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Abstract 
This second part of the study presents some experimental applications to mechanical systems in 

which the results of excitation estimate, obtained using traditional least squares and M-estimate, are 
compared.  
The first case presented is a single input – multiple outputs system: a simple test-rig for the study of 
the vibrations of a 2 degrees of freedom system is employed to identify the constraint displacement 
that causes the measured mass vibrations in presence of heavy noise. 
The second case is a multiple inputs – multiple outputs system: a rotor test-rig is used to identify the 
positions, the amplitudes and the phases of two unbalances using the vibrations measured in the 
bearings. In this case, also an additional theoretical part is introduced about the basics of model 
based identification in frequency domain applied to rotor dynamics.  
The last case is again a single input – multiple outputs system, but in an industrial application: 
experimental vibrations of a 320 MW steam turbo-generator are used to identify position and 
amount of a known balancing mass in an on-field real case.  
Moreover, whilst in the numerical examples presented in the first part, the knowledge of the system 
was perfect, in these cases some uncertainties are present also on the system model.  
Finally, the paper introduces the use of the M-estimate technique to evaluate the adequacy the 
model of the system, by means of the analysis of the weights attributed to the measures as a 
function of the frequency of the excitation. 
 
Keywords: Robust estimation; identification; parameter estimation; inverse problems; 
M-estimators; least squares; iterated re-weighted least squares; experimental results; unbalance. 
 
 
1. Introduction 

The theory of the M-estimators, applied to the robust identification of mechanical systems, has 
been introduced in the first part of the study [1]. Since several types of M-estimators actually exist, 
their advantages and drawbacks have been highlighted by means of numerical examples and the 
types more suitable for mechanical systems have been proposed.  

In this second part, some experimental results are presented in order to further validate the 
proposed method. Contrarily to what has been done in the numerical cases, in which the knowledge 
of the system model, or of its parameters, was always perfect and noise was present only 
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(deliberately) on the outputs, in these experimental cases the uncertainties are not only in the 
outputs, but also in the system model.  

In particular, the noise on the outputs is that typical of actual measuring systems and is neither 
known a priori, nor its evaluation is performed. In a case, nothing is even done to avoid the 
presence of easily eliminable noise. As it regards the model, it is deliberately approximate in the 
first case, in which the dynamic response of the supporting structure is totally and deliberately 
neglected. In the other cases related to rotor-dynamics, there are some ranges of frequency in which 
the model is not reliable due to the stiffness and damping coefficients of the journal bearings that 
are linearized and calculated for some rotating speeds only. 

The first example presented here is a simple single input - multiple outputs (SIMO) system: a 
test-rig for the study of the vibrations of a 2 degrees of freedom (d.o.f.s) system. Two masses are 
linked to a horizontal guide by means of rollers and connected by springs. The displacement of a 
constraint excites the vibration of the system. In this case, the supporting structure has a natural 
frequency very close to one of the natural frequencies of the system. This fact is intentionally 
neglected in the model, in which the supporting structure is considered rigid. Besides the 
measurement chain is not shielded and filters are not used. 

In the second example, the M-estimators are used to evaluate the value and the position of two 
unbalances in a rotor-dynamics test-rig, starting from the vibrations measured in the bearings. The 
increase of accuracy is shown in comparison to results obtained using the traditional least squares. 
This system is of multiple inputs – multiple outputs (MIMO) type. In this case, since it is also 
necessary to evaluate the position of the excitations along the shaft-line, it is necessary to 
implement the algorithm of the iterated reweighed least squares (IRLS) in the model based 
identification method proposed in [2]. Therefore the necessary theory is shortly introduced. Given 
that, it is necessary to insert the stiffness and the damping coefficients of the journal bearings in the 
rotor model, these last ones are linearized according to the standard methods of the rotor-dynamics 
[3][4][5]. Anyhow the coefficient calculations could not be accurate in some rotating speed ranges. 
In particular, it is shown that the knowledge of the weights attributed by the IRLS algorithm to the 
various measures can also be used to assess the adequacy of the model.  

The last example is related to the robust identification of a balancing mass in a 320 MW steam 
turbo-generator. In this case the system is again of SIMO type and it is necessary to also estimate 
the position of the unbalance along the shaft train, similarly to the previous MIMO system. Being 
an on-field application, a remarkable noise is present in the measurement chain and there are several 
uncertainties in the model, not only in the bearing coefficients, but also in the dynamical behaviour 
of the machine supporting structure. The results obtained using M-estimate are compared with those 
of least squares. 
 
