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Abstract: Coherent states, known as displaced vacuum states, play an important role in quantum
information processing, quantum machine learning, and quantum optics. In this article, two ways
to digitally prepare coherent states in quantum circuits are introduced. First, we construct the
displacement operator by decomposing it into Pauli matrices via ladder operators, i.e., creation
and annihilation operators. The high fidelity of the digitally generated coherent states is verified
compared with the Poissonian distribution in Fock space. Secondly, by using Variational Quantum
Algorithms, we choose different ansatzes to generate coherent states. The quantum resources—such
as numbers of quantum gates, layers and iterations—are analyzed for quantum circuit learning. The
simulation results show that quantum circuit learning can provide high fidelity on learning coherent
states by choosing appropriate ansatzes.

Keywords: digital quantum simulation; quantum circuit learning; coherent state

1. Introduction

The exponentially increasing scaling of degrees of freedom poses challenges in the
computation for quantum chemistry [1]. Recent developments in quantum computing
present new routes for the exploration of quantum chemistry by taking advantage of
quantum resources and manipulating the states of matter. In the Noisy Intermediate-
Scale Quantum (NISQ) era [2], seeking appropriate algorithms [3] is crucial for quantum
dynamics digital simulation, which is one of the most promising applications.

As the first step of any quantum algorithm, the preparation of an initial state directly
decides its success. Furthermore, in the Hamiltonian simulation, an efficient and accurate
implementation of U = e−iHt is another crucial task. While the Hamiltonian of a molecule
can be expressed easily in terms of its first quantization in real space [4] and simulate the
kinetic part using the Quantum Fourier Transformation [5], the basis set for expressing the
quantum states is smaller and more explicit in the second quantization [6], since a Fock
state can be easily represented in the computational basis.

Analyzing and improving asymptotic scaling of resources on a quantum computer
have been widely studied during the last decade [3,7–9]. In the NISQ era, low-depth circuits
and reduced number of quantum gates are required to execute quantum algorithms in
the presence of limited coherence time. Variational Quantum algorithms (VQA) [10–12],
which are hybrid quantum-classical methods that take advantage from quantum and
classical computation, have demonstrated to be resource-efficient strategies. Among them,
Variational Quantum Eigensolvers (VQE) [13,14] can prepare the initial state and estimate
the ground-state energy in a flexible and efficient way by choosing a suitable ansatz [15–17]
in a parameterized quantum circuit (PQC). In addition, optimization in PQCs aims at
achieving high fidelity of digital simulation by mitigating quantum errors [18]. To this end,
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gradient-descent based quantum circuit learning (QCL) [19] can be used to optimize the
control function via finding out appropriate variational parameters.

Coherent states are a very special set of states forming the basis of continuous vari-
ables in quantum information [20,21], being useful in a wide variety of applications—for
instance, to represent thermal and Schrödinger cat states, in the Mach–Zehnder interferom-
eters configuration [22,23], in quantum metrology [24,25], in quantum cryptography [26],
in quantum machine learning [27,28], among others. Simulation on coherent states in
quantum circuits provides a fundamental and digital alternative to design and optimize
quantum phenomena, quantum dynamics in gate-based quantum computers. Since the
scalability of quantum algorithms is still limited by the complexity of quantum circuits,
high-fidelity and efficient ways for digital quantum simulation of coherent states are indis-
pensable for quantum technologies. In this paper, we propose a new method of digitized
quantum simulation to simulate and optimize the generation of coherent states. We first
use the creation and annihilation operators of the quantum harmonic oscillator to construct
the displacement operator in the basis of a Fock state. By mapping the displacement
operator acting on the vacuum state in the circuit, we can obtain coherent states with high
fidelity. At the same time, to reduce the consumption of quantum resources in the digitized
quantum simulation process, we propose VQA by combining the quantum circuit with a
classical optimizer.

The paper is organized as follows. In Section 2, we introduce the coherent state and its
digital simulation in a quantum circuit by trotterizing the displacement operator, where its
decomposition with N qubits is generalized via the creation and annihilation operators.
In Section 3, the Hardware Efficient Ansatz and Checkerboard Ansatz [29] are used to
learn the coherent state. The quantum resources such as the number of quantum gates
and iteration times are compared in different schemes. Finally, we give the Conclusion in
Section 4.

