH modules should be employed.

In conclusion, 30 out of 70 generic reactions were characterized entirely by BOIMMG’s
knowledge expansion method. However, 29 were characterized partially, as though these
offered successfully established relationships, other links were missing. Although further
annotation will be in all likelihood required, the characterization of unlisted reactions was
achieved. Correspondingly, this large set of theoretical feasible reactions can represent a small
step further towards the fully characterization of lipid biosynthesis and metabolism. Lastly,
these results showed that, for most of the cases, the relationships are correctly established and
ready to be integrated in GSM models.

4.4 BOIMMG’s data integration in GSM models

This section will focus on the description and discussion regarding BOIMMG’s data
integration in GSM models. The strategy described in section 3.4.2. was employed to validate
BOIMMG’s data integration in GSM models.

4.4.1 Simple Representation Case

A comparative analysis was performed to assess the integration of BOIMMG’s data in
SRC type of cases. The metabolite and reaction sets of two different models (iML1515 [95]
and iMM904 [96]) were compared, before and after being either generalized or granulated.
Moreover, a descriptive analysis of each model with different types of quinones will be
performed.
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Generalization of iML1515 model

iML1515 [95] is a GSM model of Escherichia coli K-12 MG1655. The electron-transfer quinones
available in this model are the ubiquinone and menaquinone with eight repeating isoprene
units.

BOIMMG’s method was applied to generalize all the electron-transfer quinones and their
precursors. Menaquinone-8 and ubiquinone-8 were swapped with their generic version, which
will involve modifying their precursors, conjugated acids, and associated reactions. The results
of these network modifications are shown in Figure 23.

Table 23: Quinone chemical species before and after BOIMMG’s network modification. On the left, the
structurally defined compounds and their model identifiers are enumerated, whereas on the right are
shown the generic compounds and their identifiers.

Before Model ID After Model ID

Ubiquinone-8 q8 Ubiquinone-n q

Ubiquinol-8 q8h2 Ubiquinol-n qh2

3-demethylubiquinol-8 2dmmql8 3-demethylubiquinol-n C BOIMMG 749215

2-Octaprenyl-3-methyl-6-
methoxy-

1,4-benzoquinol

2ommbl 2-polyprenyl-3-methyl-6-
methoxy-

1,4-benzoquinol

C BOIMMG 749221

2-Octaprenyl-6-methoxy-1,4-
benzoquinol

2ombzl 2-polyprenyl-6-methoxy-1,4-
benzoquinol

C BOIMMG 749335

2-Octaprenyl-6-
methoxyphenol

2omph 2-polyprenyl-6-
methoxyphenol

C BOIMMG 749145

2-Octaprenyl-6-
hydroxyphenol

2ohph 2-polyprenyl-6-
hydroxyphenol

C BOIMMG 749139

2-Octaprenylphenol 2oph 2-polyprenylphenol C BOIMMG 749133

3-Octaprenyl-4-
hydroxybenzoate

3ophb 3-polyprenyl-4-
hydroxybenzoate

C BOIMMG 749127

Menaquinol-8 mql8 Menaquinol-n C BOIMMG 749097

Menaquinone-8 mqn8 Menaquinone-n C BOIMMG 749415

2-Demethylmenaquinone-8 2dmmq8 2-Demethylmenaquinone-n C BOIMMG 749498

2-Demethylmenaquinol-8 2dmmql8 2-Demethylmenaquinol-n C BOIMMG 749025

The results of the generalization process are shown in Table 23. The new generic metabolite’s
model identifier is either in BiGG or BOIMMG’s format. As the original model is in BiGG
format, the swapping process will try to convert the new metabolites into the BiGG format as
well. However, when no BiGG compound is found, the default BOIMMG’s database format is
used. Table 23 shows that the model identifier of almost all generic compounds is in BOIMMG’s
format. This information indicates that there is an evident absence of generic representations
in BiGG’s database.

Moreover, it is worth noting that all swapped metabolites are annotated with cross-references
and chemical structure representations such as SMILES and InChIKey.
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Granulation of iML1515 model

A previous generalization of the iML1515 model was conducted to validate the granulation
of electron-transfer quinones. BOIMMG’s approach was applied to the generalized model. The
generic menaquinone, ubiquinone and their biosynthetic intermediates were swapped with
menaquinone-6, ubiquinone-6, precursors, and conjugated acids with six isoprene units in
the side chain. Afterwards, the granulated model was compared with the original iMM904

[96] model to assess whether the granulation was correctly performed. iMM904 [96] is a
Saccharomyces cerevisiae model that contains ubiquinone-6, its conjugated acid, and precursors.