 
2. Experimental results for a SIMO system: 2 d.o.f.s mass-spring-damper system 

In order to have a more meaningful evaluation of the performances of the M-estimators in 
mechanical systems, a simple experimental set-up has been used to perform identification of the 
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excitation in a real environment, in which intentionally no care has been taken to avoid corruption 
of the measures. Moreover, the knowledge of the system is not perfect. 

The experimental setup is shown in figure 1. The system is excited by the displacement of the 
constraint on the left side, which is driven by means of a ball screw and an asynchronous motor 
actuated by an inverter. Two masses, connected one to the other and to the constraints with linear 
springs, move on linear motion guides over rollers.  

 
Figure 1. Experimental test-rig. 

The motor can drive the constraint in order to have a harmonic displacement with constant 
amplitude at a given frequency. The damping of the system is modelled by means of lumped linear 
dampers in parallel to the springs. The scheme of the system is shown in figure 2. 
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Figure 2. Model of the system. 

The equations of motion of the system are:  

1 2 2 1 2 21 1 1 1 1 0 1 0

2 2 3 2 2 32 2 2 2

0
0 0

c c c k k km x x x k y c y
c c c k k km x x x
+ − + − +            

+ + =            − + − +            

  

 
. (1) 

The friction between the rollers and the guide is taken into account by means of the equivalent 
damping coefficients in eq. (1). As can be noticed from figure 1, the vibrating system is not 
installed on a rigid support, which is instead implicitly assumed in figure 2 and eq. (1), but on a 
table, the stiffness and damping of which are unknown. These aspects are actually model 
uncertainties. 

The masses and the left constraint are equipped by an accelerometer each. The displacements of 
the masses correspond to the considered d.o.f.s of the system, while that of the constraint is 
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acquired in order to check the correspondence of the amplitude to the displacement imposed value 
by the inverter. A further confirmation about the constraint displacement is given by an LVDT 
(Linear Variable Differential Transformer).  

Complex algebra is used later on. Since the constraint displacement is harmonic: i i
0 0 e e ty Y ϕ Ω= , 

also the steady-state displacements of the masses are harmonic. The steady-state solution is 
obtained solving: 

( ) 1 12 i
0

i
i e

0
c k

Y ϕΩ + 
−Ω + Ω + = 

 
M C K X  (2) 

and finally: 

( ) 1 1 12 i
0

i
i e

0
c k

Y ϕ− Ω + 
= −Ω + Ω +  

 
X M C K . (3) 

The least squares ( 2L ) and the M-estimators described in the first part of the paper have been 
used to estimate the amplitude and the phase of the left constraint displacement, that has been 
applied with a nominal value of 0 1.8mmY =  and 0= °ϕ .  

The model parameters have been identified before executing the tests. Static tests allowed to 
measure the mass values ( 1 2 23.5kgm m m= = = ) and the spring stiffness 
( 1 2 3 5740N/mk k k k= = = = ). The equivalent damping coefficients have been evaluated by means 
of experimental modal analysis and are 1 3 234.31Ns/m, 3.98 Ns/mc c c= = = . 

The experimental tests have been performed forcing the system in the frequency range between 
1 Hz and 5 Hz with a step of 0.25 Hz. The LVDT and the accelerometer on the constraint indicated 
that the displacement was actually 1.8 mm in average in this frequency range. Once the system has 
reached the steady-state response, the mass accelerations have been measured with sampling rate of 
100 sample/s for 20 s of acquisition time. The acquired time histories are affected by heavy 
disturbances, either electrical or mechanical, which also corrupt the related spectra, since filters are 
not intentionally used. As an example, the time history of the measured acceleration of the second 
mass relative to the constraint displacement at 2.25 Hz is presented in figure 3 along with its 
amplitude spectrum in figure 4. The sinusoidal single frequency component is identified taking the 
highest peak of the signal spectrum and the corresponding phase. 
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Figure 3. Time history of the acceleration of mass m2 with excitation frequency of 2.25 Hz. 
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Figure 4. Spectrum of the acceleration of mass m2 with excitation frequency of 2.25 Hz. 
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The experimental frequency response functions have been evaluated automatically considering, 
for each excitation frequency, the highest peak in the measured spectra. It is important to stress 
again that this rough method has been chosen in order to test M-estimator performances and to 
reproduce the worst real world condition where not only the amplitude and the phase of the input 
force is unknown but often also its frequency. If this last piece of information was known, a clever 
data analysis could be conducted for instance using not only the highest peak, but limiting the peak 
search in a frequency range close to that of the input.  
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Figure 5. Comparison between the model and the experimental responses of the test-rig. 

