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Abstract
Purpose – This study aims to evaluate the influence of connected and autonomous vehicle (CAV) merging algorithms on the driver behavior of
human-driven vehicles on the mainline.
Design/methodology/approach – Previous studies designed their merging algorithms mostly based on either the simulation or the restricted field
testing, which lacks consideration of realistic driving behaviors in the merging scenario. This study developed a multi-driver simulator system to
embed realistic driving behavior in the validation of merging algorithms.
Findings – Four types of CAV merging algorithms were evaluated regarding their influences on driving safety and driving comfort of the
mainline vehicle platoon. The results revealed significant variation of the algorithm influences. Specifically, the results show that the
reference-trajectory-based merging algorithm may outperform the social-psychology-based merging algorithm which only considers the ramp
vehicles.
Originality/value – To the best of the authors’ knowledge, this is the first time to evaluate a CAV control algorithm considering realistic driver
interactions rather than by the simulation. To achieve the research purpose, a novel multi-driver driving simulator was developed, which enables
multi-drivers to simultaneously interact with each other during a virtual driving test. The results are expected to have practical implications for
further improvement of the CAV merging algorithm.

Keywords Driving simulator, Connected and autonomous vehicle, Merging algorithm, Merging behavior, Safety and comfort, Driving safety,
Driving comfort

Paper type Research paper

1. Introduction

Connected and autonomous vehicle (CAV) technology has
been gaining more and more attention in recent years; it
releases drivers from heavy driving tasks and avoids driver
errors. One challenge of CAV technology is its adaptability
in critical traffic scenarios. A typical critical scenario is the
merging scenario at the freeway ramp area; it is the hotspot
of traffic crashes. In total, 18% of all interstate freeway
crashes, 17% of the injury crashes and 11% of the fatal
crashes occurred at interchanges, and most proportion of
these crashes took place at the entrance or exit ramps
(Ahammed et al., 2008; McCartt et al., 2004). Given that
there is usually significant vehicle interaction at the merging
areas, the design of the CAV merging algorithm is critically
important; the algorithm is supposed to ensure a safe
merging behavior; meanwhile, it is expected to disturb the
mainline driving as little as possible.
Many studies have designed CAV merging control

algorithms. Generally, the merging algorithms can be
categorized into two types: physical-restriction-based

merging path generation algorithm and social-psychology-
based merging algorithm. For the first type, the objective of
this type of merging control is to find a reference trajectory
to guide the autonomous vehicle by considering physical
and kinematic restrictions to fulfill a successful merging. Lu
and Hedrick (2003) and Lu et al.(2004) designed a set of
kinematical restriction functions in terms of the acceleration
and position, to ensure that the vehicles can reach the
merging points at an appropriate time. Wang et al. (2013)
proposed a cooperative driving algorithm based on vehicular
operation characteristics for the ramp merging. They
considered the position and speed requirements for both
one and two vehicles on the ramp. The second type
considers driving preference regarding the merging behavior
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and manipulates the merging model based on factors such as
desired gap distance and desired mainstream speed.
Basically, this type of algorithm defines the model in a form
of preferred and actual accelerations and distance gap
maintain (Awal et al., 2013a, 2013b; Chou et al., 2016;
Karimi et al., 2020; Wu et al., 2019). An advanced form of
the second type is to consider multiple optimization targets
and generate the reference merging path by solving the
optimal solution. Ding et al. (2019) proposed a rule-based
merging algorithm with minimizing travel time and delay as
the target; they formed a closed-form analytical solution to
achieve a near-optimal merging sequence. Letter and
Elefteriadou (2017) presented a longitudinal freeway
merging control algorithm, which used the average travel
speed as the optimization target, and they used LINGO to
resolve the optimal solution.
The verification of the above algorithms is usually based on

