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The thermophysical parameters of lunar soil can be inferred from the

temperature field during the invasion process of reconnaissance projectile.

This paper adopts a two-dimensional axisymmetric model to reconstruct the

projectile invasion process. An optimized particle swarm optimization method

is then used to retrieve the thermophysical parameters of lunar soil. When the

reconnaissance projectile penetrates the lunar interior, it rubs against the lunar

soil and generates heat, which diffuses between the projectile body and the

lunar soil. The sensors inside the reconnaissance projectile measure the

temperature variation of the projectile body to inverse the thermophysical

parameters. This paper carried out physical modeling of the penetration

process of reconnaissance projectile. A two-dimensional axisymmetric

simulation model is constructed for the physical process, and the adaptive

inertial weight particle swarm algorithm is adopted. The inversion experiment of

lunar soil thermophysical parameters based on the simulationmodel shows that

the inversion error is less than 10%, which verifies the feasibility of this method.
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1 Introduction

An in-depth understanding of the lunar surface thermal environment is of great

significance for further research on the origin of the Moon and the Solar System, deep

lunar exploration, lunar base construction, and lunar resource development. The

parameters describing the lunar thermal environment mainly include lunar soil

temperature, solar radiation heat flow, and thermophysical parameters. According to
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the energy transfer method, the lunar soil thermophysical

parameters are divided into radiation thermophysical

parameters and conduction thermophysical parameters

(Table 1). The radiation thermophysical parameters mainly

include the lunar surface infrared emissivity, solar reflectance,

and absorptivity. They determine the heat exchange between the

lunar soil and space. The conduction thermophysical parameters

mainly include the lunar soil density, heat capacity, thermal

conductivity, and thermal diffusivity. They determine the flow

state of heat in lunar soil (Kömle et al., 2011). The latter is the

research object of this paper.

The measurement of lunar soil thermophysical parameters

is mainly through three methods: remote sensing

measurement, lunar soil sample detection, and in situ

measurement. Remote sensing measurements generally only

obtain lunar surface parameters. The properties of lunar soil

samples may change during transportation. Compared with

the first two methods, in situ measurement can obtain more

reliable results. At present, the in situ measurement projects

for the Moon mainly include the Apollo program in the

United States and the Lunar-A program in Japan. In the

Apollo program, astronauts conducted a series of in situ

measurement experiments on the lunar surface. Among

them, Apollo 15–17 were operated by astronauts with

drilling tools, and probes were placed in the drilled deep

holes to detect the thermophysical parameters of lunar soil

(Langseth et al., 1972). The results show that the thermal

conductivity of the regolith around the borehole ranges from

0.9 to 1.3*10−4W/(cm*K). This method is mainly imitated by

the line heat source method in the laboratory to measure

thermophysical soil parameters. However, the heat source

does not meet the assumption of wireless long thin lines in

in-situ measurement. So the measurement results have large

errors. In addition, manual operations are required and the

steps are complicated. In 2004, Japan’s Lunar A planned to

carry three unmanned automatic penetrators, which could be

used to detect the temperature gradient and thermal

conductivity of lunar soil. The penetrators have sensors

mounted on the interior and housing, with heaters

mounted on the outer surface. By establishing a thermal

mathematical model and by matching the mathematical

model and the temperature curve obtained by the

penetrators, the lunar soil thermophysical parameters can

be inverted (Mizutani et al., 2003). The disadvantage of this

approach is that many factors cannot be represented

mathematically or it would be too complex (Hagermann

et al., 2009). The project was eventually canceled due to its

potential thruster failure.

There have been some attempts on the ground to measure

soil thermophysical parameters in situ. Similar to the Lunar A,

a cylindrical cone is generally used on the ground to penetrate

deep into the soil, and a sensor is installed inside the cone. The

heat generated by the friction between the cone and the soil is

also used to cause the response of the sensor. The thermal

properties of the soil are calculated accordingly. Akrouch et al.

(2016) used a cone penetrometer equipped with a

thermocouple to push into the soil and obtain the

temperature change curve. They conducted 11 experiments

at three different locations and fitted the empirical formula of

parameters through the simulation model, which was

consistent with the results obtained in the field experiment.

However, this approach is somewhat contingent and

dependent. PHILIP J. V Vardon et al. (2019) gave an

analytical solution for thermal conductivity and volumetric

heat capacity and compared it with the results of physical

tests. The results show that the analytical solution can obtain

accurate thermal conductivity. The analytical solution

proposed by this method may vary with many conditions.