Figure 5 shows the comparison between the nominal (solid and dotted lines), given by the 
model, and the experimental responses of the test-rig (markers only). The difference in the response 
close to the first resonance of the system (model eigenvalues are equal to 2.4849 and 4.3062 Hz) is 
particularly evident and is caused by the fact that in this case the supporting structure vibrates 
strongly. Also close to the second resonance of the system a certain difference is evident, while the 
responses are sufficiently comparable in the remaining frequency range. 

The results obtained by the 2L  and the different types of M-estimators are reported in table 1. 
The maximum number of iterations of the IRLS algorithm is fixed at 100 and the stop condition is 
that in the first part of the study, i.e.: 

( )
( )

( 1) ( ) ( 1)
0 0 0

( 1) ( ) ( 1)
0 0 0

Re( ) Re( ) Re( )
max 1e 4

Im( ) Im( ) Im( )

t t t

t t t

− −

− −

 −
  < −
  − 

Y Y Y

Y Y Y
. (4) 
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Table 1. Identification results 

Estimator  0 [mm]Y  [ ]°ϕ  Iterations 

2L  (least squares) 1.542 4.4231  

1L  (least absolute) 1.8253 0.20088 10 

1 2L L−   1.7686 1.9376 20 

, 1.2pL =ν  (least powers) 1.8127 0.65892 7 

Fair 1.7567 1.9498 100 

Huber 1.8093 1.6642 17 

Modified Huber 1.784 1.6436 100 

Cauchy 1.6706 2.6877 100 

German-McClure 1.8266 0.51545 100 

Welsch 1.5833 3.3767 100 

Tukey 1.604 3.3146 100 
 
Figure 6 to figure 15 present the evolution of the excitation estimate as a function of the number 

of iteration for all the M-estimator adopted. The results obtained indicate that 2L  estimate is heavy 
influenced by the disturbances on the measures and by the model inaccuracies: the exciting 
displacement is not identified correctly. Among the different types of the M-estimators, those that 
have not unique solution [6], i.e. Cauchy, German-McClure, Welsch and Tukey, behave badly and 
the algorithm stops without having reached convergence. Apparently German-McClure gives a 
good estimate, but this is due to the fact that this value corresponds to the 100th iteration, average 
value of the estimate is less good (figure 13). Also Modified Huber does not converge even if the 
estimate is better than the others not converging. 1L  and pL  converge very quickly (figure 6 and 
figure 8), with a good estimation on excitation module and phase. Huber gives a good estimation 
and has the advantage of avoid the numerical instability that could affect 1L  (see [1], section 3.1.1) 
or the ν  value selection of pL . In this case, M-estimators having a unique solution are able to give 
a good estimation of the unknown parameter, even in presence of disturbances in the experimental 
response and of inaccuracies in the model.  

In the following, only Huber’s estimator will be used, giving a good compromise between 
accuracy, relative immunity from numerical instability (see [1], section 3.2), independence from 
arbitrary selections of least power ν  value and quickness of convergence. 
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Figure 6. Estimated values vs. iteration for the L1 estimate. 
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Figure 7. Estimated values vs. iteration for the L1-L2 estimate. 
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Figure 8. Estimated values vs. iteration for the Lp estimate. 
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Figure 9. Estimated values vs. iteration for the Fair estimate. 
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Figure 10. Estimated values vs. iteration for the Huber’s estimate. 
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Figure 11. Estimated values vs. iteration for the Modified Huber’s estimate. 
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Figure 12. Estimated values vs. iteration for the Cauchy’s estimate. 
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Figure 13. Estimated values vs. iteration for the German-McClure’s estimate. 
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Figure 14. Estimated values vs. iteration for the Welsch’s estimate. 
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Figure 15. Estimated values vs. iteration for the Tukey’s estimate. 
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Once again the analysis of the weights attributed to the single samples allows understanding the 
way of operating of the M-estimate inside of the IRLS algorithm. Figure 16 shows that the weights 
automatically attributed in the last iteration to the experimental observations that are more 
influenced by disturbances are very small. 

 
Figure 16. Weights as a function of the sample number and iterations for Huber’s estimate. 

 
 
3. Experimental results for a MIMO system: identification of two unbalances in a rotor 

test-rig 
 

3.1. Implementation of M-estimate in rotor systems 
In this example, the proposed technique is used to improve the accuracy of fault identification in 

a rotor test-rig. Practically, the model based method presented in [2] is here improved by using the 
M-estimate instead of the traditional least squares. Since in this case it is also of fundamental 
importance to locate the excitation (the unbalances) along the rotor shaft, a short introduction to the 
model based identification in rotor system is required.  