2. Coherent State and Its Digital Simulation

First consider a quantum harmonic oscillator with the time-independent frequency ω,
whose Hamiltonian can be written as (m = h̄ = 1 in dimensionless units, where m is mass
and h̄ is the reduced Planck constant):

H = ω

(
â† â +

1
2

)
. (1)

In the basis of a Fock space {|n〉}, the creation operator â† and the annihilation operator
â are written respectively as

â† =



0 0 0 · · · 0 · · ·√
1 0 0 · · · 0 · · ·

0
√

2 0 · · · 0 · · ·
...

...
. . . . . . · · · · · ·

0 0 · · · √n 0 · · ·
...

...
...

...
. . . . . .


, â =



0
√

1 0 · · · 0 · · ·
0 0

√
2 · · · 0 · · ·

0 0 0
. . .

... · · ·
...

...
...

. . .
√

n · · ·
0 0 0 · · · 0

. . .
...

...
...

...
...

. . .


. (2)

Using the displacement operator D̂(α) = eαâ†−α∗ â to act on the vacuum state |0〉,
we can generate the coherent state |α〉 = D̂(α) |0〉, which is also the eigenstate of the
annihilation operator â, satisfying â |α〉 = α |α〉 with the arbitrary complex number α. As in
Fock space N qubits map n = 2N number of states, we directly express the coherent states
in the basis of Fock states {|n〉}. It is feasible to simulate the generation of coherent states
digitally in a quantum circuit, since the displacement operator D̂(α) is a unitary operator.
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Without loss of generality, we consider α to be a complex number a + bi, where a and b
are real numbers and i is the imaginary unit, so that the displacement operator is written as

D̂(α) = e(a+bi)â†−(a−bi)â. (3)

Here, we use the Hermitian matrix Z1 = i(a† − a) and the symmetric one Z2 =
−(â + â†), where

Zk = ik



0 (−1)k
√

1 0 . . . 0√
1 0 (−1)k

√
2 . . . 0

0
√

2
. . . . . .

...
...

...
. . .

... (−1)k√n + 1
0 0 . . .

√
n + 1 0


, k ∈ {1, 2}, (4)

is truncated from the subspace-embracing N qubits. For N qubits, we need N2N−1 Pauli
strings for decomposing Z1 and Z2 by using σD

{0,1} ∈ {I, σz} (diagonal Pauli matrix) and
σS
{0,1} ∈ {σx, σy} (skew-diagonal Pauli matrix). To express the formula in a more com-

pact way, we can rewrite Z1 = ∑N2N−1

l=1 cl A1(l) and Z2 = −∑N2N−1

l=1 cl A2(l), where cl and
A1,2(l) are suitable definitions of each of the N2N−1 constants and strings, respectively (see
Appendix A for more details). By using the first-order Suzuki–Trotter formula [30,31], we
can decompose the displacement operator into M number of Trotter steps, where

D̂(α) ≈
(

e−iaZ1/Me−ibZ2/M
)M

=

[(
N2N−1

∏
l=1

e−iacl A1(l)/M

)(
N2N−1

∏
l=1

eibcl A2(l)/M

)]M

. (5)

In fact, D̂(a) and D̂(ib) in Equation (3), representing the real and the imaginary
displacements of the coherent state, respectively, are implemented in quantum circuits
in completely different ways due to their distinct decomposition into tensor products
of the matrices from σD and σS. We use Qiskit [32] to implement the quantum circuit.
Initialized in the vacuum states, i.e., |0〉 in all qubits, the quantum circuit generates coherent
states after the implementation of the displacement operator (Equation (5)) into a finite
number of segmentations. For instance, a two-qubit system (N = 2) with four Fock states
expressed in the computational basis, leads to the following real and imaginary parts for
the displacement operator:

D̂(a) = e−iaZ1 = e−ia[ 1+
√

3
2 σ1

y+
1−
√

3
2 (σ0

z
⊗

σ1
y )+

√
2

2 (σ0
y
⊗

σ1
x−σ0

x
⊗

σ1
y )], (6)

D̂(ib) = e−ibZ2 = eib[ 1+
√

3
2 σ1

x+
1−
√

3
2 (σ0

z
⊗

σ1
x )+

√
2

2 (σ0
x
⊗

σ1
x−σ0

y
⊗

σ1
y )]. (7)

For example, the digital implementation of the displacement operator with real and
imaginary displacements D̂(a) and D̂(ib) in a single Trotter step, where the total Trotter
number is M, expressed by two qubits is shown in Figure 1.