It also ignores the coupling effects of soil thermal conductivity and

heat capacity on the temperature profile. Mo et al. (2021)

established a simplified one-dimensional model of the cone to

simulate the field experiment. They used the particle swarm

method to invert the thermophysical parameters based on the

temperature curve. The particle swarm algorithm used in it avoids

the shortcomings of the traditional grid parameter search, which

requires a large amount of calculation, and the experiment shows

good convergence characteristics and inversion results. However,

the one-dimensional model only considers the heat diffusion of the

cone in the radial direction. For the case where the length of the

cone is not much larger than the radius of the cone, the heat

diffusion in the axial direction needs to be considered. To sum up,

the above methods generally have the problem of relying on

experience, contingency, and model simplicity.

The particle swarm algorithm adopted by Mo et al. (2021)

belongs to the swarm intelligence algorithm (Kennedy and

Eberhart, 1995). This type of method simulates the foraging

behavior of organisms and discards a large number of useless

solutions compared to grid search. The particle swarm

optimization algorithm finds the optimal solution of the

function by simulating the predation behavior of birds. The

TABLE 1 Thermophysical parameters of lunar soil.

Thermophysical parameters Detailed parameters

Radiation Lunar surface infrared emissivity, solar reflectance, absorptivity

Conduction Lunar soil density, heat capacity, thermal conductivity, thermal diffusivity
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algorithm defines potential solutions as particles, and each

particle corresponds to a fitness value. Particles contain two

attributes, speed, and position. The speed determines the

particle’s position at the next moment, and it is

dynamically adjusted according to the speed of itself and

other particles so as to achieve optimization in the feasible

region. The basic particle swarm optimization algorithm has

the problems of slow convergence speed and local optimal

solution, so this paper introduces adaptive inertia weight to

optimize the basic particle swarm optimization algorithm. In

terms of soil parameter inversion, genetic algorithm and

simulated annealing algorithm are often used (Zhang et al.,

2017) (Li et al., 2012) (Zhang et al., 2015). Therefore, this

paper adopts an ordinary particle swarm optimization

algorithm, genetic algorithm, and simulated annealing

algorithm to invert lunar soil parameters, respectively. We

compare the performance of the four algorithms at last.

For the problems of using cones to measure lunar soil and

soil, this paper proposes a method to obtain lunar soil

thermophysical parameters using reconnaissance projectile

penetration heat. When the lander landed on the lunar

surface with a reconnaissance projectile, it launched a

reconnaissance projectile to the Moon during the landing

process. The reconnaissance projectile entered the interior

of the Moon, and the surface of the projectile rubbed against

the lunar soil to generate heat. The temperature change curve

of the surrounding medium is obtained by the sensor installed

inside the projectile to invert the thermophysical parameters

of lunar soil. Considering the axisymmetric structure of the

projectile, the ratio of the projectile length to the radius length

is small, and a two-dimensional axisymmetric model is

constructed in this paper. We set temperature measurement

points inside the missile model and obtain the temperature

change curve. Based on the basic particle swarm optimization

algorithm, the adaptive inertia weight technology is

introduced to speed up the convergence speed of the

algorithm and enhance the global search ability. In this

paper, four temperature measurement points are set to

obtain data, and the inversion results have small errors and

good consistency, which verifies the feasibility of this

approach. The advantages of the method proposed in this

paper compared with the previous work are: 1) Compared

with the mathematical model proposed by the Japanese

Lunar-A plan, the analytical solution proposed by Vardon

et al. (2019) and the one-dimensional axisymmetric model

adopted by mo et al. (2021). The two-dimensional simulation

model constructed in this paper is more able to restore the real

environment and can consider more physical factors. For

example, the diffusion of heat in the axial direction of the

cone is considered; 2) Mo et al. adopted the basic particle

swarm algorithm. Since it adopts a one-dimensional

axisymmetric model, it is suitable for a small amount of

calculation. In order to fit the two-dimensional

axisymmetric model adopted in this paper, this paper

introduces adaptive inertia weight technology to improve

the basic particle swarm method, thereby improving its

global search ability and convergence speed.