Figure 35: Venn diagram illustrating the intersection between E. coli and S.cerevisiae model’s metabolite set,
before and after being subjected to BOIMMG’s method.

As shown in Figure 35 and Table 24, four new metabolites were part of the intersection after
running BOIMMG.

A larger set of common metabolites would have been expected, as all precursors of
ubiquinone-6 should have matched. However, as the original iMM904’s E. coli model uses the
conjugated acids of ubiquinone’s precursors, there was no match between these compounds.
Showing that the level of detail in the swapping process reaches the conjugated acids and bases
of quinone’s precursors. For instance, instead of swapping the 3-demethylubiquinol-n (in the
granulated iML1414) with 3-demethylubiquinone-6, BOIMMG was able to select the correct
chemical species (3-demethylubiquinol-6).

Likewise, the analysis of both reaction sets was performed. As shown in Figure 36, after
BOIMMG’s granulation, the intersection between both model’s reaction sets has slightly
enlarged. The intersection’s difference before and after granulation was of five reactions.
These reactions are all associated with electron-transfers using ubiquinone and ubiquinol. As
discussed before, the model uses the conjugated acids of ubiquinone’s precursors. Although
this does not compromise the operation, the comparison will not match the biosynthesis
reactions using ubiquinone and ubiquinol’s intermediates. Nevertheless, it is worth noting that
BOIMMG correctly swapped the electron-transfer reactions using different quinone species.

Another granulation was performed, in which the generic ubiquinone and their biosynthetic
intermediates were swapped with unlisted chemical species (ubiquinone-5, conjugated acid
and precursors). The results are shown in Table 25.
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Table 24: Metabolite set match between iMM904 model and the previously modified iML1414. On the right,
the metabolites in iMM904 are shown, whereas on the left the altered metabolites are presented.
The match between each pair of metabolites is also shown in the last column.

iMM904 Model ID iML1414 modified Model ID Match

Ubiquinone-6 q6 Ubiquinone-6 q6 !

Ubiquinol-6 q6h2 Ubiquinol-6 q6h2 !
3-demethylubiquinone-

6
2hpmhmbq 3-demethylubiquinol-6 C BOIMMG 749217 X

2-Hexaprenyl-3-methyl-
6-methoxy-

1,4-benzoquinone

2hpmmbq 2-Hexaprenyl-3-methyl-
6-methoxy-

1,4-benzoquinol

C BOIMMG 749223 X

2-Hexaprenyl-6-
methoxy-1,4-
benzoquinone

2hp6mbq 2-Hexaprenyl-6-
methoxy-1,4-
benzoquinol

C BOIMMG 749337 X

2-Hexaprenyl-6-
methoxyphenol

2hp6mp 2-Hexaprenyl-6-
methoxyphenol

2hp6mp !

3-Hexaprenyl
4,5-dihydroxybenzoate

3dh5hpb - - X

3-Hexaprenyl-4-
hydroxybenzoate

3ophb 5 3-Hexaprenyl-4-
hydroxybenzoate

3ophb 5 !

Figure 36: Venn diagram illustrating the intersection between E. coli and S.cerevisiae model’s reaction set,
before and after being subjected to BOIMMG’s method.

This granulation was correctly performed even considering chemical species unavailable in
reference databases. It is important to mention that all new compounds are well annotated
with InChIKey, SMILES, and BOIMMG’s identifiers, allowing further confirmation of each
structure.

4.4.2 Redundant Representation Case

The Redundant Representation Case (RRC) is a problem of representation that encompasses
specific classes of compounds. Chemical classes in which more than one of its kind occur at
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Table 25: Quinone chemical species before and after BOIMMG’s network modification. On the left are the
structurally defined compounds with 8 isoprene repeating units and their model identifiers, whereas
on the right, the compounds with 5 isoprene repeating units and their identifiers.

