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This work presents a technique to merge two Sentinel-1 image products of

complementary polarimetric information (HH/HV and VH/VV) to derive

pseudo-polarimetric features, such as polarimetric covariance, but also

model-based and eigenvalue-based decompositions and an unsupervised

Wishart classification of scattering types. The images were acquired within a

6-day period over Southern Germany and have been processed to mimic an

actual quad-pol product. This was analyzed statistically, visually and within

several classification processes to get an understanding of how well such a

dataset depicts scatteringmechanisms and other polarimetric features as inputs

for land use and land cover mapping. A systematic comparison with the original

dual-polarization product showed an increase in information content and

largely feasible polarimetric features. Yet, especially the average Alpha angle

was found to be biased and too high for some of the compared surfaces.

Despite these inaccuracies, the polarimetric features turned out to improve

potential land cover mapping as compared with backscatter intensities and

dual-polarization features of the input products alone. Among the most

significant variables related to land use and cover reported by an

independent dataset, Entropy, the co-polarization ratio and the C22 element

of the covariance matrix generated the strongest impact on the class

separability, although misclassifications between physically related classes

remain. Yet, the findings are encouraging concerning further investigation of

the polarimetric potential to combine repeat-pass acquisitions of Sentinel-1 for

a better description of more specific types of land cover.
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1 Introduction

Spaceborne radar imagery is an effective source of

information for many applications in the field of Earth

Observation and is particularly considered complementary to

optical sensors because they operate independently of daylight

and cloud-cover (Closson et al., 2014). With the launch of

Sentinel-1A in 2014, a new era of openly available radar

imagery has been entered enabling acquisition of repetitive

coverage of the entire Earth’s land masses at regular intervals

and with high spatial resolutions (Potin et al., 2019b). It is a part

of the operational provision of data within the Copernicus

Programme of the European Space Agency (ESA) involving

tens of petabytes of daily imagery and information products

at different spatial scales to tackle environmental challenges (Jutz

and Milagro-Pérez, 2020).

It its basic configuration, Sentinel-1 operates at

Interferometric Wide Swath (IW) mode which acquires

images at a spatial resolution of approximately 3 m (range) by

22 m (azimuth) covering swath widths of 250 km in range

direction (ESA, 2021b). As defined by the Sentinel-1

observation baseline scenario, the main polarization of land

acquisitions is VV (vertically transmitted and vertically

received) and VH (vertically transmitted and horizontally

received) which adequately supports the various land cover

applications (Potin et al., 2019a). This dual-polarimetric

configuration has been proven effective for a wide range of

studies, including crop growth monitoring (Mandal et al.,

2020), vegetation damage assessment (Petris et al., 2021),

biomass retrieval (Periasamy, 2018), soil moisture modeling

(Nguyen et al., 2021), snow depth estimation (Varade et al.,

2020), as well as flood mapping of both vegetated (Plank et al.,

2017) and urban areas (Jo et al., 2018).

Yet, classic polarimetric approaches, such as the

decomposition of the complex signal into different types of

backscatter mechanisms (Cloude and Pottier, 1996) are not

applicable to Sentinel-1 data because of their lacking HH

(horizontally transmitted and horizontally received) and VH

(horizontally transmitted and vertically received) channels, as

they are provided by Radarsat-2 or ALOS-2, for example. To

overcome this limitation, adapted measures were developed, for

example a dual-pol radar vegetation index (RVI) which is based

on a 2 × 2 covariance matrix (C2) as suggested by

Nasirzadehdizaji et al. (2019), new forms of model-based

decomposition of dual-polarized data (Mascolo et al., 2022),

or by combining Sentinel-1 data with ALOS-2 imagery of

complementary polarization (Braun et al., 2019). Other studies

developed pseudo scattering type descriptors derived from

ground range detected (GRD) Sentinel-1 products

(Bhogapurapu et al., 2021) or dual-polarimetric

decompositions of Sentinel-1 slant range complex (SLC)

products (Haldar et al., 2021; Lu et al., 2021; Roda Husman

et al., 2021). However, most studies agree that the information

content of dual-polarimetric systems is only a fraction of the one

which is achievable by quad-pol configurations, especially

because it only contains diagonal matrix elements

(Nasirzadehdizaji et al., 2019) and cannot provide the fine-

scaled shades of entropy (Dhar et al., 2011; Ji and Wu, 2015;

Xie et al., 2015).

Within the routine calibration activities of the Sentinel-1

mission, the operating polarization of the sensor is temporarily

switched to HH and HV over land areas where transponders are

located as had been done in early 2021 over southern Germany

(ESA, 2021a). As this does is not done for both Sentinel-1A and

Sentinel-1B simultaneously, SLC image products with VV/VH

and HH/HV configuration are available for the same track within

a 6-day timeframe. This allows having all four polarizations of the

same wavelength at high temporal integrity. This study combines

a pair of Sentinel-1 SLC products to synthesize fully polarimetric

information to test for its relationship with land cover classes.

Because complex information from two different acquisition

dates is not referring to the exact same targets, we call this

approach pseudo-polarimetric analysis. The results give insights

on how Sentinel-1 data would appear in fully polarimetric mode

and how it contributes to land cover mapping. A similar

approach has already been conducted within the airborne

AgriSAR and EAGLE campaigns in 2006 which simulated

quad-pol data at similar wavelength and spatial resolution as

Sentinel-1 to test its sensitivity to different land surface types

(DLR, 2006). However, this experiment has been conducted at a

time long before Sentinel-1 was actually launched, and no tests

have been conducted with actual Sentinel-1 data. We therefore

expect our findings to continue these research stream and to

furthermore reveal how pseudo-polarimetric data can improve

the detection of land use and land cover classes. The results can

furthermore assist deliberations within the design of future

missions where spatial resolution, number of bands, and the

achievable footprints have to be carefully budgeted and balanced.

2 Data and processing

2.1 Primary input data

Two Sentinel-1 IW SLC products were used in this study,

acquired in descending orbit (track 66) on 01 March 2021

(Sentinel-1B with HH + HV polarization) and 07 March 2021

(Sentinel-1A, VV + VH polarization). Their full product IDs are

given in the “Data Availability Statement” at the end of this

article to facilitate replication of the results. As shown in Figure 1,

the two Sentinel-1 acquisitions cover large parts of the state of

Baden-Württemberg in southwestern Germany. It contains

coniferous woodland of the Black Forest in the west, followed

by larger plains of cropland, pasture and orchards which are a

typical element of Southwestern German landscapes and a hot

spot of biodiversity (Herzog, 1998). The broad-leaved and mixed
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forests of the Schönbuch reservation area and the Rammert are

located in center of the study and confined by the scarped ridges

of the Jurassic platau of the Swabian Alb in the southwest

(Plieninger et al., 2013). The largest urban areas are Tübingen

and Reutlingen in the center and Böblingen and the Stuttgart

airport in the north. The figure also shows that the two image

footprints are shifted by four bursts along the flight track which is

not unusual for Sentinel-1A and 1B.The products were processed

using the ESA Sentinel Application Platform (ESA, 2021d) and

PolSAR Pro (Pottier et al., 2018) as described in the following.

In a first step, the data was radiometrically calibrated with

complex output to compensate for different sensitivities in low

backscattering areas of Sentinel-1B compared to Sentinel-1A

(Schmidt et al., 2020). To increase the geolocation accuracy

and the coregistration quality, precise orbit information was

retrieved by the Copernicus Precise Orbit Determination

(POD) Service (ESA, 2021c) and applied to the metadata. As

a consequence of the TOPS (Terrain Observation with

Progressive Scan) acquisition mode of Sentinel-1 IW products,

portions of an entire image have to be selected (here: sub-swath

two; bursts two to four and seven to nine respectively) and

merged using the operators “Split” and “Deburst” (Yagüe-

Martínez et al., 2016). The resulting subsets cover the same

geographic region and were coregistered based on

8,000 randomly generated ground control points (GCPs)

which were used to match the two images within a moving

registration window having a 32-pixel size, a root mean square

error (RMSE) threshold of 0.05, and a cubic interpolation

method. A total of 74 GPCs remained after the matching with

a mean spatial RMSE of 3.1 m and a standard deviation RMSE of

5.9 m, confirming sub-pixel accuracy. The perpendicular baseline

of the images was 126 m. After coregistration using nearest

neighbor pixel resampling, the stack contained all four

polarizations in their complex representation - real [i] and

imaginary [q] parts - which allowed performing polarimetric

operators and analyses on the data. To correct for potential errors

due to phase difference an interferogram was computed from the

HV and VH polarization and subtracted from the data as

described by DLR (2006) and Scheiber et al. (2007). The

refined Lee Sigma filter was applied to the stack to suppress

speckle effects within homogenous areas (Lee et al., 2009). From

this step, the synthetic quad-pol information and the original

dual-pol products were processed separately as demonstrated in

Figure 2.