To analyze the accuracy of the coherent state we derive, we define its fidelity

F = |〈ψf|ψtar〉|2 (8)

where |ψf〉 is the final state prepared by the circuit and |ψtar〉 is the target state which can
be calculated in Fock space as

|ψtar〉 = |α〉 = exp
(
−1

2
|α|2

) ∞

∑
k=0

αk
√

k!
|k〉 . (9)

Such a target has the probability of the m-th Fock state in the analytical form
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Pm = |〈m|ψtar〉|2 = e−|α|
2 |α|2m

m!
= e−〈n〉

〈n〉m
m!

, (10)

which returns a Poissonian distribution centered at 〈n〉, with 〈n〉 = 〈â† â〉 = |α|2.

(a) D̂(a/M)

|0〉
e−i (1−

√
3)a

2M σ0
z⊗σ1

y e−i
√

2a
2M σ0

y⊗σ1
x e−i

√
2a

2M σ0
x⊗σ1

y

|0〉 e−i (1+
√

3)a
2M σ1

y

(b) D̂(ib/M)

|0〉
ei (1−

√
3)b

2M σ0
z⊗σ1

x ei
√

2b
2M σ0

x⊗σ1
x ei

√
2b

2M σ0
y⊗σ1

y

|0〉 ei (1+
√

3)b
2M σ1

x

Figure 1. Diagram of a single step for a two-qubit circuit implementation of the displacement operator
D̂ with M Trotter steps. The displacement is (a) a real number a and (b) an imaginary value ib.

We benchmark our method by digitally generating the coherent state |α〉 = |1 + i〉.
Note that the coherent state is in bold in order to distinguish it from the Fock state |n〉. The
circuit implementation is expressed in Figure 2a, where the blue (real displacement part)
and red (imaginary displacement part) blocks act alternatively. Depending on the magni-
tude of |α| and meanwhile aiming at achieving the desired fidelity, one needs to choose
the appropriate number of qubits to derive the coherent state with a desired fidelity in the
circuit. Using 4 and 3 qubits gives rise to the fidelities over F = 0.9999 with Trotter steps
M ≥ 14 and F = 0.9986 with M ≥ 20, respectively, as shown in Figure 2b. In Figure 2c,
we plot the distribution of the coherent state |α〉 = |1 + i〉 prepared by digitally imple-
menting the displacement operator D̂ with 3 qubits and M = 20 Trotter steps. It coincides
well with the Poissonian probability distribution, indicated from Equation (10), where
〈n〉 = 〈â† â〉 = |α|2 = 2. The analysis on the accuracy of the coherent state expressed in a
truncated space with 2N states, where N is the qubit number, can be found in Appendix B.

(a)

N−1

|0〉
D̂(1/M) D̂(i/M)

|0〉

repeat M times

Figure 2. Cont.
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Figure 2. Preparation of the coherent state |α〉 = |1 + i〉 in a quantum circuit. (a) Circuit implementa-
tion where the blue and the red blocks represent the parts with real and imaginary displacements,
respectively. (b) The dependence of the fidelity of the coherent state |1 + i〉 prepared by 3 and 4 qubits
on the number of Trotter steps M. (c) Fock distribution of the coherent state |1 + i〉, simulated by
3 qubits and M = 20 Trotter steps. The height of the yellow bar indicates the probability of finding
particle in the n-th Fock state. The height in each Fock number coincides well with the Poissonian
distribution (black-dotted) illustrated by Pm (Equation (10)).

3. Coherent State Generation by Variational Quantum Algorithm

Gradient-based quantum circuit learning, a kind of VQA for supervised learning,
aims at achieving the target state by lowering the cost function. In this section, we use a
variational quantum circuit combined with classical optimizers to prepare coherent states.
Inputting the ground state as the initial state into the circuit, processing the evolution in the
form of three alternatives, we obtain the results at the output |ψf〉. To approach the target
state |ψtar〉 (Equation (9)) and by using gradient descent method based on the cost function

C = 1− |〈ψf|ψtar〉|2, (11)

where |ψf〉 and |ψtar〉 are the final state and target state as defined above, we find the
optimized variational parameters in the ansatz. Such VQA is implemented in the Qiskit
package where the optimizer is SLSQP from SciPy [33].

