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Abstract. Modal analysis techniques are considered as the most used of techniques allowing the characteri-
zation of the dynamic behaviour in systems such as planetary gear transmission. During operational condi-
tions, the modal behaviour can be altered. The main purpose of this paper is to estimate the Modal Proper-
ties (MP) of two-stage planetary gear during non-stationary regimes using a further version of Operational
Modal Analysis (OMA). The natural frequencies and modal damping are determined by Order Tracking (OT)
and processed using diagram stability tool. Moreover, the modelling and the treatment of the non-stationary
regimes were established. The proposed technique proves that order-based OMA can extract resonances
which are related to the interaction between structural modes and the rotational speed harmonics. The ex-
perimental measurements are compared to the obtained results via a numerical model. It proves that the
natural frequencies and modal damping are significantly dependent on the load.

Keywords. Planetary gear, Non-stationary regimes, OMA, Natural frequencies, Modal damping.
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1. Introduction

Planetary gear systems are powerful mechanisms in the transmission system. They are character-
ized by a high ability to work under both stationary and non-stationary regimes. However, these
systems suffer typically from some drawbacks like noise or vibration, especially when they run
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close to the critical resonant frequencies and other Modal Properties (MP). Only a limited num-
ber of literature reviews have dealt with MP identification techniques, the characteristics of each
method, their main advantages, and their limitations.

The modal testing is usually recommended as a complementary tool for the conception,
validation, and fault diagnosis [1]. Therefore, different methods were developed to identify the
MP in such static or dynamic conditions such as the Conventional Modal Analysis and the
Operational Modal Analysis (OMA) [2–4]. On the one hand, the conventional technique is based
on exciting the structures in a static condition. It ruled out some dynamic characteristics like
the velocity function or the harmonic component. This method is carried out to recover the
response function frequency and estimate the MP [5]. Nevertheless, the conventional method
does not apply to the gearbox system since it excludes the meshing functions. On the other hand,
the Operational method is applicable when the system is excited in a stationary regime.

Furthermore, several researchers proposed other approaches. Provasi et al. [6] investigated MP
using Kalman filter. This approach allows the identification of the modal function even when it is
associated with multiple inputs such as force and velocity. The application of this modal implies
some knowledge of operational forces. Other researchers like Mohanty and Rixen [7–10] and
Kordkheili [11] used time-domain approaches, where the rectification of the basic identification
methods was reported. The work of Modak [12, 13] used a random approach to suppress the
noise amplitude in case of OMA. Specifically, this method tracks the periodic and noisy signals.
To estimate MP, Peeters et al. [14] developed a new version of Least Squares Complex Exponential
(LSCE) called Polymax. This method is characterized by a benchmark to select the model order
with well-structured system poles.

To identify the dynamic characteristics, different methods use stationary conditions i.e. con-
stant load and speed. However, in case of non-stationary condition, when the frequency is di-
rectly related to time, different approaches were required to consider these regimes. To study this
case, Haykin et al. [15], proposed the Order Tracking (OT) method to identify the amplitudes of
order. The use of this method is linked to the knowledge and theories related to the vibration sig-
nal and frequency characteristics represented in the velocity function. According to [16–18], the
harmonic components from the obtained signals are defined by the Vold–Kalman filter. In the
work of Wu [19], the OT technique was developed to carry out a defect diagnosis in a gear system.
The developed method analyses the evolution of the order function amplitude in case of machine
monitoring. The collected signals were compared to the Recursive Least-Squares (RLS) filtering
algorithm. Recently, Yang et al. [20] developed a Particle Swarm Optimization algorithm to study
the power spectrum MP of the obtained signal while the machine is running. Their experimental
and numerical results are correlated.

Mbarek et al. [4] reported three types of modal analysis techniques. It shows that the Order-
Based Modal Analysis (OBMA) could be an efficient technique to extract MP in non-stationary
operating condition. However, the MP sensitivity to the load was investigated. Ericson and
Parker [21] reported the influence of the external torque, bearing dependent load and Mesh
Stiffness Function (MSF) on the dynamic behaviour and MP system. Their experimental results
were compared with those issued from analytical and finite element model. In the Mbarek et
al. [22] study, the impact of the torque and MSF variation on the MP was analysed using a lumped
mass model of a two-stage planetary gear characterised by 72 Degrees of Freedom (DOF). To this
end, the conventional modal analysis technique was adopted to identify the natural frequency.
Despite the variety of the cited studies, the loading effects on MP under non-stationary operation
are scarce if not totally missing in the literature.