All products were converted to their covariance matrix

representations (C3 for quad-pol product, C2 for both

Sentinel-1B and Sentinel-1A, respectively) in a first

step. Several polarimetric decompositions were applied to

the data, including Pauli (Cloude and Pottier, 1996),

resulting in surface (blue), dihedral (red), and volume

(green) scattering and the model-based six-component

decomposition by Singh and Yamaguchi (2018), which

furthermore adds helix scattering, oriented dipole scattering

and oriented quarter wave reflection to the known three

mechanisms. Both decompositions were only applicable to

the pseudo-polarimetric stack. Secondly, the eigenvalues of

the covariance matrix (L1, L2, L3) were calculated to extract

Entropy (H; degree of randomness of targets), Anisotropy (A;

impact of secondary scattering mechanism), and the average

Alpha angle (α) (Cloude and Pottier, 1996). The same was

done for the dual-pol products as proposed by Ji and Wu

(2015) for reasons of comparison, although they underline

FIGURE 1
Location of the study area (AOI) and extent of the satellite image products. Base map © European Union, contains modified Copernicus data
[2022], processed by Bundesamt für Kartographie und Geodäsie (BKG).
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that its application on cross-polarized data, such as Sentinel-1,

is of limited quality because of the lack of co-polarization

elements. To furthermore increase the polarimetric feature

space, different mathematical derivates were calculated, such

as the co-pol ratio (HH/VV) and cross-pol-ratio (HH/HV and

VV/VH), the span as the summation of the three polarimetric

intensity channels (Yahia et al., 2022), the pedestal height as

the ratio between minimum and maximum eigenvalue (van

Zyl et al., 1987), the Biomass Index (BMI; average co-

polarization backscatter intensity), and the Radar

Vegetation Index by Kim and van Zyl (2001). None of

them were applicable to dual-polarimetric data, except for

the RVI under the simplifying assumption that HH and VV

are equal (Waqar et al., 2020). Lastly, an unsupervisedWishart

classification was conducted resulting in eight physical

scattering types based on Entropy and Alpha values (Lee

et al., 1999). As especially polarimetric Entropy as

described above is barely comparable between the quad-pol

and dual-pol inputs, Shannon’s definition of Entropy (E;

Shannon, 1948) was additionally computed as the sum of

intensity contribution (Ei) and polarimetric contribution (Ep)

that depends on the Barakat degree of polarization (Réfrégier

et al., 2004). A full list of all available raster variables used in

this study is given in Table 1.

All raster datasets were geocoded using Range Doppler

terrain correction (Wegmüller, 1999) and the Copernicus

World DEM-30 (DLR, 2018) to a final nominal pixel size of 10 m.

2.2 Reference input data

To assess how well the Sentinel-1 pseudo-polarimetric

product contributes to the identification and separation of

land cover, also in comparison with the standard dual-

polarization product, sample points were retrieved from two

different datasets which we considered complementary in terms

of spatial resolution and class detail. The first one is the ESA

World Cover dataset (Zanaga et al., 2021) which contains

11 classes at a spatial resolution of 10 m for the year 2020. It

was used for the sampling of water bodies, such as rivers and

quarry ponds, as well as agricultural land which is rather small

scaled in the study area. However, its class detail was not

considered sufficient for this analysis, because it only contains

one forest class and one for urban areas. Therefore, the CORINE

land cover dataset was used as provided by the European

Environment Agency within the Copernicus Programme

(EEA, 2020). It has a spatial resolution of 100 m which

corresponds to a minimum mapping unit of 25 ha and

consists of 44 distinct classes of which 24 occurred within the

study area. Classes which were not considered important or

which covered very small fractions (e.g. port areas, sport and

leisure facilities) were excluded from the analysis. Classes related

to urban settlements, cultivated landscapes and different types of

forests were retrieved from this dataset. In the end, 2000 samples

were randomly generated within each of the ten classes defined in

Table 2 and linked to the raster values from Table 1 for an

FIGURE 2
Processing workflow of the Sentinel-1 data in this study.
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TABLE 1 Variables used in this study.

name Description

class land use/land cover class from the sample

dual-pol features (S1AB)

S1B_HH Calibrated HH polarized backscatter intensity of Sentinel-1B

S1B_HV Calibrated HV polarized backscatter intensity of Sentinel-1B

S1A_VH Calibrated VH polarized backscatter intensity of Sentinel-1A

S1A_VV Calibrated VV polarized backscatter intensity of Sentinel-1A

S1B_C11 C11 computed from HH/HV data of Sentinel-1B

S1B_C22 C22 computed from HH/HV data of Sentinel-1B

S1A_C11 C11 computed from VH/VV data of Sentinel-1A

S1A_C22 C22 computed from VH/VV data of Sentinel-1A

S1B_H Entropy computed from dual-pol decomposition of Sentinel-1B

S1B_a Alpha angle computed from dual-pol decomposition of Sentinel-1B

S1B_An Anisotropy computed from dual-pol decomposition of Sentinel-1B

S1A_H Entropy computed from dual-pol decomposition of Sentinel-1A

S1A_a Alpha angle computed from dual-pol decomposition of Sentinel-1A

S1A_An Anisotropy computed from dual-pol decomposition of Sentinel-1B

S1B_Ha_cl Unsupervised Wishart classification of scattering types of Sentinel-1B

S1A_Ha_cl Unsupervised Wishart classification of scattering types of Sentinel-1A

S1B_HHHV Cross-Pol Ratio (HH/HV) of Sentinel-1B

S1A_VVVH Cross-Pol Ratio (VV/VH) of Sentinel-1A

S1B_SE Shannon Entropy (sum of P and I) computed from Sentinel-1B

S1B_SEp Shannon Entropy (degree of polarization P) computed from Sentinel-1B

S1B_SEi Shannon Entropy (intensity I) computed from Sentinel-1 B

S1A_SE Shannon Entropy (sum of P and I) computed from Sentinel-1A

S1A_SEp Shannon Entropy (degree of polarization P) computed from Sentinel-1A

S1A_SEi Shannon Entropy (intensity I) computed from Sentinel-1A

S1B_L1/L2 Eigenvalues of Sentinel-1B

S1A_L1/L2 Eigenvalues of Sentinel-1A

S1B_RVI Radar Vegetation Index (dual) after Waqar et al. (2020) of Sentinel-1B

S1A_RVI Radar Vegetation Index (dual) after Waqar et al. (2020) of Sentinel-1A

pseudo-quad-pol features (S1q)

S1_C11 C11 computed from pseudo-polarimetric Sentinel-1A/B product

S1_C22 C22 computed from pseudo-polarimetric Sentinel-1A/B product

S1_C33 C33 computed from pseudo-polarimetric Sentinel-1A/B product

S1_T11 T11 computed from pseudo-polarimetric Sentinel-1A/B product

S1_T22 T22 computed from pseudo-polarimetric Sentinel-1A/B product

S1_T33 T33 computed from pseudo-polarimetric Sentinel-1A/B product

S1_H Entropy computed from pseudo-polarimetric Sentinel-1A/B product

S1_a Alpha angle computed from pseudo-polarimetric Sentinel-1A/B product

S1_An Anisotropy computed from pseudo-polarimetric Sentinel-1A/B product

S1_Ha_cl Unsupervised Wishart classification of scattering types of Sentinel-1A/B

S1_SE Shannon Entropy of the pseudo-polarimetric Sentinel-1A/B product

S1_SEp Shannon Entropy (degree of polarization P) computed from Sentinel-1A/B

S1_SEi Shannon Entropy (intensity I) computed from Sentinel-1A/B

S1_L1/L2/L3 Eigenvalues of the pseudo-polarimetric Sentinel-1A/B product

S1_RVI Radar Vegetation Index after Kim and van Zyl (2001) of Sentinel-1A/B

S1_Sp Span of the pseudo-polarimetric Sentinel-1A/B product

S1_PH Pedestal Height of the pseudo-polarimetric Sentinel-1A/B product

(Continued on following page)
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extensive statistical assessment which is presented in the next

chapter. The spatial distribution of the samples is shown in

Figure 3A.