Essentially, a core component of a VQA is to find the appropriate ansatz which
produces the coherent state with few gates and shallow depth in the circuit. Here, as shown
in Figure 3, we apply two kinds of ansatzes by using 4 qubits: Hardware Efficient Ansatz
(Figure 3a and Figure 3b, named as Scheme a and Scheme b, respectively) and Checkerboard
Ansatz [29] (Figure 3c, named as Scheme c), since they are easy to be implemented in the
current and near-term hardware. For the Hardware Efficient Ansatz which consists of a
sequence of single-qubit Rx, Rz, Rx gates and two-qubit-entangling Controlled-Ry gates,
we implemented two alternatives in order to see the relation between the fidelity and the
number of control parameters. In Scheme a, the rotation angles of all the gates used in the
circuit are the variational parameters with a number of 4N in each layer, where N is the
number of applied qubits. While the initial values of all the angles are set to 1 empirically,
their optimized values are derived from VQA. For Scheme b, the block of Ry gates, with
a number of N (equal to the qubit number) labeled in the block as shown in Scheme b,
is repeated in each layer. In order to gain the desired fidelity, a number Ml of repetition
on each layer in the circuit is needed. For a circuit with Ml layers, the number of control
parameters in Scheme a and b are 4NMl and (3 + Ml)N, respectively. The Checkerboard
Ansatz, composed by N − 1 blocks connecting neighboring qubits with a sequence of
single-qubit Rx and Rz gates and two-qubit-entangling CNOT gates, is demonstrated in
Scheme c, with a total amount of 5(N − 1)Ml parameters.
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(a) Scheme a

Rx(θ1) Rz(θ2) Rx(θ3) Ry(θ16)

Rx(θ4) Rz(θ5) Rx(θ6) Ry(θ13)

Rx(θ7) Rz(θ8) Rx(θ9) Ry(θ14)

Rx(θ10) Rz(θ11) Rx(θ12) Ry(θ15)

(b) Scheme b

Rx(θ1) Rz(θ2) Rx(θ3) Ry(θ13)

Rx(θ4) Rz(θ5) Rx(θ6) Ry(θ14)

Rx(θ7) Rz(θ8) Rx(θ9) Ry(θ15)

Rx(θ10) Rz(θ11) Rx(θ12) Ry(θ16)

(c) Scheme c
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(a) Scheme a

Rx(θ1) Rz(θ2) Rx(θ3) Ry(θ16)

Rx(θ4) Rz(θ5) Rx(θ6) Ry(θ13)

Rx(θ7) Rz(θ8) Rx(θ9) Ry(θ14)

Rx(θ10) Rz(θ11) Rx(θ12) Ry(θ15)

(b) Scheme b

Rx(θ1) Rz(θ2) Rx(θ3) Ry(θ13)

Rx(θ4) Rz(θ5) Rx(θ6) Ry(θ14)

Rx(θ7) Rz(θ8) Rx(θ9) Ry(θ15)

Rx(θ10) Rz(θ11) Rx(θ12) Ry(θ16)

(c) Scheme c

−−−−→
Rx(θ1) Rz(θ2)

Rx(θ3) Rz(θ4) Rz(θ5)

Figure 3. Three schemes of ansatzes adopted to do circuit learning for preparing coherent states by
using 4 qubits, where the block (dashed line) in each subplot represents one layer in its corresponding
circuit. Such a layer needs to be repeated in the circuit in order to obtain the desired fidelity. (a)
Hardware Efficient Ansatz where the rotation angles of all the gates used in the circuit are the
variational parameters. (b) Hardware Efficient Ansatz where the rotation angles of the two-qubit
entangled gates are set undetermined. (c) Checkerboard Ansatz whose unit of the neighbouring
two-qubit interaction with variational angles is depicted in detail in the right side.

1 2 3 4 5 6
0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Number of layers Ml

F

Scheme a
Scheme b
Scheme c

Figure 4. Dependence of fidelity F on the number of layers Ml for preparing the target coherent state
|1 + i⟩ with the application of the three schemes presented in Fig. 3.

Figure 3. Three schemes of ansatzes adopted to do circuit learning for preparing coherent states by
using 4 qubits, where the block (dashed line) in each subplot represents one layer in its corresponding
circuit. Such a layer needs to be repeated in the circuit in order to obtain the desired fidelity.
(a) Hardware Efficient Ansatz where the rotation angles of all the gates used in the circuit are the
variational parameters. (b) Hardware Efficient Ansatz where the rotation angles of Ry gates are set
undetermined. (c) Checkerboard Ansatz whose unit of the neighboring two-qubit interaction with
variational angles is depicted in detail on the right side.

The first two columns of Table 1 shows the number of the applied single-qubit and
CNOT gates for three schemes in terms of the number of layers Ml and the number
of qubits N, where controlled-Ry gates are decomposed into single-qubit and CNOT
gates for comparison. In order to guarantee high-precision preparation of coherent states
(F > 0.9999), Schemes a, b, and c need 4, 6, and 6 layers for a 4-qubit system, respectively,
as shown in Figure 4. Scheme b requires less quantum gates and controlled parameters
even though it demands more layers.