2 Materials and methods

2.1 Theoretical analysis of thermal
diffusion

2.1.1 Thermal diffusion mode
Temperature differences cause heat transfer. There are

three main ways of heat transfer: heat conduction, heat

convection, and heat radiation. The heat transfer process on

the contact surface mainly involves heat conduction caused by

microscopic particles’ thermal motion. This principle can be

described by Fourier’s law:

q � −λ∇T(x, y, z, t)n, (1)

q represents the heat flow through a unit area in a unit of time. λ

is the thermal conductivity coefficient, which determines the heat

transfer rate. The transfer direction is along the temperature

decline direction. The temperature field changes with space and

time in the general heat conduction problem. The transient

process is described as:

z

zx
λ(zT

zx
) + z

zx
λ(zT

zx
) + z

zx
λ(zT

zx
) + Q � ρCp

zT

zt
, (2)

Cv � ρCp. (3)

x, y, z is the coordinate of a point, and Q is the heat

contained at the point. ρ is the density of the heat transfer

medium, Cp is the mass heat capacity. Cv refers to the heat

absorbed or released when the temperature of unit volume

material increases or decreases by 1 K. λ, Cv determine the

time t of the temperature variation T. This paper aims to

acquire the value of λ and Cv from the temperature variation

curve of sensors.

Thermal convection occurs at the fluid or the contact

surface between a fluid and an object. All surfaces with a

temperature greater than 0 K have thermal radiation. In this

paper, since there is no air flow on the lunar soil surface,

thermal convection can be ignored. The heat of the

projectile body mainly radiates through the upper end,

which has a small area. Its thermal radiation power to the

space compared to the heat exchange between the projectile and

the lunar soil is much smaller. Therefore, the effect of thermal

radiation can also be ignored.

2.1.2 The thermal diffusion process of lunar soil
In this paper, we consider that projectile falls in the

permanently shadowed region of the Moon. The temperature
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of this place remains at 40 K all year round. This paper assumes

that the material of the reconnaissance projectile is titanium alloy

and selects values of the lunar soil parameters from previous

studies (Langseth et al., 1976). Table 2 lists the parameters of the

materials.

The velocity of the reconnaissance projectile is V0 � 100m/s,

the mass is 8.7 kg, and the penetration depth is 1.5 m. Since there

is no atmosphere on the lunar surface and no threads on the

surface of the projectile, the spin of the projectile is ignored.

According to the calculation, the kinetic energy E = 43500 J when

the reconnaissance bomb enters the soil. We take the kinetic

energy to thermal energy conversion rate η � 50%, the total

penetration heat Q = 21,750 J on the surface of the projectile

during the whole diving process. The diving time of the projectile

body Δt � 0.05s. Assuming that the acceleration of the

reconnaissance projectile body is constant in the process of

penetration, its surface heat source (unit: W) can be expressed

as follows.

q(t) �
⎧⎪⎨⎪⎩

2�q(1 − t
Δt), 0≤ t≤Δt,
0, t≥Δt.

(4)

Considering the trend of temperature field change, the main

direction of heat, and actual detection, this paper divides the

whole thermal diffusion process into three stages:

(1) Penetration stage. It starts from the contact of the

reconnaissance projectile with the lunar soil to the end

of the stationary reconnaissance projectile. At this stage,

the friction between the surface of the projectile and the

lunar soil generates heat. The external surface of the

projectile is the heat source that transmits heat from

the surface to the interior. The short infiltration time

makes the heat concentrated on the surface of the

projectile. The temperature far from the surface is

lower, while the center temperature is unchanged.

(2) Detection stage. The detection stage refers to the period

within one hour after the detection projectile stop. After the

projectile is stationary, sensors work and collect temperature

data. The heat conduction during this period will be the focus

of this paper. The material used for the reconnaissance

projectile is TC4 titanium alloy, whose thermal diffusivity

is greater than that of the lunar soil. The main direction of

heat transfer is from the exterior to the interior of the

projectile at the early stage. Relatively little heat flows

from the surface of the projectile into the surrounding

soil. When the temperature of each point inside the

projectile body is close, the heat diffuses from the

projectile body to the soil.

(3) Stationary stage. It refers to the static time after the

detection stage. At this stage, most of the penetration

heat carried by the projectile body has already diffused

into the lunar soil. The temperature difference in the

whole system is tiny, and the heat flow is languid.

Temperature sensors are difficult to detect significant

temperature variation.

2.2 Numerical simulation experiment

2.2.1 Experimental settings
Due to the complexity of the projectile penetration process,

including disturbance to the surrounding lunar soil and contact

TABLE 2 Material parameters.