3 Results

3.1 Visual inspection

Figure 3 shows how the different types of land cover, as

represented by the 20,000 samples (A), correspond to the

different pseudo-polarimetric features of the Sentinel-1

dataset. The Pauli decomposition (Figure 3B) has the

typical signature with single bounce scattering in dark blue,

volume scattering in green, and double-bounce scattering in

red. Expectedly, the forested areas are characterized by

volume scattering of the canopies (green), while cropland,

grassland, and barren land produce surface scattering in

Sentinel-1’s C-band (blue). The vertical structures of the

built-up area in the center (the cities of Tübingen and

Reutlingen) produce corner reflection and therefore double

bounce returns (red), but the high spatial resolution of Sentinel-1

also allows identifying urban greenspaces within and at the edges of

the cities, which are again shown in green. These being visible in the

Pauli decomposition demonstrate the successful computation and

combination of the four polarizations to construct polarimetric

features. Similarly, the model-based six-component

decomposition is shown in Figure 3C. Its predominantly dark

tones are explainable by fact that oriented dipoles (red), helix

scattering (blue) and oriented quarter wave reflection (red) are

only making up small proportions of all surfaces. Accordingly,

they barely differ for forest and agricultural areas, yet they were

found to be complementing the existing basic scattering types

(surface, dihedral, volume) in certain cases, especially in man-

made environments where they can even be among the

dominant scattering mechanisms (Singh and Yamaguchi, 2018).

This is confirmed by the different color shadings inside the urban

areas which indicate that such polarimetric data allows an evenmore

precise separation morphologic urban structures, for example

quarters of different building size or density, as it was already

confirmed for dual-pol configurations of Sentinel-1 by Hu et al.

(2018).

Lastly, the polarimetric Entropy H and Anisotropy

(Figures 3D, E) are shown, representing the degree of

randomness or statistical disorder of a target (H) and the

impact of secondary scattering mechanism (A), respectively.

In this context, a pure target which is totally polarized has a

value of H = 0 while a randomly distributed target which is

totally unpolarized has a value of H = 1. In Turn, areas which

have only one second scattering mechanism behind the

dominant one have a high Anisotropy of A = 1 while the

value becomes zero when there are several equal secondary

TABLE 1 (Continued) Variables used in this study.

name Description

S1_BMI Biomass Index of the pseudo-polarimetric Sentinel-1A/B product

S1_HHVV Co-Pol Ratio of the pseudo-polarimetric Sentinel-1A/B product

S1_HHHV Cross-Pol Ratio (HH/HV) of the pseudo-polarimetric Sentinel-1A/B product

S1_VVVH Cross-Pol Ratio (VV/VH) of the pseudo-polarimetric Sentinel-1A/B product

S1_Pr Red element of the Pauli decomposition (dihedral)

S1_Pg Green element of the Pauli decomposition (volume)

S1_Pb Blue element of the Pauli decomposition (surface)

S1_S6_cd compound dipole of the six-component decomposition of Sentinel-1A/B

S1_S6_d dihedral of the six-component decomposition of Sentinel-1A/B

S1_S6_h helix of the six-component decomposition of Sentinel-1A/B

S1_S6_od oriented quarter wave of the six-component decomposition of Sentinel-1A/B

S1_S6_odd volume of the six-component decomposition of Sentinel-1A/B

TABLE 2 Definition and distribution of land use/land cover reference
classes in the study area.

Id Class Source area [km2] Area (%)

1 urban, dense CLC2018 22.6 0.6

2 urban, open CLC2018 439.8 10.7

3 urban, industrial CLC2018 91.5 2.2

4 cropland ESA2020 769.4 18.7

5 orchards CLC2018 231.5 5.6

6 pasture CLC2018 661.5 16.1

7 forest, broad-leaved CLC2018 873.8 21.3

8 forest, coniferous CLC2018 762.7 18.6

9 forest, mixed CLC2018 253.1 6.2

10 water ESA2020 5.2 0.1
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scattering mechanisms. Accordingly, forest areas have the

highest Entropy values because of the complex scattering

behavior of canopies, branches, and leaves, especially along

the Carici-Fagetum forest communities of the Jurassic

limestone areas of the Swabian Alb (Reif et al., 2017). In

turn, urban areas which consist of rather pure targets have

low Entropy values which makes them clearly separable

from their natural surroundings which are characterized

by more distributed targets and therefore medium Entropy

(Praks et al., 2009). Complementary to that, the highest

Anisotropy values are observed in the agricultural plains

and urban areas because these show a high dichotomy of

scattering mechanisms which means that both the urban

morphology and cropland have a main scattering

mechanism followed by a dominant second one (e.g.,

buildings and paved roads or crops and soil), which is

not the case for forest areas (Lee et al., 2008). A

statistical analysis of Entropy, Anisotropy and Alpha,

especially in relation to the different training classes is

given in the next section.

3.2 Statistical evaluation

3.2.1 General statistics and interpretation
Table 3 lists descriptive statistics of the produced

Sentinel-1 bands. It shows that all variables lie within a

reasonable range. As expected, the cross-polarization

returns (HV and VH) are lower than those of the co-

polarization (HH and VV). The table, however, also shows

that the calculation of polarimetric features based on two

non-coherent images potentially produces values which are

not fully covering within the expected range. For instance,

the range of the polarimetric Alpha angle (S1_a) is expected

to lie between 0 and 90, yet only ranges between 29.7 and

58.8. This will have an impact on the Entropy-Alpha

classification of scattering mechanisms, as shown later in

this study. At least it reaches higher maxima than those

computed from dual-pol data (S1B_a and S1A_a) which

range from 1.7 to 49.9 which indicates that high Alpha

values are achievable with the proposed method compared

to standard Sentinel-1 products.

FIGURE 3
(A) land use and land cover samples; (B) Sentinel-1 Pauli decomposition; (C) Sentinel-1 Model-based six-component decomposition (red:
oriented dipole, green: helix, blue: oriented quarter wave); (D) Sentinel-1 Entropy (blue to red), (E) Sentinel-1 Anisotropy (blue to red); contains
modified Copernicus data [2022].
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In a second step, all used variables were tested for

correlation. As many of the features are not normal

distributed by nature, we calculated Kendall’s Tau (τ) as a

rank correlation coefficient which is less prone to outliers

(Kendall and Gibbons, 1990). The table is included in the

supplementary materials and ranges between +1.0 (strong

positive correlation; colored in blue) and -0.879 (strong

negative correlation; colored in red). Between all pseudo-

polarimetric features, the strongest positive correlations were

found between the Pauli elements and the diagonal elements of

the Covariance matrix, because of their similar derivation from

the cross-polarized elements, above all S1_C22 and the green

Pauli element representing volume scattering (τ = 1.0), followed

by S1_C11 and the red element (dihedral reflection; τ = 0.683).

The high correlation between the second eigenvalues (S1_L2)

and volume scattering from the model-based six-component

decomposition (S1_6Svol with τ = 0.817) can be explained by its

definition as the largest and the smallest eigenvalue sensitive to

backscatter intensity (Cloude and Pottier, 1996). The strongest

negative correlation between all pseudo-polarimetric features is

observed between the pedestal height and the Shannon Entropy

(-0.518) which means that they similarly characterize the

variety of scattering mechanisms within a pixel, but in a

diametrical way. Interestingly, the common scattering types

of the two decompositions only show little to no correlation

(S1_Pr vs. S1_S6dbl: τ = 0.185; S1_Pg vs. S1_S6vlol: τ = 0.084).