Model based identification of faults in rotor systems [7] is essentially a MIMO inverse problem. 
Some examples have been presented in the time domain [8], but since many types of faults of 
rotating machinery have effect on few harmonic components (as well known in literature starting 
from Sohre’s chart), the harmonic balance approach is preferable. The method is fully described in 
[9] and requires the assembling of the complete model of the machine composed by the rotor, the 
bearings and the supporting structure. The rotor is modelled by means of finite beam elements with 
4 d.o.f.s per node, whilst the bearing by means of linearized dynamic stiffness coefficients, see 
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respectively [10][11] and [3] for details. The supporting structure can be considered rigid or, more 
accurately, modelled by means of pedestals or modal representation (see [9][12][13][14][15][16]). 
Also common faults in rotor dynamics can be modelled by means of equivalent excitation systems 
[9][17], therefore these terms are considered as synonymous. With regards to the experimental data, 
additional vibrations are used. They are obtained by means of the vector difference of the vibrations 
in the faulty condition and in a reference condition. Under the hypothesis of linearity of the system, 
which is satisfied in many cases of common faults in rotating machinery, the additional vibrations 
are caused by the developing faults only. Further discussion about this topic can be found in 
[18][19]. 

Once the machine has been modelled, the following equations are obtained for each harmonic 
component, in which the equivalent excitation vector 

nf
F , has to be identified:  

2( ) [ ] [ ( )] [ ]
nn fn in − Ω + Ω Ω + = M C K X F , (5) 

where [ ]M  is the mass matrix, [ ( )]ΩC  is the complete damping matrix that includes also the 
gyroscopic matrix calculated at the operating speed, [ ]K  is the stiffness matrix.  

Because the system is considered as linear, the effect of m  faults developing simultaneously 
can be considered by means of the superposition of the effects for each harmonic component: 

( )

1
n n

m
i

f f
i=

=∑F F . (6) 

These excitations are the multiple inputs (MI) of the system. Moreover, the k -th fault acts on 
few d.o.f.s of the system, therefore the vector ( )

n

k
fF  is not a full-element vector, which is convenient 

to be represented by means of: 

{ }( ) ( ) ( ) ( )( ), ( )
n

k k k k
f θ θ= Ω Ω ∈F L  , (7) 

where { }( )kL  is the localisation vector which has all null-elements, except for the d.o.f.s to which 
the exciting system is applied, and ( ) ( )kθ Ω  is a complex number representing the amplitude and the 
phase of the fault. Obviously, as many nodes are used for the model, as much the location of the 
fault is accurate.  

In the paper, in which unbalances are going to be identified, it is sufficient to consider the 
synchronous (1x rev.) component of the vibration, but the method can be easily modified for other 
fault types, by using the corresponding fault model and the pertinent harmonics. Since the 
unbalance can be only applied on the rotor nodes and not on the foundation, the k -th unbalance can 
be expressed as: 

( ) { }( )

1

T

( )( ) 2 2 ( ) ( )

-th rotor node foundation d.o.f.s

0 1 0 0 0 0 0
kkk i k k

f

j

i mr e ϕ θ
  = ⋅ Ω = Ω 
  

F L  
 

. (8) 
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In eq. (8) the only elements different from zero are those relative to the horizontal and vertical 
d.o.f.s of the node j-th, where the unbalance is supposed to be applied (figure 17). Note that the 
application node is not known a priori. 

 
Figure 17. General rotor model, location of the measuring planes and of a fault in a general node j. 

In general, the monitoring data used to identify the fault are collected for many rotating speeds 
and on different measuring sections, usually referred as measuring planes (which often are 
corresponding or close to the bearings). The rotating speeds, at which the additional vibrations are 
available, are organized as a vector of pn  elements: 

{ }T

1 2 pn= Ω Ω ΩΩ  . (9) 

If the measuring planes are l , the experimental vibrations are measured along two orthogonal 
directions per each plane and the vector of the additional vibrations is organized as follows: 

{ }T
(1) (1) ( ) ( ) (1) (1) ( ) ( )

1 1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
p p p p

l l l l
V H V H V n H n V n H nξ ξ ξ ξ ξ ξ ξ ξ= Ω Ω Ω Ω Ω Ω Ω ΩΞ    , (10) 

where e.g. (1)
1( )Vξ Ω  indicates the vertical vibration in the 1st measuring plane, evaluated at the 

rotating speed 1Ω . 
These are the measured multiple outputs (MO) of the considered system. Then, introducing the 

admittance matrix of the system and dropping the subscript index n  of the harmonic component 
order for simplicity, eq. (5) becomes: 