In this work, a further version of OMA using order-based techniques is investigated. This ap-
proach has a big potential in the industrial engineering area and specially for condition monitor-
ing. In fact, it allows not only the identification of the MP but also the study of the parameters
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that influence the systems behaviour under different operational conditions using sensors and a
data acquisition system. In fact, these systems present a non-linearity to the externally applied
torque. So, the influence of specific parameters such as load could be investigated.

The obtained signals are compared to others acquired theoretically using the concentrated
mass model, which is developed to provide further insight into the dynamic characteristic of the
system. The model was driven in the run-up regime where the MSF fluctuation was considered.
Besides, the impact of the torque on the dynamic behaviour was analysed using time response
and the Short Time Fourier Transform (STFT) analysis. Then, the angle-domain OT method was
formulated and implemented to determine the order function. Finally, the system MP presented
by the natural frequencies and modal damping was examined highlighting the MP sensitivity to
the load.

2. Processing method

An STFT spectrogram was adapted to process the experimental and numerical time signals to
track the speed variation for each level of load. The spectrogram gives a clue about the Gear
Mesh Frequency (GMF) harmonics. The Hamming window was implemented with a frequency
resolution of 2 Hz/line.

The signals issued from the tachometer and the accelerometers were recorded using the LMS
SCADAS 316 Data Acquisition System and analysed using the LMS Test Lab 15A software.

The most important order was estimated via the angle-domain method. In addition, the MP
for each torque case was estimated via a Stabilization diagram. More details on the OT and MP
extraction are detailed in the literature [23].

The measurements were collected in timeframe. To transform them to the angular domain,
a reference signal was used to determine the time increment characterized by spaced angular
intervals. Usually, the tachometer signal is used for this issue, in our case, the tachometer is used,
and it is mounted on the input shaft.

The Fourier transform kernels are computed according to (1) and (2):

an = 1

N

N∑
n=1

x(n∆θ)cos(2πomn∆θ) (1)

bn = 1

N

N∑
n=1

x(n∆θ)sin(2πomn∆θ), (2)

where om denotes the order, which will be analysed later.

3. Order-based modal analysis

This method is highly recommended for rotating machinery as it combines the OMA method and
the OT method.

Indeed, the OBMA is based on periodic excitation to obtain the machinery dynamic be-
haviours. Therefore, its applicable condition is that the mechanical system generates a periodic
excitation force during the operational process. In fact, it generates a periodic excitation force
whose frequency is proportional to the rotational speed during the revolution. OBMA aims to
identify MP from the simulated or measured signal with crossing order. First, the system is ex-
cited in non-stationary regimes (run-up, run-down) [24]. Then, the OT method based on the fil-
ter method is used to extract a harmonic response known as engine orders. Finally, the MP is
estimated using the stabilisation diagram (Figure 1) and the modal estimation method [4].

The proposed method is a further version of OMA, and is based on the exciting mode when the
system runs in non-stationary condition, and it is well suited to the gear system. These systems
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Figure 1. Stabilization diagram.

are working widely in non-stationary conditions. The proposed method was used previously
by the authors and compared to the traditional modal analysis, the results obtained for both
methods are very close, the main advantages of this method is its ability to estimate modal
parameter when the system is in service, meaning that all influencing functions such as mesh
stiffness and external excitation are present. The other approach or method has some limitations
compared to the traditional modal analysis. The latter uses artificial excitation and the system is
under static condition. Also, the basic version of OMA suffers from the end-order phenomena,
and in this case several modes cannot be estimated.