This could be attributed to their different derivation and the

fact that the latter has larger proportions of three additional

scattering types as described above. As expected, Shannon

Entropy (S1_SE) and polarimetric Entropy (S1_H) show a

low positive correlation with τ = 0.213 which indicates that

they refer to a similar concept of statistical disorder, yet they are

calculated differently. Looking closer at Shannon Entropy as the

sum of two contributions, it is found that its correlation with

S1_H is clearly higher for the polarimetric component (S1_Ep

with τ = 0.433) compared to the intensity component (S1_Ei

with τ = 0.036), which is only related to the total backscattered

power (Valle et al., 2013). Accordingly, these correlations

indicates that Shannon Entropy and polarimetric Entropy

can be considered complementary in the subsequent test for

class separability in Section 3.2.3.

With respect to the correlation between the dual-polarization

products and the pseudo-polarimetric product, the Kendall

correlation analysis shows that there is generally large

agreement between the elements of the coherency matrix of

the inputs and the generated product with τ = 0.428 for

S1B_C11 vs. S1_C33 (HH), τ = 0.525 for S1B_C22 vs. S1_C22

TABLE 3 Statistics of selected Sentinel-1 variables.

Variable min p5 Median Mean p95 Max std

S1B_HH 0.000 0.003 0.058 0.110 0.366 4.893 0.185

S1B_HV 0.000 0.001 0.010 0.022 0.078 2.203 0.042

S1A_VH 0.000 0.001 0.010 0.020 0.066 2.351 0.042

S1A_VV 0.000 0.003 0.047 0.085 0.281 6.854 0.145

S1B_C11 0.005 0.034 0.076 0.091 0.190 2.420 0.075

S1B_C22 0.002 0.006 0.016 0.020 0.044 0.948 0.017

S1A_C11 0.005 0.028 0.061 0.071 0.139 3.355 0.058

S1A_C22 0.002 0.006 0.015 0.018 0.038 0.812 0.016

S1B_H 0.018 0.426 0.648 0.639 0.831 0.991 0.127

S1B_a 1.767 10.25 18.17 18.41 25.44 46.88 5.358

S1B_An 0.113 0.474 0.669 0.662 0.826 0.997 0.109

S1A_H 0.145 0.498 0.704 0.692 0.849 0.994 0.107

S1A_a 3.030 12.26 20.37 20.44 26.82 49.35 5.045

S1A_An 0.091 0.450 0.618 0.617 0.781 0.959 0.101

S1_C11 0.004 0.034 0.077 0.090 0.183 3.060 0.069

S1_C22 0.002 0.005 0.013 0.015 0.031 0.178 0.009

S1_C33 0.005 0.029 0.064 0.073 0.144 3.175 0.055

S1_H 0.258 0.675 0.797 0.790 0.883 0.960 0.065

S1_a 29.72 47.82 52.88 53.40 58.76 76.07 4.003

S1_An 0.103 0.443 0.615 0.611 0.767 0.928 0.100

S1_Pr 0.000 0.038 0.163 0.109 0.194 4.836 1.550

S1_Pg 0.000 0.005 0.624 0.021 0.031 1.000 0.450

S1_Pb 0.000 0.023 1.642 0.109 0.133 1.203 1.720

S1_S6vol 0.000 0.000 0.000 0.006 0.037 0.176 0.015

S1_S6odd 0.000 0.010 0.040 0.049 0.118 0.412 0.037

S1_S6od 0.000 0.000 0.002 0.007 0.030 0.135 0.011

S1_S6hlx 0.000 0.000 0.002 0.009 0.037 0.133 0.013

S1_S6dbl 0.000 0.029 0.105 0.132 0.323 1.558 0.109

S1_S6cd 0.000 0.000 0.002 0.007 0.030 0.137 0.011

Min: minimum value; p5: 5% percentile, mean: arithmetic mean; p95: 95% percentile,

max: maximum value; std: standard deviation; variable names are explained in Table 1.

FIGURE 4
Scatter plot between the covariance matrix elements of the
pseudo-polarimetric product (y axis) and the dual-polarization
inputs (x axis). red: S1A_C11 vs. S1_C33 (VV); green: S1B_C22 vs.
S1_C22 (VH); blue S1A_C11 vs. S1_C33 (HH).
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(HV) and τ = 0.960 for S1A_C11 vs. S1_C33 (VV). This is

furthermore underlined by the scatter plot between these

features in Figure 4. Technically, they originate from the

same data, but their differences arise from both resampling of

the pixels of the reference product during the coregistration

(Section 2.1) and the phase correction described in

Section 2.1.

Figure 5 shows how well Entropy, Anisotropy and Alpha

derived from the pseudo-polarimetric product correlate with

those extracted from the dual-polarization data of Sentinel-1A

(only VV and VH) as suggested by Ji and Wu (2015). Their

correlation measures are confirmed by the scatter plot: The

coefficient of determination of R2 = 0.36 states that 36% of

the variation observed in the pseudo-polarimetric Entropy

(blue, τ = 0.588) can be explained by the entropy derived

from the dual-polarization product of Sentinel-1A. A similar

relationship is observed for Anisotropy (τ = 0.499 and R2 = 0.36,

red), and even a weak negative correlation of τ = -0.152 is

observed for the Alpha angle, but only at a very low

coefficient of determination of R2 = 0.011 (green). This again

underlines that the information gained from pseudo-

polarimetric data clearly differ from those retrievable from the

standard Sentinel-1 products. We will investigate this difference

at more detail in the next section.

Lastly, we tested howwell the Radar Vegetation Index created

on dual-polarization data suggested by Waqar et al. (2020)

performs with respect to the three scattering mechanisms

described by the Pauli decomposition created from the

pseudo-polarimetric Sentinel-1 product. To reduce the impact

of outliers and non-normal distribution, we converted the Pauli

elements to dB scale and created a scatter plot (Figure 6). As

expected, both the red (dihedral scattering) and blue (surface

scattering) elements are not linearly correlated with the RVI, the

green component as an indicator for volume scattering shows a

moderate positive correlation of τ = 0.306 with a coefficient of

determination of R2 = 0.19. Accordingly, even it was based on

only VV and VH in the case of Sentinel-1A, it can partially serve

to identify the volume scattering returning from natural surfaces

in the study area. As for the RVI calculated from Sentinel-1B

(HH and HV), this positive correlation is even slightly higher (τ =

0.417).

3.2.2 Entropy alpha planes
In this section, the information content of Entropy, Alpha

and Anisotropy derived from the pseudo-polarimetric product

are tested for their contribution to the identification of different

scattering mechanisms, as well as the separation of the observed

land use and land cover classes. For this reason, violin plots were

created as shown in Figure 7. As indicated in the previous

chapter, Entropy (top) is distinctively higher for the three

forest classes which have a similar median and a strong

concentration of values around it. In comparison, Entropy

values of the other classes cover larger but also lower ranges.

Especially cropland has the lowest Entropy values because of its

rather ordered and structured physical surface characteristics. In

contrast to that the Alpha values (middle) are way more similar

between the classes and only vary regarding range and standard

deviation. Only small proportions of the Alpha values lie outside

the range of 45 and 65° which is not uncommon for this

parameter, as only areas of strong double bounce or dihedral

FIGURE 5
Scatter plot between Entropy (blue), Anisotropy (green) and
Alpha (red) of the pseudo-polarimetric product (y axis) and the
dual-polarization inputs (x axis).

