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Neglecting the effect of long- and short-term erosion can lead to spurious 
coastal flood risk projections and maladaptation 

A. Toimil *, M. Álvarez-Cuesta , I.J. Losada 
IHCantabria - Instituto de Hidráulica Ambiental de la Universidad de Cantabria, Isabel Torres 15, 39011, Santander, Spain  

A B S T R A C T   

Flooding and erosion are among the most relevant hazards for coastal regions and although they are linked, their inherent complexity has typically led them to be 
addressed separately, potentially leading to highly uncertain estimates. This paper has three aims: (a) to present a methodology for coupling coastal flood projections 
with shoreline changes; (b) to quantify the effects of neglecting the coupling of flooding and erosion on future projections at a case study location; and (c) to analyse 
the relative importance of the climate-related uncertainty sources. We use a suite of statistical, process-based, and physics-based models to generate and downscale 
storms, compute water levels affected by storm morphodynamics and long-term profile changes and propagate flooding over topo-bathymetries that are in turn 
modified to incorporate the impact of sea-level rise, longshore sediment transport and storm-driven erosion. We sample climate uncertainty by considering storm 
variability (synthetic generation) and ensembles of radiative forcing scenarios, regional climate models, and sea-level rise trajectories. For illustration purposes, we 
consider a 40-km coastal stretch in the Spanish Mediterranean. We find that if the effect of erosion is neglected, the mean values of the total water level and flooded 
area can be either over- or underestimated by up to 18% and 22%, and up to 7% and 85%, respectively, with respect to our coupled results. The factors that most 
influence total water levels are storm erosion and profile geometry, highlighting the relevance of using real profiles in shoreface translation. In the flooded area, 
longshore transport can play a fundamental enhancing role. We also find that the coupling approach used can contribute more to the projection of flooded areas than 
the choice of climate models and sea-level rise trajectories even by 2100 (up to 76% versus 8% and 16%, respectively). We conclude that neglecting erosion effects on 
coastal flooding can have management implications, especially for urban beaches, leading to poor adaptation planning and maladaptation.   

1. Introduction 

Climate change is and will continue to increase mean sea level 
(Fox-Kemper et al., 2021) and alter the frequency of extreme waves and 
storm surges (Lobeto et al., 2021; Tebaldi et al., 2021), hence posing 
growing risks to coastal areas and exacerbating the problems these re-
gions already face (Wong et al., 2014; Collins et al., 2019). On developed 
coasts with fixed low-elevation infrastructure and real estate, one of 
these key problems is coastal flooding, which results from the super-
position of individual but interacting (compound or cascading) hydro-
dynamic and morphologic processes at different scales (Toimil et al., 
2020a). They include the effect of nearshore bathymetry on surf-zone 
coastal dynamics and the influence of long-term shoreface and storm 
erosion on flood extent and depth over the ground (Pollard et al., 2019). 
Beach retreat can lead to more exceptional coastal flooding and cause its 
consequences to reach levels of scale greater than would have been 
caused by flooding in isolation. These factors are likely to change over 
time, as are their interactions, which are increasingly complex and un-
certain but cannot be neglected in the development of coastal flood 
projections. 

Although the literature recognises the importance of modelling 
coastal flooding and erosion together (e.g., Lentz et al., 2016; Barnard 
et al., 2019; Pollard et al., 2019; Leaman et al., 2021), most studies to 
date continue to consider these two impacts separately because their 
coupling is not straightforward. One main challenge comes from the 
time scale problem, as flooding and erosion occur at different time 
scales. These time scales are related to their driving forcing conditions 
and are likely to be altered by climate change (Ranasinghe, 2016; Toimil 
et al., 2020b). At the storm scale (hours to days), extreme weather 
events due to storm surges and waves are the main drivers of both 
episodic flooding and the erosion of dunes and beaches. These events are 
expected to increase in frequency mostly due to sea-level rise (SLR) and 
are likely to change in intensity due to the effects of climate change, 
resulting in more storm impacts and potential variations in flood 
severity and erosion rates. Embayed beaches rotate due to alongshore 
transport as waves approach the coast at an angle; therefore, in the 
medium term (months to years), changes in mean wave direction could 
drive continued erosion or accretion and alter the beach planform, 
potentially leading to inundation in some areas. Finally, at longer time 
scales (years to decades), SLR will induce permanent lowland 
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inundation and shoreline recession (Nicholls and Cazenave, 2010; 
Cazenave and Le Cozannet, 2013). Higher water levels will allow wave 
erosion processes to act farther up on the beach profile causing a read-
justment that will result in net beach erosion and deposition on the 
nearshore bottom (Bruun, 1962). Deeper water will decrease wave 
refraction and increase the capacity for alongshore transport, allowing 
waves to get closer to the shoreface before breaking and causing 
increased flooding. Sustained and/or chronic shoreline recession will 
likewise imply the loss of natural flood defences. For these reasons, 
where highly accurate flood maps are required (e.g., to make decisions 
on coastal adaptation), present-day topo-bathymetric data (topobathy, 
hereinafter) need to be corrected to account for potential climate 
change-driven storm erosion and shoreline changes (Barnard et al., 
2019). 

In addition to the time scale problem, the spatial scale required for 
coastal adaptation decisions may span from tens to hundreds of kilo-
metres and that contemporary risk-based planning frameworks demand 
an appropriate uncertainty characterisation of impact estimates, which 
usually involve running the impact model many times (Ranasinghe, 
2016). Within this context (~10 km–~100 km, days to centuries, and 
sufficient uncertainty treatment), the joint modelling of coastal flooding 
and erosion projections would ideally require an efficient multi-scale 
coastal impact model that concurrently simulates the different phys-
ical processes involved in projected coastal flooding and erosion and 
their interaction at distinct spatio-temporal scales, including inter-scale 
morphodynamics. However, this model is not yet available, as current 
process-based models do not allow addressing all relevant scales (Toimil 
et al., 2020a). Computational constraints and calibration requirements 
often limit their application to O(10 km) (Sherwood et al., 2022); and 
simulations that exceed the storm scale may produce meaningless results 
due to the accumulation of knowledge uncertainties and numerical er-
rors (Splinter and Coco, 2021; Vitousek et al., 2017a). Therefore, until 
computational resources and our knowledge of processes enable the 
development of this single multi-scale model, approaches that rely on 
impact model chains (e.g., Barnard et al., 2019) integrating 
process-based models (solving hydro-and morphodynamics in-
teractions), physics-based models (solving single-dominant physical 
processes) and statistical tools can offer a trade-off between efficiency 
and accuracy at the time and spatial scales required. 

When it comes to modelling the erosion-flooding chain, one of the 
most critical aspects is the prediction of long-term coastline changes. 
Complex process-based models are well-suited for modelling storm 
erosion, but at present they are still not capable of providing reliable 
predictions of shoreline change considering uncertainty beyond just a 
few years (Ranasinghe, 2020). Reduced-complexity models, such as 
shoreline evolution models, are the preferred choice to reproduce sea-
sonal to multi-annual shoreline change oscillations (Vitousek et al., 
2017b; Antolínez et al., 2019; Álvarez-Cuesta et al., 2021b). These 
models are efficient, so they can be used to simulate multiple future 
climate scenarios but can have limitations when applied outside the 
regime of calibration (Montaño et al., 2020). For longer time scales, this 
is further complicated by the lack of long-term, large-scale monitoring of 
sandy beaches (Splinter and Coco, 2021), the difficulties in incorpo-
rating the effect of SLR in a robust manner (Vitousek et al., 2017a), and 
the uncertainty in climate forcing that increases with time and cannot be 
ignored (Toimil et al., 2021). 

As hereinafter described in our state-of-the-art review, the spatio- 
temporal scale of the coupled erosion-flooding problem highly condi-
tions the type of models to be used. For forensic event-scale studies and 
storm impact projections, process-based models are the most widely 
applied. However, when it comes to consider long-term shoreline 
changes, current approaches mainly rely on the combination of simpler 
and more efficient methods such as trend extrapolation, rules-based 
morphodynamic update, reduced-complexiy modelling and statistical 
techniques. 

Several studies focused on storm-induced dune erosion, breaching 

and overwash at local and regional scales have been published. McCall 
et al. (2010) applied XBeach (Roelvink et al., 2009) to simulate 2DH 
overwash morphology on a portion of a barrier island, Santa Rosa Island 
(Florida), during Hurricane Ivan (2004). More recently, Gharagozlou 
et al. (2020) used XBeach to reproduce morphodynamics, overwash, and 
inundation during Hurricane Isabel (2003) in the North Carolina Outer 
Banks. The authors found that even when using a fixed topography in a 
regional ocean model (ADCIRC, Luettich et al., 1992), flood predictions 
improved significantly when post-storm topography from XBeach was 
considered. Similarly, Van Ormondt et al. (2020) ran XBeach to hindcast 
the morphodynamic evolution of a breach on eastern Fire Island (New 
York) over the first 3 years after its formation during Hurricane Sandy 
(2012). XBeach 2DH was also utilised by Passeri et al. (2018) and Grases 
et al. (2020) in the context of climate change. Passeri et al. (2018) 
simulated the hydrodynamic and morphodynamic impacts of hurricanes 
Ivan (2004) and Katrina (2005) on Dauphin Island under present-day 
and future sea levels. Grasses et al. (2020) examined the interaction of 
beach morphology with current and future storms at the local scale in 
Riumar (Ebro Delta, Spain). To simulate dune erosion, overwash and 
inundation in 2050 and 2100, the authors combined the representative 
concentration pathway (RCP) RCP8.5 SLR 90th percentile with a set of 
future storms obtained from the synthetic emulation of Lin-Ye et al. 
(2017), which was performed under a stationary climate assumption. 
Another recent application of XBeach 2DH comes from Sanuy and 
Jimenez (2021), who proposed a response-based approach (Sanuy et al., 
2019) to model bed-level changes and coastal flooding related to 179 
storms in the Tordera Delta (Spain). The authors modified the topobathy 
by moving the active part of the shoreface landwards to consider erosion 
rates extrapolated 5, 10 and 20 years into the future. McCall et al. 
(2010), Gharagozlou et al. (2020) and Van Ormondt et al. (2020) pro-
vide examples of forensic studies where pre- and post-storm topobathy 
were at hand, allowing the model skill to reproduce changes in breach 
geometry, volume changes and flood extent. Sanuy and Jimenez (2021) 
did not include climate change effects but did generate storms with a 
certain degree of probabilistic development (using Bayesian networks), 
updating the topobathy to account for medium-term erosion derived 
from trend analysis. Conversely, Passeri et al. (2018) and Grases et al. 
(2020) did consider climate change, although only through two and one 
SLR scenarios, respectively. Furthermore, none of them updated the 
topobathy to account for long-term shoreline change, and 
climate-related uncertainty sampling was very limited in both cases. 