Material ρ(kg*m3) λ (W/(m*K)) Cp (J/(kg*K)) CV(J/(m3*K))

Titanium alloy 4,510 7.95 612 2.76*106

Lunar soil 1900 0.01 600 1.14*106

FIGURE 1
Longitudinal section of the projectile and system (A)
Projectile (B) System.
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with the lunar soil, these environmental factors are difficult to

quantify at present. Therefore, the simulation process is assumed

as follows:

A. Ignoring the projectile’s damage to the lunar soil structure,

including the impact on the physical and chemical

parameters of the lunar soil.

B. Due to the fine particles of the lunar soil, it can be

considered that the surface of the reconnaissance

projectile in the exploration stage is in close contact with

the lunar soil, and there is no contact thermal resistance on

the interface.

C. It is assumed that the thermal conductivity and heat

capacity of TC4 titanium alloy and lunar soil are

temperature-independent constants, and the

parameters used in the simulation are all data at room

temperature.

D. It is assumed that the projectile body performs uniform

deceleration in the penetration stage, and the heat

generated by the penetration is evenly distributed on the

external surface of the projectile.

E. Only the diffusion of heat between the missile body and the

lunar soil is considered. Since the overall temperature of the

system is very low. According to the simulation verification,

the effect of void heat radiation of interspace can be ignored

compared with heat conduction.

A numerical simulation model is established for the

penetration process, and the shape and axial section of the

projectile body is shown in Figure 1A. The projectile consists

of a conehead and a hollow cylinder. The projectile penetrates

the lunar soil. The overall model is shown in Figure 1B, and

the two-dimensional axisymmetric model is adopted for

simulation. The inside of the missile body is air, and the

outer rectangular area is lunar soil. To accurately calculate

heat diffusion inside the missile body, finer grids are used to

divide the projectile and internal air. The physical field was set

as solid heat transfer, and the contact surface between the

projectile body and the lunar soil was set as the boundary heat

source. The heating time lasted for 0.05s, the heating

decreased linearly with time, and the initial power was

8.7*105 W.

The thermal diagram can reflect the distribution of heat in

various model regions. Local regions are selected for

magnification observation. The changes in the temperature

field are observed at several moments (Figure 2). As can be

seen from the figures, since the thermal conductivity of

titanium alloy of missile body material is much higher than

that of lunar soil, the heat generated by friction is mainly

transferred from contact to the interior of the missile body,

and part of the energy is transferred to the lunar soil, with a

small range of disturbance to the temperature field of lunar

soil. The heat was mainly transferred to the interior of the

missile body. Later, the heat began to transfer to the interior of

the lunar soil, and the overall heat of the system began to

dissipate outward.

There are four sensors installed on the inner wall of the

projectile to obtain temperature variation data. Figure 3 shows

the positions for installing sensors. Wherein the distance

between B1, B2, and B3 sensors is 10 cm apart, B2 is at the

connection position of the projectile tip and the projectile

body, and B1 is at the wall position at the bottom of the

projectile tip. Temperature variation data of these four points

were extracted from the simulation model. The results are

shown in Figure 4. It can be seen from the figure that the

temperature of the four sensors reached a peak in a short

period and then gradually decreased. The distance between

each sensor and the contact surface is different. The upper

FIGURE 2
Thermal diffusion at different times (A) Observation location (B) t = 1 s (C) t = 600 s (D) t = 3600 s.
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part of the elastic wall is thinner than the lower part, so more

heat passes through the elastic wall, leading to a more

significant temperature rise in the upper sensor.

Temperature variation and heat diffusion in different

periods are analyzed for the B4 sensor, and the results are

shown in Figure 4. The temperature at the B4 position rises to

maximum value before 10s and decreases from 10 to 3600s.

The temperature variation of other sensors is similar.

2.2.2 Sensitivity analysis
In order to verify the feasibility of the inversion idea, it is

necessary to analyze the sensitivity of the temperature curve to

the change of thermophysical parameters, that is, to observe the

influence of parameter change on the temperature curve.

Assuming that the inversion error is ±10%, the thermal

conductivity varies from 0.009 W/(m*K) to 0.011 W/(m*K),

and the volume heat capacity varies from 1.026*106 J/(m3*K)

to 1.254*106 J/(m3*K). The finite element method was used to

scan the parameters at both ends. The temperature curve of the

B4 sensor is extracted. The result is shown in Figure 5. The

difference between the curves of (λ � 0.009, Cv � 1.026) and

(λ � 0.011, Cv � 1.254) is the largest, and the average

difference reaches 0.73 K. For B3, B2, and B1 sensors, the

average temperature difference is 0.48, 0.31, and 0.30 K.To

ensure the inversion accuracy, the average temperature

difference between the calculated temperature curve and the

real temperature curve is less than 0.001K, which can reduce

the inversion error.