( ) ( )

( )
( )

( )
( )

( )
1

1
1 1

( )
2 2 2

1

( )

1

( )
0 0 0

0 0 0 ( )
( )

0 0 0 ( ) ( )
( )

p p

p

m
i

f
i
m

i
f

i f

n n m
i

f n
i

=

=

=

 
Ω 

    Ω Ω
    Ω Ω Ω      = = =               Ω Ω      

Ω 
 

∑

∑

∑

F
Z X

Z X F
Z Ω X Ω F Ω

Z X
F

    


. (11) 

If the rotor model has rn  nodes and the support structure is represented by means of a 
foundation with mk  d.o.f.s, the d.o.f.s of fully assembled model are (4 )r mn k+ , while only 2l  
d.o.f.s are measured per each rotating speed. The admittance matrix [ ]( )Z Ω  has order 
( )(4 ) (4 )r m p r m pn k n n k n+ × + . 

The equivalent excitation system, for each one of the m  faults considered, is repeated for all the 
rotating speed so that the fault vector is of order ( )(4 )r m pn k n m+ × ; taking into account that in this 
case the unbalance is considered, in order to eliminate the dependence on the rotating speed square 
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that appear in eq. (8), it is convenient to insert 2
jΩ  in the localization vector of each rotating speed. 

Therefore, in the first node, the localization vector of the k -th fault, for the j -th rotating speed is: 

{ }
T

( ),( ) 2

d.o.f.s1 node 2 node node

1 0 0 0 0 0 0 0 0 0 0 0 0
st nd th mr

k j
j

kn

i
 
 = Ω  
  

L  
   

 (12) 

and for all the pn  rotating speeds: 

{ } { }{ }T( ),( )( ) ( ),(1) pk nk k=L L L . (13) 

Since the faults have to be identified not only in their severity but also in their position, the 
identification procedure starts by assuming their positions as known and then identifies the 
corresponding amplitudes and phases. All the subsequent permutations of fault number and position 
have to be evaluated, unless the research of the faults is limited inside a specified interval of the 
nodes. The permutations 

rn mP  are indicated by the subscript so that (1,5, )  means that the first 
excitation is applied in node 1, the second in node 5, etc.  

These iterations are implemented in a loop. In the first step of the loop, all the equivalent 
excitations are supposed to be in the first node. 

The effect on the measured d.o.f.s, due to all the exciting systems applied to the first node on the 
model and assumed to have unitary value ( ( ) 1,k kθ = ∀ ), is the vector (1, ,1)  Y   of order (2 )pl n m× . 
Following the statistical nomenclature, (1, ,1)  Y   is the model matrix [20]. The k -th column of the 
vector corresponds to the effect of the k -th generalized force. The calculation of (1, ,1)  Y   is done 
first by substituting eq. (13) in the right hand side of eq. (11), and inverting matrix [ ]( )Z Ω , 
obtaining the matrix [ ]( )H Ω .  

( ) ( )1
( ) ( )

−
   = =   X Z Ω L Ω H Ω L Ω . (14) 

Then, the vibrations of the d.o.f.s that are measured, are separated from all the d.o.f.s of the 
system, by considering only the rows of [ ]( )H Ω  corresponding to the measured d.o.f.s. The 
partitioned matrix [ ]( )H Ω


 is of order ( )2 (4 )p r m pl n n k n× +  and results: 

( ) (1) ( )
(1, ,1)

m    =     Y H Ω L L 


. (15) 

Now the array θ , which is of order ( )1m× , of the complex values ( )iθ  (i.e. the modules and 
phases) of the equivalent excitation systems applied to the first node that fits best the experimental 
data Ξ , which is of order ( )2 1pl n × , has to be estimated. Under a statistical point of view, a linear 
regression model is used, where θ  is the parameter vector to be estimated and r  the residual 
vector: 

(1)

(1, ,1) (1, ,1)
( )

[ ] [ ]
m

θ

θ

 
 = + = + 
 
 

Ξ Y θ r Y r   . (16) 
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Note that eq. (16) indicates a linear system also under a mechanical point of view, since the 
measured vibrations are caused by the superposition of the effects of all the excitation systems 
applied. The fitting of the regression model, i.e. the minimization of the error, can be done by 
means of different approaches and in previous studies weighted least squares have been used. Here 
M-estimators are used and this requires some modifications to the model based identification 
technique. 