The relationship between the system MP and order is explained by assuming the structure
to be excited by a rotating mass with an increasing frequency [12]. Two perpendicular forces of
equal amplitude [25], can represent it. The measured response Y (ω) in the frequency domain is:

Y (ω) = H (:,f x)(ω)F x(ω)+H (:,f y )(ω)F y(ω), (3)

where F is for the force and H is the transfer function matrix.
If we consider the relationship between the two correlated forces, the response of the structure

can be expressed as follows:

Y (ω)µω2
0(H (:,f x)(ω)− jH (:,f y )(ω))δ(ω−ω0), (4)

whereω0 denotes the rotational speed. From this equation, it seems that the measured output is
proportional to the squared rotational speed and to a complex combination of the two structural
FRFs related to x and y excitation. A structural FRF can be reformulated as shown below:

(H (:,•)(ω) = V (jωI − jΛ)−1L•+ 1

ω2 LR•+UR• (5)

V and Λ are the modal shapes matrix and the modal poles matrix, respectively. L is the modal
participation factor. The parameters V ,Λ, L are the complex-valued MP, LR• and UR• are the real-
valued lower and upper residuals, modelling the influences of the modes outside the considered
frequency band. By inserting this modal decomposition, Equation (4) combined with (5) can be
written as [25]:

Y (ω)µω2(V (jωI − jΛ)−1(Lx − jLy)+ 1

ω2
(LRx − jLRy)+ (URx − jURy)). (6)
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Figure 2. Planetary gear structure.

In the OBMA, the order functions are the transfer functions; they are sensitive to the input
excitation and the response. In fact, in the studied cases, the transfer functions are obtained for a
different measured response. These functions varied with the loading condition and so on the real
physical pole as mentioned in equation. For this reason, the impact of the torque was discussed.

4. Numerical model

To analyse the system dynamic behaviour, a lumped model was used. It is a 72 DOF three-
dimensional model characterised by six DOF per element. The two planetary sets are identical,
only one stage is presented in Figure 2.

The carrier (c), ring (r ), sun (s) and the three planets (p1,p2,p3) are the main components,
they are simulated as rigid bodies with mass mij and inertia I ij.

The bearings are modelled by a rigid spring with stiffness K bix, K biy , K biz , K biΦ, K biΨ and K biθ

where (i = c,r,s,p1,p2,p3; j = r,t and x,y,z,Φ,Ψ,θ) are the directions.
Both planetary gear sets are coupled with sun’s and carrier’s shaft. More details on the numer-

ical model are listed in Mbarek et al. [4].
The analytical equation systems were solved after applying Lagrange formulation for each

element.
Most of the work has focused on numerical methods such as methods integration step-by-

step in time to solve the equations of the movement. These methods proved to be well adapted
to the linear equations at periodic coefficients. The most commonly used time method is the
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implicit method of Newmark for its numerical stability and computation time ratio—interesting
precision for industrial applications [26]. However, it requires a judicious choice of integration
parameters and initial conditions. The solution is given in the field time; the transition to the
frequency domain is performed by a Fourier transform of the response. This method is suitable
for this work. Newmark’s algorithm is presented from the following linear equilibrium equation:

Mq̈+Cq̇+ (K b +K e(t))q = F(t). (7)

It is worth noting that q represents the global coordinates of the two planetary gears.

q = [qr ,qt ]. (8)

The qr and qt , present, respectively, the reaction and test gear DOF.
M is the mass matrix, C presents the damping matrix, K b is the bearings matrix, K e(t) is the

time-varying stiffness matrix and F(t) presents the external force vector applied to the system.
K e(t) is formulated as a summation of a stiffness matrix K and the time-varying matrix k(t)

defined in [22].
q is the DOF vector defined as:

q =
{

qr

qt

}
(9)

qr = {
Ucr ,Vcr ,Wcr ,ρcxr ,ρc yr ,ρczr ,Ur r ,Vr r ,Wr r ,ρr xr ,ρr yr ,ρr zr ,Usr ,Vsr ,Wsr ,
ρsxr ,ρs yr ,ρszr ,U1r ,V1r ,W1r ,ρ1xr ,ρ1yr ,ρ1zr ,U2r ,V2r ,W2r ,ρ2xr ,ρ2yr ,ρ2zr ,
U3r ,V3r ,W3r ,ρ3xr ,ρ3yr ,ρ3zr

} (10)

qt = {
Uct ,Vct ,Wct ,ρcxt ,ρc y t ,ρczt ,Ur t ,Vr t ,Wr t ,ρr xt ,ρr y t ,ρr zt ,Ust ,Vst ,Wst ,
ρsxt ,ρs y t ,ρszt ,U1t ,V1t ,W1t ,ρ1xt ,ρ1y t ,ρ3zt ,U2t ,V2t ,W2r t ,ρ2xt ,ρ2y t ,ρ2zt ,
U3t ,V3t ,W3t ,ρ3xt ,ρ3y t ,ρ3zt

} (11)

M denotes the mass matrix, K b is the bearing and shaft stiffness matrix, K e(t) is the time-varying
stiffness matrix and F(t) stands for the external force vector applied to the system.