Moving to studies that account for long-term shoreline changes in 
coastal flooding, Benavente et al. (2006) implemented a flood extent 
model for two types of storms in Valdelagrana spit and marshes (Spain). 
The authors calculated theoretical storm elevations and corrected the 
topography using rates of shoreline change obtained from aerial pho-
tographs. They found that long-term coastline retreat trends represent 
an important factor in the prediction of coastal flooding, as they can 
increase exposure to sea storms. More recently, Stripling et al. (2017) 
proposed UnaLinea, a one-line model for simulating shoreline evolution. 
The model was applied deterministically to the west coast of Calabria 
(Italy) and probabilistically to an idealised coastal stretch of the Hold-
erness (UK). In the latter case, UnaLinea estimates allowed for the 
RASP-SU model (Gouldby et al., 2010) to adjust seawall toe levels and 
calculate overtopping rates to be used to force a 2D flood model (RFSM, 
Gouldby et al., 2008), yielding storm-induced flood maps. Benavente 
et al. (2006) and Stripling et al. (2017) did not incorporate the effects of 
climate change, but other studies did. For instance, Dawson et al. (2009) 
developed a methodology to integrate shoreline changes into coastal 
flood projections for the twenty-first century on the East Anglian coast 
(UK). The authors connected coastal flooding and erosion by introducing 
changes in the shoreline position (modelled with SCAPE, Walkden and 
Hall, 2005) into the probability of failure of flood defence structures 
rather than in the topography used to model flooding (with 
LISFLOOD-FP, Bates and De Roo, 2000). Strictly speaking, climate 
change was incorporated in terms of SLR, and climate-related 
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uncertainty sampling was limited to considering different SLR scenarios 
and undertaking a sensitivity analysis of wave height and direction 
changes. A few years later, Passeri et al. (2015, 2016) examined the 
influence of incorporating long-term shoreline changes into hydrody-
namic modelling and inundation along the northern Gulf of Mexico 
under future SLR scenarios. In the first case, the authors considered the 
impact of several hurricanes and a single SLR scenario; in the second, 
they evaluated variations in tidal amplitudes for different SLR scenarios 
and projected future shoreline changes and dune heights using a 
Bayesian network model (Gutierrez et al., 2014), of which the 50th 
percentile was selected to represent an average projection of future 
morphology. In both studies, beach profiles were translated upwards by 
the amount of SLR and landwards/seawards by the amount of projected 
erosion/accretion while maintaining shape. 

Nearly a decade later, Grilli et al. (2017) assessed coastal flood risks 
in Charlestown (Rhode Island) associated with the 100-year storm, 
including the effects of SLR (range of values) and dune erosion. The 
authors updated the topography by replacing the current dune profile 
with an empirical storm profile and by shifting it landwards and up-
wards to account for episodic dune erosion and long-term shoreline 
retreat, respectively. Flood maps were obtained using a static inundation 
method based on GIS interpolation. Finally, within the framework of the 
CoSMoS (Coastal Storm Modeling System) Project, Barnard et al. (2019) 
presented a modelling approach to estimate climate change-driven 
changes in coastal flood exposure along the coast of California. Global 
climate model (GCM)-driven projections were used as boundary condi-
tions for a suite of oceanographic, hydrodynamic, and geomorphic 
models to predict coastal waves, water levels, flooding, and erosion for 
different SLR and storm scenarios over the 21st century. Projected 
long-term estimates of shoreline change (modelled with the 
CoSMoS-COAST model, Vitousek et al., 2017b) and cliff retreat (Limber 
et al., 2018) were employed to translate cross-shore profiles extracted 
from a digital elevation model upwards and landwards (Erikson et al., 
2017). The authors used the evolved profiles as the basis for the bathtub 
method forced with 1D XBeach-derived dynamics to provide flood maps 
for the scenarios considered. Despite the comprehensiveness of the 
approach, uncertainty sampling is very limited both in terms of the 
dynamics used (range of SLR values but wave projections associated 
with a single GCM and RCP) and in its statistical treatment (storms are 
obtained directly from the projected wave time series). Additionally, 
static inundation methods that do not account for flood dynamics and 
could be inaccurate (Menendez et al., 2019). 

In this paper, we propose a methodology to advance projections of 
coastal flooding coupled with coastal erosion at all the relevant scales at 
which these impacts interact, using surveyed profiles throughout the 
process. We quantify the influence of long-term profile displacements 
and storm morphodynamics on total water level (TWL) and the com-
bined effect of such TWL estimates with long-term shoreface translation 
and storm-driven beach erosion on the flooded area. To analyse the 
importance of the flood-erosion coupling, we compare the outcomes of 
the fully coupled approach with those of two simplifications (only short- 
or long-term coupling) and the traditional approach of no coupling at 
any scale. The methodology, which includes the application of a series of 
process- and physics-based models, has a strong climate-related uncer-
tainty sampling component, as it considers future storm variability from 
different RCPs and regional climate models (RCMs) in combination with 
different SLR trajectories. Using 2005, 2050 and 2100 as target horizon 
years, we also evaluate the spread range of flood-related outcomes 
associated with different levels of flood-erosion coupling and their 
contribution to total uncertainty. 

2. Materials and methods 

2.1. Overview of the methodology and coupling approaches 

The methodology that we propose to develop coastal flood 

projections, including the effects of coastal erosion, is organised into 6 
modules, as shown in Fig. 1. We first collect bias-corrected dynamically 
downscaled waves and storm surge projections (IHCantabria, 2020), 
SLR projections (Oppenheimer et al., 2019) and astronomical tides (Box 
1). Hereafter, we proceed with the modelling of coastal flooding, where 
the updating of the topobathy in two phases plays a key role in incor-
porating shoreline changes at different time scales (i.e., short and/or 
long term). The second module is the modelling of probabilistic storms 
(Box 2). We generate thousands of synthetic multivariate storms by 
setting up and applying a statistical model that couples a multivariate 
model of extremes and a multivariate model of wave direction, allowing 
us to jointly consider the spatial dependence of climate forcing condi-
tions and their non-stationarity. The third module (Box 3) consists of the 
hybrid (statistical-numerical) downscaling of storms and the calculation 
of TWL by adding wave and sea level components. We use clustering 
techniques, a wave propagation model (SWAN, Booij et al., 1999), a 
hydrodynamic model (XBeach, Roelvink et al., 2009), and a multidi-
mensional interpolation method based on radial basis functions (RBFs) 
to propagate storms and numerically compute the associated wave 
contribution. Modules 3 and 4 (Box 3 and Box 4, respectively) are 
interrelated since after downscaling the storms, we incorporate 
long-term shoreface changes in the topobathy on which surf-zone hy-
drodynamics are to be modelled. We apply a shoreface translation model 
(ShoreTrans, McCarroll et al., 2021) to update beach profiles in response 
to long-term sediment-supply variations calculated with a shoreline 
evolution model of reduced calibration uncertainty (IH-LANS, Alvar-
ez-Cuesta et al., 2021a) and SLR. Over the long-term modified profiles, 
we run XBeach with storm morphodynamics activated so short-term 
erosion also has an effect on the TWL. The fifth module (Box 5) com-
prises TWL extreme value probability fitting and hydraulic modelling. 
We derive statistically robust extreme TWL values on which SLR is 
superimposed and use them to force a 2D flood model with sub-element 
topography (RFSM-EDA, Jamieson et al., 2012). Module 5 is in turn 
connected to module 4 as we apply another functionality of ShoreTrans 
(based on the model of Kinsela et al., 2017) to further modify the already 
long-term updated topobathy to incorporate the effect of storm erosion 
that is derived from IH-LANS simulations. We use the resulting top-
obathy for the hydraulic propagation of TWL events over ground 
(coastal flooding). The main outputs of this methodology are extreme 
TWL values and coastal flood maps. The sequence of steps and their 
interrelationships are displayed in a cascading fashion in the left panel of 
Fig. 1. In the standard approach, the topobathy update does not apply, 
and in the two simplified approaches, only the long- or short-term top-
obathy update applies in each case. 

The last module (Box 6) is cross-cutting and aims at sufficiently 
sampling the uncertainty cascade associated with the climate-related 
flood and erosion drivers considered. We use projections of waves and 
storm surges for 2 RCPs and 5 GCM-RCM configurations (for brevity, 
RCMs hereinafter). Both scenario and climate model uncertainty are 
inherited by the storms, which in turn account for thousands of potential 
realisations of projected waves and storm surges in combination with 
astronomical tides (denoted as storm uncertainty) and SLR. We sample 
SLR trajectory uncertainty by considering 3 SLR percentiles of the dis-
tribution of 20 climate models that also inherit scenario uncertainty. For 
the future topobathies, we model shoreline change estimates associated 
with the same projections of waves and storm surges, thus with the same 
2 RCPs and 5 RCMs. Additionally, the shoreline evolution model used 
incorporates a data assimilation algorithm that helps reduce epistemic 
(knowledge-based) uncertainty. 

To analyse the importance of coastal flooding and erosion coupling 
at different time scales, we compare the outcomes of the fully coupled 
approach (CA) with those of 2 simplifications and no CA, resulting in the 
application of 4 CAs that differ in the consideration of shoreface changes 
in the modelling of TWL and flooded area. These approaches are 1) full 
CA, which considers both short- and long-term shoreface changes; 2) 
short-term CA, which accounts for only short-term shoreface changes; 3) 
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long-term CA, which is limited to considering the long-term shoreface 
response; and 4) no CA, in which the shoreface remains unchanged. 
While the no CA is the standard approach, especially in the context of the 
study of climate change impacts, the short-term CA applies mainly to 
forensic analyses (e.g., XBeach applications to simulate hydrodynamics 
and morphodynamics), and the long-term CA has mostly been used thus 
far to consider the effect of shoreline-change trends and SLR on 
topography. 

Each CA requires the application of different models that allow 
considering the joint effect of coastal flooding and erosion in the TWL 
and coastal flood modelling stages at all, some or none of the scales at 
which these two impacts interact. Consideration of erosion at any scale 
involves modelling shoreface changes at such a scale and updating the 
topobathy accordingly, to influence TWL, flooded area or both. In all 
CAs, surf-zone hydrodynamics and coastal flooding are modelled using 
XBeach and RFSM-EDA, respectively. The no CA does not consider 
erosion effects on either TWL computation or flood propagation over 
land. Conversely, the full CA does account for surf-zone morphody-
namics and long-term shoreface translation in TWL computation and for 

short- and long-term shoreface changes in the modelling of coastal 
flooding. Finally, the short- and long-term CA limit erosion consider-
ation to storm morphodynamics in the TWL stage and short-term 
shoreface erosion in coastal flooding, and to long-term shoreface up-
dates in both TWL and coastal flood modelling stages, respectively. 
Table 1 summarises the main features of the CA considered, including 
the time scales of erosion coupling and models used in each case. 

2.2. Study area 

For illustration purposes, we apply the methodology to a 40-km 
Spanish Mediterranean coastal stretch located between Castellon and 
Valencia (Fig. 2). The stretch has a high degree of anthropisation and 10 
urban beaches with different configurations that may condition their 
morphodynamic response and exposure to flooding. Some urban bea-
ches are wide enough that their evolution is not constrained by a non- 
erodible limit. This is the case for Burriana, where several groynes 
also help to reduce the effect of the waves on the beach. Unlike Burriana, 
in Chilches, the evolution of the shoreline and the potential for flooding 

Fig. 1. Flowchart describing the methodology proposed for the development of coastal flood hazard projections incorporating shoreline change estimates. In the left- 
hand panel, the black arrows indicate input-output relationships between modules. 
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are conditioned by the existence of a promenade. In mixed beaches, such 
as Almenara and Sagunto, the northern section has a breakwater at the 
back, and the southern part is more natural and may even maintain the 
dune system. 