FIGURE 6
Scatter plot between the three Pauli elements of the pseudo-
polarimetric product (y axis) and the Radar Vegetation Index
computed from dual-polarization Sentinel-1A product. Colors
indicate surface (blue), dihedral (red) and volume (green)
scattering.
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reflection show high Alpha angles and only in combination with

low Entropy values (Cloude and Pottier, 1997). It can be denoted

that cropland has the highest range of Alpha values which could

be attributed to different degrees of surface roughness on the

fields in the study area (DLR, 2006) while broad-leaved forests

have the largest concentration of Alpha values at around 55°. As

the third parameter, Anisotropy can be considered

complementary to Entropy, because it indicates the relative

importance of the second and third eigenvalues. It helps to

distinguish surfaces especially for Entropies larger than

0.7 because eigenvalues are more prone to SAR system noise

at low Entropy (Hajnsek et al., 2003). Accordingly, we expect it to

contribute to the separation of the three forest classes in the first

term. However, none of the three features shown in Figure 7

alone allows a clear separation of neither forest nor urban classes

in the study area. We will test subsequently if their combined use

reveals more differences between these classes. As for the

orchards which are a typical landscape element of Southern

Germany consisting of both meadows and medium-sized

trees, their physical properties seem closer to forest areas

when looking at Entropy, but in turn, they are more similar

to pasture and cropland regarding their Alpha values.

Accordingly, this class has a unique polarimetric signature

which allows to separate it from its connatural classes.

Subsequently, the applicability of the unsupervised Wishart

classification is tested by plotting Entropy and Alpha in a

coordinate system as proposed by Cloude and Pottier (1997).

It is based on the assumption that surfaces can consist of low,

FIGURE 7
Violin plots of Entropy (top), Alpha (middle) and Anisotropy (bottom) for the ten land use and land cover classes. Colors assigned as in Figure 3.
Black bars cover the interquartile range (middle 50%) and the white marker indicates the median.
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moderate, and high Entropy as an indicator of the randomness of

scattering inside a pixel, and technically between 0 and 90°

regarding their Alpha value, and thereby fall within one of

nine basic zones of typical scattering mechanisms (Figure 8

left; adapted from Lee and Pottier, 2009). At first sight, all

pixels fall within the feasible regions as marked by the white

plot area which confirms the overall quality of the complex

calibration and the subsequent steps data processing as described

in Section 2.1. The values of the standard dual-polarimetric

product (right) are located slightly lower along the y axis, but

fully meeting the criteria by Ji and Wu (2015) who redefined the

feasible region for dual-polarization data. The most striking

difference between both datasets is that the pseudo-

polarimetric product (middle) reaches higher Alpha values

FIGURE 8
Entropy-Alpha plots of Sentinel-1 pseudo-polarimetric (middle) and dual-polarimetric (right) data. Color tone indicates point density.

FIGURE 9
Entropy-Alpha plots of selected classes retrieved from Sentinel-1 pseudo-polarimetric data. Forest and urban classes were aggregated for this
comparison.
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throughout all classes compared to the dual-polarimetric

Sentinel-1 data (right). This is in accordance with reports of

similar studies which attest generally low Alpha values achievable

by dual-pol data (Dhar et al., 2011). Additionally, as found by

systematic comparisons between dual-pol and quad-pol data by

Ji and Wu (2015), medium and low Entropy scattering

mechanisms are highly confused for HH/HV configurations.

The plots based on pseudo-polarimetric data show the typical

distribution inside the valid regions with a concentration of

pixels in high Entropy zones of moderate Alpha values

throughout all classes. However, as already indicated above,

when compared to Entropy-Alpha planes of other studies

based on actual quad-pol data (Lee et al., 1999), it is obvious

that the pseudo-polarimetric data presented here clearly lacks of

low Bragg surfaces (zone 3, low Entropy and low Alpha) and a

tendency to overestimate dihedral and double reflection (zones

1 and 4, low and moderate Entropy and high Alpha).

These observations are confirmed when looking at distinct

classes in Figure 9. It shows that none of the classes concentrates

within one or two specific zones. In turn all of them seem to have

their center of gravity in the moderately high Entropy region

(zone 4: double reflection; zone 5: anisotropic particles; zone 6:

random surface) which is clearly opposed to our expectations

with respect to the physical characteristics of these classes. For

instance, we would have expected a dominance of dihedral

reflectors (Z1) and double reflection (Z4) for urban areas, but

these are largely spread over all Alpha regions. Also, water areas

are usually characterized by both low Alpha and low Entropy

values (Z3, Bragg surface), but in this study, these are

concentrated in the moderately high Alpha and very high

Entropy areas which correspond to complex structure (Z7)

and random anisotropic scatterers (Z8) which is clearly not

the case. A similar observation is made for urban areas which

should concentrate in zone 4 because of dense aggregations of

localized scattering centers which produce moderate Entropy

with low order multiple scattering (Cloude and Pottier, 1997). In

turn, urban areas in this study only partially fulfill this

assumption. A better agreement between the theoretical and

observed distribution is observed for forest areas, which are

characterized by diffuse scattering and medium Entropy

therefore should largely be assigned to zones five and 8

(random anisotropic scatterers; Papathanassiou et al., 2021),

which is the case for our data. However, as all classes show a

similar trend regarding the distribution of values inside the

Entropy Alpha plane, they must be subject to a systematic

error of yet unknown degree which must have been

introduced during the processing. Accordingly, their use with

respect to the actual definition of the scattering mechanisms

linked to the zones is strongly limited. Still, classes inside this

two-dimensional plot show slightly different distributions when

it comes to the center of gravity and range in x and y direction.

For instance, nearly all cropland samples have Entropy values

between 0.5 and 0.9 while pasture ranges between 0.65 and 0.95.

The fact that they barely differ with respect to Alpha suggests

testing other polarimetric features for their contribution to a

cleaner class separation. The actual benefit of, among others,

Entropy and Alpha derived from Sentinel-1 for land cover

classification is furthermore investigated in the next section.

However, as the observed bias related to Alpha values

undoubtedly affects the membership of the ten classes, we

furthermore reversed this analysis and calculated the

proportions of the defined scattering mechanisms over the ten

land use and land cover classes. These are shown as stacked bars

in Figure 10 and indicate which classes belong to which zone. For

instance, double reflection is found among all classes with nearly

similar proportion. Random anisotropic scattering (Z8) largely

consists of forest areas which is logical as it describes scattering

from canopies at high Entropies. The same applies for complex

structures (Z7) which is equally distributed over urban and forest

classes as both of them contain double-bounce effects, either

from trunks or buildings (Singh and Yamaguchi, 2018).

Furthermore, dihedral (Z1) and dipole (Z2) reflections are

covered by the three urban classes to very large fractions

which also is highly feasible due to the presence of as

provided by isolated.

Dielectric and metallic dihedral scatterers as well as both

double and even bounce effects occur in all urban areas (Cloude

and Pottier, 1997). Interestingly, small differences between the

urban classes can be observed as the most dominant mechanism

in dense urban areas is dipole reflection, while it is complex

structures for openly built-up environments and Bragg surfaces

(Z3, low Entropy, low Alpha) for industrial areas. However, the

latter does not make sense as it should rather cover the water class

as discussed above, so this might be part of the bias observed in

the Entropy-Alpha plane. In turn, the highest occurrence of

water is observed inside the random surface zone (Z6) which is

also feasible for rough water bodies, rivers, and coastal areas (Lee

et al., 1999). The classes cropland, pasture and orchards show a

less distinctive dominance inside one or two zones due to their

heterogeneity regarding roughness, structural orders, as well as

the size and orientation of the contained vegetation (Voormansik

et al., 2016).

