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Abstract. The rotors of three screw pumps are commonly machined using shaped milling cutters. The determination of the exact 
shape of the cutter is very important, since a high precision in the machining is required to obtain a high volumetric efficiency of the 
pump. This paper describes a method to determine the theoretical shape of the cutter, starting from the characteristic parameters of 
the pump. The rotors are modeled in space by helicoids. Then, the contact line between the tool and the workpiece is determined and 
this allows us to define the exact cutter profile, with a suitable reference system transformation. 
 
 
Sommario. I rotori delle pompe a tre viti vengono solitamente lavorati utilizzando frese di forma. La determinazione della forma 
esatta dei taglienti è molto importante, dato che una elevata precisione nella lavorazione è necessaria per ottenere un alto rendimento 
volumetrico della pompa. Questo lavoro descrive una metodologia per la determinazione del profilo teorico dell’utensile, partendo 
dai parametri caratteristici della pompa. I rotori vengono modellati nello spazio con superfici elicoidali. Si determina poi la linea 
lungo la quale l’utensile agisce sul pezzo e ciò permette, con un opportuno cambiamento del sistema di riferimento, di definire 
l’esatto profilo del tagliente. 
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Nomenclature 
 
a - helix pitch; 
a - auxiliary reference system index; 
b - auxiliary reference system index; 
c - tool index; 
ec - distance of milling cutter center 

from the screw axis; 
f - equation of meshing for a screw 

motion and surface; 
f - reference system index; 
M - transformation matrix; 
N - normal vector; 
N - normal vector component; 

p - parameter of screw; 
r - surface vector; 
r - central rotor inner radius, idler 

rotor outer radius; 
re - central rotor outer radius;  
ri - idler rotor inner radius; 
S - reference system; 
s - screw index; 
T - definition set of the helicoid 

parameters; 
u - surface coordinate; 
 

β - angle subtended by epitrochoid 
or epicycloid arc; 

Γ - line; 
γ - semiamplitude of not threaded 

zone of the screws; 
γc - tool setting angle; 
ϑ - surface coordinate; 
Ξ - solution locus of the screw 

equation of meshing; 
Σ - surface; 
ψ - angle between the screw and the 

reference frame. 
 
1. Introduction 
 
Three screw pumps have two types of rotors: a central screw, which presents two helical worms, and two identical idler 
rotors, driven by the central and with two corresponding helical vanes. 

The machining technology is the same for both rotors: starting from the solid piece, the rotors are usually cut by 
shaped milling cutters.  

However, for our purposes it is not necessary to give a complete topological representation of the milling cutter 
identifying each tooth. The only important thing is the cutter radial section; so we can consider a simplified tool 
comparable to a disk grinding wheel from a geometrical point of view. The disk, if that is the case, can be machined to 
obtain the usual milling cutter, but this phase is not interesting here, since it is a standard methodology in tool 
production. 

 
2. Mathematical model 
 
The method (see Figure 1) introduced in this paper starts from the analytical description of the screws in the space, 
which are modeled as helicoid surfaces. The kinematic analysis is omitted here since it is reported in [1]. Stated the cut 
parameters, the equation of meshing, introduced by Litvin [2], allows to determine the contact line between the tool and 
the workpiece and eventually the tool shape by a suitable reference system transformation. 
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It is necessary to observe that also Henriot [3] and other authors proposed methods to determine the cutter theoretical 
section, but Litvin’s [2] method has been preferred, even with some modifications, since it seems more general and 
complete. 
 

 
Figure 1 - Flow chart of the method. 

The modeling and relative calculations have been done by using many programs written with symbolic mathematics 
software [4]. Many figures have been made by this software and refer, except when specified, to a particular case, 
characterized by the following parameters: r = 12 mm, re = 20 mm, a = 68 mm, γ = 45°, γc = 48°3′, ec = (50 + r) mm for 
the central screw and ec = (50 + ri) mm for the idler. 
 

 
Figure 2 - Cross section of the rotors: central rotor (left), idler rotor (right). 