These beaches were in dynamic equilibrium due to intense southerly 
longshore sediment transport offset with continuous sediment uptake 
until the early 20th century, when the ports of Castellon, Burriana and 
Sagunto were built. This caused coastline recession on beaches sheltered 
by structures and advance on down-drifted beaches. Decades later, 

massive urban development along a chronically receding coastline 
exacerbated this imbalance (further details are provided in Alvar-
ez-Cuesta et al., 2021a; 2021b). Although actions have been taken, the 
problem persists to this day, and climate change is expected to continue 
to jeopardise a flat and low coastal stretch where beaches are the pri-
mary defence against coastal flooding. 

2.3. Climate and exposure data 

We use the bias-corrected dynamic multi-model projections of waves 
and storm surges developed by IHCantabria (2020) for the coast of 
Spain. RCM atmospheric fields were used as forcing for process-based 
models to produce hourly time series for the time periods 1986–2005, 
2026–2045 and 2081–2100 and for RCP4.5 and RCP8.5. The RCMs used 
(RCA4 and ALADIN52) and their driving GCMs (IPSL-CM5A-MR, 
HADGEM2-ES, EC-EARTH, CNRM-CM5 and CNRM-CM5) have time 
resolutions of 3 and 6 h and spatial resolutions of 0.11◦ × 0.11◦ and from 
1.25◦ to 1.90◦, respectively. For simplicity, we denote the 5 configura-
tions of GCMs-RCMs as IPSL, HADG, EART, CNRM and MEDC herein-
after. The numerical models used were WaveWatch III (Tolman, 2014) 
for waves and ROMS (Shchepetkin and McWilliams, 2005) for storm 
surges. We refer the reader to IHCantabria (2020) for more details. 

We reconstruct the astronomical tides with the harmonic constitu-
ents of the TPXO7.2 global model (Egbert and Erofeeva, 2002) using 
Oregon State University Tidal Prediction Software (OTIS) with a hori-
zontal resolution of 0.25◦. We extract hourly time series from 1985 to 
2100, which in the study area show a mixed diurnal-semidiurnal cycle of 
approximately 20 cm of tidal range. 

SLR is based on SROCC projections (Oppenheimer et al., 2019). 
These projections have a resolution of 1◦ and account for sterodynamic 
variability, melting of mountain glaciers and ice sheets, land water and 
glacial isostatic adjustments of 21 GCMs for RCP4.5 and RP8.5. We 
employ the mean and standard deviation of the multi-model ensemble to 
compute the likely range (90% confidence band) following the IPCC 
methodology. As such, we multiply the annual mean by 1.64 times the 

Table 1 
Summary of main characteristics of the coupling approaches considered in this 
study. *: when applicable.  

Coupling 
approach 
(CA) 

TWL modelling (XBeach 
hydrodynamics) 

Coastal flood modelling 
(RFSM-EDA) 

Long-term 
erosion 

Short-term 
erosion 

Long-term 
erosion 

Short-term 
erosion 

Full CA ShoreTrans 
forced with 
long-term 
shoreline 
changes from 
IH-LANS and 
SLR* 

XBeach 
Morphodynamics 

ShoreTrans 
forced with 
long-term 
shoreline 
changes from 
IH-LANS and 
SLR* 

ShoreTrans 
forced with 
storm 
erosion from 
IH-LANS 

Short- 
term CA 

– XBeach 
Morphodynamics 

– ShoreTrans 
forced with 
storm 
erosion from 
IH-LANS 

Long-term 
CA 

ShoreTrans 
forced with 
long-term 
shoreline 
changes from 
IH-LANS and 
SLR* 

– ShoreTrans 
forced with 
long-term 
shoreline 
changes from 
IH-LANS and 
SLR* 

– 

No CA – – – –  

Fig. 2. (A) Location of the highly anthropized 40-km coastal stretch between Castellon and Sagunto (Spanish Mediterranean) where the methodology is illustrated. 
(B) Urban beaches are marked with circles. (C) Examples of different typologies of urban beaches. 
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annual standard deviation to obtain the 5th and 95th percentiles. On 
average, the RCP8.5 SLR 5th, 50th and 95th percentiles are expected to 
reach 0.25, 0.30 and 0.36 m by 2050 and 0.75, 0.89 and 1.01 m by 2100, 
respectively, along the study coast. 

We generate two topobathies by integrating different sources of 
topographic and bathymetric information. For one topobathy (TB2005), 
we use the 2009 Digital Terrain Model (DTM) of the Spanish Geographic 
Institute (IGN) based on LIDAR data with a horizontal resolution of 5 m; 
the 2009 nearshore bathymetry of Castellon and Valencia of the Spanish 
Ministry for Ecological Transition and Demographic Challenge 
(MITECO); and the deep-water bathymetry of the European Marine 
Observations and Data Network (EMODnet). To obtain the second top-
obathy (TB2020), we combine the 2016 DTM of the IGN with a hori-
zontal resolution of 5 m (initially 2 m and interpolated to 5 m); an 
update of the 2009 nearshore bathymetry to 2020 using the PNOA 
coastline and satellite images (including digitalisation of structures); 
and EMODnet. In addition, to each cell of the DTMs, we assign a Man-
ning’s roughness value inferred from the land uses of the Corinne Land 
Cover EU database, as done in Toimil et al. (2017a). 

2.4. Probabilistic storm modelling 

The impact of coastal flooding is usually measured by maximum 
flood extents and depths due to common TWL events with a likely return 
period of once every 100 years (e.g., harmonised with the European 
Flood Directive and other regulations). Obtaining these TWL extreme 
values, whether from observations or from a single RCM (or GCM) 
realisation, requires extrapolation of the data, which can result in large 
confidence limits on estimates (Toimil et al., 2020a). It must be added 
that the unusual combinations of processes associated with these events 
make them difficult to forecast because they may be so rare that his-
torical (or simulated) analogues may not have been observed (Milly 
et al., 2002). Finally, the processes that cause extreme events often 
interact and are spatially and temporally dependent (Zscheischler et al., 
2018). Failure to take this dependence into consideration could lead to 
misestimation of real risk (Sayol and Marcos, 2018). 

In the literature, several studies have proposed multivariate statis-
tical models to increase the population of physically and statistically 
possible storms (due to waves and storm surges) that could drive coastal 
flooding (e.g., Wahl et al., 2016; Arns et al., 2017; Sayol and Marcos, 
2018; Lucio et al., 2020). These studies stand apart from the widely 
spread simplifying assumption that the maximum realisations of indi-
vidual TWL variables or their potential extreme combinations have 
already been observed or simulated. However, they have the short-
coming that they do not allow the representation of the interdependence 
relationship between circular variables such as wave direction, and their 
generalisation to n forcing points and therefore their application on a 
regional scale is not straightforward. 

Here, we generate probabilistic multivariate waves and storm surge 
extreme events with spatial dependence by setting up a model that 
couples the monthly-scale extreme multivariate model based on 
Gaussian copulas presented by Lucio et al. (2020) and the multivariate 
directional model developed by Mardia et al. (2008a,b) (hereinafter 
EMM and MDM, respectively), as shown in Eq. (1) by means of the 
probability density function. 

fHsiw ,Tmiw ,Diriw ,SSiss

(
Hsiw,Tmiw,Dirj,SSiss

)
=f

(
Hsiw,Tmiw,Dirj,SSiss

)

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
EMM

f
(
Diriw∕=j

⃒
⃒Dirj

)

⏟̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅⏟
MDM

(1)  

where Hs is the significant wave height; Tm is the mean wave period; Dir 
is the wave direction; SS is the storm surge; iw ∈ [1,2,…n] are the wave 
forcing points; n is the total number of emulated points; iss is the storm 
surge forcing point; and j is the tie point between EMM and MDM. 
Associated with each deep-water storm, we extract Tp and astronomical 
tides (AT) by the application of heteroscedastic regression and by 

random choice from the harmonic reconstructed time series, respec-
tively, and add the corresponding SLR. 

The model represents a generalisation to n forcing points of the 
conditional relationship between linear and directional variables pro-
posed by Wahl et al. (2016). We couple EMM and MDM by means of a 
circular link variable j, from which we extract the directions of the rest of 
the points where the emulator is to be applied (iw ∕= j), denoted here as 
director points. Importantly, this approach is valid provided that the link 
direction captures the dependence between the linear variables and the 
remaining emulated directions, which allow limiting the conditional 
dependence modelled with the MDM to a single direction modelled with 
the EMM. The emulator captures the seasonality of storms by fitting the 
EMM to the marginal variables monthly. 

We apply the multivariate EMM-MDM emulator to derive synthetic 
storms for each RCP, RCM realisation, and time period (1986–2005, 
2026–2045 and 2081–2100) (25 combinations). The first step consists of 
collecting wave conditions and water levels at locations near the outer 
contour of what is to be the SWAN propagation grid (boundary points). 
The second step entails the design and application of a storm selection 
criterion. We use a TWL indicator that combines AT, SS, wave setup and 
infragravity swash, the latter two components of which are defined with 
the semi-empirical formulation of Stockdon et al. (2006) for dissipative 
beaches: 

TWL=
1
nt

∑nt

i=1

(
ATi + SSi +

(
0.016+ 0.03

) ̅̅̅̅̅̅̅̅̅̅̅̅
H0i L0i

√
)

(2)  

where nt is the number of forcing points on the contour; and H0 and L0 
are the wave height and length in deep water, respectively. Note that we 
neglect the 1.1 skewness factor as we do not consider the high-frequency 
contribution of waves. This TWL proxy is only used to identify storm 
conditions from which to extract the forcing variables on which to apply 
the emulator. Thus, the generated storms are not sensitive to this 
formulation. 

We select monthly maximum TWL values from September to April 
(both included) and their corresponding forcing variables (Hs, Tm, Dir, 
SS, and AT) for the 25 combinations of RCP, RCM, and time period at all 
boundary points. This time window allows us to have a population of 
extreme events large enough to ensure statistical robustness while rep-
resenting actual storms (in the Mediterranean Sea, storms occur pre-
dominantly in late fall, winter, and early spring, as stated in Sayol and 
Marcos, 2018). After selecting such maximum monthly TWL values, we 
perform a correlation analysis to check the correlation between contour 
points and identify certain highly correlated groups. We identify the 
clusters and their centroids (director points) by applying the K-means 
technique, considering the marine climate of the area and the bathym-
etry. The next step is the EMM-MDM emulator, which consists of 
obtaining fitting parameters that can best reproduce the statistical and 
interdependence relationships of the dynamic simulations of wave 
conditions and storm surges. We obtain the distribution function of each 
variable independently and the correlation matrix in the probability 
space for the EMM and use a mixing distribution composed of several 
multivariate von Mises distributions (Mardia, 1975; Mardia et al., 
2008a,b) for the MDM. The last step is the synthetic generation of 
monthly extreme events that may cause coastal flooding. We apply 
Monte-Carlo techniques to emulate 100,000 multivariate storms for all 
the combinations. We extract random realisations of the EMM (Hsiw, 
Tmiw, Dirj and SSiss) that couple with the MDM through Dirj, which also 
allows the remaining Diriw to be randomly determined. 