simulation platforms, either through a single platform or a co-
simulation based integrated simulation platform. Some single
platforms are basically microscopic traffic flow simulation
software (TFSS) such as Vissim and SUMO; they have
embedded driving behavior models, which can mimic car-
following or lane change behaviors. For example, Vissim used a
rule-based algorithm to initiate lateral lane change behavior and
a psychophysical model for the longitudinal car-following
movement (Fellendorf and Vortisch, 2001). Different from
Vissim, SUMO used a Krauss model as its default car-
following model (Bieker-Walz et al., 2017). However,
individual vehicle dynamics modeling is not a strength for these
platforms. On the contrary, some other single platforms, such
as CarMaker, have a better ability of modeling vehicle dynamic
details such as powertrain and sensor system. The driver
behavior model used in the CarMaker is based on a
proportional-integral-derivative controller, with considerations
of psychological studies and measurements from real test
drivers (Olofsson and Pettersson, 2015). Whatever driver
behavior models they are, the models result from speed, speed
difference, distance gap, vehicle dynamic restrictions or
individual driver characteristics.
Integrated simulation platforms provide more explicit

simulation regarding individual vehicle dynamics or a better
power to optimize CAV control algorithms during the
running time; the integrated platform can consist of a TFSS
and several other simulators such as IPG CarMaker and
Matlab/SIMULINK. Basically, the TFSS is more efficient
at simulating microscopic traffic flow while it ignores the
vehicle dynamic details; on the contrary, the IPG CarMaker
can better simulate the vehicle dynamics such as the
powertrain system and sensor system; while the Matlab/
SIMULINK is mainly for algorithm optimization purpose,
its embedded mathematical toolboxes can be used to resolve
optimization problems and generate optimized parameters/
outputs of control algorithms. When complicated traffic
flow simulation is not necessary, IPG CarMaker is often
used to verify CAV control algorithms, such as longitudinal
cruise control (Kuutti et al., 2019), lateral lane change
(Samiee et al., 2016), overtaking path planning (Nguyen
et al., 2017) and tactical behavior planning (Sefati et al.,
2017); while the CAV algorithm is required to be tested in
certain traffic flow conditions, a co-simulation between

CarMaker, TFSS and Matlab/SIMULINK is often used
(Madhusudhanan, 2019; Nalic et al., 2020a; Nalic et al.,
2020b).
However, the lack of realistic driver behavior in the algorithm

validation deteriorates the credibility of the algorithm. As
pointed by Aksjonov et al. (2020), purely computation
simulation does not guarantee realistic environments for a
testing vehicle, and this is the reason that in recent years the
concept of “hardware-in-the-loop” or “human-in-the-loop”
becomesmore prevalent (Aksjonov et al., 2020; Artunedo et al.,
2015; Dang et al., 2020; Schreiber et al., 2018). Basically, using
real hardware or a driver to test the algorithm is more reliable
than using a driver behavior model particularly when it is
necessary to observe vehicle interactions and possible improper
driving adaptation behaviors such as driving errors and
aggressive driving. Theoretically speaking, a driver behavior
model is controlled by many kinematical restrictions with the
purpose of generating “smooth” behaviors, and it is hard to
mimic improper driving adaptations (Nalic et al., 2020a).
Regarding the CAV merging control algorithms, most of the

aforementioned studies were based on simulation, which is
hard to represent realistic driver behaviors in the merging
scenario. Very few of them conducted field testing; however,
because of the safety consideration, only conservative
algorithms and restricted testing conditions (such as low
driving speed) were tested. Many studies proved that driver
behavior can significantly affect the crash and safety level at the
merging area. Weng et al. (2015) found that the drivers’
merging behavior is highly correlated with the rear-end crash
risk; there will be high rear-end crash risks when the merging
vehicle travels at either a very high or low speed. Weng and
Meng (2014) found that if the merging action initiates earlier,
there will be a lower rear-end crash potential. Reinolsmann
et al. (2019) also suggested earlier lane change because it can
contribute to smooth maneuvers and gradual speed reductions
particularly at the rural expressway ramp area.Moreover, Potzy
et al. (2019) concluded that drivers on the mainline prefer an
efficient lane change of the autonomous vehicle on the ramp,
and results show that drivers would tolerate less compliance
with safety distance to have less interacting traffic. It is quite
necessary to consider the realistic driver behavior for CAV
merging control algorithms so that the CAV merging behavior
can bemore acceptable and predictable formainline drivers.
Therefore, the objective of this study is to evaluate the