2.3 Inversion method of particle swarm
optimization

The particle swarm algorithm finds the optimal solution to

the problem by simulating the motion of particles. Each

particle updates its speed and next position according to its

previous position and the best position of the group. The

particle velocity iteration formula of the basic particle swarm

algorithm is Eqs 5,6. vdi is the velocity of the dth iteration of the

ith particle, and w is the inertia weight, which represents the

inheritance ratio of the velocity at the previous moment. c1, c2
is the learning factor, which affects the update rate of the

particle speed. r1, r2 are random numbers in the range of [0,1],

pBest id represents the best position of the ith particle from

the beginning to the current moment, and gBest d represents

the best position searched by all particles to the current

moment. The index to measure the superiority of the

location is the fitness value.

For the inversion problem, the thermophysical

parameters(λ, Cv) of the lunar soil are equivalent to

the positions of the particles, and the parameter values

are continuously updated by reducing the fitness function.

After repeated iterations, the particles get the best parameters.

Its fitness function is the error function, which is described as Eq.

7. Tj(λ, Cv) and Tj(λ0, Cv0) represent the temperature change

curve determined by the inversion parameters and the real

parameters, respectively. n is the number of points in time.

The smaller the difference, the closer the inversion parameters

are to the real parameters. The iterative termination condition of

the algorithm is that the maximum number of iterations is

reached or the fitness reaches a specified value.

xd+1
i � xd

i + vdi , (5)
vd+1i � wvdi + c1r1(pBestdi − xd

i ) + c2r2(gBestd − xd
i ), (6)

Error(λ, Cv) � 1
n
∑n

j�0
∣∣∣∣Tj(λ, Cv) − Tj(λ0, Cv0)

∣∣∣∣. (7)

In basic particle swarm optimization, each particle has

the same inertia weight and does not change with

time. However, as the number of iterations increases, the

global solution is closer to the optimal solution, the motion

of each particle is also different, and the solution process

is dynamic. The constant inertia weight obviously cannot

meet the needs of the dynamic solution, so the

dynamically changing adaptive weight is used and assigned to

each particle. Therefore, this paper introduces an Optimized PSO

which uses adaptive inertia weight technology.

Optimized PSO uses Eq. 8 to update inertia weights. f(xd
i )

represents the fitness corresponding to a single particle.f d
min and

fd
average and represents the global minimum fitness and average

fitness, respectively. At the beginning of the algorithm,

w � wmax.The moving speed of the particles is large, and the

global search ability is strong. w decreases as the number of

FIGURE 3
Positions of sensors.
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iterations increases. It indicates the moving speed of the particles

gradually decreases, and the local search ability is stronger. It can

be seen from the formula that w decreases as f(xd
i ) decreases,

which indicates the local search ability increases.

wd
i �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
wmax , f(xd

i )>fd
average,

w min + (w max − w min) f(xd
i ) − f d

min

fd
average − f d

min

, f(xd
i )≤fd

average.

(8)

3 Results

3.1 Results of optimized PSO

This paper set 100 for the number of populations and 50 for the

maximum number of iterations. The extreme value of particle

position xmin � [0.0001, 0.001], xmax � [0.1, 2.5],i.e., the search

range of the lunar soil thermal conductivity and volume heat

capacity is [0.0001,0.1] and [0.1,2.5], respectively, which covers all

possible values of the parameters. The global optimum is [0.01,1.14].

Increasing the population number can solve the local convergence of

the algorithm efficiently. From the error iteration curve (Figure 6),

the convergence speed is fast in the early stage, and the error tends to

be 0 in the late stage. The error between the inversion results and the

model parameters is tiny, indicating the effectiveness of the inversion

method. The parameter errors obtained from the inversion of the

four sensors are less than 10% (Figure 7).

3.2 Comparative study

This paper compares Optimized PSO with ordinary particle

swarm optimization, genetic algorithm, and simulated annealing

algorithm and compares the iteration time, and inversion error of

FIGURE 4
Temperature change curve of sensors. (A) Four sensors (B) Sensor B4, 0-10 s (C) Sensor B4, 10-3600 s.