2.5. Long- and short-term topo-bathymetry updates 

The objective of topobathy updates is to account for long-term 
shoreface changes in surf-zone hydrodynamic modelling (including 
morphodynamics) and long-term shoreface changes and storm erosion 

A. Toimil et al.                                                                                                                                                                                                                                  



Coastal Engineering 179 (2023) 104248

7

in hydraulic modelling. When coastal flooding and erosion are fully 
coupled, we first perform the long-term topobathy translation (diagonal 
or forward-backward profile displacement depending on the type of 
sediment transport), then the hydrodynamic modelling and finally the 
short-term topobathy adjustment (storm-driven erosion of the upper 
part of the profile and deposition in the lower part). In the simplified 
approaches, only one topobathy update applies in each case. 

For the topobathy update, we first develop a two-level shoreline 
discretisation, from which we obtain one set of low-resolution (LR) 
transects (spaced 200 m apart) and one set of high-resolution (HR) 
transects (spaced 10 m apart). The LR set is used as a guardrail to guide 
shoreline change estimates (forward or backwards movement) obtained 
with IH-LANS, a multi-process numerical model that has shown skill in 
predicting shoreline evolution in highly anthropised coasts (Alvar-
ez-Cuesta et al., 2021a). IH-LANS has a hybrid nearshore downscaling 
tool that allows the incorporation of detailed wave spectral information 
(spectral partitions) from RCMs and a breaking propagation routine. In 
response to waves and water levels, the model computes longshore and 
cross-shore transport considering the effects of human interventions (Eq. 
(3)). IH-LANS yields a time series of shoreline positions with reduced 
calibration uncertainty, as it integrates an extended Kalman filter for the 
assimilation of shoreline observations. 

∂Y
∂t⏟⏞⏞⏟

Total
shoreline change

=
∂Yl

∂t⏟⏞⏞⏟
Longshore

shoreline changes

+
∂Yc

∂t⏟⏞⏞⏟
Cross− shore

shoreline changes

(3)  

∂Yl

∂t
= −

1
B + dc

∂Q
∂x

⏟̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅ ⏟
Longshore transport

gradients

+
1

B + dc
q

⏟̅̅̅̅ ⏞⏞̅̅̅̅ ⏟
Sediment sinks

and sources

+ vlt⏟⏞⏞⏟
unresolved
processes  

∂Yc

∂t
= K+/−

c

[
Yeq

c − Yc
]

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
Short− term cross− shore

transport  

where Y is the distance measured along the transect from a reference 
line (e.g. the onshore profile point) to the shoreline (mean high-water 
contour) and computed as the summation of the shoreline position 
associated with longshore (Yl) and cross-shore processes (Yc). B is the 
berm height; dc is the depth of closure; ∂Q/∂x are the longshore transport 
gradients; q/dc is the shoreline change rate due to sediment sinks (q < 0)
and sources (q > 0); vlt is a long-term trend that accounts for unresolved 
processes (assimilation residue); K+/−

c is the cross-shore accretion/ 
erosion rate; and Yeq

c defines the cross-shore equilibrium position. In IH- 
LANS, the longshore transport gradients are computed using the CERC 
equation (USACE, 1984), which depends on the energy flux in the 
breaker zone. 

The cross-shore equilibrium position (Yeq
c ) is defined following Miller 

and Dean (2004) but including the tide effects, as in Toimil et al. 
(2017b): 

Yeq
c =Δy0 − Wb

(
0.106Hb + SS + AT

B + hb

)

(4)  

where Δy0 is an empirical constant that assures that short-term fluctu-
ations oscillate around a baseline position, Wb is the surf zone width 
calculated assuming a Dean’s shaped profile (Dean, 1991) Wb =
(

Hb/γA
)1.5

, Hb is the breaking wave height, γ is the wave breaking co-

efficient (γ = 0.55), A is the Dean’s profile parameter and hb is the depth 
of breaking hb = Hb/γ. 

The extended Kalman filter allows IH-LANS to assimilate observa-
tions and self-calibrate its free parameters, which are the longshore 
transport constant of the CERC equation, the cross-shore accretion and 
erosion rates (K+/−

c ) and the unresolved processes trend (vlt). 

According to Eq. (3), the shoreline response to wave and sea level 
conditions has a longshore and a cross-shore component, which are 
modelled uncoupled and then added. Longshore transport gradients and 
SLR effects (in this case not considered with IH-LANS but with Shore-
Trans) are long-term processes (i.e., from years to decades) that result 
from mean climate conditions. Short-term cross-shore sediment trans-
port occurs at shorter time scales and includes seasonal and interannual 
shoreline variations and storm erosion due to extreme weather events. 

We use long- and short-term estimates of shoreline change from IH- 
LANS simulations together with SLR to force ShoreTrans along the 4137 
HR transects. ShoreTrans is a simple, rule-based, user-input-driven, 
shoreface translation and sediment budgeting model that applies sur-
veyed profiles to estimate changes in realistic coastlines that result from 
SLR and variations in sediment supply (McCarroll et al., 2021). The main 
difference between ShoreTrans and other methods for translating sur-
veyed profiles is that ShoreTrans explicitly resolves volume conserva-
tion over real profiles rather than theoretical ones (e.g., in Erikson et al., 
2017, a Bruun-like profile is used to determine the landwards and up-
wards movement of the surveyed profiles due to SLR). 

ShoreTrans uses different algorithms to update profiles depending on 
the time scale of the processes considered. Profile parameterisation and 
kinematics are shown in Fig. 3. For long-term processes (long-shore 
transport and SLR), the active depth extends between the berm (yb, zb) 
and the depth of closure (ydc, zdc). For short-term erosion, profile 
reference points are beachface top (ytb, ztb), the beachface bottom (ybb, 
zbb), the erosion-accretion inflection point (yp, zp) and the storm bar 
bottom (ysb, zsb). Longshore transport kinematics alter the initial pro-
file by a shoreward (erosion) or seaward (accretion) movement 
(Fig. 3b). In case of short-term erosion, the beachface recedes inland and 
an erosion wedge is formed until the pivot point (Fig. 3c). This process is 
assumed to produce a net zero volume change. As a result, an accreted 
sinusoidal shape is generated between the pivot point and the storm bar 
bottom. The mechanism of the translation model due to SLR is to shift 
the active profile up by the change in sea level and onshore to the point 
at which net volume change is zero (diagonal profile shift, Fig. 3d). In 
case of a Dean’s shaped profile (Dean, 1991), the shoreward movement 
coincides with the Bruun’s rule retreat (Bruun, 1962). As such, while 
long-term processes are modelled through a simple active profile 
translation, profile displacement associated with short-term erosion 
implies beachface changes and the formation of an erosion bar. 

2.5.1. Long-term topo-bathymetry update 
We compute an indicator of long-term shoreline change (pro-

gradation or retreat) along each LR transect for 2045 and 2100 relative 
to 2020 (hereinafter C2045 and C2100, respectively) by subtracting the 
2-year average initial position (Yl,t) from the 2-year average final posi-

Fig. 3. Parameterisation and representation of profile kinematics used 
in ShoreTrans. 
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tion of the shoreline (Yl,t+1) from each IH-LANS RCP-RCM simulation. 
We assign LR transect-related C2045 and C2100 values to HR transects 
using distance-based interpolation. We transform these shoreline shifts 
into HR profile volumes (hereinafter V2045 and V2100, in m3/m) by 
multiplying them by the RCP-RCM active depth computed at each HR 
transect in 2045 and 2100 following: 

ΔV =
(
Yl,t+1 − Yl,t

)
(B+ dc) (5)  

where Yl, refers to the longshore shoreline position calculated using the 
first right-hand side term in Eq. (3). 

Given an initial profile defined by its in-plane y(t) and z(t) co-
ordinates, the new elevation at time (t + 1) results: 

zt+1(y)= zt(y − ΔY) + ΔSLR a< y< b (6)  

where ΔY is the unknown horizontal displacement associated with both 
longshore and SLR changes; and Δ SLR is the vertical profile displace-
ment between instant t and t+1. The domain is bounded by the active 
profile, being at the onshore limit a = yb + Δ Y and b the offshore limit b 
= ydc + Δ Y. 

To solve for ΔY, F(ΔY) is solved algorithmically with an optimisation 
routine that minimises it. 

F(ΔY)=
∫ b

a
[zt+1(t) − zt(t)]dy + ΔV (7)  

where V is the net profile volume change due to longshore processes 
(V2045 and V2100) from IH-LANS (Eq. (5)). 

This approach considers three cases: ΔSLR = 0;ΔV ∕= 0 no change 
due to SLR and longshore volume change in the profile (Fig. 3b); ΔSLR ∕=

0;ΔV = 0 change due to SLR without longshore volume change in the 
profile (Fig. 3d); and ΔSLR ∕= 0;ΔV ∕= 0 change due to SLR and long-
shore volume change in the profile (Fig. 3b and d). 

In the case of a seawall, we apply the same procedure and then 
transfer the potential erosion in the shoreward part of the non-erodible 
structure to the offshore area adjacent to the wall. The eroded sediment 
is distributed in a triangular wedge that extents offshore a distance equal 
to 1/3 of the extent of the active profile from the structure’s toe. 

We apply ShoreTrans for 3 sets of forcing conditions: 1) RCP- 
averaged V2045 and SLR 50th percentile in 2045; 2) RCP4.5 V2100 
and SLR 50th percentile in 2100; and 3) RCP8.5 V2100 and SLR 50th 
percentile in 2100. Using TB2020 as the baseline we obtain 3 new sets of 
HR transects: 1 for 2045 (RCP averaged) and 2 for 2100 (for RCP4.5 and 
RCP8.5). We transform each set of HR transects into a grid of points (1 ×
10 m) that we interpolate to generate TB2045LT, TB2100LT_RCP4.5 and 
TB2100LT_RCP8.5, all with a resolution of 5x5 m. The area not covered 
by the profile interpolation (i.e., that beyond beaches) is filled with 
TB2020 (5 × 5 m). 

2.5.2. Short-term topo-bathymetry update 
We force the 2D flood model with return periods of TWL obtained 

from fitting an extreme value function to a sample of thousands of 
storms, some of which are modelled using SWAN (offshore to nearshore 
propagation) and XBeach (hydrodynamics and morphodynamics 
computation) and the rest reconstructed using statistical tools. Mor-
phodynamic changes associated with TWL return periods are thus un-
known. Without such information available, we compute an average 
storm erosion from IH-LANS simulations and use it as input for Shore-
Trans to produce ST and FULL topobathies over TB2020 and LT top-
obathies, respectively. 

We determine the magnitude of large yet representative storm 
erosion events along LR transects by identifying erosion peaks above the 
95% threshold (Fang et al., 2013) from each RCP-RCM cross-shore 
shoreline position simulation (second right-hand side term in Eq. (3)) 
and averaging their values over 1986–2005, 2026–2045 (RCP averaged) 
and 2081–2100 (for RCP4.5 and RCP8.5). As such, we obtain only one 

average storm representative of the conditions associated with each 
topobathy. We interpolate LR cross-shore shoreline retreat to HR tran-
sects using distance-based interpolation and transform them into storm 
profiles following the approach of Kinsela et al. (2017), included in 
ShoreTrans. This approach considers the storm-response kinematics 
represented in Fig. 3c. 

