
FPGA accelerated model predictive control
for autonomous driving

Yunfei Li
Tsinghua University, Beijing, China and Chongqing University, Chongqing, China

Shengbo Eben Li
Department of Automotive Engineering, Tsinghua University, Beijing, China, and

Xingheng Jia, Shulin Zeng and YuWang
Tsinghua University, Beijing, China

Abstract
Purpose – The purpose of this paper is to reduce the difficulty of model predictive control (MPC) deployment on FPGA so that researchers can make
better use of FPGA technology for academic research.
Design/methodology/approach – In this paper, the MPC algorithm is written into FPGA by combining hardware with software. Experiments have
verified this method.
Findings – This paper implements a ZYNQ-based design method, which could significantly reduce the difficulty of development. The
comparison with the CPU solution results proves that FPGA has a significant acceleration effect on the solution of MPC through the
method.
Research limitations implications – Due to the limitation of practical conditions, this paper cannot carry out a hardware-in-the-loop experiment
for the time being, instead of an open-loop experiment.
Originality value – This paper proposes a new design method to deploy the MPC algorithm to the FPGA, reducing the development difficulty of the
algorithm implementation on FPGA. It greatly facilitates researchers in the field of autonomous driving to carry out FPGA algorithm hardware
acceleration research.

Keywords FPGA, Model predictive control, Autonomous driving, ZYNQ

Paper type Research paper

1. Introduction

Compared with other control methods, model predictive
control (MPC) has many advantages: low requirements on
model accuracy, good robustness and effective handling of
multivariate constraint problems (Fernandez-Camacho and
Bordons-Alba, 1995). Besides, MPC has succeeded in the field
of industrial process control (Yu-Geng et al., 2013). Therefore,
in recent years, it has been widely used in the field of
autonomous driving (Goli and Eskandarian, 2019; Quan and
Chung, 2019; Li et al., 2010). However, MPC often shows low
efficiency in solving real-time tasks due to a large amount of
calculation (Yu-Geng et al., 2013). Researchers hope that the
high-performance computing platform’s computing capacity
can make up for this defect of MPC. The core of the hardware
computing platform is the processor chip. Currently,
mainstream chips include CPU, graphics processing unit
(GPU), FPGA and application specific integrated circuit
(ASIC). The parallel computing capabilities of GPU, FPGA
and ASIC are far superior to CPU. They are often used as

hardware accelerators. Among these three chips, FPGA has the
absolute advantage in power consumption over GPU and has
reversible development characteristics compared with ASIC
(Falsafi et al., 2017; Nurvitadhi et al.,2016; Kestur et al., 2010;
Qasaimeh et al., 2019; Kuon and Rose, 2007; Jones et al., 2010;
Russo et al., 2012). With these characteristics, FPGA is more
adaptable to algorithms update, making it widely welcomed by
researchers.
How to use FPGA to accelerate MPC is a problematic

point. Summarizing the existing studies, the primary way
to realize the hardware-accelerated solution of MPC by
FPGA is through using hardware description languages.
For example, He and Ling (2005) used Handle-C
hardware description language to implement the
accelerated solution of MPC on FPGA for the first time.

The current issue and full text archive of this journal is available onEmerald
Insight at: https://www.emerald.com/insight/2399-9802.htm

Journal of Intelligent and Connected Vehicles
5/2 (2022) 63–71
Emerald Publishing Limited [ISSN 2399-9802]
[DOI 10.1108/JICV-03-2021-0002]

© Yunfei Li, Shengbo Eben Li, Xingheng Jia, Shulin Zeng and Yu Wang
Published in Journal of Intelligent and Connected Vehicles. Published by
Emerald Publishing Limited. This article is published under the Creative
Commons Attribution (CC BY 4.0) licence. Anyone may reproduce,
distribute, translate and create derivative works of this article (for both
commercial and non-commercial purposes), subject to full attribution to
the original publication and authors. The full terms of this licence maybe
seen at http://creativecommons.org/licences/by/4.0/legalcode.

Received 10 March 2021
Revised 22 September 2021
4 February 2022
Accepted 9 February 2022

63

http://dx.doi.org/10.1108/JICV-03-2021-0002


Following this, Jerez et al. (2012) described a
parameterizable FPGA application architecture, which
mainly used a deep pipeline structure; as the solution scale
increases, the MPC acceleration effect is gradually
significant. Jerez et al. (2014) proposed a sharable
hardware architecture based on the fast gradient descent
method and the alternating multiplier method to solve the
MPC problem, which can save a lot of hardware resources.
However, in the field of autonomous driving, researchers