influence of CAV merging algorithms on driver behavior of
human-driven vehicles on themainline, by using the human-in-
the-loop concept. Several classical merging algorithms were
tested in this study, representing the physical-restriction-based
merging path generation algorithm and social-psychology-
based merging algorithm; then their influence on the mainline
traffic was analyzed given their algorithm framework features.
This study is expected to conclude design principles of merging
algorithms that have less influence on the mainline traffic. The
driving safety and driving comfort of mainline human drivers
would be analyzed to distinguish the performance of different
merging algorithms. To account for crash risks in a realistic
field testing, a driving simulator experiment would be used
instead.
This study is organized as follows: CAV Merging Algorithm

section 2 introduces classical CAV merging algorithms that
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were tested in this study; Experimental Design section 3
presents the multi-driver simulator system developed for this
study, experimental scenarios and data analysis method;
Results section 4 presents the results and Discussion section 5
investigates the results; finally, the Limitation section 6
presents the study limitation and Conclusion section 7
summarizes this study.

2. Connected and autonomous vehicle merging
algorithm

Almost all CAV merging algorithm designs adopt a concept of
“virtual platoon,” with a connotation of projecting the CAV’s
position from themerging ramp to themainline, and generating
a “virtual platoon” consists of both human-driven vehicles
(yellow) and projected CAV (gray) (Figure 1). The projection
is exactly based on geometric parameters of the CAV, and it
determines the relative position of the projection vehicle to
other mainline vehicles. The core idea of the CAV merging
algorithm is to manipulate the speed and acceleration of the
projected CAV, so that it can maintain a safe headway distance
to the front vehicle under a desired traveling speed. Basically, in
a fully connected and automated environment, a central
controller will be set up covering the upstream and downstream
of merging area, and collect speed and location information of
all vehicles (both on mainline and ramp) entering the control
area; the vehicles in the control area will be manipulated so that
the speed and headway distance of each single vehicle in the
virtual platoon can be well accommodated. Specifically,
the controller will accommodate the autonomous vehicle
(projected) based on its relative speed and position to the
leading vehicle (first vehicle in the platoon), and consecutively
accommodate the second and third vehicles based on similar
safety considerations toward the vehicles in front of them.
In this study, the driving environment is partially connected,

and only the CAV can manage its movement by sensing the
leading vehicle; for the second and third vehicles, drivers need to
determine the driving by themselves rather than follow the central
controller. Therefore, the controller, which is embedded with the
merging algorithm, will take the information of the first vehicle as
input tomanage themovement of theCAV.
Two types of classical CAV merging algorithms, the

reference-trajectory-based merging algorithm generation
algorithm and the social-psychology-based merging algorithm,
were reproduced in this study based on previous studies. The
study verified their effects on the vehicle platoon on the
mainline. The third type of CAV merging algorithm that is

based on the optimization model was not investigated in this
study, because of its computation cost in the real-time driving
simulator system. These tested merging algorithms and their
examples are listed below.
Reference-trajectory-based merging algorithm. This study

adopted the algorithm (denoted as AHS) and its parameters
proposed by Lu and Hedrick (2003) and Lu et al. (2004) as an
example, which defined the reference trajectory vmd(t) as
follows:

vmd tið Þ ¼

vmd tmergð Þ ¼ v tmergð Þ;
1� a tið Þð Þv tmergð Þ1a tið Þvp ti � 1ð Þ
when tmerg � tmerg 1 iDtð Þ � Tvirt;

vp ti � 1ð Þ
when Tvirt < tmerg 1 iDtð Þ � Tmerg;

8>>>><
>>>>:

(1)

a tið Þ ¼ ab
0 tið Þ; b > 0 (2)

a0 tið Þ ¼

Xi

j¼1
vp tj � 1ð ÞDtXi

j¼1
vp tj � 1ð ÞDt1 dist para

(3)

where v(t) is the merging vehicle speed, vp(t) is the speed of the
first vehicle in the platoon on mainline, tmerg is the time when
the merging algorithm starts, Tvirt is the time when the virtual
platoon is established but merging is not complete yet, Tmerg is
the time when the merging is finished, b is a coefficient and
dist_para is the initial distance relationship between vehicles
considering desired distance before and after the merging.
Detailed variable definitions can be found in Lu and Hedrick
(2003) and Lu et al.(2004).
Social-psychology-based merging algorithm. This study tested

three examples, which were borrowed from car-following
models, by considering the driver’s desire to main a certain
speed and distance to the leading vehicle. The intelligent driver
model (IDM) (Treiber et al., 2000), the generalized force
model (GFM) (Helbing and Tilch, 1998) and the k-leader fuel-
efficient (KLFE) model (Awal et al., 2013a, 2013b) were used
as examples in this study. The model parameters were identical
to the ones in corresponding studies.
The IDM is given by:

a ¼ A 1� v
V

� �d

� Sdesire v;Dvð Þ
S

� �2
" #

(4)

Sdesire v;Dvð Þ ¼ g0 1 g1

ffiffiffiffiffi
v
V

r
1 vT 1

vDv

2
ffiffiffiffiffiffi
Ab

p (5)

where a is the suggested acceleration; v and V are the current
speed and desired speed, respectively; Dv is the speed
difference to the preceding vehicle; S and Sdesire are the current
following distance and desired following distance, respectively;
A and b are maximum desired acceleration and deceleration,
respectively; g0 and g1 are different jam distance parameters
and d is a constant coefficient. Detailed variable definitions can
be found in Treiber et al.(2000).
TheGFM is given by:

Figure 1 Virtual platoon and projected CAV
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an ¼ V 1� e�
sn�sdesire vð Þ

Ra

� �
� v

ta
� b (6)

b ¼ u Dvð ÞDve�
sn�sdesire vð Þ

Rd

t d
(7)

Sdesire vð Þ ¼ s0 1 vT (8)

where an is the nth vehicle’s acceleration; v and V are the current
speed and desired speed, respectively; Dv is the speed difference
to the preceding vehicle; sn, sdesire and s0 are the current following
distance, desired safe following distance and minimum following
distance, respectively; u is the Heaviside function; T is the safe
time headway; ta and td are the acceleration time and braking
time, respectively;Ra andRd are the range of the acceleration and
range of the braking interaction, respectively. Detailed variable
definitions can be found inHelbing andTilch(1998).
TheKLFE is given by:

vn t1Dtð Þ ¼ min vn;m t1Dtð Þ� �
(9)

vn;m t1Dtð Þ ¼ max 0;min van;m tð Þ; vsafen;m tð Þ
� �� �

(10)

van;m tð Þ ¼ vn tð Þ1 k (11)

k ¼ ADt 1� vn tð Þ
V

� �4

� vn tð Þsdesiren;m tð Þ
VSn;m

 !2
2
4

3
5 (12)

p ¼ 2 xm tð Þ � xn tð Þ � l
0

h i
� vn tð ÞDt � vm tð Þ2

b�
(13)

vsafen;m tð Þ ¼ bDt1 q if q � 0
bDt1 vn tð Þ if q < 0

	
(14)

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 Dtð Þ2 � bp

q
(15)

sdesiren;m tð Þ ¼ S0 1 b½ � � n�mð Þ (16)

b ¼ max 0; vn tð ÞT 1
vn tð Þ vn tð Þ � vm tð Þ
 �

2
ffiffiffiffiffiffiffiffiffi
Ajbjp

 !
� (17)

where n andm stand for the nth andmth vehicles in the platoon;
sdesiren;m is the desired following distance between the nth and mth
vehicles; van;m is the following vehicle speed when the distance
between the following and preceding vehicle is large, whereas
the vsafen;m is the following vehicle safe speed when the gap distance
is small; vn, vm and V are the current following speed, current
preceding speed and desired speed, respectively; xn and xm are
the following and preceding vehicle positions; l0 is the effective
size plus a margin; A is the maximum desired acceleration; b is
the maximum braking rate; b

�
is the estimated braking rate of

the preceding vehicle; T is the safe time headway; S0 is the jam
distance. Detailed variable definitions can be found in Awal
et al.(2013a, 2013b). It is worth mentioning that the KLFE
considers vehicles on both the ramp andmainline.