For VQAs, the running time of the optimization is determined by the iteration steps,
the number of parameters to be optimized, the initial value of the parameters, and the
chosen optimizer. The last two columns of the Table 1 show the minimized iteration times
and depth to guarantee high-precision preparation of coherent states (F > 0.9999). The
minimal steps needed to realize a high-precision preparation of coherent states |1 + i〉 is
achieved by Scheme b.
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F
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Scheme b
Scheme c

Figure 4. Dependence of fidelity F on the number of layers Ml for preparing the target coherent state
|1 + i〉 with the application of the three schemes presented in Figure 3.

Table 1. Quantum gates used for the three schemes shown in Figure 3 and their corresponding results
for acquiring F > 0.9999.

Scheme
Number of Gates Minimized Results for F > 0.9999

Single-Qubit CNOT Iteration Times Depth

a 5NMl 2NMl 4166 4
b (3 + Ml)N (N − 1)Ml 2517 6
c 5(N − 1)Ml 2(N − 1)Ml 4099 6

4. Conclusions

Coherent states and their digital quantum simulation are of significance in many fields,
as a fundamental element in quantum computing, quantum machine leaning, and quantum
optics. In this article, we proposed a new method for digitally simulating coherent states in
quantum circuits. By expressing the Fock states with an appropriate number of qubits, we
decomposed the displacement operator into Pauli matrices via the second quantization. A
generalized formula on the Trotter expansion of the displacement operator with N qubits
was demonstrated. The derived coherent states in quantum circuits coincided with a
Poissonian distribution with high fidelity. Moreover, we also generated coherent states by
gradient-based quantum circuit learning. Hardware Efficient Ansatz and Checkerboard
Ansatz were used to find coherent states. Different schemes with distinct numbers of
variational parameters were compared in terms of quantum resources and iteration times.

In the NISQ era, seeking efficient encoding methods, i.e., shorter circuit depth and
less quantum gates while maintaining high fidelities, is always the object for the digital
quantum simulation. Finding the optimized ansatzes to generate coherent states which
can exhibit robustness in the presence of different kinds of noise will also be considered.
These will be explored and addressed in our future work. Meanwhile, the transfer of digital
quantum simulation from a coherent state to a squeezed state might be interesting to study.
The quantum information processing hardware containing continuous-variable objects,
such as mechanical or electromagnetic oscillators, instead of discrete-variable qubits, have
demonstrated advantages in some aspects, such as quantum error corrections [34] and
data encoding [35], although the physical implementation still demands further develop-
ment [36]. We hope our method of digital simulation on coherent states will be useful for
the dynamic simulation of quantum many-body systems and device design for quantum
machine learning.
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Appendix A. Decomposition of the Displacement Operator

First of all, we start by computing Z1 = i(â†− â) and Z2 = −(â+ â†) using Equation (4)
with n = 2N . Observe that Z1 is Hermitian and Z2 is symmetric; so, an odd (even) number
of Y matrices, named as ny must appear in the Pauli string decomposition of Z1 and Z2.
Its corresponding Pauli strings can be defined as (σD)⊗N−m(σS)⊗m ∀m ∈ {1, . . . , N}. For
computing all of them, we need to iterate over m and compute all of the possible strings
taking care about the parity of ny. For a general number of qubits N, it can be seen that we
need N2N−1 Pauli strings for decomposing each matrix. The weights of the Pauli strings
for Z1 are given by

(−1)γm

2N−1

2N−m−1

∑
k=0

(−1)εk

√
2m−1(2k + 1) ∀m ∈ {1, . . . , N}.

with γm = (−1)(bny/2c+ñy) mod 2, ñy the amount of Y matrices in the (m− 1)-rightmost σS

matrices of the composition, and

εk =


0 if k = 0
blog2 kc

∑
j=0

(⌊
k
2j

⌋
mod 2

)
ij+m otherwise

. (A1)

The weights of the Pauli strings for Z2 are given from

(−1)1+γm

2N−1

2N−m−1

∑
k=0

(−1)εk

√
2m−1(2k + 1) ∀m ∈ {1, . . . , N}.