are better at high-level languages. Hardware language is
too difficult for them. Benefitted from the development of
electronic design automation technology, researchers can
directly use high-level languages through high-level
synthesis tools (Martin and Smith, 2009) to realize the
mapping of algorithms to hardware. In this way, several
achievements have been made in research. For example, Xu
et al. (2015) successfully converted the C11 form of MPC
into hardware language through Altera’s Quartus II and
Mentor’s Catapult Synthesis, and deployed it on Altera
Stratix III FPGA. Lucia et al. (2017) used the advanced
synthesis tools provided by Xilinx to deploy MPC on
XC7A200, which further proved the feasibility of bypassing
the direct use of hardware languages and indirect
deployment of high-level languages on FPGA.
ZYNQ, as a new generation of Xilinx FPGA products,

integrates the processing system based on a dual-core
Advanced RISC Machine (ARM) Cortex-A9 and the
programmable logic composed of an XC7Z020 FPGA.
Compared with the independent FPGA, it owns the
high-performance computing power of FPGA and
the unparalleled resource allocation ability of CPU. The
combination of the two allows researchers to process the
algorithm more flexibly. At the same time, ZYNQ also has
the advantages of low power consumption and low price.
Although the above methods realized the deployment of

MPC to FPGA and proved its feasibility, they were not for
ZYNQ. We need a convenient and fast algorithm
deployment method for the new generation of FPGA
hardware.
The main contribution of this paper is to propose a

method to deploy the MPC algorithm to FPGA (ZYNQ),
which greatly reduces the difficulty of algorithm
implementation on the latter. Our research results lay the
foundation for the application of ZYNQ in actual vehicle
experiments.
The paper is organized as follows. In Section 2, we design a

lateral control algorithm for autonomous vehicles. In Section 3,
a software and hardware combination method based on ZYNQ
is proposed and realized. The control algorithm’s feasibility, the
solution performance of the quadratic programming solver and
the acceleration effect of FPGA are verified in Section 4.
Section 5 concludes this paper.

2. Lateral control algorithm of autonomous
vehicles

Generally, vehicle control consists of lateral control and
longitudinal control. For convenience, the trajectory tracking
scenario in lateral control is discussed in this section, which will
serve as the basis for subsequent study in this paper.

2.1 Dynamicmodel
As shown in Figure 1, we choose the single-track bicycle model
assuming constant forward speed (Bevly et al., 2006). The
vehicle dynamics are described as:

_y
r
_b
_r

2
664

3
775 ¼

0 vx vx 0
0 0 0 1

0 0
Cf 1Cr

mvx

Cf a� Crb
mv2x

� 1

0 0
Cf a� Crb

Iz

Cf a2 1Crb2

Izvx

2
6666664

3
7777775

y
c
b
r

2
664

3
775

1

0
0

� Cf

mvx

�Cf a
Iz

2
6666664

3
7777775
d

(1)

where y is the lateral displacement; vx is the longitudinal
speed; Cf is the front wheel cornering stiffness and Cr is the
rear wheel cornering stiffness; m is the vehicle mass; a and b
are the distances of front and rear axle from the center of
gravity; Iz is the moment of inertia; c is the yaw angle; b is the
vehicle slip angle; r is the yaw rate; d is the front wheel steering
angle.
The state-space equations are obtained as:

_x kð Þ ¼ Acx kð Þ1Bcu kð Þ
y kð Þ ¼ Ccx kð Þ

�
(2)

where x(k) is the state variable, x(k) = [y c b r]T, y(k) is
the output variable, y(k) = [y c ]T, u(k) is the control variable,
u(k) = d ,

Ac ¼

0 vx vx 0
0 0 0 1

0 0
Cf 1Cr

mvx

Cf a� Crb
mv2x

� 1

0 0
Cf a� Crb

Iz

Cf a2 1Crb2

Izvx

2
6666664

3
7777775
;

Figure 1 Single-track bicycle model

FPGA accelerated model

Yunfei Li et al.

Journal of Intelligent and Connected Vehicles

Volume 5 · Number 2 · 2022 · 63–71

64



Bc ¼

0
0

� Cf

mvx

�Cf a
Iz

2
6666664

3
7777775
; Cc ¼ 1 0 0 0

0 1 0 0

� �

The discretization form of (2) is:

x k11ð Þ ¼ A � x kð Þ1B � u kð Þ
y kð Þ ¼ C � x kð Þ

�
(3)

whereA = I1T ·Ac,B =T ·Bc,C=Cc, T is the sampling time, I
is the identitymatrix.
For y(k) = C · x(k), we set both the prediction horizon and

control horizon toP, then

Y ¼ CP � x kð Þ1DP �U (4)

where

Y ¼

y k1 1ð Þ
y k1 2ð Þ

..

.

y k1Pð Þ

2
66664

3
77775;CP ¼

CA
CA2

..

.

CAP

2
6664

3
7775;U ¼

u kj kð Þ
u k1 1j kð Þ

..

.

u k1P � 1j kð Þ

2
6664

3
7775;

DP ¼
CA0B
CA1B

..

.