Before Model ID After Model ID

Ubiquinone-8 q8 Ubiquinone-5 C BOIMMG 749196

Ubiquinol-8 q8h2 Ubiquinol-5 C BOIMMG 749246

3-demethylubiquinol-8 2dmmql8 3-demethylubiquinol-5 C BOIMMG 749249

2-Octaprenyl-3-methyl-6-
methoxy-

1,4-benzoquinol

2ommbl 2-pentaprenyl-3-methyl-6-
methoxy-

1,4-benzoquinol

C BOIMMG 749250

2-Octaprenyl-6-methoxy-1,4-
benzoquinol

2ombzl 2-pentaprenyl-6-methoxy-
1,4-benzoquinol

C BOIMMG 749345

2-Octaprenyl-6-
methoxyphenol

2omph 2-pentaprenyl-6-
methoxyphenol

C BOIMMG 749200

2-Octaprenyl-6-
hydroxyphenol

2ohph 2-pentaprenyl-6-
hydroxyphenol

C BOIMMG 749199

2-Octaprenylphenol 2oph 2-pentaprenylphenol C BOIMMG 749198

3-Octaprenyl-4-
hydroxybenzoate

3ophb 3-pentaprenyl-4-
hydroxybenzoate

C BOIMMG 749197

the same time in the same organism are to be assigned to RRC. In fact, all lipid classes were
included in this case, except the electron-transfer quinones.

The granulation results are present in Table 26, 27 and in Tables 30,31 in the Supplementary
material.

Specifically, the compounds present in the iAF1260b model and their matching species in
the iJR904 granulated model version are shown in Tables 26 and 27. A quick analysis of the
tables reveals that few metabolites are absent in the granulated iJR904 model, as all lipids
were based on the components received as input. Therefore, predictably, the missing chemical
species correspond to lipids with 12 and 18 carbon long side chains (without double bonds).
Notwithstanding, it was expected that the cardiolipins using either myristic acid (14 carbons)
or myristoleic acid (14 carbons and a double bond) as structural components were present in
the model. However, neither of these cardiolipins were available in BOIMMG’s database, so
they were not added to the network.

Manual gap-filling was conducted to evaluate whether each new lipid present in the biomass
reaction was being produced. As shown in Table 28, 25 new reactions, derived from five generic
reactions of the original model, were inserted. These reactions match either to the first step
of the phospholipids synthesis or the decomposition in fatty acids. ”PASYN EC” is originally
the reaction that assembles all the Acyl-Acyl Carrier Protein (ACP)s to generate a generic
phosphatidate. Whereas ”PLIPA1”, ”LPLIPA1”, ”LPLIPA2”, and ”LPLIPA3” are reactions of
glycerophospholipids and glycerolipids decomposition into fatty acids. BOIMMG’s approach
does not allow performing this task automatically. However, little effort has to be made, as
the biosynthesis network is already correctly built. In fact, all the biomass lipids are being
produced, as demonstrated by the BioISO results in Figures 46, 49, 47 and 48 (Supplementary
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Table 26: Lipids present in the biomass equation of iJR904’s metabolic model. These are the cardiolipins, and
phosphoethanolamine. The ”Compound” column represents the structurally defined compound with
the following format:<abbreviation>(<number of carbons in the sidechain>:<number of double
bonds>). Then, the second column indicates each compound identifier in iAF1260b. The third
column indicates whether the compound is present in the altered iJR904 model. The fourth specifies
the identifier in the modified model, and the fifth indicates whether the metabolite is being produced
after the manual gap-filling.

Cardiolipins (CLPN)

Compound iAF1260b ID In Granulated Model ID Produced
CLPN (12:0) clpn120 X - -
CLPN (14:0) clpn140 X - -
CLPN (14:1) clpn141 X - -

CLPN (16:0) clpn160 ! C BOIMMG 322789 !

CPLN(16:1) clpn161 ! C BOIMMG 341201 !
CPLN(18:0) clpn180 X -

CPLN(18:1) clpn181 ! C BOIMMG 347940 !

Phosphoethanolamine (PE)

Compound iAF1260b ID In Granulated Model ID Produced
PE (12:0) pe120 X - -

PE (14:0) pe140 ! C BOIMMG 12604 !

PE (14:1) pe141 ! C BOIMMG 12585 !

PE(16:0) pe160 ! C BOIMMG 12595 !