F (t ) =
[

Tcr

rcr
,

Tr r

rr r
,

Tsr

rsr
,0,0,0,

Tct

rct
,

Tr t

rr t
,

Tst

rst
,0,0,0

]
(12)

Tcr , Tr r , Tsr , Tct , Tr t , Tst are the external torques applied respectively in the reaction carrier, the
reaction ring, the reaction sun, the test carrier, the test ring and the test sun.

The damping matrix C is given by:

C =αM +βK , (13)

where α and β are two constants [26].
All matrices are presented in what follows:

M =
[

Mt 0
0 Mr

]
(14)

Mi =



Mc 0 0 0 0 0
0 Mr 0 0 0 0
0 0 Ms 0 0 0
0 0 0 M1 0 0
0 0 0 0 M2 0
0 0 0 0 0 M3

 i = t ,r (15)
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Table 1. Bearing stiffness

Sun Planet (3) Ring Carrier

Kbx (N/m) 1.5×108 1.1×108 8×108 1×108

Kby (N/m) 1.5×108 1.1×108 8×108 1×108

Kbz (N/m) 1.1×108 3×108 1×108 5×108

KbΦ (N·m/rad) 6×109 6×109 1.5×109 6×109

KbΨ (N·m/rad) 6×109 6×109 1.5×109 6×109

Kbθ (N·m/rad) 1×10−3 1×10−3 8×1010 1×10−3

Table 2. Shaft parameters

Flexural (N/m) Torsional (N·m/rad) Tractional (N/m)

Sun 4.9×105 3.73×104 4.85×108

Carrier 1.1×107 8.38×105 1.25×109

Mi j =



m j 0 0 0 0 0
0 m j 0 0 0 0
0 0 m j 0 0 0

0 0 0
I j

r 2
j

0 0

0 0 0 0
I j

r 2
j

0

0 0 0 0 0
2∗I j

r 2
j


j = c,r, s,1,2,3 (16)

The bearing stiffness matrix Kb

Kb = diag(Kcr ,Kr r ,Ksr ,K1r ,K2r ,K3r ,Kct ,Kr t ,Kst ,K1t ,K2t ,K3t ) (17)

Ki j = diag(Ki j x ,Ki j y ,Ki j z,Ki jδ ,Ki jϕ ,Ki jχ ) i = c,r, s, (18)

Kk j b = diag(Kk j b ,Kk j b ,Kk j b ,Kkδ ,Kk jϕ ,0) k = 1,2,3 j = r, (19)

ψr =αi +αr (20)

ψs =αi −αs (21)

The stiffness matrix Km :

Km =
[

Kmr 0
0 Kmt

]
+Kc (22)

Km =



∑
K n

c1 0 0 K 1
c2 K 2

c2 K 3
c2

0
∑

K n
r 1 0 K 1

r 2 K 2
r 2 K 2

r 2

0 0
∑

K n
s1 K 1

s2 K 2
s2 K 3

s2

K 1
c2 K 1

r 2 K 1
s2 K 1

PP 0 0

K 2
c2 K 2

r 2 K 2
s2 0 K 2

PP 0

K 3
c2 K 3

r 2 K 3
s2 0 0 K 3

PP


(23)

All these matrices are presented in the appendix of [22] and Tables 1 and 2 list the values of the
different parameters.

Based on the approximate average MSF predictions (≈3.0×108 N/m) in case of static loading
condition [27], the stiffness of bearing components are estimated (Table 1). The shaft stiffness
was computed analytically using a theoretical formula.
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Figure 3. Test rig.