CAP�1B

0
CA0B
..
.

CAP�2B

� � �
� � �
..
.

� � �

0
0
..
.

CA0B

2
6664

3
7775

2.2 Cost function and optimization problem
Vehicle lateral control needs to ensure that the autonomous
vehicle can track the reference trajectory as close as possible, so
in the cost function, we need to consider the deviation between
the predicted value of the lateral displacement and the
reference value, and the deviation between the predicted value
of the yaw angle and the reference value. In summary, the cost
function is designed as:

L ¼
XP

i¼1

q1 w k1 i j kð Þ � w ref k1 i j kð Þ� �2n

1 q2 ~Y k1 i j kð Þ� ~Y ref k1 i j kð Þ
i2� �

1

XP�1

i¼0

r u k1 i j kð Þ½ �2

¼
XP

i¼1

kY k1 i j kð Þ�Yref k1 i j kð Þk2Q

1

XP�1

i¼0

ku k1 i j kð Þk2R (5)

where w(k1 i j k) and w ref (k1 i j k) are the predicted yaw angle
and the reference yaw angle, respectively. ~Y k1 i j kð Þ and
~Yref k1 i j kð Þ are the predicted lateral displacement and the
reference lateral displacement, respectively. u(k1 i j k) is
the control input, i.e. front-wheel steering angle. q1 denotes the
weight coefficient of the yaw angle, while q2 denotes the weight
coefficient of the lateral displacement. r is the weight coefficient
of the control variable. Y(k 1 i j k) and Yref (k 1 i j k) are the
predicted values and the reference values. Q is the weight

matrix of output variables, Q ¼
q � � � 0
..
. . .

. ..
.

0 � � � q

2
64

3
75; q ¼ q1 0

0 q2

� �
;

and R is the weight matrix of control variables,

R ¼
r � � � 0
..
. . .

. ..
.

0 � � � r

2
64

3
75.

Substituting (4) into (5):

J ¼ 1
2
UT �H �U1GT �U (6)

where

H ¼ 2 DP
TQDP 1R

� 	
; GT ¼ 2 QDPð ÞT CP � x kð Þ � Yref

� 	
;

Yref ¼
Yref k1 1j kð Þ
Yref k1 2j kð Þ

..

.

Yref k1Pj kð Þ

2
66664

3
77775

Our goal is tominimize (6):

minJ ¼ min
1
2
UT �H �U1GT �U


 �
(7)

The number of constraints directly determines the
dimension of the solution to MPC. To save FPGA hardware
resources in the following text, we only restrict the control
variable (when hardware resources are sufficient, the
performance of FPGA can be extended to MPC with state
constraints):

Umin � U � Umax (8)

where U ¼
uk

uk1 1

..

.

uk1P�1

2
6664

3
7775;Umin ¼

umin

umin

..

.

umin

2
6664

3
7775;Umax ¼

umax

umax

..

.

umax

2
6664

3
7775,

umin and umax are the lower and upper limits of the control
variable, respectively.
We can rewrite (8) as:

A�U � B� (9)

FPGA accelerated model

Yunfei Li et al.

Journal of Intelligent and Connected Vehicles

Volume 5 · Number 2 · 2022 · 63–71

65



whereA � ¼ �T
T

� �
;B � ¼ �Umin

Umax

� �
,T ¼

1 0 � � � 0

0 1 . .
. ..

.

..

. . .
. . .

.
0

0 � � � 0 1

2
66664

3
77775

By combining (7) and (9)

min
1
2
UT �H �U1GT �U

s:t: A�U � B�
(10)

Definition 1: Formula (10) is the standard form of the quadratic
programming (QP) problem with constraints. The essence of
solving the MPC problem is to solve the QP problem. Each
time a set of optimal solution sequence U� is obtained, the first
element u� is taken as the control variable.

2.3 Quadratic programming solver
TheQP solver used in this paper is Quadprog11 (Di Gaspero,
2007). It is an open-source solver. Compared with other QP
solvers such as quadprog, CVXGEN. Quadprog 1 1 has the
advantages of simplicity, easy modification and fewer hardware
resources occupation (Mattingley and Boyd, 2012; Brandao
et al., 2019).
Quadprog11 is written in C11 by Luca Di Gaspero

according to the Goldfarb–Idnani method (Goldfarb and
Idnani, 1983). The Goldfarb–Idnani method combines the
active set algorithm (Nocedal and Wright, 2006) and the dual
algorithm to have a fast iteration speed.
Definition 2:The idea of the active set shows that (10) can be

transformed into a form of equality constraints:

min
1
2
UT �H �U1GT �U

s:t: NTU ¼ B�
S

(11)

where S denotes the indices of the active set, N is the active set
matrix determined by S, B�

S are the elements ofB� indexed by S
(Horowitz and Afonso, 2002).
According to the KKT conditions (under the transformation

x =H1/2U) (Goldfarb and Idnani, 1983; Horowitz and Afonso,
2002):

x� ¼ �MG1N�TB�
S

g � ¼ N�G1WB�
S

(
(12)

where g � is the Lagrangian multiplier, x� is the optimal
solution, and

N� ¼ NTH�1Nð Þ�1
NTH�1;

M ¼ H�1 �H�1N NTH�1Nð Þ�1
NTH�1;

W ¼ NTH�1Nð Þ�1

Cholesky decomposition ofH:

H ¼ KTK (13)

Remark 1: The Goldfarb–Idnani method only supports solving
positive definite problems (Goldfarb and Idnani, 1983), so H
must be a positive definite matrix.
QR decomposition of (K�T N) (Horowitz and Afonso,

2002):

H�1N ¼ K�1K�TN ¼ K�1Q
R
0

� �

¼ L
R
0

� �
¼ E ..

.
F

h i
R
0

� �
¼ ER

(14)

where L is an orthogonal matrix,R is an upper triangular matrix
andE contains asmany columns asR.
Then N�, M and W can be shown as (Goldfarb and Idnani,

1983):

N� ¼ R�1ET ; M ¼ FFT ; W ¼ R�1R�T (15)

We set Sk to be the currently active set, Nk, Lk and Rk are the
matrixes corresponding to Sk. When Sk is not empty, through
Givens rotations, we can get (Horowitz and Afonso, 2002):

H�1 ¼ LkLT
k ; Rk ¼ ET

k Nk (16)

According to (12) and (15) (Horowitz and Afonso, 2002):

xk ¼ �FkFT
k G1EkR�T

k B�
k

g k ¼ R�1
k ET

k G1R�1
k R�T

k B�
k

�
(17)

where xk is the solution and gk is the Lagrangian multiplier
corresponding to Sk.
Also, because of theKKTconditions:

G ¼ �KTKxk1 1 1Nkg k1 1 1 n1 t (18)

where xk11 is the solution corresponding to Sk | m. n1 is the
normal vector of the mth constraint, t is the corresponding
Lagrangianmultiplier (Horowitz and Afonso, 2002).
According to (15)–(18), the search directions of Goldfarb–

Idnanimethod are defined as (Schmid and Biegler, 1994):

xk1 1 ¼ xk 1FkFT
k n

1 t

g k1 1 ¼ g k
0

� �
1

�R�1
k ET

k n
1

1

� �
t

8><
>: (19)

Remark 2: The relevant proof processes of the Goldfarb–
Idnani method are shown in literature (Goldfarb and Idnani,
1983).
The pseudo-code of the Goldfarb–Idnani method is shown

in the algorithm.
Algorithm Goldfarb-Idnani method (Goldfarb and Idnani,

1983; Horowitz and Afonso, 2002)
Initializing x=�H-1G=�K-1K-T G,L=K-1,

S= {;}, v= 0, v as the cardinality of S
1. if all constrains are satisfied then x is optimal, STOP.

else n1 = np,g
1=[g 0]T,

if v= 0 then g1 = 0,
end if;

end if;
S1 = S| {p}, p as the index of constraint to be added to S

FPGA accelerated model

Yunfei Li et al.

Journal of Intelligent and Connected Vehicles

Volume 5 · Number 2 · 2022 · 63–71

66



2. (a) Search direction in primal space: z= FFT n1

if v > 0 then
search direction in dual space: r=R-1ET n1

end if;
(b) Step length:

maximum step in dual space: t1
if v= 0 or r� 0 then t1 =1
else t1 ¼ min

j¼1;...;v

g 1
j

rj
j rj > 0

n o
end if;

minimum step in primal space: t2
if kzk= 0 then t2 =1
else t2 ¼ B�

p� n1ð ÞTx
zTn1

end if;
t=min (t1, t2)
(c) if t=1 then problem infeasible

end if;
if t2 =1, t1 is finite then g 1 ¼ g 1 1 t

�r
1

� �
;

S= S\{m}, v= v – 1, updateL,R and g1, go to
2(a)
end if;
set x ¼ x1 tz; g 1 ¼ g 1 1 t

�r
1

� �
if , t= t2 then g = g1 S= S| {p}, v= v1 1,

updateL,R. Go to 1.
else t = t1 then S = S\\{m}, v = v – 1, update L, R, and
g1. Go to 2(a).
end if;

The update operations of the Cholesky, L and R in the
Goldfarb–Idnani method account for a large proportion, and
they are also the parts that consume the most hardware
resources.