 
2.1. HELICOIDS REPRESENTATION 
 
In the first part of the proposed method it is necessary to refer to some considerations expressed in [1] about the screw 
profile generation on a cross section to the rotating axis ( and  in Figure 1). In this paragraph we wish to give a 
mathematical model that defines the screw surface in three dimensional space ( in Figure 1) that is composed of 
several helicoid surfaces in an analytical representation. Figure 2 shows the cross section of the two types of rotors 
under consideration. The solid lines numbered from  to  represent the three parts of the profile machined by the 
milling cutter. 

If we refer to the two auxiliary reference systems Oaxaya and Obxbyb (these are left hand systems due to the choice 
of the reference system Ss in Figure 4), the flanks that have to be considered are respectively epicycloid and root circle 
(equal to the pitch circle) arc for the central screw and epitrochoid and root circle arc for the idler. Their parametric 
equations are: 
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In the previous equations, T i are the definition intervals and β the angle subtended by epitrochoid or epicycloid arc 

(see Figure 2). Using a vector notation the equations (1)-(4) can be rewritten as 
 

[ ]rai ai ai aix y z= 1 T  and [ ]rbi bi bi bix y z= 1 T  with i = 1, 2, 3. (5) 
 

The helicoid is generated by each flank with a screw motion along its z axis. The transformation matrix is (for a 
right-hand screw): 
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(6) 

 
The parameter p is linked to the helix pitch a by the relationship 

 

p a
=

2π
. (7) 

 
Therefore the surfaces Σsi that represent the machined surfaces of the screws are given by the following vectorial 

equations, where the index (c) is relative to the central rotor and (i) to the idler rotor: 
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( ) =  with i = 1, 2, 3. (9) 

 
From equations (8) and (9) we can obtain the parametric expressions of the surfaces Σsi as function of the surface 

coordinates us and ϑs: 
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(13) 

 
The choice of the limits for the surface coordinate us is rather arbitrary. With the suggested choice, it is possible to 

obtain a helicoid as long as a pitch. Previous equations (10)-(13) allow us to generate the complete helicoid in space. 
This helicoid represents the considered screws, together with the other surfaces which compose the screw and which 
have not been analytically represented because they are not necessary in what follows. In Figure 3 the two screws are 
shown; note that the central screw is right-handed, whereas the idler is left-handed. To obtain the latter, it is sufficient to 
change the sign of us in the upper left submatrix in (6), relative to the rotation part of the transformation matrix M. In 
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the following, the equations for right-handed screws will always be considered, because the worm winding direction is 
indifferent to the determination of the milling cutter profile. 
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Figure 3 - Central screw (left) - idler screw (right). 

 
2.2. REFERENCE SYSTEMS 
 
Figure 4 shows a draft relative to the reference systems adopted. Since we often shift from one reference system to the 
other, it is advisable to examine them briefly. The reference system Sf is a fixed reference system O f x f y f z f  rigidly 
connected to the machine tool frame. 

The reference system Ss represents a reference system O s x s y s z s  rigidly connected to the screw, which performs a 
screw motion relative to the fixed along the common axis zf ≡ zs. In the general instant t, the origin Os will be shifted 
relative to Of of pψ, while the axes xs and ys make the angle ψ with the corresponding axes xf and yf . 
The reference system Sc (O c x c y c z c ) is rigidly connected to the tool. The distance from the milling cutter center Oc to 
the axis zf ≡ zs, indicated by ec, is one of the most important cut parameters, together with the angle γc, which is the tool 
setting angle relative to the fixed reference system.  
 

 
Figure 4 - Frame, tool, screw reference systems. 

It is practical to use the notation Mab for the transformation matrixes, which indicates the transformation matrix from 
the reference system Sb to Sa. Referring to Figure 4, we have 
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2.3 EQUATION OF MESHING 
 
The equation of meshing, proposed by Litvin [2] for the case of conjugate surfaces, but which is also suitable for a 
couple composed of a tool and the generated workpiece, represents the necessary condition for the existence of the 
envelope of a conjugate surface to a given one. Considering the tool and the workpiece, it is obvious that the latter is 
determined by the envelope of the tool in subsequent positions, but it is also evident that the example can be reversed 
and the workpiece can be considered as enveloping the tool. 