Table 3. Test bench basic dimensions

Ring Planets Sun Carrier
Teeth number 65 24 6 –
Mass (kg) 28.1 1.22 0.48 3.64
Moment of inertia (kg·m2) 7×10−4 2×10−3 3.5×10−4 2×10−4

Base diameters (mm) 249.4 92.1 61.4 0.17
Tip diameters (mm) 257.9 100.6 69.9 0.18
Pressure angle (°) 20
Module (mm) 4

5. Experimental test rig

The analytical equation systems are solved after applying Lagrange formulation for each element.
This study aims to collect the vibration data using planetary gear with power recirculation

test bench. The principal elements of this test bench are displayed in Figure 3. It includes two
planetary gear sets mounted back-to-back allowing the energy recirculation, as used in different
research studies [22, 27, 28].

Four tri-axial accelerometers (ENDEVCO/65M-100/10023) with high sensitivity (101.6 MV/g
on x direction, 103 MV/g on y direction and 101.9 MV/g on z direction) were used. These were
fixed on the reaction gear set and the test ring to measure the instantaneous accelerations. To
measure the angular accelerations, sensors were mounted in the tangential direction of the ring
(ρr zt DOF).

A LED tachometer was used to measure the input speed and a zebra pattern surface was
mounted on the input shaft.

Table 3 displays the basic dimensions of the bench.
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Figure 4. Signal processing steps.

The two-stage planetary gears were driven by an electric motor connected to the two-gear set
through an elastic coupling. The motor is controlled using Starter software with the help of a
frequency inverter “MICROMASTER 440”.

6. Results and discussion

The results are presented as shown in the flowchart given in Figure 4: during each step, the results
obtained from the experimental and numerical tests were compared to each other.

6.1. Torque influence on the dynamic behaviour

During the run-up regime, the input speed has a ramp shape between 0 and 1000 rpm for both
experimental and numerical cases (Figure 5).

The simulation and experimental tests are carried out during run-up regime for four torque
cases (200 N·m, 400 N·m, 600 N·m and 800 N·m).

The rotation of the reaction ring is free, allowing the introduction of an external load to the test
bench. To this end, the rigid arm where the masses were introduced, was attached to the reaction
ring. Consequently, the inertia and mass of the reaction ring varied with the load as illustrated in
Table 4.

The MSF was obtained using Hertzian contact theory and finite element method. The proce-
dure given by Del Rincón et al. [29], was divided into three steps. Firstly, the tooth geometry was
defined, and the location of the contact points was computed by considering the analytic formu-
lation of the involute–involute contact. Then, two phenomena were considered: (i) the nonlinear
local deformations near the contact area where an analytical nonlinear formulation of Hertzian
type for local deflections was used, (ii) the tooth body deflections due to linear bending, shearing
and compression was analysed. Two-dimensional finite element model of teeth in contact was
achieved.



400 Ayoub Mbarek et al.

Figure 5. Input rotational speed.

Table 4. Parameters varied with the load

Load (N·m) Inertia of reaction
ring (kg·m2)

Mass of reaction
ring (kg)

Average of sun planets
mesh stiffness (N/m)

Average of ring planets
mesh stiffness (N/m)

200 0.7479 38.1 4.04×108 5.84×108

400 1.0588 48.1 4.14×108 6.07×108

600 1.3698 58.1 4.23×108 6.27×108

800 1.6807 68.1 4.42×108 6.69×108

These functions are loaded dependently, their amplitude increases when the loads increase
through the increase of the contact area between the teeth. Table 4 shows the applied loads that
impact the different parameters of the system.

During the run-up regime, the MSF period decreases as the speed increases [30,31]. The trend
of these functions is shown in the Figure 6. The mesh phasing too was considered.

The acceleration signals on the fixed ring are displayed in Figures 7 and 8. These figures show
that the vibration and oscillation amplitudes increase respectively with time. All accelerations are
shown in the radial direction.

However, in the run-up regime, the MSF which is the principal source of excitation of the
system is characterised by non-constant period. The acceleration issued from the numerical
model was compared to the experimental response as illustrated in Figures 7 and 8.