3. Experimental design

3.1 Apparatus
Amulti-driver driving simulator system (Figure 2) was developed
to test a vehicle platoon in a virtual driving scenario. Compared
with a realistic field test, the advantage of using the driving
simulator is that it can test dangerous driving scenarios without
real collision risks. The simulator system designed a data
collection module, a vehicle physics module, a scenario
management module and a communication module. The data
collection module collects driver behavior data in the scenario,
such as brake, throttle, steering wheel, speed and position; the
vehicle physics module simulates vehicle dynamics and related
physical features, such as engine dynamics and collision effects;
the scenario management module configures scenario control
scripts, and it manages all types of scenario objects and their
actions; as for the communication module, it connects multiple
driver clients and distributes the simulation data between clients
simultaneously (Figure 3).

3.2Merging scenario design
This study designed a merging scenario as illustrated in
Figure 4. Three human-driven vehicles (the first to third yellow
vehicles) are traveling on the mainline, and they form a stable
vehicle platoon. A CAV (fourth red vehicle) is merging into the
mainline from a ramp, and it is supposed to cut in between the
first and second vehicles in the platoon; the CAV is controlled
by the automatic merging algorithm. The second human-
driven vehicle determines whether to yield to the CAV, based
on the safety consideration. Normally, the CAV would appear
ahead in the second human-driven vehicle’s view; therefore, the
second human-driven vehicle would slow down. However, in
rare cases, the second human-driven vehicle decides to
accelerate and overtake the CAV; in these cases, the merging
algorithm will recognize that the second human-driven vehicle
would arrive at the merging point before the CAV, thus the
algorithm will change its goal to following the second human-
driven vehicle. The study arranged a fifth environmental
vehicle (blue) in front of the vehicle platoon in themainline; the
vehicle follows a predefined path and speed, and it is used as a

Figure 2 Multi-driver driving simulator system framework
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reference vehicle to control the speed of the vehicle platoon, in
case either too fast or too slow.
In each experiment, a set of three connected drivers drove

through a track that contains five merging scenarios. These five
scenarios have the same merging algorithms, and the driver’s
average driving performance was analyzed later. The
experiment was a within-subjects experiment, and three drivers
experienced all five merging algorithms; therefore, in total, five
experiments were conducted. The merging algorithms were
presented in a randomized way to account for the order effect
(Yue et al., 2020). In the experiment, the distance to the front
vehicle and its speed information was displayed on the
following vehicle’s screen; referring to this information display,
each driver was asked to follow the front vehicle keeping a
distance of 60–80m; the speed limit was 55mph.

3.3 Experimental procedure
In total, 16 groups of drivers (i.e. 48 drivers) conducted the
experiment. They were driving on the mainline and an
autonomous car controlled by the merging algorithm was
merging from the ramp. Before the formal experiment, each

group of drivers was given a practice driving so that they can be
familiar with the driving environment. During the formal
experiment, each group drove four tracks, and each track had
one type of merging algorithm repeated six times. In other
words, the drivers experienced five merging scenarios in one
track.

3.4 Influence period duringmerging
It is worth mentioning that during the above “merging scenario,”
the CAV and second vehicle would not interact with each other
all the time. Because of the sight of the second driver’s view, only
when the CAV is close enough, the second driver would be
affected and accommodate driving behaviors to the merging
vehicle. This period is defined as the influence period.
Given that the driving behaviors are assumed to be

different between the normal and influenced driving
periods, the finite Gaussian mixture model (GMM) was
used to distinguish two periods in the merging scenario.
The GMM assumes that data of different features is
coming from a mixture of two or more Gaussian
distributions (i.e. clusters), and the GMM allocates data
points to most probable distributions by expectation-
maximization (EM) algorithm (Scrucca et al., 2016).
Similar trajectory clustering practice was conducted by
Mohammed et al.(2019); the researchers used finite GMM
to cluster cyclists overtaking and following trajectories into
different states.
In the merging scenario, the second driver manages the