3.2.3 Contribution to land cover classification
To test which Sentinel-1 pseudo-polarimetric features are

suitable for land cover classification, a feature ranking was

performed using the fast correlation-based solution (FCBS)

proposed by Yu and Liu (2003). This method identifies the

contribution of each variable to the prediction of the target

class (here: land use and land cover classes as defined in

Table 2) by accounting for redundancies as identified by

pairwise variable correlations. According to this ranking, the

three most important variables and their respective relative

scores are polarimetric Entropy (0.121), Shannon Entropy

(0.086) and the co-polarization ratio HH/VV (0.002). This

ranking already reveals two things: Firstly, Shannon Entropy
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as defined by information theory and Entropy as used in SAR

polarimetry are highly complementary measures, at least with

respect to the samples collected in our study area. Secondly, the

comparably low importance of the third feature indicates that

many of the variables used in this study (Table 1) are redundant

in terms of class separability. This is underlined by the fact that

the fourth most important feature was found to be C22 with an

importance of 0.00011. In turn, this means that these first three

variables already provide a wide feature space to predict the

different types of land surfaces. This is visualized by the scatter

plot in Figure 11 which shows the land use and land cover classes

distributed between a two-dimensional feature space of

polarimetric Entropy (x) and Shannon Entropy (y). As it

nicely shows, these two variables are more suitable to

distinguish between the sampled classes than Entropy and

Alpha from the previous section. Forest areas in green tones

and urban areas in red tones form clusters in high Shannon

Entropy regions whereas cropland, orchards and water bodies are

distinguishable in areas of lower Shannon Entropy. Yet, the

subdivisions of urban areas and forests do not seem separable

based on this projection.

For this reason, a classification tree was constructed based on

all available pseudo-polarimetric variables (Table 1) to test the

separability of the three urban classes and the tree forest classes,

FIGURE 10
Distribution of scattering mechanisms based on unsupervised Wishart decomposition over the defined land use and land cover classes in the
study area.

FIGURE 11
Scatter plot between polarimetric Entropy (x) and Shannon Entropy (y) retrieved from Sentinel-1 pseudo-polarimetric data. Colors indicate land
use and land cover classes as defined in Table 2.
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respectively. A classification tree hierarchically splits the training

data based on variable thresholds which are statistically identified

by systematic bootstrapping as proposed by Breiman (1996).

During this process the training samples are being successively

split into subordinated nodes, also called layers, with higher class

purity. Constructing classification trees helps to understand the

role of variables in a feature set and to identify their most suitable

thresholds with respect to the input data’s classification. It has to

be noted that increasing the tree depth leads (i.e., using more

nodes) leads to a higher prediction accuracy but also makes the

tree more complicated and prone to overfitting. As our aim is to

understand which of the variables contribute to a clean

separation of the classes, we limited the tree depth to four

levels. The result is shown in Figure 12. Because the number

of classes was limited to three for this test, the variables selected

for the most important splits differ from the ones identified by

the feature ranking presented above. The most important

variable for the urban classes (top) is the blue component of

the Pauli decomposition representing surface scattering (S1_Pb,

split at 0.101) which mainly divides the input data into openly

(left) and densely (right) built-up samples. The left branch is then

furthermore divided into open and industrial based on the Alpha

angle (S1_a, split at 57.1°). On the right side, the data is split based

on the green component of the Pauli decomposition (S1_Pg, split

at 0.012) which is interesting because it represents volume

scattering which is not a typical component of either of the

two classes (dense and industrial). The third level is then based

on various variables, including C33, Span, Entropy and the red

Pauli component. With these few rules, the tree is already able to

correctly predict 40.0% of the 6,000 input training samples, as

revealed by an accuracy assessment based on the “leave one out”

method - which repeatedly constructs the tree based on the given

configuration but leaving out one instance at a time being then

classified based on the identified rules. Among all available

methods to validate the training accuracy of machine learning

classifiers, it is considered one of the most stable but also

computationally expensive (Witten, 2011). The outcome of

the accuracy assessment is a number referring to the

proportion of correctly assigned samples (here: 40% for urban

areas) and might seem low at first sight, but it is the product of

the three individual classes’ accuracy. If the three single classes

are assessed separately, their individual accuracies are 65.3% for

dense urban areas, 65.4% for open urban areas and 49.2% for

industrial areas. This indicates that large proportions of the

observed classes can be separated by the pseudo-polarimetric

radar features based on hierarchical splitting. Yet, industrial areas

FIGURE 12
Classification trees of urban (top) and forest (bottom) classes based on all available pseudo-polarimetric variables (Table 1). Each node
represents a subset of training samples from the level above which are split by the most impactful variable and threshold. Color tones and pie charts
indicate class composition and pureness.
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remain hard define by this ruleset, which might be because of

either heterogenous physical characteristics inside the defined

class, or because of the insufficient spatial resolution of Sentinel-

1. Looking at the forest classes, the overall accuracy achieved by

the tree classifier is generally lower (39.6%), but widely similar

between the three types (broadleaved: 56.5%; coniferous: 59.9%;

mixed: 62.8%). Here, the most important variable is C22 (split at

0.024) which already separates large proportions of mixed forest

from the other two classes. As this element of the covariance

matrix is composed of the two cross-polarizations (HV and VH)

it is a suitable descriptor for the different compositions of

canopies of broad-leaved and coniferous trees (Lee and

Pottier, 2009). Mixed forests are then furthermore refined

based on Entropy (S1_H, split at 0.879) and Alpha (S1_a,

split at 47.723) which also makes sense from a physical

perspective, while on the left side of the tree, the second most

important variable is the radar vegetation index (S1_RVI, split at

0.0025) to separate coniferous forests (low RVI) from

broadleaved plots (high RVI).

Generally, the class prediction accuracy of forest areas is

about 10% lower than the one of urban areas which means that

the pseudo-polarimetric features calculated in this study have a

higher relevance and contribution to the classification of inner-

urban areas as compared to woodland. One could assume that

increasing the number of layers, and thereby adding more

thresholds to split the training data, would furthermore

increase the accuracy of the classification trees’ rulesets.

However, as already indicated above, this is not always the

case, because a considerable proportion of samples is already

misclassified at early steps and cannot be separated from other

classes at lower levels. This is a known problematic for decision

trees (Quinlan, 1986) and visualized in Figure 13. It shows the

overall classification accuracy of the trees for all classes (black), as

well as for only forest (green) and urban (red) areas. As clearly

demonstrated by the black line: if the number of classes is too

high, the classification accuracy can no longer be improved by

increasing the tree’s depth. Instead, the accuracy starts to go

down after six layers due to the problem of overfitting mentioned

above. A similar behavior is observed for the accuracy of forest

classes which increases by around 2.5 between one and three tree

layers but then begins to slightly decrease. Only for the urban

classes the accuracy steadily increases from 48.1 to 57.8% before

the overfitting causes a decline. Accordingly, tree classifiers are a

suitable and transparent method to understand the contribution

of features with respect to a target variable, but not a very effective

one when it comes to the highest possible classification.

To test how well the data produced in this study is actually

suitable to separate the observed classes of land use and land

cover, a random forest classifier is used. It is based on the

algorithms of classification trees, but adds the component of

ensemble learning by repeatedly constructing decision trees

based on a random subset of both the explanatory variables

(here: raster data Table 1) and their values (Breiman, 2001). This

systematically improves the selection of suitable features and

increases the robustness of the finally derived value thresholds. In

this study, random forests were calculated for both the pseudo-

polarimetric parameters (n = 29 [S1q]) as well as for the dual-

polarization products (n = 15 for Sentinel-1A only [S1A], n =

30 for both Sentinel-1A and Sentinel-1B [S1AB]) to test for the

actual difference regarding their predictive power of the land use

and land cover samples. For each of these three settings (S1q, S1A

S1AB), 100 trees were calculated, each based on five randomly

selected variables, to construct a final complex ruleset to predict

the membership of each of the 20,000 training samples to one of

the ten defined classes. These rulesets can no longer be visualized

as in Figure 12, because they include summarize the decisions of

FIGURE 13
Overall accuracies of the classification trees for all ten input classes (black), three forest classes (green) and three urban classes (red) with respect
to the number of layers of the constructed decision trees.
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100 individual trees, but the results is expressed as the classes

selected by the majority of trees (Ho, 1998). To evaluate the

performance of the trees, which is defined as the suitability to

assign the correct class to each of the input samples, a tenfold

cross validation was conducted which randomly splits the data

into 90% used for training and 10% used for testing ten times to

compute the average performance of the classifier (Allen, 1974).