We translate each set of HR transects into a grid of points (1 × 10 m) 
that we interpolate to generate TB2005ST/TB2005FULL, TB2045ST, 
TB2100ST_RCP4.5 and TB2100ST_RCP8.5 (on TB2005 the first and 
TB2020 the rest) and TB2045FULL, TB2100FULL_RCP4.5 and 
TB2100FULL_RCP8.5 (on TB2045LT, TB2100LT_RCP4.5 and 
TB2100LT_RCP8.5, respectively), all with a resolution of 5x5 m. The 
area not covered by the profile interpolation is filled with the corre-
sponding reference topobathy (5 × 5 m). 

For clarity, Table 2 summarises the topobathies generated in this 
study, including the basis on which they are made and the processes 
incorporated in ShoreTrans for their production. 

2.6. Hybrid downscaling and hydro-morphodynamic modelling 

We consider that the wave contribution to TWL occurs in terms of 
dynamic wave setup (DWS). DWS can be defined as the sustained 
elevation of the water level due to the transference of wave-related 
momentum to the surf zone (static setup) plus a long-period oscil-
lating component. Although DWS can be determined semi-empirically 
(Gomes da Silva et al., 2020), the complex interactions that occur be-
tween hydrodynamics and morphodynamics can be accounted for only 
by means of numerical modelling. 

Here, we apply a hybrid downscaling methodology (following that of 
Camus et al., 2011) that combines statistical tools (a selection algorithm 
and RBFs) and numerical models (SWAN, Booij et al., 1999; and XBeach 
1D) to compute the DWS and associated morphological changes. The 
first step is the definition of the computational domain for SWAN, which 
is composed of one global grid (500 × 500 m) one-way nested to three 
high-resolution grids (50 × 50 m). The global grid must be aligned with 
the storm modelling, as the wave conditions and water levels required to 
generate the storms have to be collected at the outer contour points of 
this grid. In the second step, we apply the maximum dissimilarity al-
gorithm to select 5 subsets of storms with 500 cases each that well 
represent the full sample of storms for each topobathy. The third step is 
the propagation of the selected storm-related wave conditions using 
SWAN. We obtain 4x500 cases of wave parameters at a 10 m depth every 
200 m along the coast. 

The next step is the extraction of 5 sets of 247 beach profiles (coin-
cident in space with LR transects, spaced 200 m apart) from the top-
obathy TB2005 (reference) and from topobathies TB2020, TB2045, 

Table 2 
Summary of main characteristics of the topobathies generated in this study.  

Topo-bathymetry Baseline topo-bathymetry ShoreTrans processes 

TB2005 IGN (2009) + MITECO 
(2009) 

– 

TB2005ST TB2005 Short-term erosion 
TB2020 IGN (2016) + MITECO 

(2020) 
– 

TB2020ST TB2020 Short-term erosion 
TB2045ST TB2020 Short-term erosion 
TB2045LT TB2020 Long-term shoreline changes 

& SLR 
TB2045FULL TB2045LT Short-term erosion 
TB2100ST_RCP4.5 TB2020 Short-term erosion 
TB2100LT_RCP4.5 TB2020 Long-term shoreline changes 

& SLR 
TB2100FULL_RCP4.5 TB2100LT_RCP4.5 Short-term erosion 
TB2100ST_RCP8.5 TB2020 Short-term erosion 
TB2100LT_RCP8.5 TB2020 Long-term shoreline changes 

& SLR 
TB2100FULL_RCP8.5 TB2100LT_RCP8.5 Short-term erosion  
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TB2100_RCP4.5 and TB2100_RCP8.5. Profiles extend from a depth of 10 
m to the berm, taking advantage of the nearshore downscaled storm- 
related wave conditions. We run calibrated XBeach (see Supplemen-
tary Material for details) over these profiles to solve DWS and mor-
phodynamics related to the corresponding subsets of 500 storms. We 
force XBeach with a series of hourly JONSWAP spectra that generate a 
72-h synthetic storm (a typical value of storm duration accepted for the 
Mediterranean Sea region, Marcos et al., 2009). The shape of the storm is 
parametrized based on historic records and accounts for water levels 
(SS, AT and SLR). The last step is the reconstruction of the complete 
sample of DWS using RBFs. RBFs allow us to define statistical relation-
ships between offshore wave parameters and surf-zone conditions, 
which are the outputs of XBeach. 

2.7. Extreme value analysis and hydraulic modelling 

Once the hybrid method is completed, we compute TWLs associated 
with the 100,000 storms for the 25 combinations of RCP, RCM, and time 
period by summing DWSs and their corresponding SSs and ATs linearly. 
We fit a 3-parameter generalised extreme value (GEV) distribution to 
each of the 25 sets of 100,000 values. Although future storms account for 
climate change in the distribution of wave conditions and storm surges 
over time, intra-period variation trends are not significant, so a sta-
tionary fit can be justified in this case (see Supplementary Material for 
further details). 

Having such a large population of storms allows us to determine TWL 
values of high return periods that are statistically robust because they 
are based on the EMM-MDM emulator. We obtain the 100-year TWL 
(TWL100) in the time horizons (H) 2045 and 2100 (plus the baseline 
2005), to which we add SLR (5th, 50th and 95th percentiles) for the 
different RCPs. These TWL100 values are used to define tidal profiles 
with a shape similar to that of the Storm Gloria peak, which are the 
forcings of the 2D flood model that we use to produce flood maps. 

RFSM-EDA (Jamieson et al., 2012) is an efficient hydraulic model 
that provides water depth over ground following the impact-zone 
approach (Gouldby et al., 2008) but incorporates the local accelera-
tion term of the Saint Venant equations and an adaptive time step. Its 
algorithm allows the consideration of topography as a sub-element in a 
computational mesh that adapts to the terrain features, and it is sensitive 
to Manning’s roughness. 

3. Results 

The most important outcomes of the methodology are the generation 
of multivariate projected storms (that we then propagate from deep 
water to the surf zone); the updating of the topobathies on which we 
simulate TWL and/or coastal flooding based on SLR and projections of 
long-term shoreline changes and storm erosion; and the analysis of the 
influence of the combined effect of future storms and shoreface changes 
on the TWL and the flooded area. For the scenarios and CA considered, 

Table 3 
TWL modelling characteristics for the scenarios considered. ShoreTrans and XBeach inputs and forcing conditions. *: We simulate 500 storms representative of the 
conditions associated with each topobathy and then use these simulations to reconstruct the complete sample.  

Scenario & 
CA 

TWL modelling characteristics 

Baseline topo- 
bathymetry 

ShoreTrans forcing conditions XBeach topo- 
bathymetry 

XBeach modules 
activated 

XBeach forcing conditions 

2005 
NO/LT 
CA 

TB2005 – TB2005 Hydrodynamics 100,000* storms for each RCM over 1985–2005 
(cluster 1) 

2005 
ST/FULL 
CA 

TB2005 – TB2005 Hydrodynamics & 
morphodynamics 

2045 
NO CA 

TB2020 – TB2020 Hydrodynamics 100,000* storms for each RCP-RCM combination 
over 2026–2045 and 2081–2100 (cluster 2) & 3 
SLR percentiles 2045 

ST CA 
TB2020 – TB2020 Hydrodynamics & 

morphodynamics 
2045 

LT CA 
TB2020 RCP-averaged V2045 from IH- 

LANS and SLR 50th percentile in 
2045 

TB2045LT Hydrodynamics 100,000* storms for each RCP-RCM combination 
over 2026–2045 (cluster 3) & 3 SLR percentiles 

2045 
FULL CA 

TB2045LT – TB2045LT Hydrodynamics & 
morphodynamics 

2100 
RCP4.5 
NO CA 

TB2020 – TB2020 Hydrodynamics 100,000* storms for each RCP-RCM combination 
over 2026–2045 and 2081–2100 (cluster 2) & 3 
SLR percentiles 

2100 
RCP4.5 
ST CA 

TB2020 – TB2020 Hydrodynamics & 
morphodynamics 

2100 
RCP4.5 
LT CA 

TB2020 RCP4.5 V2100 from IH-LANS 
and SLR 50th percentile in 2100 

TB2100LT_RCP4.5 Hydrodynamics 100,000* storms for each RCP4.5-RCM 
combination over 2081-2100 (cluster 4) & 3 
RCP4.5 SLR percentiles 

2100 
RCP4.5 
FULL CA 

TB2100LT_RCP4.5 – TB2100LT_RCP4.5 Hydrodynamics & 
morphodynamics 

2100 
RCP8.5 
NO CA 

TB2020 – TB2020 Hydrodynamics 100,000* storms for each RCP-RCM combination 
over 2026–2045 and 2081–2100 (cluster 2) & 3 
SLR percentiles 

2100 
RCP8.5 
ST CA 

TB2020 – TB2020 Hydrodynamics & 
morphodynamics 

2100 
RCP8.5 
LT CA 

TB2020 RCP8.5 V2100 from IH-LANS 
and SLR 50th percentile in 2100 

TB2100LT_RCP8.5 Hydrodynamics 100,000* storms for each RCP8.5-RCM 
combination over 2081-2100 (cluster 5) & 3 
RCP8.5 SLR percentiles 

2100 
RCP8.5 
FULL CA 

TB2100LT_RCP8.5 – TB2100LT_RCP8.5 Hydrodynamics & 
morphodynamics  
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Table 3 and Table 4 summarises the main characteristics of the TWL and 
coastal flood modelling, including ShoreTrans, XBeach and RFSM-EDA 
inputs and forcing conditions. We elaborate on the results and analyse 
the contribution of each climate-related uncertainty source to the TWL 
and the flooded area. 

3.1. Probabilistic storm conditions 

We apply an EMM-MDM emulator composed of two coupled multi-
variate models (extreme-based and directional) to generate multivariate 
storms at the regional scale considering spatial dependence. While the 
EMM allows us to capture the dependence between linear variables, for 
circular variables, we apply the MDM. For instance, Fig. 4 shows the 
probability density function of the MDM for RCP4.5 MEDC 2026–2045, 
where three mono-modal multivariate von Mises Tθi(θ) distributions are 
fitted to three clusters. We combine these distributions with their 
occurrence probabilities to obtain the mixing multivariate directional 
distribution fθ(θ) that considers all possible incoming storm directions, 
where the most likely cluster (probability of 0.64) has a mode centred on 
Dir3 = 63◦, Dir6 = 65◦ and Dir9 = 70◦. We fit the EMM to three director 
points and derive the monthly cross-correlation matrix of the variables 
involved (HS3, HS6, HS9, Tm3, Tm6, Tm9, Dir6, and SS5), which are trans-
formed to the probability space through their marginal distribution 
functions. We select the directional clusters of the MDM and the director 
points of the EMM based on bathymetric changes and the marine climate 
of the area, respectively. 

We generate 100,000 multivariate storms for the 25 combinations of 
RCP, RCM, and time period. The emulator can capture the physics of 

wave generation with respect to the interdependence between the var-
iables. As an example, Fig. 5 shows the skill of the EMM-MDM in 
reproducing the statistical relationships between the linear variables 
HS3, Tm3 and SS5 and the circular variable Dir3 by the conditional 
dependence through Dir6. We represent both the observations and sta-
tistical emulation in matrix form. Panels a–f illustrate the scatter plots of 
observed and simulated data; Panels e–j show the univariate GEV annual 
distribution function of HS3, Tm3 and SS5 and the empirical polar density 
function of Dir3; and Panels k–p represent the comparison between the 
observed and emulated empirical bivariate density functions, where the 
goodness of fit of the MME is quantitatively validated. Additional in-
formation and validation figures can be found in the Supplementary 
Material. 