The equation of meshing ( in Figure 1) permits us to determine a relationship between the values of the surface 
coordinates us and ϑs, in order to define the line along which a surface meshes with its conjugate surface. In the case of 
the couple workpiece-tool, the line obtained as a function of the solution locus of the equation of meshing represents the 
line on the workpiece where the tool cuts. 

For the determination of the equation of meshing, Litvin states this theorem [2]: “the line of tangency between screw 
surface Σs and tool surface Σc is such a one at which the normals to screw surface Σs intersect the rotation axis of the 
tool” (zc in Figure 4). The proof of this theorem is rather intuitive, considering that tool surface Σc is a surface of 
revolution and therefore the normal to each point intersects the fixed axis. So also the normal to the screw at the point 
where its surface Σs is tangent to that of the tool (that is where the cutting action takes place) intersects the fixed axis of 
the tool. 

Therefore it is necessary to determine the normal to the screw surface Σs first, then its intersection with the tool axis 
is imposed and sets the relationship between the surface coordinates us and ϑs. 

This method is used for all three surfaces Σsi that have to be machined for each screw. In order to reduce the length 
of this exposition, we are introducing a general type of notation to refer to a generic surface rs such as 
 

( ) ( ) ( ) ( )[ ]r rs s s s s s s s s s s s su x u y u z u= =, , , ,ϑ ϑ ϑ ϑ 1
T

 (18) 

 
where the equations (10)-(13) have to replace the functions xs, ys, zs. Since all the equations (10)-(13) are C∞ (T) in their 
surface coordinate definition sets, the surfaces under consideration have the normal at every point given by 
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The normal common to screw surface Σs and tool surface Σc is given in Cartesian coordinates: 
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In equation (20) Xs,Ys,Zs represent the coordinates of the intersection point P of the normal and the tool axis zc in the 

screw reference system Ss. If we consider the particular position with ψ = 0, the screw reference coincides with the fixed 
reference, the P coordinates in Sc are transformed into Ss reference system with the following: 
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Substituting equation (21) in equation (20), we have 
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Equation (22) is already the equation of meshing. By eliminating Zc we have 
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( ) ( ) ( )e x N y z N N e x N N y N Nc s c ys s c s c xs ys c s c ys zs s c xs zs− + − + − + =cos cos sin sin sinγ γ γ γ γ2 2 0 . (23) 

 
Equation (23) can be further simplified by considering that the relation exists for the helicoids [2]: 

 
y N x N pNs xs s ys zs− − = 0 . (24) 

 
Finally we have 

 

( ) ( )f u e x p N e N z Ns s c s c zs c c ys s xs, cot cotϑ γ γ= − + + + = 0  (25) 

 

which is the equation of meshing for the helicoids in the commonly known form. The couples of values ( )us s,ϑ  that 
satisfy equation (25) define a curve Ξ in the us,ϑs plane. 
 
2.4. CONTACT LINES ON THE SCREWS 
 
A set of contact lines ( in Figure 1) exists on the screw surface. We will consider just one: Γ, as shown in Figure 5 by 
imposing ψ = 0 and having the fixed reference system Sf and the screw reference Ss coincide. 
 

 
Figure 5 - Contact lines on the screw surfaces. 

So the contact line Γs which is actually composed of three lines per each machined surface for both the screws, has 
the equation 
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If angle ψ is varied, the subsequent contact lines will sweep out the surface of the screw. As a result of the previous 

considerations, line Γ is common to the tool. In reference system Sc its equation is given by 
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Before showing the contact lines for the tool, it would be best to design it completely. 