PE(16:1) pe161 ! C BOIMMG 12583 !
PE(18:0) pe180 X - -

PE(18:1) pe181 ! C BOIMMG 8715 !
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Table 27: Continuation. Lipids present in the biomass equation of iJR904’s metabolic model. These are
the phosphatidylglycerol, and phosphatidylserine. The ”Compound” column represents the struc-
turally defined compound with the following format:<abbreviation>(<number of carbons in the
sidechain>:<number of double bonds>). Then, the second column indicates each compound identi-
fier in iAF1260b. The third column indicates whether the compound is present in the altered iJR904
model. The fourth specifies the identifier in the modified model, and the fifth indicates whether the
metabolite is being produced after the manual gap-filling.

Phosphatidylglycerol (PG)

Compound iAF1260b ID In Granulated Model ID Produced
PG (12:0) pg120 X - -

PG (14:0) pg140 ! C BOIMMG 7474 !

PG (14:1) pg141 ! C BOIMMG 7456 !

PG(16:0) pg160 ! C BOIMMG 427 !

PG(16:1) pg161 ! C BOIMMG 7454 !
PG(18:0) pg180 X - -

PG(18:1) pg181 ! C BOIMMG 7408 !

Phosphatidylserine (PS)

Compound iAF1260b ID In Granulated Model ID Produced
PS (12:0) ps120 X - -

PS (14:0) ps140 ! C BOIMMG 729819 !

PS (14:1) ps141 ! C BOIMMG 729870 !

PS(16:0) ps160 ! C BOIMMG 729826 !

PS(16:1) ps161 ! C BOIMMG 729871 !
PS(18:0) ps180 X - -

PS(18:1) ps181 ! C BOIMMG 729851 !
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material), suggesting that the whole upstream network is also carrying flux, and thus correctly
built. Moreover, ”ISA” reactions were added for each lipid in the biomass equation, but only
for flux analysis purposes.

Table 28: Added reactions to gap-fill the granulated model.

Old reaction ID New Reaction ID BOIMMG reactant BOIMMG product

PASYN EC

PASYN EC 1 palmACP c C BOIMMG 423 c
PASYN EC 2 myrsACP c C BOIMMG 38435 c
PASYN EC 3 hdeACP c C BOIMMG 38416 c
PASYN EC 4 octeACP c C BOIMMG 38371 c
PASYN EC 5 tdeACP c C BOIMMG 38417 c

PLIPA1

PLIPA1 1 C BOIMMG 427 c hdca c + C BOIMMG 314 c
PLIPA1 2 C BOIMMG 7454 c hdcea c + C BOIMMG 16363 c
PLIPA1 3 C BOIMMG 7408 c ocdcea c + C BOIMMG 16317 c
PLIPA1 4 C BOIMMG 7474 c ttdca c + C BOIMMG 452 c
PLIPA1 5 C BOIMMG 7456 c ttdcea c + C BOIMMG 16364 c

LPLIPA1

LPLIPA1 1 C BOIMMG 314 c hdca c
LPLIPA1 2 C BOIMMG 16363 c hdcea c
LPLIPA1 3 C BOIMMG 16317 c ocdcea c
LPLIPA1 4 C BOIMMG 452 c ttdca c
LPLIPA1 5 C BOIMMG 16364 c ttdcea c

LPLIPA2

LPLIPA2 1 C BOIMMG 291 c hdca c
LPLIPA2 2 C BOIMMG 27923 c hdcea c
LPLIPA2 3 C BOIMMG 27877 c ocdcea c
LPLIPA2 4 C BOIMMG 27943 c ttdca c
LPLIPA2 5 C BOIMMG 27925 c ttdcea c

LPLIPA3

LPLIPA3 1 C BOIMMG 223 c hdca c
LPLIPA3 2 C BOIMMG 6942 c hdcea c
LPLIPA3 3 C BOIMMG 6896 c ocdcea c
LPLIPA3 4 C BOIMMG 319 c ttdca c
LPLIPA3 5 C BOIMMG 6943 c ttdcea c

Finally, the comparison between the reactions and metabolites set of the iAF1260b model
and the iJR904 granulated model version was performed. The results of these comparisons are
depicted in the Venn diagram illustrated in Figures 37 and 38.