In Figures 7 and 8, it is noticeable that the acceleration and input torque amplitudes are
both directly proportional and increase because of the deformation increase at the teeth and
the bearing owing to the increase in effort. Also, the MSF and the period of teeth in contact
(Figure 6) varied too; this variation is due to the sensitivity of the Hertzian contact to the load [29].
This phenomenon leads to the system instability presented by the high vibration. Also, critical
scenarios could occur when the system is overloaded [32].

Hence a time–frequency presentation STFT was used to analyse the GMF evolution in time. It
is clear from Figures 9 and 10 that the GMF amplitude increases with torque. This is due to the
presence of interesting energy in the spectrograms along the frequency bandwidth indicating an
excitation of structural resonances. Also, two kinds of lines are noticed: oblique lines from left to
right due to the evolution of the GMF function and its harmonics and vertical lines explained by
the presence of some natural frequencies.
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Figure 6. Ring-planets MSF trend.

Figure 7. Measured acceleration on the fixed ring at ρr zt degree of freedom.
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Figure 8. Simulated acceleration on the fixed ring at ρr zt DOF.

6.2. Torque influence on modal properties

After studying the influence of the torque on vibration response and analysing the dynamic be-
haviour of the system in different loading conditions, the torque influence on MP was highlighted
using the OBMA. This method allows the identification of MP when the excited system is in non-
stationary condition.

6.2.1. Order tracking

After extracting the time signal and plotting the time–frequency map (Figure 11), the OT
presented on the angular domain was investigated.

According to the map order, different order functions can be extracted. These functions are
computed according to the map order because the OBMA uses the order functions as input data
to identify the MP. In the studied cases the order 64.4 was selected to identify the MP in frequency
bandwidth (0–1000 Hz), (Figures 12 and 13).

The order functions are sensitive to the load too; their amplitude increases with the increase
in load.

6.2.2. Natural frequencies and damping identification

In this subsection, the OBMA techniques were applied. In this case, the order functions are the
transfer functions.

By using a stabilization diagram which used order function (Figures 12 and 13) as input
data, the natural frequencies and modal damping were estimated as displayed in Table 5 and
is illustrated in Figure 14.
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Figure 9. Measured STFT on the fixed ring at ρr zt DOF.

According to the analysis illustrated in Figure 14(a), it is noticeable that the presented param-
eters are sensitive to load variation. The increase in torque has effects on the MSF amplitude.
In fact, the contact area between the teeth increases, producing a variation in both fillet stiff-
ness and the Hertzian one [33]. In addition, the entire system matrices change. However, (Fig-
ure 14(b)) illustrates the frequency errors between the identified modes. So, we believe that the
observed errors are due to several factors such as the modelling of the bearing components as
isotropic or the effects of accumulation of vibration paths on the ring [34]. Also, this behaviour is
an issue of the MSF variation on the MP [21]. For the modal damping, an interesting result is pre-
sented as shown in (Figure 14(c)). We notice that with increasing torque, the damping values too
increase. This information is very important in the case of rotating machinery applications, the
input load has an influence on critical parameters of the structure such as the natural frequency
and the damping. For design purpose, we should consider this phenomenon. This is so mainly
due to the effect of the width of the film oil and the contact friction between teeth, especially in
non-stationary regimes [35].

The results obtained show interesting findings; in fact, the impact of load on the natural
properties of the system should be carefully studied, as we know that these kinds of system are
usually subjected to various and important external excitations like the external load. The load
transmitted to all the components encounters several influencing functions and parameters. As
mentioned, the load impacts on the meshing functions. In fact, in the model we have considered
only this parameter, but in reality, the load can introduce such parameters which are linked to
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Figure 10. Simulated STFT on the fixed ring at ρr zt DOF.

Figure 11. Order map.
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Figure 12. Measured order on the fixed ring at ρr zt DOF.

the system and which can as well modify the modal parameter. In fact, when the load increases,
the contact between teeth increases, so that friction contact i.e., the friction force increases and is
modified. This phenomenon is not considered in the model but it exists in reality, and especially
in our case, it has great importance, because as the system starts running with different levels
of load, it causes a high friction load. This phenomenon was examined by many researchers,
who studied its impact on the dynamic vibration response. Certainly, in the work of Liu et
al. [36], the MP of planetary gear system considering the friction contact is investigated, and the
authors show that the friction coefficient has great influence on the natural frequency. Due to
the asymmetry of the stiffness matrix containing the friction coefficient, in the elastic-discrete
system complex conjugate eigenvalues and eigenvectors appear.