Accordingly, the outcome of the validation is the proportion of

samples correctly assigned by the random forest. This was done

for all classes in total, but also for each class individually to

understand which of them are well described by the radar

imagery and which are rather complicated to separate from

the other classes. The result is shown in Table 4 which lists

the classification accuracy (CA) for all classes based on the

pseudo-polarimetric data (S1q), the single layers of both input

images (S1AB) as well as for the standard Sentinel-1A image

containing only VV and VH polarization (S1A). As classification

accuracy alone can be a misleading measure, it is complemented

by additional statistics: ‘Precision’ connotes the fraction of false

positives (falsely assigned samples) and therefore decreases with

overestimation of a class, while ‘recall’ is a measure relating

completeness which is comprised of the fraction of true positives

(correctly assigned samples) compared to true positives and false

negatives (missed samples) of a class. Accordingly, recall

decreases with underestimation of a class. The F1 score is

considered a harmonic mean of precision and recall.

As the table shows, the overall classification accuracy is

higher for the pseudo-polarimetric data as compared to the

dual-polarization input (S1AB) with clearly higher precision

(less falsely assigned classes) but at comparable recall. This

indicates that the polarimetric parameters are more effective

to classify the land use and land cover classes than the sum of

their original inputs. Yet, it has to be denoted that tree classifiers

are generally sensitive towards redundancies in data. As showed

earlier in Section 3.2.1, much of the variables of Sentinel-1A and

Sentinel-1B are highly correlated which can lead to less effective

variable selection in the process of tree construction (Quinlan,

1986) and also partly explain the lower accuracies of S1AB

compared to S1q. We see the polarimetric parameters of S1q

less redundant and therefore more suitable for an ideal

exploitation of the inherent information. As expected, the S1A

input with only n = 15 variables achieved lower scores than both

input images together (S1AB; n = 30) which can be attributed to

the smaller population of variables available to identify the best

split at the various nodes. Yet, as all of the shown measures are

the product of the ten classes’ individual scores, a general

conclusion on the superiority of pseudo-polarimetric data

cannot be drawn based on Table 4 alone. Therefore, a closer

look will be given to the accuracies of each class in Figure 14. It

shows that for the majority of land use and land cover classes the

prediction accuracy is largest with the pseudo-polarimetric data

as input. The strongest increase is observed for pasture with

87.6% compared to the other two datasets with 86.2% (S1AB) and

S1A (85.8%). The same is the case for the three urban classes but

with slightly less dominance and a generally lower accuracy of

industrial areas as observed above. Interestingly, cropland is

classified best based on the 30 original bands from the two

Sentinel-1 products and even better with data of Sentinel-1A

alone than compared with the pseudo-polarimetric data. The

same is the case for coniferous forest, but at a slightly lower level,

while accuracies of broad-leaved and mixed forests benefit from

the polarimetric information. The water class which is generally

the one with the highest scores barely shows any accuracy

differences because it is the one with the most distinct

physical characteristics as compared to the other classes and

thereby equally separable regardless of the input data.

Still, Figure 14 does not explain why certain classes are

predicted at a given accuracy and which other classes cause

potential mismatch. We have therefore computed an error

matrix presented in Table 5 which compares the predictions

by the random forest classifier based on of all training samples

(columns) with the actual classes of the samples which were fed

into the training process (rows). It therefore evaluates, how well

the rulesets retrieved from techniques of machine learning are

able to separate the observed classes in the study area. It therefore

highlights misclassifications between two or more variables

which are difficult to separate. As expected, the urban classes

share large proportions of confusion among themselves while

they are generally well separated from the natural land cover

classes. Only the industrial class (3) shares considerable

mismatch with the orchards (5) with an overestimation of

9.7% and an underestimation of another 9.0% at the same

time which leads to the lowest overall accuracy among the

three urban classes. This could be explained by the generally

more open morphology of such areas with partly vegetated

surfaces. A similar cluster is found for the three forest classes

with a strong confusion of around 25% in both directions

between broad-leaved (7) and mixed forests (9). As already

identified by the decision trees in Figure 12, this class

confusion originates from the definition of these classes and

the fact that mixed forests partially contain broad-leaved and

deciduous forests already. Lastly, the error matrix shows that a

considerable amount of misclassification occurs between

cropland (4) and pasture (6). For instance, around 19% of the

samples predicted as cropland are actually pasture and vice versa.

TABLE 4 Accuracy metrics of the random forest classification.

CA Precision Recall F1

S1q 35,4% 34,2% 35,4% 34,1%

S1AB 33,8% 32,3% 33,8% 32,6%

S1A 32,7% 31,4% 32,7% 31,7%

CA: classification accuracy; precision: true positives/(true positives + false positives);

recall: true positives/(true positives + false negatives); F1 score: 2 * (precision * recall)/

(precision + recall).
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This comes along with findings of other studies which report

greater confusion between these classes for C-band pixel-based

classifications (Orlikova and Horak, 2019; Borlaf-Mena et al.,

2021; Samrat et al., 2021).

Lastly, to analyze how much the input dataset really impacts

the classification accuracy, we plotted Receiver Operator

Characteristics (ROC) curves of both the pseudo-polarimetric

data and the standard Sentinel-1 products for selected classes in

Figure 15. ROC are commonly used for the evaluation of

machine learning-based outcomes as they plot the false

positive rate on their x axis and the true positive rate on the y

axis. Accordingly, the closer the plotted curve follows the left-

hand and top border, the more accurate the classifier (Davis and

Goadrich, 2006). The diagonal line represents a fully random

classification outcome. To visually compare the performance of

the classifiers under different input datasets, we plotted the scores

of the pseudo-polarimetric data (S1q) in dark tones (according to

the general colors used in Figure 3) and those of the dual-

polarimetric Sentinel-1 images (S1AB) in brighter tones.

Firstly, the curves visually underline what is already known

from Figure 14, namely that industrial areas, pasture, orchards

and coniferous forests are of lower accuracy as visible by their

flatter curves. Secondly, classes with higher accuracies, such as

densely built-up urban areas, cropland and water, only barely

differ regarding the input datasets as both curves are almost

identical. The overperformance of S1AB for cropland is visible by

the bright yellow line as compared to the darker one. Thirdly, real

differences between the input data are only visible for industrial

areas, pasture and orchards where S1q outperforms the other

input dataset. However, as shown by this analysis, the differences

FIGURE 14
Figure 13: Overall accuracies of the random forest classifier based on the pseudo-polarimetric product (red), both Sentinel-1 images (blue) and
Sentinel-1A data (green).

TABLE 5 Error matrix of the random forest classifier for the pseudo-polarimetric Sentinel-1 data.

Predicted class

1 (%) 2 3 4 (%) 5 (%) 6 (%) 7 (%) 8 (%) 9 (%) 10 (%)

actual class 1 47.4 15.5% 13.9% 3.3 4.9 2.5 4.9 4.8 3.9 6.5

2 19.5 29.1% 17.2% 5.6 10.0 6.4 5.9 6.4 5.8 7.1

3 15.2 20.7% 26.4% 6.8 9.0 5.8 6.5 7.0 6.1 8.2

4 0.4 1.9% 5.3% 44.8 10.0 18.8 0.1 1.3 0.3 3.0

5 3.0 9.7% 9.7% 13.4 23.0 16.5 6.1 10.0 5.0 5.2

6 1.8 4.3% 6.2% 19.2 13.3 34.7 3.8 6.0 3.5 7.3

7 3.3 5.6% 4.2% 1.2 7.4 3.9 26.3 17.1 26.7 2.6

8 2.5 2.7% 4.3% 1.4 10.4 3.7 19.7 26.8 17.7 3.4

9 3.8 4.4% 4.1% 1.3 6.6 2.3 25.6 16.7 29.6 3.0

10 3.2 6.1% 8.7% 2.9 5.4 5.4 1.0 3.9 1.5 53.7

Please note: The numbers in the header refer to the classes as defined in Table 1.

Fraction of the actual classes, each line represents 100% of all training samples of a class.

Bold values indicate fractions of correctly classified samples per class.
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are not as pronounced as maybe implied by the graphs in

Figure 14 so that we conclude that the pseudo-polarimetric

data does bring benefits for most classes, but not in a

significant manner.