In total, 58 metabolites were added to the iJR904 model. The overlap between the metabolite
sets illustrated in Figure 37 reveals that 53 matched both the granulated iJR904 and iAF1260b
models, leaving five metabolites without any match. This subset corresponds to the chem-
ical species ”Acyl-glycerophosphocholine”, which was granulated into five different lipids.
However, this metabolite is not available in iAF1260b model, hence, predictably, no match
was found. As enumerated in Tables 26, 27, and 30,31 (Supplementary material), the newly
introduced metabolites that matched (subset of 53 metabolites) correspond to the following
chemical species:
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Figure 37: Venn diagram illustrating the intersection between iAF1260b and iJR904 model’s metabolite set,
before and after being subjected to BOIMMG’s method.

• Cardiolipins - 3+

• Phosphoethanolamine - 5+

• Phosphatidylglycerol - 5 +

• Phosphatidylserine - 5+

• Phosphatidylglycerophosphate - 5+

• CDPdiacylglycerol - 5+

• Acyl-glycerophosphoglycerol - 5+

• Acyl phosphatidylglycerol - 5+

• Acyl-glycerophosphoethanolamine - 5+

• 1,2-Diacylglycerol - 5+

• Acyl phosphatidylglycerol - 5+

• Phosphatidate - 5+

These results are expected, as no other generic lipid species was found in the iJR904 model.
Accordingly, all lipid species were granulated successfully, and matched other structurally
defined lipid species introduced manually (in the iAF1260b model).

The diagram in Figure 38 denotes the overlap between the reaction sets, in which it is
possible to verify that 91 new reactions were added to the iJR904 model. As shown in the
Venn diagram and Table 29, 53 have matched with the other reaction set. These correspond
to reactions present in the biosynthesis of structurally defined lipids (38) and other reactions
manually added for gap-filling purposes (15). Moreover, 18 were ”ISA” reactions (one for each
biomass lipid). Other reactions were added without any match as these were derived from
generic reactions not present in iAF1260b model.
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Figure 38: Venn diagram illustrating the intersection between iAF1260b and iJR904 model’s reaction sets,
before and after being subjected to BOIMMG’s method.

Table 29: Number of new reactions in iJR904 model per type

Reaction type Number Overlaped No overlap

Biosynthesis network 38 38 0
Gap Filling 25 15 10

”ISA” reactions 18 0 18
Other 10 0 10

Total 91 53 38

Given these results, it is possible to conclude that BOIMMG’s approach was capable of
successfully granulating the iJR904 model for chemical species assigned to the RRC.

4.5 Web-service

A web-service was implemented to enable users navigation through BOIMMG’s database as
well as using BOIMMG’s services for swapping and granulating metabolites. The home page
is rendered, as shown in Figure 39 and can be accessed in the following link: https://boimmg.
bio.di.uminho.pt/. The code is available at https://gitlab.bio.di.uminho.pt/jcapela/boimmg.

4.5.1 Navigation module

The navigation module was implemented as detailed in section 3.6.1. Generally, this
module renders two pages: the hierarchy and the lipid page, as depicted in Figure 40 and 41,
respectively. The hierarchy web-page contains the lipid hierarchy organized in classes. The
main lipid classes are on the left of the web-page and upon clicking on it, the user can navigate
through its hierarchy.

Moreover, the lipid page allows getting the information about each lipid’s structure, biosyn-
thetic precursors, structural parents, and so forth. Such information can be accessed either by

https://boimmg.bio.di.uminho.pt/
https://boimmg.bio.di.uminho.pt/
https://gitlab.bio.di.uminho.pt/jcapela/boimmg
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Figure 39: Home page from BOIMMG’s web-service.

Figure 40: Lipids hierarchy in BOIMMG’s web-service.

checking the box on the right or by clicking in the buttons. The buttons will then show a table
with the requested information.

4.5.2 Submissions module

The submissions module was implemented as described in section 3.6.2. This module
renders a menu with the two possible BOIMMG modes: RRC and SRC, as illustrated in Figure
42.

Regarding the SRC mode, the following parameters are requested:

• the quinones in the model;

• the ones to serve as replacers;
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Figure 41: Lipid page with information regarding structure’s representations, as well as concerning its precursors,
components, and so forth.

Figure 42: Submissions’ module menu.