Another parameter which is suppressed but which has a very important influence on dynamic
response as well as system modal behaviour is the nature of the ring components. The ring
gear which is generally the stationary element in the epicyclic gear system experiences elastic
deformation, and the ring component is generally modelled as a rigid body, just as the same
for the other components. In such an application where the external speed is very high and the
transmitted load is high, a deformation can be led on to these components, this deformation then
automatically generates instability on the system as well as on the system vibration response as
well as on the modal parameters. This phenomenon was also neglected in the developed model
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Figure 13. Simulated order on the fixed ring at ρr zt DOF.

but can be presented experimentally. The bench was subjected to various research investigations
and was exploited in over many years, so that the variation of load on modal parameters was
transmitted, and aided in the ring deformation. This phenomenon was confirmed by Wang and
Parker [37].

In fact, planetary gear transmissions are a very complex system, they cluster several functions
and parameters, whether geometrical kinematical or dynamical. It could also be mentioned that
mesh phasing parameter has an influence on modal response [38], the defect of floating sun
which is generally presented in planetary gear transmission can lead to an instability. So also,
the bearing element, the load sharing and the oil film.

7. Conclusion

OMA using order-based techniques is applied on two-stage planetary gear transmissions. The
proposed method shows a significant result which can be relevant in many practical cases. A
series of measurements, tests and simulations were established to understand this method and to
highlight the influence of the load on the MP at the same time. The experiments were performed
on test bench and the three-dimensional lumped model was developed to achieve further insight
into the dynamic behaviour of the system. In the first step, the dynamic behaviour of the system
was investigated for different load conditions. This proved that the amplitude of the internal
forces and the period of double contact increases by the evolution of the torque. Consequently,
both the ring inertia and the MSF average value change. This behaviour was reflected in the
MSF trends through a variation in the amplitude of acceleration. The time–frequency map was
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Figure 14. Torque impact on (a) natural frequency (b) frequency error (c) damping.
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determined to evaluate the GMF evolution. In addition, the spectral density related to the first
GMF was shown to move to second GMF. This is explained by the fact that when the level of
torque varies, the contact area between the teeth increases producing an effective modification
in internal force values at the bearing and the teeth components. In fact, this phenomenon
introduces a fluctuation in the angle of pressure and consequently an increase in the contact
ratio. In a second step, the torque impact on the MP was studied; the angle-domain OT method
was developed and compared to experimental results.

The stabilization diagram was then used to analyse and estimate the natural frequencies and
the system modal damping. In the case of MP identification, it was found that the MP changed
significantly with the load.

With the load increase, the natural frequencies and modal damping significantly change.
When the readjustments of the varying load were introduced, the contact between the teeth
increased. Thus, it increases the MSF as well as the effort at the bearing and teeth.

Finally, more investigations on mode shapes will be considered in the future work.

Nomenclature

M Mass matrix
C Damping matrix
KB Bearing matrix
F (t ) External force vector
Ke (t ) Time-varying stiffness matrix
K Stiffness matrix
k(t ) Time-varying matrix
Q Vector degree of freedom
mi j Mass of component i of gear sets j
Ii j Inertia of component i of gear sets j
Kbi x Bearing stiffness of the components i in x direction
Kbi y Bearing stiffness of the components i in y direction
Kbi z Bearing stiffness of the components i in z direction
KbiΦ Bearing stiffness of the components i inΦ direction
KbiΨ Bearing stiffness of the components i inΨ direction
Kbiθ Bearing stiffness of the components i in θ direction
Kr pi Mesh stiffness function between the ring and the planet i (i = 1,2,3)
Kspi Mesh stiffness function between the sun and the planet i (i = 1,2,3)

Notation
MP Modal Properties
OMA Operational Modal Analysis
OT Order Tracking
RLS Recursive Least-Squares
OBMA Order-Based Modal Analysis
MSF Mesh Stiffness Function
DOF Degree of Freedom
STFT Short Time Fourier Transform
GMF Gear Mesh Frequency
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