throttle and brake to maintain the safety buffer between both
the first vehicle and CAV. Therefore, this study used second
vehicle’s speed, throttle and brake positions and distances to
the first vehicle and CAV as trajectory features to be clustered.
Figure 4 shows an example of the throttle clusters generated by
GMM. It shows that at the time of around 100, the second
driver notices the merging CAV and begins to monitor the
collision risk; then at the time of around 160, the second driver
begins to release the pedal position to slow down; during the
time point of 100–160, the throttle position does not change,
this might be because of the driver’s reaction time delay. It is
worth mentioning that the driving periods of the second driver
were applied to the third driver in this study (Figure 5).

3.5 Driving performancemetrics
This study mainly investigated the influence of CAV merging
algorithms on the second and third human-driven vehicles.
Two driving periods were analyzed: the merging and following
periods. The merging period is defined as the period from the

Figure 3 Multi-driver driving simulator system and experiment

Figure 4 Merging scenario in experiment

Figure 5 Throttle position during merging scenario
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time the CAV begins to move on the ramp to the time it arrives
at themerging point, which occurs in themerging scenario.
The following period (Figure 6) is from the time that

the CAV finishes merging and begins to drive with the vehicle
platoon, to the time that the CAV leaves the lane of vehicle
platoon (the leaving point was given); the following actions
specifically refer to the actions of second human-driven vehicle
(following the CAV) and third human-driven vehicle (following
the second human-driven vehicle).
For each driving period, two aspects of metrics were

collected in terms of both driving safety and driving comfort.
The driving safety measures include the minimum time-to-
collision (TTC) and the deceleration rate to avoid crashes
(DRAC). The TTC was introduced by Hayward(1972) and is
the most widely used surrogate safety measure (SSM); it
indicates the time that is left for the following vehicle to hit a
leading vehicle. TheTTC is given by:

TTC ¼
S � L
v2 � v1

; v2 > v1

1; otherwise

8<
: (18)

where S is the distance gap between the leading and following
vehicles; L is the vehicle length; v2 and v1 are speeds of
following and leading vehicles, respectively. TTC can be
calculable only when v2 is greater than v1. In this study, TTC
was assigned a large value of 100 when v2 < v1. Obviously, a
large value of minimumTTC indicates a high safety level.
The DRAC is also a widely used SSM, proposed by Cooper

and Ferguson (1976); it indicates the required minimum
deceleration rate for a following vehicle to avoid a crash with a
leading vehicle. TheDRAC is given by:

DRAC ¼
v2 � v1ð Þ2
S � L

; v2 > v1
0; otherwise

8<
: (19)

Usually, a threshold DRAC
�

would be selected and the
percentage of DRAC > DRAC� is used to indicate the safety
level; a large percentage represents a dangerous situation. In
this study, a threshold DRAC� of 3.0 s was adopted, and the
“DRAC” term mentioned in later sections is the percentage
value, weighted by trajectory length. Both the minimum TTC
andDRACwere applied to themerging and following periods.
In terms of the driving comfort measures, the mean

deceleration/acceleration and the average jerk during the
deceleration/acceleration processes were used for the merging
period. The jerk is the derivative of deceleration/acceleration. In
themerging period, thesemeasures were proved to have a negative
relationship with driving comfort (Bellem et al., 2016, 2018;

Nandi et al., 2015). In the following period, the minimum
headway distance was used to indicate the driving comfort level
(Bellem et al., 2016); the larger the headway distance, the more
comfortable the driving is.