The implementation of M-estimate requires two nested loops in this case, so it requires longer 
calculation time, but greatly increases the robustness and therefore the accuracy of the obtained 
results. The external loop is relative to the localization of the fault and it is equal to that of the 2L  
method. The inner loop is that of the IRLS algorithm (see [1], section 4 and [21][22]):  

1. The initial estimate of the amplitudes and phases of the excitation systems in the current 
node is selected using the results of least squares estimate. 

2. At each iteration t , the errors ( )t
ie  and the associated weights ( )t

iw  are calculated from 
the previous iteration.  

3. The new weighted least squares estimate at iteration t  is: 

( ) 1T T( ) ( ) ( )
(1, ,1) (1, ,1) (1, ,1) (1, ,1)
t t t

−

        =         θ Y W Y Y W Ξ   


, (17) 

where: 
( ) ( )diagt t

iw =  W . (18) 

Steps 2 and 3 are iterated until convergence of the values of (1, ,1)θ 


 is achieved upon a stated 

criterion. The inner loop is then ended and the relative residual between the experimental data and 
the system response due to the identified faults in the first rotor node is determined, first by 
obtaining the calculated response due to the identified faults in the first node: 

(1, ,1) (1, ,1) (1, ,1) =  Ξ Y θ  


 (19) 

and: 
1

2

(1, ,1)

T*

(1, ,1) (1, ,1)
T*rδ

    − −    =  
 
 

Ξ Ξ Ξ Ξ

Ξ Ξ

 

 


. (20) 

The procedure then continues with the external loop and is iterated for the permutations 
rn mP  so 

that the set of rδ


 in the m  space is built up. The minimum value of rδ


 indicates along the m  
dimensions the most probable location of the faults, the estimations of which are given by the 
corresponding values of ( )sθ


. The research for the minimum value of the relative residual set is the 

same performed in the case of use of the least squares estimate, as shown in [2][7]. 
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3.2. Experimental results 
The test-rig employed is that of Dept. of Mechanics of Politecnico di Milano (PdM). It has been 

described in detail in [11] while the model has been tuned as described in [2], even if the tuning is 
not perfect in some frequency range. 

The horizontal rotor, see figure 18, is composed by two rigidly coupled steel shafts (the span is 
about 2 m and the mass 90 kg) supported by four elliptical journal bearings. The variable speed 
electrical motor can drive the rotor up to a maximum speed of 6000 rpm, while the flexible steel 
foundation, which has several natural frequencies in the operating speed range of the rotor, has been 
modelled by modal representation. 

 
Figure 18. PdM test-rig. 

 
Figure 19. Rotor model of PdM test-rig. 

Two X-Y proximity probes in each bearing measure the relative shaft displacements and two 
X-Y accelerometers on each bearing housing measure its vibrations, therefore the measuring planes 
coincides with the bearings (figure 19). The absolute vibration of the shaft is calculated by adding 
the relative displacement measured by the proximity probes to the absolute bearing housing 
displacement, which is obtained integrating twice the acceleration measured by the accelerometers. 
A run-down test was performed in order to store a reference vibration data.  

Two known unbalances are applied on both shafts of the test-rig in the balancing planes 
corresponding to the nodes 9 (unbalance on the short shaft) and 35 (unbalance on the long shaft) in 
the finite beam model. The amplitude and the phase of both unbalances are the same and equal to 
3.6e−4 kgm and −90°. Using the stored reference vibrations, the additional vibrations are obtained 
in the speed range 504-3001 rpm. Being two unbalances simultaneously identified, the relative 
residuals are calculated for the permutations 2rn P  and their set is in 2 . Since the two faults are of 
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the same kind, the residual surface representing the residual set is symmetric as shown in figure 20 
(and therefore two minima are present). 
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Figure 20. Representation of the relative residual set for the Huber’s M-estimate. 

Anyway, it is not easy to immediately identify the minimum in the surface, both in case of use 
of 2L  and of Huber’s M-estimate. Therefore a different representation of the surface is used, called 
residual map. In this representation, a colour code represents the value of the residual and vertical 
and horizontal axis correspond to the rotor nodes. Using the residual map, the residuals are plotted 
in figure 21 for the 2L -estimate and in figure 22 for the M-estimate. The two darkest areas indicate 
the position of the two faults. It is possible to see that the M-estimate locates exactly the fault 
position, whilst 2L -estimate does not. The complete results are summarized in table 2. Also in this 
case, the M-estimate achieves a greater accuracy than 2L -estimate, not only with regards to the fault 
positions, but also to amplitudes and phases of the unbalances. 
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Figure 21. Residual map for the L2-estimate. 
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Figure 22. Residual map for the Huber’s M-estimate. 