• the model metabolite formats (ModelSEED, BiGG or KEGG);

• the model in the SBML format;

This description can be followed in Figure 43.
Regarding the RRC mode, the following parameters are requested:

• the generic lipids to be granulated;

• the respective components (fatty acids);

• whether the user wants to mix components or always have the same in each lipid species;

• the model metabolite formats (ModelSEED, BiGG or KEGG);

• the model in the SBML format;
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Figure 43: SRC mode parameters and model submission page.

Figure 44: RRC mode parameters and model submission page.

This description can be followed up right in Figure 44.
Furthermore, after submission, a status page is rendered, with information associated with

the stage in BOIMMG’s granulation or swapping process. A progress bar is shown and updated.
In the case of the RRC, one message regarding the generation of a given compound’s network
will provide a link to the lipid web-page. Information regarding the lipids being introduced
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will be rendered, as shown in Figure 45. Finally, the altered model is provided in a download
page.

Figure 45: Status page rendering information related to the state of the submission.

BOIMMG’s web-service is implemented as a user-friendly platform, providing easy access to
BOIMMG’s swapping and granulation processes. Hence, no programming skills are required
for the tool to be run. Moreover, each introduced lipids and precursors can be easily consulted
in the navigation module.



5

C O N C L U S I O N

5.1 Conclusion remarks

The Biochemical cOmplex data Integration in Metabolic Models at Genome-scale (BOIMMG)
is an open-source, academic, hypothesis-driven framework that aims at revising the lipid
metabolism in GSM models. The framework allows gathering lipid-specific information from
different sources, expanding the current knowledge in theoretical lipid structures, as well as in
the biosynthetic context of the already listed ones. Finally, such information can be applied to
complex metabolic networks.

Three different data sources, namely SLM, LMSD and ModelSEED were integrated into a
Neo4j graph-based database. The SLM’s hierarchy was uploaded and is the cornerstone of
BOIMMG’s hierarchy, as all the unique ModelSEED and LMSD lipids were integrated on top
of it. This integration revealed that all databases have differences and unique data, which now
enrich BOIMMG’s lipid set.

Regarding the knowledge expansion process, over 30 generic reactions were fully and
27 partially characterized. These reactions have resulted from the relationships established
between structurally defined compounds. Over 700000 relationships were established using
generic reaction information retrieved from MetaCyc (for the great majority of the lipid set),
and KEGG (for the electron-transfer quinones). Moreover, more than 30000 new lipid structures
were hypothesized in this work, and are waiting for further validation.

Finally, BOIMMG’s approach was applied to different GSM models towards the lipids’
granulation or generalization. Using BOIMMG’s database information, a software capable of
granulating and generalizing lipids was developed. As far as the metabolites are correctly
annotated with, at least, one cross-reference or InChIKey, both generalization and granulation
will run without problems. Otherwise, erroneous results will be generated.

Regarding the electron-transfer quinones generalization and granulation, the iML1515 E.
coli GSM model was analysed. A comparison between this model and a model of S. cerevisiae
was performed. Results show that BOIMMG conducted both granulation and generalization
successfully.

For the glycerolipids and phospholipids’ granulation, a model from E. coli (iJR904) with
generic lipids was processed by BOIMMG. Afterwards, the altered model was compared
to one of its published iterations (iAF1260b), in which the granulation was performed and
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curated manually. The comparison demonstrated that the granulation was successful, resulting
in 53 more matching lipids and 38 more matching reactions. Moreover, besides the correct
biochemical set, after a slight manual effort in gap-filling, BioISO’s analysis demonstrated that
the biomass lipids were being correctly produced.

In conclusion, BOIMMG is a framework capable of generating relevant relationships between
complex macromolecules, and of generating theoretically feasible chemical structures in the
context of biosynthetic pathways. Furthermore, it provides an automatic tool to integrate these
complex data in genome-wide metabolic networks.

5.2 Future perspectives

BOIMMG’s database will be updated and annotated regularly, and used as a reference
resource for integrating GSM models. Moreover, a chemoinformatics framework may be
implemented to assess the viability of the new lipid structures, reactions, and metabolic
pathways predicted by this framework. Combining these works, a reference and hypothesis-
driven database with existing annotated metabolic models’ information would be provided.