3. Implementation quadratic programming solver
on FPGA

3.1 Hardware platform selection
According to our framework, the computation part of the QP
solver is fully deployed on the FPGA as it is computing-
intensive and time-consuming. The ARM processor is only
responsible for data transmission and high-level system control.
This kind of scheme can fully use the computing power of
FPGA and the flexibility of the ARM processor. In this paper,
theMYD-C7Z020 development board (Figure 2) is used as the
hardware platform. Table 1 lists the parameters of MYD-
C7Z020 and shows its strong ability to adapt to the
environment. MYD-C7Z020 is composed of the core board

and the bottom board. The core board is embedded with a core
function chip such as ZYNQ SoC, while the bottom board is
equipped with various functional interfaces, switches and
indicators.

3.2 Design flow
The overall design flow is shown in Figure 3; we follow a
software-hardware codesign method to deploy the proposed
algorithm. The hardware part is to deploy the QP algorithm to
the programmable logic for fast computation and data
movement optimization. The software is mainly aimed at the
processing system. The purpose is to realize the deployment of
the drivers, the data interaction between the on-chip memory
and the off-chip interfaces and the self-starting of the hardware
development platform.

3.1.1 Hardware design
In hardware design, we first use Xilinx Vivado HLS
(Winterstein et al., 2013) to convert the C11 form of the
algorithm to register transfer level. We also need to select the
functional interface type and the optimization method to
implement effective algorithmdeployment.
Considering the controller’s control effect and the maximum

utilization rate of hardware, we set both the prediction horizon
and the control horizon to be five, so the maximum dimension
of the matrix calculated on the FPGA is ten. Table 2 shows the
hardware resource utilization information of FPGA. FPGA
mainly contains four kinds of hardware resources: block

Figure 2 MYD-C7Z020 development board

Table 2 Hardware resources utilization information of FPGA

BRAM DSP48E FF LUT

Total 22 78 30,059 47,923
Available 280 220 106,400 53,200
Utilization 7% 35% 28% 90%

Figure 3 Combined hardware-software design

Quadprog++ C++ code

ZYNQ

Hardware design

Software design

Table 1 Parameters of MYD-C7Z0210

Operating temperature �40 to185°C
Ambient temperature �50°C to1100°C
Environment humidity 20%–90%
Mechanical dimensions BP: 190 mm� 110mm, CP: 75 mm� 55mm
Power supply BP: 12 V/0.5 A, CP: 5 V/0.5 A
Power consumption BP: 6 W, CP: 2.5 W

FPGA accelerated model

Yunfei Li et al.

Journal of Intelligent and Connected Vehicles

Volume 5 · Number 2 · 2022 · 63–71

67



random access memory (BRAM), DSP48E, flip flop (FF) and
look-up table (LUT). LUT resources are occupied so much
because the Goldfarb–Idnani algorithm involves a large
number of matrix multiplication and addition operations (the
update operations of Cholesky,L andR).
The biggest advantage of FPGA is that it uses hardware to

perform parallel operations. This type of process is very
intuitive, such as a·b 1 c·d, which can perform a·b and c·d
simultaneously. Vivado HLS can perform automatic parallel
processing while generating the hardware language. We can
also choose to select different optimization methods to process
the C11 code manually. According to the specific situation,
we select pipeline, unroll and pipeline&unroll. The results are
shown in Table 3; neither the resource utilization rate nor the
simulation time has been significantly improved (in the follow-
up Vivado IDE-related process, these three optimization
methods did not pass the verification due to excessive wiring
resources). The above results are related to the algorithm
structure; if it is composed of a relatively neat neural network
structure, these optimization methods will produce significant
results.
When the above work is completed, we need an environment

to achieve corresponding hardware functions, so the algorithm
module is imported into the environment generated by Vivado
IDE (Crockett et al., 2014). The main contribution of our
design is shown in Figure 4. We mainly choose three modules
to achieve the corresponding functions (the combination of
modules needs to be designed according to the specific
functions to be implemented). The advantage of this design is
to take up as little additional hardware resources as possible.
The entire project’s workflow is that the processing system first
writes the matrices H and A�, the vectors G and B� to BRAM
and then the IP generated by Vivado HLS reads the data in
BRAM and accelerates the solution. When the solution is
completed, the processing system reads the result u� fromHLS
IP (reading and writing data are done in a pollingmanner). The
communication between different modules is realized through
theAXI interface.

3.1.2 Software design
The design of the software part is mainly focused on the writing
of driver code. The driver makes ARM the core of the entire
architecture, and FPGA acts as a hardware accelerator to assist

its work. Besides algorithm acceleration, multitasking functions
also need to be supported in the development board’s
actual application. This situation requires complicated code
programming to achieve, which is troublesome for us, so it
is necessary to select an embedded system with mature
architecture to complete these works. Linux system is the right
choice. Popular Linux distributions mainly include Debian,
Fedora and Ubuntu. As a newer distribution, Ubuntu inherits
all the advantages of the Linux system and has highlights such
as easy installation and various auxiliary functions (Al Housani
et al., 2009). We choose Ubuntu16.04 as the operating system
deployed on the ARMprocessor.