4 Discussion, conclusion, and outlook
This study tested, on an experimental base, how complementary

polarimetric channels of Sentinel-1 data of two different acquisitions

can be combined to synthesize a pseudo-polarimetric radar image

product. It was performed aware of the fact that such a product

cannot fully replace an actual quad-pol acquisition because the two

images were acquired at two different dates. As polarimetric analyses

are usually performed on the real and imaginary parts of the four

polarizations, the scattering integrity of a pixel in terms of coherent

scattering of a target cannot be assured by this approach, thus leading

to the observed differences in decomposition elements or Entropy,

for instance. Yet, the findings show that the information content of

Sentinel-1 data is largely comparable to actual quad-pol data that

polarimetric derivates have a positive impact on land cover

classifications compared to pure backscatter intensity of the four

polarizations. The following paragraphs will discuss open points and

put the results into perspective regarding how future studies could

benefit from the findings of this work.

From the processing point of view, it is questionable if

combining two images with complementary polarization bands

can simply be coregistered to form a quad-pol product. Besides

the obvious flaws at the theoretical level outlined in the previous

paragraph, it was highlighted in Section 3.2.2 that, despite complex

calibration and phase correction, there is bias inherent to the data.

This indicates that also other polarimetric parameters are potentially

subject to that bias. It should therefore be tested in further studies

how the four bands could be radiometrically calibrated in terms of

channel imbalance or cross-talk, for example, by analyzing the

returns of all four polarizations from trihedral corner reflectors

(van Zyl, 1990). Besides this polarimetric calibration, methods of

incidence angle normalization should be considered in areas of

strong topography, as suggested by Atwood et al. (2012) who report

an improvement in classification accuracy by 15% using a

radiometric terrain correction of the polarimetric input product.

As shown in Figure 3, especially the model-based six-component

decomposition and Entropy are strongly affected by deep valleys

ranging in north-south direction in the northwest region as with the

many ridges of the Swabian Alb in the southeastern center of the

study area.

Another apparent source of error is the fact that Sentinel-1

imagery of complementary polarimetric information was only

available from the year 2021 while the land cover classifications

are from 2018 to 2020. Accordingly, a small proportion of pixels

could underlie amismatch between the actual surface as observed by

Sentinel-1 and the one expected by the reference data. Furthermore,

the spatial resolution of CLC2018 was 100 m which means that

some of the randomly sampled pixels could have been falsely

assigned at the borders of classes and inside small pixel groups.

Based on the sample size of 2000 per class, we consider the effect of

temporal and spatial integrity on the quality of the results statistically

small. The same applies for the slightly different incidence angle

(39.05° for S1B and 39.10° for S1A at mid-swath) which can

potentially lead to different returns among the different bands, as

FIGURE 15
Receiver Operator Characteristic (ROC) curves selected land use and land cover classes. Dark tones represent the pseudo-polarimetric input
data (S1q) and bright tones the dual-polarimetric products (S1AB).
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indicated by Stiles et al. (2000) who report a general dependence of

polarimetric signatures over grasslands from the incidence angle of

the system.

The visual inspection of polarimetric radar products of Sentinel-

1 (Figure 3) shows that the overall information content is as

expected. Yet, a regular striping effect was observed which might

have been caused by the coregistration of Sentinel-1A and Sentinel-

1B which introduced linear patterns in north-south directions for

the polarimetric decompositions and in east-west direction for

Entropy and Alpha. We tried different resampling options

(nearest neighbor, bilinear, bicubic) and transformations of the

coregistered product, but could not fully eliminate these

systematic patterns. Still, we believe that their impact on the

results and their interpretation is insignificant.

The presented visual inspection of the EntropyAlpha planes leads

to the conclusion that the distribution of the pseudo-polarimetric data

is only partly logical and feasible, but still of higher information

content than the standard dual-polarization product of Sentinel-1.

However, several observations indicate that the potential of an

unsupervised Wishart classification based on pseudo-polarimetric

Sentinel-1 features is biased and cannot fully be exploited,

especially when it comes to the assignment of physical properties.

It should therefore be interpreted with care. As it turned out, class

assignment based on methods of machine learning were more

effective than traditional Entropy-Alpha decomposition, although

these polarimetric measures revealed a systematic dependence

from the sampled land use and land cover classes (Figure 7).

Different from working with calibrated optical imagery, our

statistical analysis showed that the different variables used in this

study strongly vary regarding range and standard deviation

(Table 3) and only few of them are normal distributed. This

requires the application of classifiers which are based on

thresholds rather than on cluster centers or bounding boxes.

We therefore selected the classification tree and random forest

classifiers. The classification tree based on random samples of all

ten land cover classes showed that the main elements of the

landscape were well delineable by the Sentinel-1 polarimetric

bands. It furthermore showed that a sufficient degree of class

separation was already achievable with the four highest ranked

variables (Entropy, Shannon Entropy, co-polarization ratio, and

C22). Within this context, polarimetric features turned out to

have a bigger impact than the pure co-pol or cross-pol

backscatter intensities. Surely, higher accuracies could have

been achieved by the integration of more elaborated classifiers,

such as Support Vector Machines (Rahman et al., 2020) or

segmentation-based approaches using Convolutional Neural

Networks (Hoeser et al., 2020). However, the main goal in

this study was to identify which variables derived from

Sentinel-1 are most relevant and which value thresholds based

on C-band signatures allow a best possible class discrimination

within a transparent process. The tree classifier has proven

effective for this cause, but it requires either a preceding

feature ranking to restrict the creation of the tree to a small

number of input bands, or the definition of a maximum tree

depth to avoid overfitting. Furthermore, it reaches its limits when

applied to a large number of classes, as demonstrated in

Figure 13. The advancement of these binary decision tree

concepts in form of a ensemble-based random forest classifier

showed that higher classification accuracies are possible, but too

many misclassifications exist between similar classes, such as

cropland and pasture or—to our surprise—industrial areas and

orchards. These could maybe reduced by applying Gradient

Boosting classifiers which operate based on similar ensemble

principles as random forests but are reported to outperform them

in terms of classification accuracy (Lin et al., 2014; Sahin, 2020).

In this study, we only evaluated the training accuracy of these

classifiers based on an extensive set of class samples. Yet, for

actual image classifications which aim at the best possible

prediction of land use and land cover based on sparsely

available training data, more emphasis should be placed on

the role and preprocessing of the selected input variables and

an actual validation should be performed using data

independently collected for testing. A classic analysis would

also include a more careful selection of classes. We found that

some of the classes used in our study were strongly related to land

use (e.g. industrial) and not really physical representation of the

Earth’s surface. In this context, the class “mixed forest” turned

out to decrease the overall accuracy because it physically

consisted of the two other classes (broad-leaved and

coniferous). Accordingly, for SAR-based approaches, class

definitions should be clear and non-overlapping.

Finally, when comparing results from the pseudo-polarimetric

product synthesized in this study and its two dual-polarization input

products, we found that the overall differences regarding

classification accuracy are rather subtle and refrained to certain

classes. In our case, dense urban areas, pasture and mixed forest

profited the most from the computation of the pseudo-polarimetric

features as input for the classification. Although this effect was not

observed for all classes, we found the polarimetric features less

redundant and therefore more suitable for an ideal exploitation of

the inherent information. Yet, while a general superiority of pseudo-

polarimetric could be assumed from the by the data, the actual

improvement in classification accuracy only ranges between 0.1%

(water) and 1.8% (pasture). It is to be tested in further studies if the

suggested approach brings greater benefit for the discrimination of

particular land cover types, such as savanna ecosystems of different

tree density, mangroves in coastal zones, or wetlands with vegetation

gradients.

Although the availability of data from Sentinel-1B is no

longer given (Brainard, 2022; ESA, 2022), we see potential in

the provided research to assist the design of the upcoming

launches of Sentinel-1C and Sentinel-1D in such a way that

these will deliver complementary polarimetric information at

repeat intervals of three to 6 days within a relative orbit (Torres

et al., 2021). The findings in this study show that combining two

products of short temporal baseline can not only contribute to
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interferometric analyses but also increase the polarimetric

mapping capabilities of the entire mission.
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