4. Results

4.1 Influence on driving safety
During the merging period, for the second driver, both the
minimum TTC and DRAC between the four merging
algorithms were significantly different (F = 5.62, p-value <
0.01 and F = 14.45, p-value < 0.01, respectively). Figure 7
shows that the AHS algorithm had the largest minimum TTC,
which was 19.45 s; significantly smaller than the AHS
algorithm, the GFM algorithm had a minimum TTC of only
6.49 s. As for the IDM and KLFE algorithms, their minimum
TTC values were between AHS and GFM; the KLFE had a
slightly higher safety level than the IDM. In addition, the AHS
algorithm had a very small DRAC of only 0.007; the KLFE’s
DRAC was slightly larger, i.e. 0.009, whereas the GFM and
IDM had a much larger DRAC of around 0.7. For the third
driver, only the minimum TTC was found significantly
different between merging algorithms (F = 2.45, p-value =
0.056). Similar to the influence on the second driver, the AHS
had the largest minimum TTC, which was 36.77 s; the GFM
had the smallest minimum TTC of only 22.16 s. The level of
minimum TTC of the IDM and KLFE was between AHS and
GFM.
During the following period, the second driver’s minimum

TTC was found significantly different between four types of
merging algorithms (F = 2.31, p-value = 0.068). The AHS had
the largest minimum TTC of 41.30 s, whereas the KLFE had
the smallest minimum TTC of 30.23 s. The GFM was slightly
larger than KLFE, which was 36.20 s, and the IDM had a
minimum TTC of 38.40 s. Similar to the second driver, the
third driver had significantly different minimum TTC between
merging algorithms (F = 3.81, p-value< 0.01). Specifically, the
AHS had the largest minimum TTC of 11.61 s, whereas the
GFM and IDM had the smallest minimum TTC of around
8.35 s. TheminimumTTCofKLFEwas 9.58 s.

4.2 Influence on driving comfort
During the merging period, the second driver’s mean
deceleration was significantly different between the four
merging algorithms (F = 4.74, p-value = 0.002). Figure 8
shows that the AHS had the smallest deceleration of 2.64 m/s2,
whereas the GFM had the largest deceleration of 4.23 m/s2.
The decelerations of the KLFE and IDMwere in between with
a value of 3.38 and 3.11 m/s2, respectively. The average jerks
during the deceleration process were also found significantly
different between themerging algorithms (F = 14.45, p-value<
0.01). To be specific, the GFM had the largest average jerk
during the deceleration process, which was 36.86; the IDM and
AHS had a relatively smaller average jerk value close to each
other of around 27.50; the jerk value of the KLFE was in
between and it was 30.04. In terms of the minimum headway
distance, a significant difference was found because of the
merging algorithms (F = 62.26, p-value< 0.01). The AHS and
KLFE had a very large minimum headway distance of 37.99
and 36.11 m, respectively, whereas the GFM had the smallest

Figure 6 Following period when a CAV cuts in between the first and
second vehicles
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minimum headway distance of 17.57 m. The IDM had a
minimum headway distance of 23.64 m, slightly larger than the
GFM. For the third driver, the average jerks during the
acceleration process were found significantly different between
the merging algorithms (F = 2.21, p-value = 0.08). The AHS
had the largest average jerk of 47.80, whereas the KLFE had
the smallest average jerk of 36.83. The average jerks of the
GFM and IDM were close to each with a value of 39.62 and
40.48, respectively.
During the following period, the second driver, both the

mean acceleration and deceleration were found to be
significantly affected by the merging algorithm. For mean
acceleration, the GFM had the largest one of 4.33 m/s2,
whereas the AHS had the smallest one of 3.34 m/s2. The
mean accelerations of IDM and KLFE were 3.79 and
3.77 m/s2, respectively. Additionally, the GFM had the
largest mean deceleration of 3.47 m/s2, whereas AHS had
the smallest mean deceleration of 2.89 m/s2. The mean
deceleration of the IDM and KLFE was close to each other.
In terms of the average jerk, it was found to be significantly
affected by the merging algorithms during the acceleration
process (F = 4.92, p-value < 0.01). The GFM had the
largest one of 46.81, whereas the AHS had the smallest one
of 41.93. The average jerks of IDM and KLFE were 43.29
and 43.72 m/s2, respectively. For the minimum headway
distance, a significant difference was also found (F = 47.21,
p-value < 0.01). The GFM had the smallest one of 21.60 m,
whereas the AHS had the largest one of 41.01 m. The KLFE
also had a large minimum headway distance of 40.69 m,
whereas the value of IDMwas 32.07 m.
During the following period, the third driver’s mean

acceleration and minimum headway distance were found to be
significantly affected by the merging algorithm (F = 2.43, p-
value = 0.06 and F = 4.11, p-value < 0.01, respectively). The
GFM had the largest mean acceleration of 4.51 m/s2, whereas

the other three algorithms are very close. In terms of the
minimum headway distance, the AHS had the largest one of
53.59m, whereas the other three algorithms are very close.