4. Results

In this section, we mainly verify the effectiveness of the control
algorithm, the reliability of the QP solver and the acceleration
effect of FPGA through simulation and experiments.

4.1 Verification of lateral control algorithm
We use MATLAB/Simulink and CarSim for cosimulation in
the PC to verify the effect of the control algorithm designed
in Section 2. Tables 4 and 5 list the main parameters of the
vehicle and the parameters of the lateral control algorithm,
respectively.
Figure 5 shows the simulation results. We choose the double

lane-change as the reference trajectory. The maximum error

Table 3 Comparison of optimization results

Optimization Default state Pipeline Unroll Pipeline and unroll

BRAM 22 22 22 22
DSP48E 78 78 78 78
FF 30,059 30,059 30,060 30,132
LUT 47,923 47,954 48,348 48,356
Simulation time 35,525 ns 35,445 ns 35,285 ns 35,365 ns
Delay 3,534 3,526 3,510 3,518

Figure 4 The main project of Vivado IDE

∗
_c

∗ ∗

∗

BRAM HLS IP
(QP solver

Process
system

in
out

Table 4 Main parameters of the vehicle

Vehicle mass m 1,420 [kg]
Distance of front axle from the center
of gravity

a 1.015 [m]

Distance of rear axle from the center
of gravity

b 1.895 [m]

Front wheel cornering stiffness Cf 72,197 [N/rad]
Rear wheel cornering stiffness Cr 39,930 [N/rad]
Moment of inertia Iz 1,536.7 [kg/m2]
Longitudinal speed vx 20 [km/h]

Table 5 Parameters of the lateral control algorithm

Prediction horizon/Control horizon P 5
Sampling time Ts 0.02 [s]
Output weighting matrix q [50 0;0 10]
Control weighting coefficient r 4
Control variable upper limit umax 0.52 [rad]
Control variable lower limit umin �0.52 [rad]

FPGA accelerated model

Yunfei Li et al.

Journal of Intelligent and Connected Vehicles

Volume 5 · Number 2 · 2022 · 63–71

68



of the lateral displacement between the driving trajectory
and the reference trajectory is less than 0.075m, and the
maximum error of the yaw angle is less than 0.098 rad. The
above results prove that the lateral control algorithm in Section
2 is effective.

4.2 Verification of quadprog11
As shown in Figure 6, the performance verification method of
Quadprog11 is to ensure the input that is precisely the same as
the quadprog solver used in the simulation of part A (Section 4)
and then compare the solution accuracy and the solution time
of these two solvers. Both solvers run on the PC with the Intel
i5 processor at 2.3GHz. The software platform of quadprog is
MATLAB, while Quadprog11’s is Visual Studio.
The comparison results of the solution accuracy are shown in

Figure 7. The maximum percentage error of the two solvers is
less than 0.008%.
Figure 8 and Table 6 present the solution time information

of quadrog and Quadprog11. The solution performance of
the two solvers is very close.

Figure 5 The simulation results. (a) Vehicle trajectory. (b) The error.
(c) Front-wheel angle. (d) Sideslip angle. (e) Yaw rate

Figure 6 Verification scheme

Vehicle model

Control varible

Input

quadprog

Quadprog++Quadprog++

Quadprog++Quadprog++

quadprog vs Quadprog++

CPU vs FPGA

quadprog (PC)

Quadprog++ (PC)

Quadprog++ (ZYNQ)

Figure 7 Comparison of the solution accuracy of quadprog and
Quadprog11

Figure 8 Comparison of the solution time of quadprog and
Quadprog11

FPGA accelerated model

Yunfei Li et al.

Journal of Intelligent and Connected Vehicles

Volume 5 · Number 2 · 2022 · 63–71

69



The above results prove that Quadprog11 can well meet the
solution requirements of the lateral control algorithm in this
paper.

4.3 Verification of FPGA
The performance verification method of FPGA (Figure 6) is to
use the input that is entirely consistent with the CPU platform
and then compare the solution accuracy and the solution
time of the two (both use the Quadprog11 solver). The
configuration of the CPU is the same as part B (Section 4), and
the frequency of ZYNQ is set to 50MHz.
The comparison results of the solution accuracy are shown in

Figure 9. Themaximum percentage error of CPU and FPGA is
less than 0.04%.
As shown in Figure 10 and Table 7, the average solution

speed of FPGA is 27.162 times faster than that of CPU and the
solution time fluctuation of FPGA is much less than that of the
latter.

The above experimental results indicate that compared with
CPU, FPGA dramatically improves the speed of solving QP
and improves the calculation efficiency ofMPC.