 

Table 2. Results of two simultaneous unbalance identification in a rotor test-rig. 

 Nodes [ ]l m∆  Amplitude 
[kgm] 

[kgm]mr∆  Phase [ ]ϕ∆ °  Rel. 
residual 

Actual 
9  3.60 e−4  −90°   

35  3.60 e−4  −90°   

L2-estimat
e 

8 −0.07 
(−3.59%) 4.22 e−4 0.62e−4 

(17.22%) −93.21° −3.21° 
0.578 

36 0.02 
(1.03%) 3.82 e−4 0.22e−4 

(6.11%) −102.52° −12.52° 

M-estimate 
(Huber) 

9 0.00 
(0.00%) 3.99 e−4 0.39e−4 

(10.83%) −91.23° −1.23° 

0.415 
35 0.00 

(0.00%) 3.55 e−4 −0.05e−4 
(−1.39%) −93.07° −3.07° 
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It is also interesting to note that, even if the stop condition of the IRLS algorithm is quite 
restricting, being the same of eq. (4), the convergence of the estimated values of the two faults in 
correspondence of the minimum value of the rδ


 occurs before the maximum allowed number of 

iterations (see figure 23).  
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Figure 23. Convergence of estimated parameters during IRLS iterations when the unbalances are located in 

nodes 9 and 35. 

Finally the comparison between the experimental measurements and the simulated results with 
the identified fault parameters is shown in figure 24 to figure 27 for bearings #1 and #3 only, along 
with the values of the weights in the last iteration as a function of the rotating speed, i.e. practically 
to the experimental observation reverse order. Since in this case the measurements were carefully 
made, a low weight indicates that the model fitting to the data is not good at this rotating speed.  

This could be caused for instance by the calculation of the linearized dynamic stiffness 
coefficients that could not match exactly the journal bearing behaviour in all the considered speed 
range of the run-down, or by the presence of phenomena related to the supporting structure that 
have not been modelled or taken into account. In figure 24 to figure 27, it is possible to observe that 
generally low weights are attributed to the measurements corresponding to the critical speeds of the 
rotor. In these cases, the rotor orbits inside the bearings can become relatively large with respect to 
the clearances; some non-linear effects can occur and the linearization of the oil-film forces cannot 
be able to take into account all the phenomena. 

The piece of information given by the weight values can be useful to decide in which frequency 
range a further model tuning could be performed. Comments are similar for the results in the 
bearings not shown. 
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Figure 24. Experimental, simulated vibrations with 
LS and M-estimate and vibrations weights in last 
step of ILRS loop, brg. #1, vertical direction. 

Figure 25. Experimental, simulated vibrations with LS 
and M-estimate and vibrations weights in last step of 
ILRS loop, brg. #1, horizontal direction. 
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Figure 26. Experimental, simulated vibrations with 
LS and M-estimate and vibrations weights in last 
step of ILRS loop, brg. #3, vertical direction. 

Figure 27. Experimental, simulated vibrations with LS 
and M-estimate and vibrations weights in last step of 
ILRS loop, brg. #3, horizontal direction. 

 
 
4. Experimental results for a SIMO system: unbalance identification in a 320 MW steam 

turbo-generator 
The proposed technique is applied to the identification of the unbalance in a real steam 

turbo-generator of a power plant. In this case, besides the accuracy of the identification, it is 
interesting to show that the capability of the M-estimator technique to perform the 
auto-rational-weighting of the data allows a successful identification without an expert’s 
knowledge. 

The considered machine and the experimental data have already been analyzed in detail in a 
previous paper [12]. In that paper it has been shown that the model based identification in the 
frequency domain for rotor system obtained good results in identifying the unbalance of the 
machine, but that the best performances were obtained when weighted least squares were used. The 
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attribution of the weights was made by expert’s selection on the basis of the consideration that the 
accuracy of the machine model was higher in certain rotating speed ranges or that data from some 
measuring planes were more important. Actually the worst results were obtained when all the 
available additional vibration data (i.e. corresponding to each one of the rotating speed of run-down 
considered) were used and without weighting any measuring plane. However, this reflects actually 
the approach of a non-expert like a power plant operator of the control room. Now the same “blind” 
strategy is used along with the M-estimate. 