 
2.5. TOOL CUTTING EDGE 
 
It is unnecessary to give a complete topological representation of the milling cutter. The only important thing is the 
cutter shape so we consider a simplified tool comparable to a disk grinding wheel (see Figure 6) from which each cutter 
is obtained. Therefore our particular tool is a solid of revolution that is obtained by rotating a cutter profile on plane 
x c z c  about zc axis. The equations that define the section ( in Figure 1) can be obtained by equation (27). By 
considering that it represents Γc in space, and rotating each point of Γc into x c z c  plane of cutter reference system Sc we 
have: 
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( ) ( )
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In equation (28) we have chosen the negative abscissas half plane because that section is directly in contact with the 

workpiece according to the reference systems in Figure 4. Note that it is possible to proof that equation (27) can be 
expressed as function of just one parameter. In fact the two parameters us and ϑs are not independent, but related by 
equation (25), and we can proof that a function ϑs = ϑs(us) exists that is implicitly defined by equation (25) in a 

sufficient small region of each point ( )us s,ϑ ∈Ξ . It is possible to show, using Dini’s theorem [5], that the equation of 
meshing (25) gives an unique solution, so it is possible to express the equation in explicit form, that is ϑs = ϑs(us). In 
fact all the following hypotheses are true:  
• f(us,ϑs) of equation (25) is continuous in each point of T i sets of equations (10)-(13);  
• the partial derivative fϑs(us,ϑs) exists; 
• the root ( us s,ϑ ) exists due to the previous considerations; 
• it is possible to verify that fϑs( us s,ϑ ) ≠ 0.  
 

 
Figure 6 - Simplified tool like a shaped grinding wheel. 

Therefore the equation (28) can be rewritten as 
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where us ∈ Ξ′, that is to the subset of Ξ just composed by the values us . 

The theoretical shapes of the cutter on a radial section for both the screws are reported in Figure 7. 
 

 
Figure 7 - Theoretical tool radial section for central screw (a), idler screw (b). 

The theoretical profiles have been compared with those of actual tools as shown in Figure 8, where the solid white 
line represents the theoretical profile. The differences on the top of the central screw tool (A-A′ in Figure 8) are due to 
the impossibility to maintain the sharp edge in the points A-A′ during the machining. Considering the idler screw tool, 
notice the straight fillet (C-D in Figure 8), that does not contribute to the cut if suitably chosen, and the fillet on the 
bottom (B-C in Figure 8). This represents a technological necessity to blunt the edges on the tips of the idler screw (see 
 in Figure 2), that must not interfere with the fillet on the pitch circle of the central screw (see  in Figure 2). This 
fillet is unavoidable due to the wear on the top of the milling cutter.  

The surface of revolution ( in Figure 1), that represents the tool, is given by the following vector, obtained by 
imposing the rotation of the curve of equation (29) that is the tool axial profile 
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where us ∈ Ξ′ and ϑc ∈ [-π, π]. 
 

 
Figure 8 - Comparison between a theoretical tool (white solid line) and actual (black dashed line) of rotors with 

r = 33 mm, re = 55 mm, a = 86 mm, γ = 49°, γc = 39°40′; (a) central, (b) idler. 

The solid black line in Figure 9 is the contact line on a tool surface sector, while Figure 10 shows a 3D image of a 
theoretical milling cutter complete of teeth, whose cutter profile has been determined with the method here introduced. 
 

 
Figure 9 - Contact lines on the tool for the central rotor screw (left) and for the idler rotor screw (right). 

 

 
Figure 10 - 3D rendered milling cutters: central screw (left), idler screw (right). 

 
3. Conclusions 
 
In this paper we have shown a mathematical model to define surfaces that represent the rotors of screw pumps in the 
Cartesian space. These surfaces are helicoids that have a suitable analytical representation. Starting from this 
mathematical model, we use the equation of meshing algorithm to find the relation between the surface coordinates and 
determine the contact line between the tool and the screw to be machined. 

The contact line in the tool reference system allows us to determine the section of the cutter and the surface of 
revolution that can represent the theoretical tool. These results may give the basis for further studies on the influence of 
the tool sharpening on the shape of the machined rotors. 
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