For the synthetic generation of storms, we enter the marginal dis-
tribution of each variable with normal random vectors and then extract 
k random realisations of the vector [HS3, HS6, HS9, Tm3, Tm6, Tm9, Dir6, 
SS5]k. All the EMM realisations are linked to the MDM through Dir6. In 
every case, Dir3 and Dir9 are obtained from the MDM by randomly 
extracting a realisation of the conditional density trivariate function 
fDir3 ,Dir9 |Dir6 (Dir3,Dir9|Dir6). Tp is determined from the calibrated hetero-
scedastic model, and AT values are derived by selecting a random value 
of the month and year from the time series of AT reconstructed from 
harmonics. 

3.2. Long- and short-term topo-bathymetry updates 

We use the IH-LANS simulations produced by Alvarez-Cuesta et al. 
(2021b), which consist of an hourly time series of shoreline changes 

Table 4 
Coastal flood modelling characteristics for the scenarios considered. ShoreTrans and RFSM-EDA inputs and forcing conditions.  

Scenario & 
CA 

Coastal flood modelling characteristics 

Baseline topo- 
bathymetry 

ShoreTrans forcing conditions RFSM-EDA topo- 
bathymetry 

RFSM-EDA forcing conditions 

2005 
NO/LT CA 

TB2005 – TB2005 TWL100 for each RCM 

2005 
ST/FULL 
CA 

TB2005 Average storm erosion over 1986–2005 from IH- 
LANS 

TB2005ST/FULL 

2045 
NO CA 

TB2020 – TB2020 TWL100 for each RCP-RCM combination & 3 SLR 
percentiles 

2045 
ST CA 

TB2020 RCP-averaged average storm erosion over 
2026–2045 from IH-LANS 

TB2045ST 

2045 
LT CA 

TB2020 RCP-averaged V2045 from IH-LANS & SLR 50th 
percentile in 2045 

TB2045LT 

2045 
FULL CA 

TB2045LT RCP-averaged average storm erosion over 
2026–2045 from IH-LANS 

TB2045FULL 

2100 
RCP4.5 
NO CA 

TB2020 – TB2020 TWL100 for each RCP4.5-RCM combination & 3 
RCP4.5 SLR percentiles 

2100 
RCP4.5 
ST CA 

TB2020 RCP4.5 average storm erosion over 2081–2100 
from IH-LANS 

TB2100ST_RCP4.5 

2100 
RCP4.5 
LT CA 

TB2020 RCP4.5 V2100 from IH-LANS and SLR 50th 
percentile in 2100 

TB2100LT_RCP4.5 

2100 
RCP4.5 
FULL CA 

TB2100LT_RCP4.5 RCP4.5 average storm erosion over 2081–2100 
from IH-LANS 

TB2100FULL_RCP4.5 

2100 
RCP8.5 
NO CA 

TB2020 – TB2020 TWL100 for each RCP8.5-RCM combination & 3 
RCP8.5 SLR percentiles 

2100 
RCP8.5 
ST CA 

TB2020 RCP8.5 average storm erosion over 2081–2100 
from IH-LANS 

TB2100ST_RCP8.5 

2100 
RCP8.5 
LT CA 

TB2020 RCP8.5 V2100 from IH-LANS and SLR 50th 
percentile in 2100 

TB2100LT_RCP8.5 

2100 
RCP8.5 
FULL CA 

TB2100LT_RCP8.5 RCP8.5 average storm erosion over 2081–2100 
from IH-LANS 

TB2100FULL_RCP8.5  
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from 1990 to 2100. By means of an extended Kalman filter, free-model 
parameters were self-calibrated and validated over the periods 
1990–2010 and 2010–2020, respectively, using satellite-derived obser-
vations, thus allowing us to reduce knowledge uncertainty. 
Satellite-derived shorelines were obtained from the Landsat-5, Land-
sat-8 and Sentinel-2 campaigns using the Coast-Sat algorithm (Vos et al., 
2019). To produce these simulations, IH-LANS was forced with wave 
and storm surge projections for 2 RCPs and 5 RCMs (IHCantabria, 2020) 
and the reconstruction of the astronomical tide. We obtain the shoreline 
positions in 2045 and 2100 by joining the HR transect-related 
RCP-averaged C2045, RCP4.5 C2100 and RCP8.5 C2100 along the 
coast of study. The contribution of longshore sediment transport to 
long-term coastline position is substantial on some beaches, leading to 
erosion and accretion at approximately 30 m (in 40% of the beaches) 
and 15 m (in 30% of the beaches) in 2050 and up to 90 m and 35 m in 
2100, respectively. Although we find that the results are very similar 
between RCPs, considering that SLR is an additional input for Shore-
Trans, we average shoreline changes in 2045 but not in 2100. 

We apply ShoreTrans and obtain 4137 HR transects updated in 
response to the combined effect of longshore sediment transport (RCP- 
averaged V2045, RCP4.5 V2100 and RCP8.5 V2100 from IH-LANS) and 
SLR (RCP-averaged 2045, 2100 RCP4.5 and 2 100 RCP8.5 50th 
percentile). Surveyed beach profiles are translated landwards/seawards 
due to longshore transport and upwards and landwards while 
conserving volume due to SLR. Comparing long-term updated top-
obathies with TB2020 allows us to assess the volume of sediment 
accreted or eroded, the volume of sediment mobilised, and the sediment 
budget (gains/losses). As an example, Fig. 6 shows long-term erosion 
and accretion patterns for TB2045LT, TB2100LT_RCP4.5 and 
TB2100LT_RCP8.5 with respect to TB2020 in Nules and Corinto. In 
Nules, beach compartments between groynes rotate counter-clockwise 

following the direction of the mean wave energy flux (northeast), 
which is further accentuated in 2100 at the same time as they retreat, 
especially for the RCP8.5. Due to SLR and longshore transport, the 
sediment volume mobilised in Nules in 2045 increases at the end of the 
century by 97% for RCP4.5 and beyond 100% for RCP8.5. 

In Corinto, sediment gains in 2045 almost triple those in 2100 
regardless of the RCP. Corinto is second to Canet, the beach where the 
most sediment is mobilised in any event (175,523.69 m3 in 2045 and up 
to 451,758.71 m3 in 2100), having both erosion and accretion volumes 
increased with time and radiative forcing. Overall, longshore drift cau-
ses the northern beaches (Torre, Burriana, Nules, Moncofar, Chilches, 
Llosa and Almenara) to lose sediment, which accumulates in the 
southern beaches (Corinto, Canet and Sagunto). 

Additionally, Fig. 6 shows SLR-driven erosion and deposition pat-
terns in the Nules and Corinto surveyed profiles. Using the time series of 
shoreline evolution from IH-LANS (Alvarez-Cuesta et al., 2021b), we 
also obtain average storm erosion along each HR transect for 
1986–2005, (RCP-averaged) 2026–2045, and (RCP4.5 and RCP8.5) 
2081–2100 considering each RCP-RCM simulation. The results show 
that the beaches with the highest average storm erosion are Canet 
(13.92–16.12 m), Corinto (13.17–15.16 m) and Sagunto (10.80–12.50 
m), a ranking that is maintained for the different periods and RCPs. 
Fig. 7 presents storm erosion and accretion patterns in Llosa for 
TB2005FULL with respect to TB2005 and for TB2045FULL, 
TB2100FULL_RCP4.5 and TB2100FULL_RCP8.5 with respect to 
TB2045LT, TB2100LT_RCP4.5 and TB2100LT_RCP8.5, respectively. As 
can be observed, unlike long-term shoreface translation, storm erosion 
results in a readjustment of sand volumes that erode at the beach front 
and are deposited in the lower part of the surveyed profiles, making 
them more dissipative. As we move farther away in time and for higher 
radiative forcing, the long-term topobathy is set back further, and above 

Fig. 4. Probability density function of the MDM for the RCP4.5-MEDC-2026-2045 combination. Panels b, c and f represent the discrete observations over the fitted 
probability density function. Panels a, e and i show the multi-modal marginal distributions. Panels d, g and h show the bivariate representation of the trivariate 
density function and their marginal distributions in space. 
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that, storm erosion pushes the coastline further backwards (with blue 
and green solid lines corresponding to long-term and full CAs, respec-
tively). The storm volumes displaced in Llosa amount to 23523.10 m3 

(2005), 22641.96 m3 (RCP-averaged 2050), 24698.41 m3 (RCP4.5 
2100) and 19478.12 m3 (RCP8.5 2100). 

3.3. Effect of the coupling approach on total water level estimates 

To analyse the effect of considering shoreface changes on TWL, we 
compare the results of the 4 CAs. As shown in Table 2, for the reference 
period, we simulate all the CAs over TB2005, where the full and short- 
term CAs and the long-term and no CAs are coincident due to the non- 
consideration of SLR and because TB2005 is based on 2009 LIDAR 
data, respectively. For future TWL simulations, we consider TB2020 for 
the short-term and no CAs, as no long-term shoreface translation applies, 
and TB2045LT, TB2100LT_RCP4.5 and TB2100LT_RCP8.5 for the full 
and long-term CAs (Table 3). In full and short-term CA simulations, 
XBeach morphodynamics is enabled (Table 1). 

Fig. 8 presents the probability density functions (PDFs) of TWL in 
Almenara for the full CA. The first row of panels shows the 5 GEV fits 
(each of which is based on 100,000 TWL values) for each RCM and RCP 
(when applicable) in 2005, 2045 and 2100. Future fits are shifted up-
wards based on SLR percentiles. The second and third panel rows allow 
visualisation of two examples: RCM variability for the SLR 50th 
percentile and SLR variability for the EART model, respectively. Looking 
at the SLR variability, the TWL100 spread range becomes larger for 

longer time horizons and higher radiative forcing. If focusing on the SLR 
50th percentile, the inter-RCM TWL100 spread range moves upwards in 
2045 (up to 1.80–2.20 m) and 2100 (up to 1.95–2.35 m) with respect to 
2005 (~1.70–1.95 m). For the EART model, the variation in the spread 
range between RCPs is smaller in 2045 than in 2100. This is affected by 
the divergence of RCP-SLR in 2 100 and by the shape of the beach 
profile, as changes in the foreshore slope in the profile section where sea 
level oscillates modulate the wave setup and hence the TWL spread 
range. Shoreface changes also play a key role in TWL inter-CA vari-
ability. If the long-term CA were applied, in 2005, 2045 and 2100 
(RCP4.5), extreme TWL estimates would be close to those of no CA, as in 
Almenara, storms smoothen the foreshore slope more than SLR. In 2100 
(RCP8.5), a higher SLR would cause these effects to offset each other, 
with short- and long-term CAs yielding similar values. The standard 
approach (no CA) could lead to overestimation of TWL100 by up to 25% 
(~5% mean values) with respect to the full CA. The equivalent PDFs of 
TWL for the short-term, long-term and no CAs are shown in the Sup-
plementary Material. Although longshore transport seems to have no 
influence on TWL (as it does not modify the shape of the shoreface), this 
may not necessarily be the case in situations of coastal squeeze when the 
coastline reaches its non-erodible limit (e.g., a seawall or a promenade). 