FIGURE 5
Parameter scan result of sensor B4. (A) 0-10 s (B) 10-3600 s.
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the four methods. These four algorithms all have similar

parameters. The parameters that determine the performance

of the algorithm are the number of populations, the

maximum number of iterations, and the minimum fitness

value. In order to facilitate the comparison of algorithms, this

paper sets the population number of the four algorithms to 100,

the maximum number of iterations to 50, and the minimum

fitness to 0.001 K. This paper records the fitness iteration value,

iteration time, and inversion error of the algorithms. The iterative

curves of the four algorithms are shown in Figure 6, and the

algorithm stops when the minimum fitness is reached. In this

paper, iteration time and inversion error of thermal conductivity

λ and volumetric heat capacity Cv are uses to evaluate the

performance of the four algorithms. All calculation results are

averaged on four sensors, which are shown in Figure 7.

From the perspective of fitness value, bothOptimized PSO and

SA algorithms can reach the minimum fitness value (i.e., 0.001 K)

within the maximum number of iterations. This shows that these

two algorithms have strong global search ability. Conversely,

ordinary PSO and GA are prone to fall into local optimal

solutions. From the perspective of running time, the Optimized

PSO algorithm has fewer iterations than the ordinary PSO

algorithm. Since the time consumed by each round of these two

algorithms is similar, the time required for Optimized PSO to search

for the optimal solution is shorter. GA and SA algorithms are prone

to fall into local optimal solutions and require many iterations. At

the same time, the genetic algorithm includes additional operations

such as population crossover and mutation, which requires more

time. The SA algorithm needs to search for new feasible solutions in

each solution neighborhood and calculate the fitness value, so each

round takes more time. In conclusion, Optimized PSO improves the

global search ability of PSO and shortens the time required for

algorithm convergence. At the same time, it also shows better

performance than the commonly used GA and SA. From the

inversion error and running time of the algorithm, the optimized

FIGURE 6
Fitness iteration curves of four algorithms.

FIGURE 7
Error and iteration time of the four algorithms.
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particle swarm algorithm has similar average errors to other three

algorithms. But it takes the least time among them.

4 Discussion

This paper firstly analyzes the energy conversion process of the

projectile penetrating the lunar soil. After the projectile came into

contact with the lunar soil, it went through the stages of penetration,

detection, and static in sequence. This paper qualitatively analyzes

the heat diffusion process in the projectile and the surrounding lunar

soil and provides a theoretical basis for building a simulation model.

Due to the simplification of the process, complex factors such as the

inclination angle of the projectile incident on the lunar soil and the

deformation caused by the projectile force have not been considered,

and further detailed analysis can be carried out in the future.

Based on the analysis of the projectile penetration process, this

paper constructs a two-dimensional axisymmetric simulationmodel

using the axisymmetric characteristics of the projectile. Compared

with the one-dimensional model, this approach considers the heat

dissipation in the axial direction of the projectile, so it is more in line

with the actual situation.However, the contact between the projectile

and the lunar soil surface is complicated, and its void size will affect

heat diffusion when the soil particles are large. A more quantitative

analysis of void size can be carried out subsequently through

penetration experiments.

Finally, the particle swarm algorithm with adaptive inertia

weight is used to invert the lunar soil parameters. This method

improves the global search capability and iteration time of basic

particle swarm optimization. At the same time, compared with

GA and SA, the algorithms commonly used for soil parameter

inversion show better performance.

5 Conclusion

For the problem of the inversion of lunar soil thermophysical

parameters through projectile penetration, this paper combines

theoretical analysis, model simulation and algorithm inversion

methods. Firstly, we analyze the energy conversion and heat

diffusion of projectile penetration. Secondly, we construct a two-

dimensional axisymmetric model based on the physical process of the

reconnaissance projectile penetrating into the lunar soil. The heat

dissipation of the projectile in the axial direction is considered. Finally,

the particle swarm algorithm with adaptive weight is used to search

the lunar soil thermophysical parameters, which improves the

convergence speed and global search ability of the algorithm. The

average error of the inversion results is less than 10%. And it is

compared with three other algorithms, which demonstrates the

feasibility of the optimized algorithm. The scheme in this paper

provides a new idea for the inversion of lunar soil thermophysical

parameters. The simulation model has not yet quantified some

complex environmental factors, such as the complex contact

between the lunar soil and the surface of the projectile. The

establishment of a physical model that is closer to the actual

environment can be considered in the future. Optimization

algorithms should also be further developed to speed up the

inversion process. The rapid development of simulation technology

and computer computing power will facilitate the inversion of soil

parameters.
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