5. Conclusion

This paper proposed an FPGA accelerated method ofMPC for
autonomous driving. Given the difficulty of combining MPC
and FPGA. We implement a ZYNQ-based design method,
which could significantly reduce the difficulty of development.
The comparison with the CPU solution results shows that
FPGA has a significant acceleration effect on the solution of
MPC (the latter is 27.162 times faster than the former). Our
method is effective.
In the future study, we will convert all the floating-point data

to fixed-point data to save the hardware resources. We will also
carry out relevant actual vehicle experiments to verify the control
effect of the selected ZYNQ hardware. At the same time, we will
also improve existing algorithms to adapt to more complex
scenarios (Keskin et al., 2020).

References

Al Housani, B., Mutrib, B. and Jaradi, H. (2009), “The
linux review-Ubuntu desktop edition-version 8.10”, 2009
International Conference on the Current Trends in Information
Technology (CTIT), December, IEEE, pp. 1-6.

Bevly, D.M., Ryu, J. andGerdes, J.C. (2006), “Integrating INS
sensors with GPS measurements for continuous estimation
of vehicle sideslip, roll, and tire cornering stiffness”, IEEE
Transactions on Intelligent Transportation Systems, Vol. 7
No. 4, pp. 483-493.

Brandao, A.S.M., Lima, D.M., DA Costa Filho, M.V.A. and
Rico, J.E.N. (2019), “A comparative study on embedded
MPC for industrial processes”, Congresso Brasileiro de
Autom�atica-CBA, Vol. 1No. 1.

Crockett, L.H., Elliot, R., Enderwitz, M. and Stewart, R.
(2014), The Zynq Book: Embedded Processing with the Arm
Cortex-A9 on the Xilinx Zynq-7000 All Programmable Soc,
Strathclyde AcademicMedia.

Di Gaspero, L. (2007), “Quadprog11: a c11 library
implementing the algorithm of Goldfarb and Idnani for the
solution of a (convex) quadratic programming problem by
means of an active-set dual method”.

Falsafi, B., Dally, B., Singh, D., Chiou, D., Joshua, J.Y. and
Sendag, R. (2017), “FPGAs versus GPUs in data centers”,
IEEEMicro, Vol. 37No. 1, pp. 60-72.

Fernandez-Camacho, E. and Bordons-Alba, C. (1995),
“Introduction to model based predictive control”, Model
Predictive Control in the Process Industry, Springer, London,
pp. 1-8.

Table 6 Solution time information of QP solvers

QP Solver
Average solution

time
Standard deviation
of solution time

quadprog 2.332ms 0.5645ms
Quadprog11 2.216ms 0.6723ms

Figure 9 Comparison of the solution accuracy of CPU and FPGA

Figure 10 Comparison of the solution time of CPU and FPGA

Table 7 Solution time information of hardware platforms

Hardware platform
Average solution

time
Standard deviation
of solution time

CPU 2.216ms 0.6723ms
FPGA 0.0803ms 4.35� 10�4 ms

FPGA accelerated model

Yunfei Li et al.

Journal of Intelligent and Connected Vehicles

Volume 5 · Number 2 · 2022 · 63–71

70



Goldfarb, D. and Idnani, A. (1983), “A numerically stable dual
method for solving strictly convex quadratic programs”,
Mathematical Programming, Vol. 27No. 1, pp. 1-33.

Goli, M. and Eskandarian, A. (2019), “MPC-based lateral
controller with look-ahead design for autonomous multi-
vehicle merging into platoon”, 2019 American Control
Conference (ACC), July, IEEE, pp. 5284-5291.

He, M. and Ling, K.V. (2005), “Model predictive control
on a chip”, 2005 International Conference on Control and
Automation, June, IEEE, Vol. 1, pp. 528-532.

Horowitz, B. and Afonso, S.M. (2002), “Quadratic
programming solver for structural optimisation using SQP
algorithm”, Advances in Engineering Software, Vol. 33
Nos 7/10, pp. 669-674.

Jerez, J.L., Ling, K.V., Constantinides, G.A. and Kerrigan,
E.C. (2012), “Model predictive control for deeply pipelined
field-programmable gate array implementation: algorithms
and circuitry”, IET Control Theory & Applications, Vol. 6
No. 8, pp. 1029-1041.

Jerez, J.L., Goulart, P.J., Richter, S., Constantinides, G.A.,
Kerrigan, E.C. and Morari, M. (2014), “Embedded online
optimization for model predictive control at megahertz
rates”, IEEE Transactions on Automatic Control, Vol. 59
No. 12, pp. 3238-3251.

Jones, D.H., Powell, A., Bouganis, C.S. and Cheung, P.Y.
(2010), “GPU versus FPGA for high productivity computing”,
2010 International Conference on Field Programmable Logic and
Applications, August, IEEE, pp. 119-124.

Keskin, M.F., Peng, B., Kulcsar, B. and Wymeersch, H.
(2020), “Altruistic control of connected automated vehicles
in mixed-autonomy multi-lane highway traffic”, IFAC-
PapersOnLine, Vol. 53No. 2, pp. 14966-14971.