To further analyse the influence of the choice of the CA on TWLs, 
Fig. 9 shows TWL100 values factorised by CA and grouped by time ho-
rizon and RCP in Burriana, Chilches, Almenara, and Sagunto. As SLR 
progresses, the full and short-term CAs diverge. Almenara and Chilches 
follow the same pattern, as do Burriana and Sagunto, which relates to 

Fig. 5. Validation of the EMM-MDM emulator in one of the director points (point 3). Observations (red) are compared to simulated data (black).  
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Fig. 6. Long-term erosion and accretion patterns in Nules and Corinto for TB2045LT, TB2100LT_RCP4.5 and TB2100LT_RCP8.5 with respect to TB2020.  

Fig. 7. Short-term erosion and accretion patterns in Llosa for TB2005FULL with respect to TB2005 and for TB2045FULL, TB2100FULL_RCP4.5 and 
TB2100FULL_RCP8.5 with respect to TB2045LT, TB2100LT_RCP4.5 and TB2100LT_RCP8.5, respectively. 
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the shape of their profiles on which SLR and storms act. Almenara and 
Chilches have abrupt profiles but no major irregularities in the swash 
zone. The full CA for these beaches leads to the most dissipative profiles 
and the lowest TWL100. With respect to the full CA in 2100, the short- 
term, long-term and no CAs provide, in relative terms, increased 
TWL100 mean values by up to ~3%, ~4% and ~6% in Almenara and by 
up to ~2%, ~11% and ~17% in Chilches. The pattern in Burriana and 
Sagunto is different from that in Almenara and Chilches due to the 
presence of singularities in the profile swash zone. Storms acting above 
higher sea levels reach parts of the surveyed profiles with high jumps 
and flat areas, leading to non-linear changes in foreshore slope and 
affecting wave setup. In Burriana, the lowest TWL is reached with the 
short-term CA. With respect to the full CA, the short-term CA un-
derestimates the TWL100 mean values by ~5%–6%, and the long-term 
CA overestimates the TWL100 mean values by ~4%–5%. In Sagunto, 
any CA other than the full CA underestimates the full CA TWL100 mean 
value for any scenario and time horizon (~1%–7%), except for the long- 
term CA in 2100 due to SLR. 

We also quantify the relative contributions of SLR percentiles, RCMs, 
and type of CA to TWL100 total uncertainty by applying three-factor 
ANOVA-based variance decomposition (Storch and Zwiers, 1999). 
Fig. 10 presents the results for Burriana, Chilches, Almenara, and 
Sagunto in 2005, 2045, and 2100 for both RCP4.5 and RCP8.5, where 
the variance partitioning is compared considering the TWL obtained 
from all CAs. The findings are consistent with the results obtained in 
previous analyses. The SLR trajectory contribution (cyan) increases as 
we move farther away in time, and the radiative forcing becomes greater 
(from up to 11%, 5%, 9%, and 11% in 2045 to up to 35%, 23%, 55%, and 
35% in 2100 in Burriana, Chilches, Almenara, and Sagunto, 

respectively). RCM uncertainty governs in Burriana, Almenara and 
Sagunto in 2005 (~74%, ~80% and ~97, respectively), in 2045 
(71-52%, 77–78% and 86–88%, respectively), and in 2100 for RCP4.5 
(65%, 75% and 71%, respectively). We find a strong dominating influ-
ence of the CA in Chilches (~57%–68%), Burriana (~23%–36%) and 
Sagunto. Particularly in Sagunto, the CA contribution to TWL100 total 
uncertainty starts to become noticeable in 2100 for RCP4.5 (~16%) and 
increases sharply for RCP8.5 (~46%), having even more weight than the 
SLR percentiles (~35%). Inter-CA variability is mainly related to the 
effect of foreshore slope changes on TWL. The greater the difference 
between the boxplots in Fig. 7, the more the CA affects TWL100 uncer-
tainty. Compared to that of other uncertainty sources, the contribution 
of pairwise and triple interactions (SLR–RCM, SLR-CA, RCM-CA, and 
SLR–RCM–CA) is negligible (<2%). 

3.4. Effect of the coupling approach on coastal flooding 

We apply the 2D flood model to obtain coastal flood maps driven by 
the TWL100. In this step of the modelling chain, TB2020FULL/TB2020ST 
is replaced by TB2045FULL, TB2100FULL_RCP4.5 and 
TB2100FULL_RCP8.5 for the full CA and by TB2045ST, 
TB2100ST_RCP4.5 and TB2100ST_RCP8.5 for the short-term CA, which 
incorporate storm erosion (Table 4). For brevity, we denote the flooded 
area (FA) related to TWL100 as FA100 hereinafter. 

Fig. 11 and Fig. 12 present some examples of the flood maps ob-
tained. Fig. 11 shows the FA100 maps in Moncofar and Corinto in 2045, 
factorised by CA and grouped by RCP. These maps correspond to the 
most unfavourable scenario considering the envelope of outcomes of the 
5 RCMs and the SLR 95th percentile. In Moncofar, the full CA FA100 may 

Fig. 8. PDFs of full-CA TWL in Almenara in 2005, 2045 and 2100 for the RCP4.5 and RCP8.5, where colour code refers to SLR percentiles and markers represent 
RCMs. The second and third row of panels illustrate the PDFs under RCM and SLR-percentile factorisations, respectively. 
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reach 44.92 ha on a beach reduced by 40% with respect to 2020 beach 
width. If long-term or no CA were instead applied, in relative terms, such 
FA could be overestimated by 40% and 22%, respectively. Long-term 
erosion represents a reduction in beach width of 19% with respect to 
2020 beach width. The short-term CA, however, with 20% less beach 
width than in 2020, would underestimate FA100 by 23% with respect to 
the full CA. This can be explained by the low importance of storm 
erosion on this beach due to the presence of groynes, in contrast to 
Corinto, where this percentage is reduced to 2%. In Corinto there is less 
erosion than in Moncofar. The full, long-term and short-term CAs ac-
count for 2020 beach width reduced by 33%, 9% and 14%, respectively. 
Fig. 12 shows FA100 maps associated with each CA in Almenara in 2045 
for RCP4.5 and the SLR 95th percentile factorised by RCM. From an 
uncertainty sampling point of view, the full and short-term CAs provide 
the widest and narrowest range of inter-RCM variation (15.19–27.32 ha 
and 15.97–22.96 ha), respectively. The worst-case RCM varies between 
CAs, with the EART model providing the largest FA100 in the full CA 
(27.32 ha) and the HADG model for the short-term, long-term and no 
CAs (24.75 ha, 22.96 ha and 25.56 ha, respectively). In terms of erosion, 
the full CA reduces the 2020 beach width in Almenara by 27% while 
long-term and shor-term CAs do so by 16% and 11%, respectively. 

As in the case of the TWL, we analyse the effect of CA choice on FA. 
Following the same examples of Burriana, Chilches, Almenara, and 
Sagunto, Fig. 13 shows FA100 factorised by the CAs and grouped by time 
horizon and RCP. In 2005, the lower the TWL100 the lower the FA100, 
with a greater influence of the CA in FA100 than in TWL100. For instance, 
in Chilches and Almenara, long-term/no CA can provide overestimated 
TWL100 mean values of approximately 17% and 5%, respectively, but 
underestimated FA100 mean values of approximately 32% and 85%, 
respectively, in relative terms with respect to the full/short-term CA. In 

contrast, in Burriana, the presence of groynes reduces the impact of 
storm erosion on FA100. As time horizons move away, long-term top-
obathy changes due to SLR and longshore sediment transport increas-
ingly contribute to the FA, leading to greater values and larger spread 
ranges. Regarding the influence of morphology on hydrodynamics, 
while the TWL is mainly affected by cross-shore transport (both short 
and long term), the FA is highly influenced by longshore-driven shore-
line changes, which if they imply retreat, can in turn be enhanced by the 
long-term SLR landward and upward displacement and storm erosion, 
reducing protection services provided by the beaches. In contrast to 
TWL100, the long-term CA provides the highest FA100 values in almost 
every case because it is linked to high TWL100 values and long-term 
shoreline changes, which are great contributors to flooding. On bea-
ches such as Chilches, where there is a promenade that determines the 
evolution of the beach (especially in the long term), the higher the TWL 
is, the more overtopping and therefore the more coastal flooding there 
is. As such, the long-term and no CAs provide projected FA100 mean 
values higher than those of the full CA by 36%–40% and 4%–18%, 
respectively. For mixed beaches such as Almenara or Sagunto, where 
only one part has a high degree of anthropisation and the rest is natural, 
the omission of flooding-erosion interplays can lead with respect to the 
full CA to either FA100 overestimates of approximately 18%–22% (mean 
values) or underestimates of approximately 15%–16% (mean values) in 
2050 and underestimates of up to 100% (22%–25% mean values) in 
2100, in relative terms. Topobathy singularities (in both the swash zone 
and the land over which flood spreads) make it critical to consider the 
joint impact of erosion and flooding using surveyed profiles, as gener-
alisations (e.g., standard correction factors) do not necessarily apply. 

Fig. 14 allows visualisation of the relative contributions of SLR 
percentiles, RCMs and CAs to FA100 total uncertainty for RCP4.5 and 

Fig. 9. TWL100 value range in Burriana, Chilches, Almenara and Sagunto in 2005, 2045 and 2100 for the RCP4.5 and RCP8.5, where colour code refers to CA, black 
circles are mean values, crosses are maximum values and box limits represent mean values plus/minus standard deviations. 
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Fig. 10. Contribution of each uncertainty source and their interactions to total TWL100 uncertainty.  

Fig. 11. FA100 in Moncofar and Corinto in 2045 for the RCP4.5 and the RCP8.5, where the colour code refers to the four CA. Flood extents correspond to the envelope 
of RCMs and the SLR 95th percentile. 
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RCP8.5 in 2005, 2045 and 2100. The SLR contribution in Burriana, 
Chilches, Almenara, and Sagunto increases for more distant time hori-
zons and higher RCPs, although this effect is smaller for FA100 (10–35%, 

7–26%, 8–20% and 7–16% in 2100, respectively) than for TWL100 
(11–35%, 7–23%, 14–55% and 12–35% in 2100, respectively). The most 
striking aspect is the dominating influence of the CA on all these 

Fig. 12. FA100 in Almenara in 2045 for the RCP4.5 and the SLR 95th percentile factorised by RCM (colour intensity).  

Fig. 13. FA100 value range in Burriana, Chilches, Almenara and Sagunto in 2005, 2045 and 2100 for the RCP4.5 and RCP8.5, where colour code refers to CA, black 
circles are mean values, crosses are maximum values and box limits represent mean values plus/minus standard deviations. 
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beaches, which is stronger than that of SLR percentiles in 2100 for 
RCP8.5 (~34%, ~56%, ~65% and ~76% of CA versus ~35%, ~26%, 
~20% and ~16% of SLR, for Burriana, Chilches, Almenara and Sagunto, 
respectively). This highlights that no matter the efforts made to improve 
waves, storm surges and SLR projections, inaccuracies will occur if no 
appropriate coupling of flooding and erosion is considered. Inter-CA 
variability at the stage of inland flood modelling is partly inherited by 
TWL modelling but mostly attributed to the land part of the topobathies 
modified to account for long-term shoreline changes. It is also worth 
mentioning the contribution of RCM-CA interactions to FA100 uncer-
tainty in Chilches and Almenara in 2045 (up to 4% and 12%, respec-
tively). This interplay has its origin in the TWL, as RCP-driven waves are 
scaled for each CA by foreshore slopes. Differences are small for TWL100 
but become larger in FA terms due to terrain heights (e.g., if water depth 
exceeds the height of a defence, flood extent can increase considerably if 
the area behind the structure has a low elevation level). 