We can rearrange these equations to redefine Zi in terms of its Pauli decomposition,
where

Z1 =
1

2N−1

N

∑
m=1

∑
i0,...,iN−1
s.t. ny odd

2N−m−1

∑
k=0

(−1)γm+εk

√
2m−1(2k + 1)

(
σD

iN−1
. . . σD

im σS
im−1

. . . σS
i0

)
=

N2N−1

∑
l=1

cl A1(l),

Z2 =
−1

2N−1

N

∑
m=1

∑
i0,...,iN−1

s.t. ny even

2N−m−1

∑
k=0

(−1)γm+εk

√
2m−1(2k + 1)

(
σD

iN−1
. . . σD

im σS
im−1

. . . σS
i0

)
= −

N2N−1

∑
l=1

cl A2(l),

where cl and A1,2(l) are suitable definitions of each of the N2N−1 constants and strings,
respectively, which this sum returns in order to have a more compact result. Thus,
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D̂(α = a + ib) ≈
(

e−iaZ1/Me−ibZ2/M
)M

=

[(
N2N−1

∏
l=1

e−iacl A1(l)/M

)(
N2N−1

∏
l=1

eibcl A2(l)/M

)]M

Here, we compute string-by-string Z1 and Z2 for n = 3:

Z1 :



m = 1 :

I Iσ2
y :

√
1 +
√

3 +
√

5 +
√

7
4

Iσ1
z σ2

y :

√
1−
√

3 +
√

5−
√

7
4

σ0
z Iσ2

y :

√
1 +
√

3−
√

5−
√

7
4

σ0
z σ1

z σ2
y :

√
1−
√

3−
√

5 +
√

7
4

m = 2 :

Iσ1
x σ2

y : −
√

2 +
√

6
4

Iσ1
y σ2

y : −
√

2 +
√

6
4

σ0
z σ1

x σ2
x : −

√
2−
√

6
4

σ0
z σ1

y σ2
y : −

√
2−
√

6
4

m = 3 :

σ0
x σ1

x σ2
y : − 1

2

σ0
x σ1

y σ2
x : − 1

2

σ0
y σ1

x σ2
x :

1
2

σ0
y σ1

y σ2
y : − 1

2

Z2 :



m = 1 :

I Iσ2
y : −

√
1 +
√

3 +
√

5 +
√

7
4

Iσ1
z σ2

y : −
√

1−
√

3 +
√

5−
√

7
4

σ0
z Iσ2

y : −
√

1 +
√

3−
√

5−
√

7
4

σ0
z σ1

z σ2
y : −

√
1−
√

3−
√

5 +
√

7
4

m = 2 :

Iσ1
x σ2

y : −
√

2 +
√

6
4

Iσ1
y σ2

y :

√
2 +
√

6
4

σ0
z σ1

x σ2
x : −

√
2−
√

6
4

σ0
z σ1

y σ2
y :

√
2−
√

6
4

m = 3 :

σ0
x σ1

x σ2
y : − 1

2

σ0
x σ1

y σ2
x :

1
2

σ0
y σ1

x σ2
x : − 1

2

σ0
y σ1

y σ2
y : − 1

2

Appendix B. Accuracy of the Coherent State Expressed in the Truncated Space

Based on the coherent state in the Fock basis with infinite number of states (Equation (9)),
the coherent state in the truncated subspace with N qubits, leading to 2N available inde-
pendent states, can be expressed as

|ψ′tar〉 = |α′〉 =
e−|α|

2/2 ∑2N−1
k=0

αk√
k!
|k〉√

e−|α|2 ∑2N−1
k=0

|α|2k

k!

=
e−|α|

2/2 ∑2N−1
n=0

αk√
k!
|k〉√

Γ(2N , |α|2)/Γ(2N)
, (A2)

where Γ(k + 1) = k! is the gamma function and Γ(k, x) is the incomplete gamma function
and is defined as

Γ(k, x) =
∫ ∞

x
tk−1e−tdt.

Thus, the probability of measuring the state |m〉 is

P′m = |〈m|ψ′tar〉|2 =
e−|α|

2 |α|2m

m!
Γ(2N , |α|2)/Γ(2N)

=
e−〈n〉 〈n〉

m

m!
Γ(2N , 〈n〉)/Γ(2N)

=
Γ(2N)

Γ(2N , 〈n〉)Pm,

with Pm the Poissonian probability given by Equation (10). For the particular case of |α〉 =
|1 + i〉, we can find 〈n〉 = 〈â† â〉 = |α|2 = 2, since Γ(2N)/Γ(2N , 2) = 21e2/155 ≈ 1.0011 for
N = 3, we can state that P′m ≈ Pm.
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