5. Discussions

The heterogeneity of CAV merging behavior caused
significantly different influences on the mainline vehicle
platoon. For the second driver, regarding the driving safety in
either merging or following periods, the minimum TTC and
DRAS show that AHS had the least negative influence, whereas
the GFM had the most negative influence. Regarding the
driving comfort, the deceleration, jerk and headway distance
show that the AHS had the best driving comfort, whereas the
GFM had the worst driving comfort in both two driving
periods. The influence of IDMandKLFE on driving safety and
comfort was generally in between the AHS and GFM.
Compared with the second driver, for the third driver, the
heterogeneity of influence of CAV merging behaviors
was much less significant. In terms of driving safety, the DARC
was not significantly different and only the minimumTTCwas
observed to be varied between CAV algorithms. The minimum
TTC shows that in both merging and following periods, the
AHS was the safest, whereas the GFM was the riskiest one. In
terms of driving comfort, in the merging period, the average
jerk shows that the AHS was the least comfortable one, and
both theGFM and IDMhad a better comfortable level than the
AHS; the KLFE was the most comfortable one. In the
following period, the mean acceleration shows that the GFM
was the least comfortable one, whereas the minimum headway
distance shows that the AHS is themost comfortable one.
The results show that the AHS can guarantee driving

safety and driving comfort among the tested four types of
merging algorithms; nevertheless, its driving comfort may
deteriorate for the later part of the vehicle platoon in the

Figure 7 Driving safety level of automatic merging algorithm
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merging period. It was interesting that the AHS, as a
reference-trajectory-based merging algorithm, can achieve
a comprehensive good performance in terms of both
driving safety and comfort, without considering many
other optimization goals. In addition, the KLFE maybe the
second-best merging algorithm. The KLFE is a social-
psychology-based merging algorithm; different from the
GFM and IDM, it additionally considers fuel efficiency in
its model. It seems that among social-psychology-based
merging algorithms, the one that considers more factors
can achieve a better influence on the vehicle platoon on the
mainline. This might be because the merging driver’s
social-psychology desire as well as additional optimal
targets for the mainline traffic were both considered. The

GFM was the worst merging algorithm because it caused
more negative effects on driving safety and driving
comfort; this might be because it is not much suitable to
capture a driver’s comprehensive driving preference.

6. Limitations

The selected algorithms are not the most recent;
nevertheless, they are very classical and representative that
many more advanced algorithms developed their framework
based on the extension of these classical algorithms. Given
that it is hard to evaluate all merging algorithms, the
evaluation on classical algorithms would be a more practical
way. While that the four algorithms selected in the research

Figure 8 Driving comfort level of automatic merging algorithm
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may not be enough to represent the two categories of the
merging algorithms, more merging algorithms should be
added to evaluate in the future.

7. Conclusions

This study analyzed CAV merging behaviors’ influence on the
mainline vehicle platoon considering driving safety and
comfort, by considering the merging algorithm heterogeneity.
Four types of merging algorithms, including the reference-
trajectory-based merging algorithm and the social-psychology-
based merging algorithm, were evaluated by using a self-
developed multi-driver simulator system. The results show that
although these algorithms achieved good performance in their
original simulation studies, their effects were quite various
when the realistic driving behavior was embedded into the
experiment. The results show that the reference-trajectory-
based merging algorithm may outperform the social-
psychology-based merging algorithm which only considers the
ramp vehicle. More types of CAV merging algorithms need to
be verified and compared in the future to form a solid
conclusion.
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