3.5. Summary of the main effects of the coupling approaches in coastal 
flood estimates 

Although the numerical results presented above are site-specific, 
from the analyses we have identified patterns of how erosion and the 
coupling approach selected can influence the TWL and the FA that may 
be applicable to other beaches with similar characteristics. 

Main effects on the TWL:  

• In natural coastal areas, long-term processes do not necessarily lead 
to significant changes in the TWL. Longshore transport does not alter 
the profile shape, so the dissipation properties of natural profiles do 
not change. In idealised profiles, SLR would also have no influence 
on the TWL. The active profile would move upwards and landwards, 

and the swash zone morphology facing the waves acting on top of 
higher sea level would be the same as without SLR. However, real 
profiles may show irregularities in the swash zone so that the SLR 
effect can change the TWL. The sign of these changes depends on the 
geometry of the profile. 

• In anthropised coastal areas, long-term processes can lead to signif-
icant changes in the TWL. Profile changes due to longshore transport 
in squeezed coasts can induce local scour at the toe of the structure. 
SLR in front of undermined structures can reduce wave energy 
dissipation and increase overtopping rates.  

• Coupling hydro- and morphodynamics during extreme events leads 
to lower TWL values than if a static profile is assumed. Cross-shore 
sediment transport from the beachface to the outer bar results in a 
more dissipative profile adapted to incoming wave conditions. As 
such, in most of the cases, the no and long-term CAs provide higher 
TWL values than the short-term and full CAs, which consider short- 
term profile adaptation.  

• The relative contribution of the SLR percentile to the TWL increases 
with radiative forcing and time. RCM and CA influence the TWL 
significantly but their relative contribution is site-specific. The CA 
variance range is mainly given by changes in the foreshore slope. 
From our results, RCM uncertainty dominates over CA uncertainty 
except for the beach with the highest anthropisation level, where the 
relative contribution of the CA exceeds that of the rest of sources of 
uncertainty for any given scenario. 

Main effects on the FA:  

• In natural coastal areas, long-term processes can lead to significant 
changes on the FA. Longshore processes can generate sediment- 
starved regions, undermining the beachfront and decreasing flood 

Fig. 14. Contribution of each uncertainty source and their interactions to total FA100 uncertainty.  
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protection. SLR-induced erosion and waves propagating on top of 
higher sea level reduce beach width and likely dune height.  

• In anthropised coastal areas, the critical flood elevation is usually 
controlled by an artificial structure which is assumed to be non- 
erodible. Thus, the effects of long-term processes on coastal flood-
ing are mainly due to more energetic waves reaching the coast as SLR 
increases and scouring progresses. From our results, considering 
longshore transport and SLR-induced erosion leads to higher FA than 
if these processes were not considered.  

• Short-term erosion can play a key role on the FA. In natural beaches, 
storm erosion results in two effects that can be counteracted. The 
foreshore slope is softened and the wave energy reaching the coast is 
reduced. The second effect is the beachface and dune crest decrease. 
While the first effect causes the TWL to decrease, the FA can increase 
or decrease relative to the no CA depending on the magnitude of the 
storm erosion and the condition of the beach when that storm occurs. 
From our results, considering storm erosion overall provides lower 
FA than if it were neglected. The effect of TWL reduction due to wave 
dissipation is greater than that of short-term erosion in the FA, but 
this might not be the case in other sites or under different assump-
tions. Two factors can influence this outcome. For this application, 
we used two different models to account for short-term erosion in the 
TWL and the FA. These two models can have different sensitivity and 
provide different erosion volumes, even for the same storm. While 
this may affect the magnitude of the result, we have found that it 
does not affect the signal and that our conclusions are robust 
regardless of the model chosen (see Supplementary Material for de-
tails). The other factor is related to the limitations of the probabilistic 
approach, since we do not know the storm erosion corresponding to 
the TWL100 that we used as flood forcing. Instead, we eroded each 
beach over which we modelled flooding considering an average 
storm, a more centred statistic than the TWL100.  

• The relative contribution of the SLR percentile to the FA increases 
with radiative forcing and time, but to a lesser extent than for the 
TWL. The CA has a dominating influence on the FA in most of the 
beaches, which can exceed that of the RCMs and SLR percentiles 
even for the highest radiative forcing in 2100. The CA variance range 
is partly inherited by that of the TWL (and thus by changes in the 
foreshore slope) but mostly attributed to considering or not long- 
term shoreline changes in the coastal flood modelling. The FA 
largely depends on terrain heights. 

4. Conclusions 

Reliable coastal flood projections are essential for coastal manage-
ment planning and climate change adaptation. However, their devel-
opment remains a challenge in several ways. Coastal flooding does not 
occur in isolation but is the result of the interaction of complex hydro-
dynamic and morphodynamic processes at different time scales (hours 
to decades), which makes it difficult to analyse them jointly. In addition, 
decision-making in this context takes place at the regional level and 
requires sufficient consideration of uncertainty. Such uncertainty arises 
from the choice of radiative forcing scenarios, climate models and mean 
sea-level rise trajectories, growing with timescale (up to centuries), as 
well as from the flood projection modelling process itself, and need to be 
adequately sampled. 

In this paper, we present a methodology to develop coastal flood 
projections combined with coastal erosion that, with respect to the 
published literature, combines a set of elements in a novel way and 
improves both the coupling of coastal flooding and erosion at the rele-
vant scales (short and long term) and the consideration of uncertainty. 
We apply a suite of statistical, process-based, and physics-based models 
to regionally generate and downscale synthetic storms, compute hy-
drodynamics and morphodynamics, elaborate future topo-bathymetries 
incorporating long-term shoreline changes and storm erosion, and 
model coastal flood propagation inland. As climate forcing conditions, 

we use multi-model projected nearshore waves, storm surges and mean 
sea-level rise. To sample their associated knowledge-based and intrinsic 
uncertainty, we consider two representative concentration pathways, 
five configurations of global and regional climate models, three trajec-
tories of mean sea-level rise, and thousands of synthetic multivariate 
storms. The aim of using synthetic storms is to consider the complete 
range of combinations of the projected climate variables that can cause 
coastal flooding. This is key since the dynamic projections of wave 
conditions and storm surges (a single realisation per radiative forcing 
scenario and configuration of climate models) do not necessarily contain 
the highest possible values of the individual variables or combinations of 
these variables that maximise total water levels. As a result, we present 
total water levels and flooded areas in 2050 and 2100. 

We analyse for the first time how different levels of flooding and 
erosion coupling can influence coastal flood-related estimates. The re-
sults show that considering short- and long-term coupling (full 
coupling), short- or long-term coupling alone, or no coupling (the 
standard approach) can lead to important differences in total water 
levels, and especially in the flooded area. The factors that most influence 
total water levels are short-term erosion (making profiles more dissi-
pative and reducing their value) and profile geometry. Furthermore, 
changes to the shape of the beach profile determine whether sea-level 
rise reduces or increases the wave contribution to the total water 
level. In the flooded area, however, longshore transport-driven long- 
term erosion plays a fundamental enhancing role. The contribution of 
storm erosion is also important, but as we move forward in time and for 
higher radiative forcing scenarios, its effect is outweighed by longshore 
transport-driven long-term erosion and the effect of sea-level rise. These 
patterns are in turn conditioned by the real-world distribution of terrain 
heights. As such, the standard approach could yield mean values of 
water levels and flooded land surfaces that are overestimated by 18% 
and 22%, respectively, or underestimated by 7% and 85%, respectively, 
in 2100 with respect to those from the full coupling approach. Based on 
the degree of anthropisation of the coast and how this determines beach 
evolution over time, incomplete coupling approaches could lead to 
mean values of flooded area that are overestimated or underestimated 
by up to 40% and 25%, respectively, with respect to the proposed 
approach. These biases could lead to misidentification of priorities for 
adaptation or failure to appropriately allocate adaptation funds in terms 
of location, amount, and timing. 

We also examine how the coupling approach and other uncertainty 
sources can contribute to the variance of the results. In terms of total 
water level, the relative importance of the coupling approach highly 
depends on the profile geometry, ranging from ~1% to ~68% in 2045 
and from ~10% to ~57% in 2100. For the remaining uncertainty fac-
tors, the selection of climate models dominates that of sea level rise 
trajectories in all scenarios and time horizons except for the highest 
radiative forcing scenario in 2100. In terms of the flooded area, the in-
fluence of the choice of the coupling approach on the results is greater 
than for the total water level, and it can become dominant over that of 
climate models and sea-level rise trajectories (up to 76% versus 8% and 
16%, respectively), even by 2100. This means that even the best pro-
jections of storm surges, waves and sea-level rise could provide spurious 
projections of flooded areas if shoreline changes are not properly 
accounted for in the topo-bathymetry. Overall, inter-coupling approach 
variability can be partly attributed to foreshore slope changes along the 
swash zone of beach profiles (due to smoothing of the slope caused by 
storms and sea-level rise) and partly to the long-term translation of the 
land portion of the topo-bathymetries over which inland flooding 
spreads, in any case highlighting the relevance of employing real pro-
files rather than theoretical profiles for solving volume conservation and 
shoreface translation. 

Our approach to consider erosion-enhanced flooding at the climate 
change scale has potential for improvement. First, the simple translation 
rules that we applied to upscale the shoreline movement to a two- 
dimensional topo-bathymetry are a simplification of reality. The 
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availability of observations to calibrate profile translation models would 
allow more accurate results to be obtained. Second, the representative 
storm erosion events that we used for the short-term topo-bathymetry 
update did not correspond to any total water level flood forcing condi-
tion but were obtained from IH-LANS as a proxy allowing for a 
compromise solution given the probabilistic nature of the study. We 
considered an average storm erosion which presumably leads to an 
underestimation of the flooded area in relation to the storm erosion we 
would have obtained with XBeach. Although at a high computational 
cost, it is worth investigating how to establish a realistic relationship 
between XBeach morphodynamic changes and the 100-year total water 
level, calculated probabilistically based on thousands of storms hybridly 
downscaled using XBeach and statistical tools. Third, for the short-term 
topo-bathymetry update, we assumed that the beach has receded due to 
long-term processes (in the coupling approaches that consider this to be 
the case) but not due to a previous storm. The consideration of the effect 
of storm clusters would allow the analysis of a situation of extreme 
erosion, which will become more frequent with climate change, 
providing new information to establish general rules of behaviour. 
Finally, in this study we present an approach for modelling the effect of 
short- and long-term erosion on coastal flooding. This approach was 
calibrated at present, considering only the short-term component. This 
implies that we assumed that the present calibration is valid for the 
future, which is not necessarily the case. Moreover, considering new 
processes into future projections may incorporate additional uncer-
tainty. Future developments of this research work would therefore 
benefit from systematic long-term monitoring of shoreline changes and 
flooding. 
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