The considered machine is a 320 MW fossil fuel steam turbine, the model of which has been 
already shown in figure 17. The details about the model assembling are reported in [12] as so as the 
considerations about the linear behaviour of the machine. The experimental data used to obtain the 
additional vibrations are related to a run-down before and after a machine balancing. This way it is 
possible to know exactly the excitation position, amplitude and phase. Care was taken in order to 
choose two run downs in similar thermal conditions. The balancing mass was on the first balancing 
plane of the generator that corresponds to the coupling face between the low-pressure turbine and 
the generator towards the last one (between bearing #5 and #6 in figure 17). The corresponding 
node of the model is 132. The overall amplitude of the balancing was of 0.256 kgm with a phase of 
−22.5° with respect to the key-phasor. Close to each lubricated journal bearing (the vertical dotted 
lines in figure 17) the shaft vibrations relative to the bearing housing were measured by a couple of 
X-Y proximity probes while the absolute vibrations of the supports were measured by a couple of 
X-Y velocimeters. Examples of the additional vibrations, i.e. the difference between balanced and 
unbalanced conditions, are shown in figure 28 for the measuring station close to bearing #4. Being 
only one excitation to be identified, the system is a SIMO. 
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Figure 28. 1x rev. vibrations in measuring plane #4. Thin line: absolute vibrations before balancing; dashed line: 

absolute vibrations after balancing; thick line: additional vibrations. 

The identification method is the same used in paragraph 3.1, considering that 1m =  and 
therefore the relative residual set (both for the 2L  and M-estimate) are in   space. The plot of the 
relative residual as function of the rotor nodes or their axial position, allows the minimum to easy 
indicate the excitation position along the rotor. Huber’s M-estimator is used for the comparison. 
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The two residual sets are shown in figure 29 and have different minima. Using the 2L -estimate, the 
unbalance position is node 134 whilst is node 132, i.e. the exact position, for the M-estimate. 

 
Figure 29. Plot of the relative residual, calculated with L2 and Huber’s M-estimate, as a function of the node 

axial position along the rotor. 

The complete results are shown in table 3. Obviously amplitude and phase obtained by 

2L -estimate are coincident with those obtained in [12]. The use of the M-estimate not only allows 
the exact position to be found out, without expert’s selection of weights and in an automatic way, 
but also the accuracy in module and phase estimate is remarkable, especially considering the 
on-field case of a real rotating machine. In the node in which the unbalance is localized, the ILRS 
algorithm converges in only 18 iterations (the stop condition is that of eq. (4)), see figure 30. Note 
that the values at the first iteration are not corresponding to those of 2L  in table 3, being the nodes 
different.  

Table 3. Results of unbalance identification in a 320 MW steam turbo-generator. 

 Node [ ]l m∆  Module 
[kgm] 

[kgm]mr∆  Phase [ ]ϕ∆ °  Rel. 
residual 

Actual 132  0.256  −22.5°   

L2-estimate 134 0.40 
(1.40%) 0.186 −0.070 

(−27.34%) −18.6° 3.9° 0.715 

M-estimate 
(Huber) 132 0.00 

(0.00%) 0.213 −0.043 
(−16.80%) −20.7° 1.8° 0.709 
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Figure 30. Convergence of estimated parameters during IRLS iterations when the unbalances are located in 

node 132. 

 
5. Conclusions 

In this second part of the study, the performances of the M-estimate in order to increase the 
robustness of excitation identification in mechanical systems are evaluated on some SIMO and 
MIMO experimental cases. Two of them are related to test-rigs, whilst the third is a real machine. In 
all the proposed cases M-estimate allows accurate identification of the excitations, not only in terms 
of their magnitudes and phases, but also in their positions when pertinent.  

The remarkable accuracy in the identification is obtained in an automatic way, i.e. the IRLS 
algorithm does not require any kind of pre-emptive expert’s analysis of the data or attribution of 
weights. On the contrary this is often practically necessary if weighted least squares estimate is 
used, in order to obtain successful results. The IRLS algorithm is autonomously able to weight the 
data when the fitting between the experimental data and the physical model is not good. This 
implies that both noise on the experimental measure and some modelling errors are tolerated. In two 
of the examples presented in the paper, those related to rotor dynamics, this tolerance to modelling 
errors is effective to overcome possible lacks of accuracy of machine model with regards to 
bearings and supporting structure. Moreover, the analysis of the weights given to a certain 
experimental value in certain conditions allows the model quality to be evaluated. 

As regards the different types of M-estimators that have been proposed, the theoretical analysis 
and the numerical cases proposed in the first part of the paper have shown that only few of them are 
suitable. The experimental cases presented here confirm that only those having a unique solution 
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are able to give a good estimation of the unknown parameters. In practice, Huber’s M-estimator, 
which is the first historically introduced, gives excellent results in all the cases under an engineering 
point of view.  
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