Kestur, S., Davis, J.D. and Williams, O. (2010), “Blas
comparison on FPGA, CPU and GPU”, 2010 IEEE
Computer Society Annual Symposium on VLSI, July, IEEE,
pp. 288-293.

Kuon, I. and Rose, J. (2007), “Measuring the gap between FPGAs
and ASICs”, IEEE Transactions on Computer-Aided Design of
IntegratedCircuits andSystems, Vol. 26No. 2, pp. 203-215.

Li, S., Li, K., Rajamani, R. and Wang, J. (2010), “Model
predictive multi-objective vehicular adaptive cruise control”,
IEEE Transactions on Control Systems Technology, Vol. 19
No. 3, pp. 556-566.

Lucia, S., Navarro, D., Lucia, O., Zometa, P. and Findeisen,
R. (2017), “Optimized FPGA implementation of model
predictive control for embedded systems using high-level
synthesis tool”, IEEE Transactions on Industrial Informatics,
Vol. 14No. 1, pp. 137-145.

Martin, G. and Smith, G. (2009), “High-level synthesis: past,
present, and future”, IEEE Design & Test of Computers,
Vol. 26No. 4, pp. 18-25.

Mattingley, J. and Boyd, S. (2012), “CVXGEN: a code
generator for embedded convex optimization”, Optimization
and Engineering, Vol. 13No. 1, pp. 1-27.

Nocedal, J. and Wright, S. (2006), Numerical Optimization.
Springer Science&BusinessMedia.

Nurvitadhi, E., Sim, J., Sheffield, D., Mishra, A., Krishnan, S.
and Marr, D. (2016), “Accelerating recurrent neural
networks in analytics servers: comparison of FPGA, CPU,
GPU, and ASIC”, 2016 26th International Conference on
Field Programmable Logic and Applications (FPL), August,
IEEE, pp. 1-4.

Qasaimeh, M., Denolf, K., Lo, J., Vissers, K., Zambreno, J.
and Jones, P.H. (2019), “Comparing energy efficiency of
CPU, GPU and FPGA implementations for vision kernels”,
2019 IEEE International Conference on Embedded Software and
Systems (ICESS), June, IEEE, pp. 1-8.

Quan, Y.S. and Chung, C.C. (2019), “Approximate model
predictive control with recurrent neural network for
autonomous driving vehicles”, 2019 58th Annual Conference
of the Society of Instrument and Control Engineers of Japan
(SICE), September, IEEE, pp. 1076-1081.

Russo, L.M., Pedrino, E.C., Kato, E. and Roda, V.O. (2012),
“Image convolution processing: a GPU versus FPGA
comparison”, 2012 VIII Southern Conference on Programmable
Logic,March, IEEE, pp. 1-6.

Schmid, C. and Biegler, L.T. (1994), “Quadratic
programming methods for reduced hessian SQP”, Computers
&Chemical Engineering, Vol. 18No. 9, pp. 817-832.

Winterstein, F., Bayliss, S. and Constantinides, G.A.
(2013), “High-level synthesis of dynamic data structures: a
case study using vivado HLS”, 2013 International Conference
on Field-Programmable Technology (FPT), December, IEEE,
pp. 362-365.

Xu, F., Chen, H., Gong, X. and Mei, Q. (2015), “Fast
nonlinear model predictive control on FPGA using particle
swarm optimization”, IEEE Transactions on Industrial
Electronics, Vol. 63No. 1, pp. 310-321.

Yu-Geng, X.I., De-Wei, L. and Shu, L. (2013), “Model
predictive control – status and challenges”, Acta Automatica
Sinica, Vol. 39No. 3, pp. 222-236.

Corresponding author
Shengbo Eben Li can be contacted at: lishbo@tsinghua.edu.
cn

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

FPGA accelerated model

Yunfei Li et al.

Journal of Intelligent and Connected Vehicles

Volume 5 · Number 2 · 2022 · 63–71

71

mailto:lishbo@tsinghua.edu.cn
mailto:lishbo@tsinghua.edu.cn

	FPGA accelerated model predictive control forautonomous driving
	1. Introduction
	2. Lateral control algorithm of autonomous vehicles
	2.1 Dynamic model
	2.2 Cost function and optimization problem
	2.3 Quadratic programming solver

	3. Implementation quadratic programming solver on FPGA
	3.1 Hardware platform selection
	3.2 Design flow
	Undefined namespace prefix
xmlXPathCompOpEval: parameter error
xmlXPathEval: evaluation failed

	Undefined namespace prefix
xmlXPathCompOpEval: parameter error
xmlXPathEval: evaluation failed



	4. Results
	4.1 Verification of lateral control algorithm
	4.2 Verification of quadprog++
	4.3 Verification of FPGA

	5. Conclusion
	References