The Knowledge Expansion module may be scaled for other molecules such as the different
polyssacharides. Moreover, further improvements in the NH module will include the compila-
tion of all MetaCyc and KEGG pathways into a single graph, along with analysing them split
into separate graphs, as it could improve the efficacy in the Knowledge Expansion module.

Finally, BOIMMG framework will be integrated with merlin, Kbase and the iPlants project.

5.3 Scientific outcomes

• Lima, Diogo; Lagoa, D.; Cruz, Fernando; Bastos, J.; Capela, João; Ferreira, Eugénio C.;
Rocha, Miguel; Dias, Oscar, merlin v4: an updated platform for reconstructing genome-
scale metabolic models. BOD 2020 - IX Bioinformatics Open Days (Conference Book).
Braga, Feb 19-21, 2020.

• Cruz, Fernando; Capela, João; Ferreira, Eugénio C.; Rocha, Miguel; Dias, Oscar, (manuscript
in preparation). Accelerating the reconstruction of genome-scale metabolic models with
BioISO.

• Capela, João; Rodrigues, Rúben; Lima, Diogo; Lagoa, Davide; Ferreira, Eugénio C.; Rocha,
Miguel; Dias, Oscar, (manuscript in preparation for submission in Nucleic Acid Research).
merlin v4.0: an updated platform for the reconstruction of high-quality genome-scale
metabolic models.



B I B L I O G R A P H Y

[1] Reed, J. L., Vo, T. D., Schilling, C. H., & Palsson, B. O. (2003). An expanded genome-scale

model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome biology.

[2] Orth, J. D., Conrad, T. M., Na, J., Lerman, J. A., Nam, H., Feist, A. M., & Palsson, B. (2011).

A comprehensive genome-scale reconstruction of Escherichia coli metabolism-2011. Molecular

Systems Biology.

[3] Feist, A. M., Henry, C. S., Reed, J. L., Krummenacker, M., Joyce, A. R., Karp, P. D., Broadbelt,

L. J., Hatzimanikatis, V., & Palsson, B. Ø. (2007). A genome-scale metabolic reconstruction

for ¡i¿Escherichia coli¡/i¿ K-12 MG1655 that accounts for 1260 ORFs and thermodynamic

information. Molecular Systems Biology, 3(1), 121.

[4] Palsson, B. (2006). Systems biology: Properties of reconstructed networks.

[5] Mukherjee, S., Stamatis, D., Bertsch, J., Ovchinnikova, G., Verezemska, O., Isbandi, M.,

Thomas, A. D., Ali, R., Sharma, K., Kyrpides, N. C., & Reddy, T. B. (2017). Genomes OnLine

Database (GOLD) v.6: Data updates and feature enhancements. Nucleic Acids Research.

[6] Oberhardt, M. A., Palsson, B., & Papin, J. A. (2009). Applications of genome-scale metabolic

reconstructions.

[7] Aung, H. W., Henry, S. A., & Walker, L. P. (2013). Revising the representation of fatty acid,

glycerolipid, and glycerophospholipid metabolism in the consensus model of yeast metabolism.

Industrial Biotechnology, 9(4), 215–228.

[8] Sud, M., Fahy, E., Cotter, D., Brown, A., Dennis, E. A., Glass, C. K., Merrill, A. H., Murphy,

R. C., Raetz, C. R. H., Russell, D. W., & Subramaniam, S. (2007). LMSD: LIPID MAPS

structure database. Nucleic acids research, 35(Database issue), D527–32.

[9] Aimo, L., Liechti, R., Hyka-Nouspikel, N., Niknejad, A., Gleizes, A., Götz, L., Kuznetsov, D.,
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S U P P L E M E N TA RY M AT E R I A L

Figure 46: BioISO flux analysis for the complete cardiolipins. The checkmark associated to each cardiolipin
indicates that it is carrying flux.

Figure 47: BioISO flux analysis for the complete phosphatidylethanolamines. The checkmark associated to
each phosphatidylethanolamines indicates that it is carrying flux.

102



103

Figure 48: BioISO flux analysis for the complete phosphatidylglycerol. The checkmark associated to each
phosphatidylglycerols indicates that it is carrying flux.

Figure 49: BioISO flux analysis for the complete phosphatidylserine. The checkmark associated to each
phosphatidylserine indicates that it is carrying flux.
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